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Exploring how healthcare teams
balance the neurodynamics of
autonomous and collaborative
behaviors: a proof of concept
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Chameleon, Inc., Culver City, CA, United States

Team members co-regulate their activities and move together at the

collective level of behavior while coordinating their actions toward shared

goals. In parallel with team processes, team members need to resolve

uncertainties arising from the changing task and environment. In this

exploratory study we have measured the differential neurodynamics of

seven two-person healthcare teams across time and brain regions during

autonomous (taskwork) and collaborative (teamwork) segments of simulation

training. The questions posed were: (1) whether these abstract and

mostly integrated constructs could be separated neurodynamically; and,

(2) what could be learned about taskwork and teamwork by trying to do

so? The taskwork and teamwork frameworks used were Neurodynamic

Information (NI ), an electroencephalography (EEG) derived measure shown

to be a neurodynamic proxy for the pauses and hesitations associated

with individual uncertainty, and inter-brain EEG coherence (IBC ) which

is a required component of social interactions. No interdependency was

observed between NI and IBC, and second-by-second dynamic comparisons

suggested mutual exclusivity. These studies show that proxies for fundamental

properties of teamwork and taskwork can be separated neurodynamically

during team performances of ecologically valid tasks. The persistent

expression of NI and IBC were not simultaneous suggesting that it may

be difficult for team members to maintain inter-brain coherence while

simultaneously reducing their individual uncertainties. Lastly, these separate

dynamics occur over time frames of 15–30 s providing time for real-time

detection and mitigation of individual and collaborative complications during

training or live patient encounters.

KEYWORDS:

teamwork, taskwork, EEG, hyperscanning, uncertainty, representation design, team
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Introduction

Teams are a social response to recurring and required tasks
that are too difficult for one person to accomplish. The dual
complexities of teams and tasks result in evolutionary systems,
with teams varying their behaviors in response to external
perturbations and changing task requirements while also using
their behaviors to constrain and shape the task (Ashby, 1956).
As expected from the changing complexities of the task and
the environment, teams are different from the natural flow of
most human activities by being constrained by time, resources,
and ability. In these dynamic decision-making moments, the
changing individual and collaborative elements contributing to
the success or failure of teams are difficult to identify, challenging
our ability to predict future dynamics either by humans or
machines (Stevens and Galloway, 2021a).

Historically the dynamics of teams have been observed
through many lenses. These include intentions from the
perspective of agents (Cohen and Levesque, 1990) or humans
(Knoblich and Sebanz, 2008), shared plans and planning
(Grosz and Kraus, 1996), joint actions (Sebanz et al., 2006)
shared cognition (Gorman and Cooke, 2011), team mental
models (Mohammed et al., 2010), team coordination (Gorman
et al., 2010), and macrocognition (Klein et al., 2003). What
these ideas share is an increased understanding of how
well individuals can recognize and act appropriately on
the intentions of others. While intention provides a social
cognitive background for the shared actions of a team, the
interdependencies of the joint actions provide the organizational
structure within; and with that, teams perform joint tasks and
realize common goals (Wageman, 2001; Kozlowski and Bell,
2020).

Team functioning

When people collaborate on a task at least two simultaneous
processes are thought to occur, taskwork and teamwork (Salas
et al., 2004; Driskell et al., 2018). The taskwork of individuals
is where their expertise and experience are used to develop
information relevant to the team goals and convey it efficiently
and effectively to others (Paris et al., 2000). The skills of taskwork
are defined by the task domain, i.e., being a sonar operator or
surgeon. Task skills are easier to define, observe, describe, and
assess than team skills and can be measured using standard
psychometric techniques (Von Davier and Halpin, 2013).

The skills of teamwork include those that help establish
and support effective communication, problem-solving,
management of resources, and managing conflict (Salas et al.,
2007). These skills are usually taught by working together on-
the-job, or through simulation-based training and are measured
by expert observations (Baker et al., 2011) and the use of vetted
rubrics (Jones et al., 2011); this is likely to change.

While our understanding of individual skill development is
improving, our understanding of how to develop team skills
often results in unanswered questions (Stevens et al., 2017):
Are teams more (or less) than the sum of their parts? Can
teamwork be separated from taskwork? What distinguishes the
temporal and spatial dynamics of teamwork and taskwork, and
are the boundaries between them discrete or continuous? Are
the dynamics of these constructs independent, interdependent,
or mutually exclusive at time scales (i.e., the hierarchical
depth of cognition) that would have immediate relevance
for planning and training? Answering such questions would
have implications for: training (Fisher, 2014), assembling and
enabling task vs. collaboration enhanced robots (Kamika, 2019)
and for training artificial intelligence to forecast possible team
outcomes based on their neurodynamics (Stevens and Galloway,
2021a).

The expanded repertoire and analytic capabilities of
physiologic sensors are shifting the research lens once again,
providing increasingly rich data and quantitative tools for
describing the brain during increasingly complex situations
(Kazi et al., 2021). This re-focusing of teamwork research
emphasizes a shift toward more implicit (automatic, fast,
subconscious) interactions (as opposed to observations) of team
members during dynamic social interactions in ecologically
valid, uncontrolled, and prolonged real-world tasks (Wiese et al.,
2018; Abubshait et al., 2021). These capabilities and shifts
toward ecologically valid settings are also causing researchers
to re-think experimental designs and analyses, shifting toward
representative design as a principled basis for ecological
generalizability, taking complex phenomena and deconstructing
them into manageable components (Nastase et al., 2020; De
Sanctis et al., 2021; Gramann et al., 2021), where theoretical
assumptions are relaxed at the stage of experimental design and
data collection, and later imposed during different stages of
analysis.

Looking forward, we are now at a point where the practical
insertion of these technologies into improving teamwork and
learning will benefit from knowing how the dynamics of these
measures interrelate with one another in the context of evolving
tasks and team behaviors.

In this representative design study, we ask whether
elements of teamwork and taskwork can be neurodynamically
separated? For this we draw from two EEG-derived
neurodynamic frameworks, neurodynamic organizations
and inter-brain coupling. Neurodynamic organizations
are information-based abstractions, expressed in bits,
of the structure of long-duration EEG amplitude
levels. Neurodynamic information (NI, the variable of
neurodynamic organization) is felt to continually accumulate
as EEG amplitudes cycle through periods of persistent
activation and deactivation in response to the activities
and uncertainties of teamwork. The level of inter-brain
EEG coupling during social interactions is estimated
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by wavelet transform coherence (WCoh) measures,
based on the phase and amplitude of the EEG signals
(Czeszumski et al., 2020).

Inter-brain coupling

Simultaneous multi-brain recordings (hyperscanning) have
often used the lower limits of neuroimaging technologies to
document synchronized millisecond to seconds-long shifts in
the EEG phase or amplitude (Lindenberger et al., 2009; Dumas
et al., 2010; Hasson et al., 2012; Filho et al., 2016; Muller et al.,
2021). Such inter-brain coordination during social interaction
reflects temporal adjustments to brain network dynamics based
on perceptions resulting from social interaction, or more
recently from external modulation (Muller et al., 2021).

Outside the range of a few seconds, the ideas of
interdependence among team members are mostly unexplored.
There are indications that brain hyper-connections can occur
independently in different people as intrinsic and extrinsic
information become integrated over longer time scales (minutes
or more; Hasson et al., 2008; Tranquillo and Stecker, 2016;
Silva et al., 2019). These scrolling windows of cognition playing
out well-practiced sequences of events are beginning to be
described in individuals as temporal receptive windows (TRW),
with elements of the Default Mode Network playing a role in
integrating internal predictions of the future with the continuous
updation of sensory information (Lerner et al., 2011; Yeshurun
et al., 2021).

Examples include different individuals viewing the same
movie segments or listening to the same narratives or music
(Lerner et al., 2011; Clayton et al., 2020). Here the only
dependency among people is the time the data stream starts,
and again when different cognitive elements are sequentially
activated internally by the unfolding sequence of sounds and
events. Under these conditions the brainwaves being externally
entrained could be coherent, but not necessarily coordinated
(Burgess, 2013).

Such sequence entrainment/synchrony in real-world settings
was shown to occur with submarine navigation teams (Stevens
and Galloway, 2014, 2019, 2021b). The submarine navigation
team consists of one group responsible for keeping the ship on
course and they do so by checking and reporting the position
every 3 min through a timed sequence of activities called
Rounds. Meanwhile, another group is responsible for avoiding
collisions and it does so by establishing possible collision targets
using the course and direction of other ships. Prolonged periods
(30–40 s) of time-ordered neurodynamic organization have
repeatedly been observed with the submarine navigation group
in parallel with time-ordered, recurring sequence of activities.
Similar significant correlations among team members have been
shown with healthcare teams as illustrated below. What has been
lacking from these studies is information regarding the IBC

among team members during these periods of neurodynamic
organization. In fact, it is unknown whether prolonged periods
of IBC are even produced during continuous simulation training.

Neurodynamic organization and
uncertainty

Uncertainty is a fundamental property of neural
computation used by the brain to estimate the (perceived)
state of the world. The brain draws from this uncertainty to
access memories (the past) to imagine future possibilities and
the actions needed to give the best outcomes. In this way,
uncertainty serves as a trigger for adaptation (Knill and Pouget,
2004). While it is generally accepted that uncertainty should be
avoided, it is also becoming apparent that uncertainty drives
learning by triggering a switch from strategies exploiting past
experiences to strategies exploring novel approaches (O’Rielly,
2013; Soltani and Izquierdo, 2019; Domenech et al., 2020; Gillon
et al., 2021).

During teamwork, this exploratory uncertainty, and the
pauses and hesitations it generates, are often early indicators
of deteriorating performance (O’Riordan et al., 2011; Kaufman
et al., 2015; Ott et al., 2018). Uncertainty is an intrinsic condition
within healthcare that affects individual clinicians and teams
during training and practice. Defined by Han et al.’s (2011) as,
“a subjective perception of ignorance” uncertainty is messy and
non-linear, and adds complexity to patient care that may result
in patient harm since it is often a precursor state to error (Farnan
et al., 2008). This fundamental perception of not knowing gives
rise in conventional terms to doubts, hesitations, and lack of
reliability in patient care (Han et al.’s, 2011). It likewise elicits a
variety of behavioral and cognitive responses among clinicians
(Lally and Cantillon, 2014; Nevalainen et al., 2014), and increases
healthcare costs on a national and global scale (Dine et al.,
2015). While hesitations represent a concern for the individual
experiencing it, they also serve as an interruption to the team.
Here, hesitation on the part of one team member interferes
with work continuity and causes a resumption lag before the
recommencement of the primary task. Most studies have shown
that interruptions lead to a decline in performance (Zikerick
et al., 2021).

Despite uncertainty’s ubiquitous presence, there has been
little discussion about how to develop quantitative measures for
detecting and modeling the dynamics of aggregated levels of
uncertainty in teams. We have identified, and trained machines
to recognize, neurodynamic correlates of uncertainty based on
the pauses, hesitations, and verbalizations of teams (Stevens and
Galloway, 2017, 2019, 2021a). These neurodynamic correlates
are based on persistent information structures or neurodynamic
organizations in EEG data streams.

EEG analyses are dictated by the physical units of amplitude,
frequency, and phase of brain waveforms. Understandings of
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team behavior, however, are constructed around organizations,
whether they be: production, personnel, distribution, or other
variant structures (Mathieu et al., 2014). A useful transformation
would be one that input physical units of EEG amplitude
(µ-volts) and the output measures of organization (in bits),
the rationale being that information-organization representation
would better align with the organization-based measures of
teamwork behaviors.

As detailed under “Methods” Section, the symbolic modeling
generates a normative framework organization with 0, the
information of a single symbol being the lower bound and
the upper bound is the maximum information of a data
stream containing a randomized set of the system symbols
(i.e., 1.585 bits for a 3-symbol system, 3.17 for a 9-symbol system,
etc.). The values between these bounds can be quantitatively
compared across performances, or across brain regions or across
the frequencies of the 1–40 Hz EEG spectrum (Stevens and
Galloway, 2017).

Within this normative framework a measure termed
Neurodynamic Information (NI), is generated which temporally
bridges the gap between low level neural processes associated
with everyday activities, and the hesitations and pauses
associated with team member uncertainty (Stevens et al., 2018a;
Stevens and Galloway, 2019, 2021b). The emerging picture from
these studies is that as simulations and real-world events evolve,
the accumulated NI of each individual becomes a measure of
the frequency, magnitude, and duration of periods of uncertainty
that have been experienced (Stevens et al., 2019).

In this way, a neurodynamic organization is a useful
intermediate abstraction (Flack J. C., 2017) that contributes
properties not always possessed by the amplitude or phase
of brainwaves such as linking with the organization of team
activities (Stevens and Galloway, 2017), or speech (Gorman
et al., 2016), or the expertise of submarine or healthcare team
proficiency (Stevens et al., 2018b; Stevens and Galloway, 2021b).
In the spirit of representative design (Dhami et al., 2004; Nastase
et al., 2020), and quantitative collectivity (Daniels et al., 2021)
they also serve as the starting point for macro-scale to micro-
scale cognitive deconstructions across temporal and spatial
scales of brain dynamics where environmental properties are
preserved.

Methods

Subjects and tasks

Medical flight teams

Five two-person medical flight teams performed a required
pediatric patient simulation (acute bronchiolitis) within the
interior of an emergency helicopter while wearing 19-sensor

(Cognionics, Inc.) EEG headsets (112 min containing briefings
and scenarios was recorded). All participants were experienced
practitioners with 5 years or more in ICU-CCU settings who
were participating in required training sessions. The sequence of
events in each of the performances was an introduction to the
task, an examination of the equipment and supplies available,
a presentation of the patient’s history, and a short Q&A while
on the tarmac. The team then entered the helicopter, assembled
themselves with one person at the head of the patient (TM-1)
and one at the side (TM-2). The team then managed the patient
during the simulated trip to the hospital. The distribution of time
in each segment varied for each team.

Medical student team

A second team with three 4th-year medical students
managed a patient with a benzodiazepine overdose. This
team performed simulations in a high-fidelity operating-room
environment. The neurodynamics of this team and performance
were previously studied in the context of speech to clarify
the relationship between team communication and resolving
uncertainty (Stevens et al., 2016).

Ethics statement

Informed consent protocols were approved by the
Biomedical IRB, San Diego, CA (Protocol EEG01), and the
Order of Saint Francis Healthcare Institutional Review Board.
Participating subjects consented (including images and speech
for additional analysis) per approved applicable protocols. To
maintain confidentiality, each subject was assigned a unique
number known only to the investigators of the study, and subject
identities were not shared. This design complies with DHHS:
protected human subject 45 CFR 46; FDA: informed consent
21 CFR 50.

Neurodynamic measures

EEG collection and pre-processing

Currently, the most common methods for removing artifacts
in movement studies are methods based on independent
component analysis (ICA) which transforms a set of vectors
into a maximally independent set. EEG artifacts can be
broadly divided into two classes: non-stereotyped artifacts due
to multiple factors like the subject’s movements or external
sources of interference, and stereotyped artifacts due, for
example, to ocular eye movements, blinks, heartbeats (Onton
et al., 2006). Artifacts from the second class are likely to be
captured by some ICA components because they have a highly
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reproducible spatial distribution and temporal profiles. ICA
decomposes the observed signals into independent components
and after removing the unwanted components, the clean signal
is reconstructed from the remaining independent components
(Makeig et al., 1996). Artifacts from the first class are
problematic for ICA because since their spatial distribution is
extremely variable, they introduce a large number of unique
scalp maps, leaving few ICs available for capturing brain sources.
The data streams were therefore processed with a combination
of ICA and artifact subspace reconstruction (ASR) which has
several advantages including the automated removal of artifact
components, its usability for online applications, and the ability
to remove transient or large-amplitude artifacts that the ICA
method struggles with (Kothe and Jung, 2014; Chang et al., 2018;
Gorjan et al., 2022).

The 19 quick dry-electrode system sensors (CGX
Cognionics Inc., San Diego) were designed with noise reduction
into the hardware, with active electrodes, active shielding, and
extremely low-noise electronics, and were fitted on each subject
and then adjusted for good contact. When impedance was low
(<10�) and the subject was ready, EEG data were continuously
recorded with a sampling frequency of 500 samples/s from
sensors positioned over the scalp according to the international
10/20 system, and all subject’s data streams were monitored
throughout the session.

Although wireless systems enable mobility, accurate timing
is difficult due to the inherent latency and jitter in wireless
communications. The EEG data streams of team members, as
well as audio and video recorders, were synchronized before
and after each data acquisition with the Cognionics Trigger
electronic time synch markers. The trigger system is created to
accurately broadcast time markers with millisecond precision,
resolving the issues of latency and jitter. The electronic time
markers were also inserted during acquisition at task segment
events like the end of the briefing, the beginning of a debriefing,
or the start and finish of specific procedures like intubation.
Because the timing accuracy is guaranteed in hardware, there is
no need for software or algorithmic timing compensation (CGX
Cognionics Inc., San Diego).

The time-synchronized EEG data were visually inspected
to identify bad electrodes; these were not present in any of
the study teams. Next, to remove linear trends and to obtain
good quality ICA decompositions (Klug and Gramann, 2021),
we high pass filtered the data at 1 Hz. To remove the 60 hz
line noise, we applied the CleanLine EEGLAB (Mullen, 2012)
plugin that adaptively estimated and removed sinusoidal
noise coupling multi-tapering and a Thompson F-statistic. To
aggressively remove transient and high amplitude medium to
large artifacts that the ICA method struggles with, we applied
ASR (EEGLAB Clean Rawdata) with the recommended cut-off
parameter of k = 20, retaining approximately 20–40 percent
of unmodified data. For stable decomposition, we applied the
InfoMax independent component analysis (ICA) algorithm

(runica) to detect and remove additional electrode drifts, eye
movements, electromyographic and electrocardiographic
interference (Delorme et al., 2007, 2011). All data sets
were average referenced (Nunez and Srinivasan, 2006;
Ludwig et al., 2009).

Team neurodynamic modeling

The modeling goal was to develop a multi-modal, multi-level
system that would provide neurodynamic measures from each
team member at a 1 Hz resolution that could be quantitatively
compared across sensor sites (i.e., the occipital lobe vs. the motor
cortex) and the individual 1–40 Hz frequency bins from each
person.

Detecting structure in data streams involves first
deconstructing continuous EEG data into discrete symbols
which requires choosing the number of partitions. Some EEG
rhythms, like alpha waves (∼10 Hz), show either enhancing or
suppressive neurodynamic properties depending on whether
they are in a high or low power state (Klimesch, 2012) and
so at its simplest, EEG amplitudes of a team member could
be assigned any three symbols such that the states are easy to
visualize and understand. In our studies, activated states are
assigned “3”, deactivated states are assigned “-1” and neutral
states are assigned “1”. The result is a data stream of 3’s, 1’s, and
-1’s.

Figure 1 shows a team of two persons where the EEG
amplitudes were separated into three states each second
(Figure 1A), six states (Figure 1B), or nine states (Figure 1C).
Since there are two persons and three symbols in each person’s
data stream in Figure 1A, the team data stream would have
nine symbols. The temporal structure (not power) in this data
stream can be estimated each second by measuring the mix
(i.e., entropy) of the nine symbols in a 60 s segment that slides
over the data and is updated each second. If only one of the nine
symbols was expressed in this 60 s segment the entropy would
be 0 bits; if there was an equal mix of the nine symbols, then the
entropy would be 3.17 bits which is the maximum. So the fewer
the symbols expressed in a window of 60 s the more organized
the team was and the lower the entropy.

Neurodynamic Information (NI) is the information that
remains when the experimental entropy values are subtracted
from the maximum entropy for the number of unique system
symbols. The NI profile for the team in Figure 1A is shown
to the right and the average NI of the team’s performance was
0.16 bits. Similar calculations were made when the amplitude
was separated into six or nine states (Figures 1B,C). Although
the NI values increased with additional symbols in each group,
the NI profiles were similar indicating that adding additional
symbols had a negligible effect on the dynamical structure of
the data; for most studies, the EEG data of each team member
is separated into three categories.
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FIGURE 1

Symbolic modeling of neurodynamic data. The electroencephalography (EEG) was collected from two team members (TM1 and TM2) and each
second the scalp averaged EEG amplitude values of each team member was separated into three (A), six (B), or nine (C) equal divisions. The NI
was calculated for the three models using a 60 s moving window that was updated each second. NI, neurodynamic information.

Symbolically analyzing the structure of EEG amplitude
creates a normative scale of EEG organizations ranging from
0 to the maximum NI of the number of symbols being used.
A data stream with no organization would have an NI of
0. If the EEG were maximally organized the NI would be
the maximum for the number of symbols in the system,
i.e., 4.75 bits for a 27-symbol three-person team, 3.17 bits
for a 9-symbol dyad, or 1.59 bits for a 3-symbol individual
(i.e., high, average, low).

These mathematical limits have implications for creating
quantitative performance measures. In other words, the NI
of any two-person team performing a task where the EEG
is separated into three PSD levels will have NI levels
between 0 and 3.17 bits. The average value of 0.16 bits for
the team in Figure 1A is one that can be quantitatively
compared with other teams. If a team member’s average NI
is calculated, this value can be quantitatively compared with
that of other team members. Similarly, the neurodynamic
organization of one brain region can be compared with
that of another brain region and across the 1–40 Hz
EEG frequency spectrum. The same reasoning applies if
the team NI is compared during the simulation scenario

vs. the debriefing, or during a critical healthcare event
like intubation.

Wavelet coherence

Methods for estimating inter-brain neural coordination
are based on covariance in amplitude (Yun et al., 2012), or
phase synchronization (Lindenberger et al., 2009). Wavelet
transform coherence (WCoh) has also been used as an analytic
tool, providing information on the level of coupling across
brain regions of individuals or during social interactions
(Czeszumski et al., 2020). Wavelet coherence is useful for
analyzing nonstationary signals and considers both the phase
and amplitude of the signals.

For deriving wavelet coherence coefficients the EEG data
streams were down sampled to 1 Hz to parallel the dynamics
of the EEG power spectrum density (PSD) estimates used for
determining neurodynamic information.

The IBC between the two team members was made at
the sensor level using the Matlabr function wcoherence.m.
This function returns the magnitude-squared wavelet coherence,
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FIGURE 2

This figure illustrates how WCoh and MI were calculated across sensors for a dyad. (A) The neurodynamic measures at the sensors of TM-1
were sequentially modeled with those of TM-2 at each second to calculate the IBC ; refer to the text for details. (B) The WCoh pattern after the
neurodynamics of TM1’s C3 sensor were passed over the 19-sensors of TM-2. (C) The WCoh pattern after the neurodynamics of TM1’s P4 sensor
were passed over the 19-sensors of TM-2.

which is a measure of the correlation between signals x and y in
the time-frequency plane. A similar analysis was performed for
data streams that had been randomized three times and these
values were subtracted from the performance values.

Wavelet coherence is most useful for measuring how similar
the power and phase are at each frequency of the two signals, and
are robust for non-directed functional connectivity studies like
ours (Bastos and Schoffelen, 2016). Other source information
measures of connectivity like the Source Information Flow
Toolbox (SIFT; Delorme et al., 2011) are more appropriate if
directional, causal connectivity analyses are being considered as
they are less sensitive to volume conduction effects.

To visualize the sensor × time WCoh dynamics, the EEG
data stream of the first sensor (Fp1) of TM-1 were sequentially
used to make wavelet coherence coefficients in combination
for each of the remaining 18 sensors of TM-1, resulting in a
19-sensor wavelet coefficient map of the performance for the
Fp1 sensor. This would be repeated with the second sensor of
TM-1 to create another 19-sensor performance map, and so on
until the 19 × 19 × time maps were completed. The diagram
in Figure 2A illustrates the point in the modeling where the Cz
sensor of TM-1 is being used in conjunction with the P3 sensor
of TM-2, the previous 13 sensors of this map having been
completed.

Two of the 19 WCoh sensor × performance maps are
shown in Figures 2B,C, the first where the EEG data of the
C3 sensor of TM-1 had been passed over the 19 sensors
of TM-2, and the second map after the P4 sensor of TM-1

had been modeled. These two maps were selected to show
the variability across WCoh maps. The first illustrates strong
coherence around 400 s where the activity in the C3 sensor of
TM-1 shows coherence with most of the sensors of TM-2 (i.e., a
global form of coherence). This activity was missing when the
P4 EEG of TM-1 was used instead of the C3 sensor. While the
different WCoh maps show large temporal variability, the peaks
within each map were sparse and discrete. These findings are
representative of the remaining 17 WCoh maps which are not
shown.

The MI-determined couplings across brain regions were
visualized as described above for WCoh.

Results

Scalp-wide averages of NI , MI , and
WCoh

The scalp-wide NI, MI, and WCoh levels were calculated
using EEG-frequency and sensor averaged values for seven
healthcare dyads. The average NI level was 0.09 bits, and the MI
was 0.007 bits, or 7.7% of the dyad’s average NI levels. The NI and
MI values were both similar to previously published averages
for a mix of 49 healthcare, military, and undergraduate dyads
(Stevens et al., 2018a). WCoh levels are measured in terms of
percent coherence and cannot be quantitatively compared with
NI or MI (Figure 3).
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FIGURE 3

(A) The frequency-averaged NI values are plotted for each sensor every second for TM-1 at the Head position, and TM-2 at the Side position. The
dotted line separates the Briefing and Scenario portions of the performance. (B) Profiles are shown for the sensor-averaged values of NI of TM-1
and TM-2; and the WCoh and MI of the dyad. The labels beside the MI plot indicate when the Briefing ended and when the ventilator failed to
initialize (∼1,400 s). There was a positive MI-WCoh correlation in (B) (r = 0.68, p < 0.05).

The NI correlations between the members of each dyad
were variable, averaging r = 0 0.37, p = 0.02 with a range
of r = -0.02–0.54. There were no correlations between the NI
of the team members and the WCoh (r = 0.08), or the MI
(r = -0.06) of their dyads. There was a weak but non-significant
(r = 0.27, p = 0.26) positive correlation between MI and WCoh
levels.

Temporal and spatial profiles of NI , MI ,
and WCoh—example 1

Overall dynamics

The analyses first explored the temporal (across the time
of the performance) and spatial (sensors across the scalp)
neurodynamics of NI, MI, and WCoh (Figure 3). The measure
dynamics are displayed each second as frequency-averaged
values for each of the 19 sensors in (Figure 3A) or as the sensor-
averaged profiles of the performance (Figure 3B).

The surface maps sequence the sensors from the frontal scalp
positions on the left of the maps, towards the rear of the scalp on
the right. The frontal region sensors were those numbered 1–7,
the central region sensors were in columns 8–12, the parietal
region sensors were in columns 13–17, and the occipital region
sensors were in columns 18 and 19.

The NI activity of both TM-1 and TM-2 was sparsely
distributed at both the temporal and spatial levels with most
peaks discrete and lasting 20–40 s. At any time, the elevated NI
could be limited to a few sensors or be more globally distributed.
During much of the Scenario, the elevated NI of TM-1 was in

the frontal region (sensors 2–3, 5–7), while elevated NI of TM-2
was mainly in the parietal (sensors 16–17) and the occipital (O2)
regions.

The sensor-averaged profiles (Figure 3B) of MI and
WCoh indicate that much of this activity was during the
Briefing when the instructor presented the patient’s history
and flight direction plan. There was a parallel, more discrete
MI peak that aligned with the center of the WCoh peak.
These peaks coincided with a period of low team NI
levels when both team members were silent, still, and
attentive.

Briefing dynamics

An expansion of the 1–500 s Briefing segment
(Figures 4A,B) shows the majority of the NI of TM-1 occurred
at sensor positions Fz, T4, P8, and O2 (# 5, 12, 17, 19), while
those of TM-2 NI were simultaneously elevated in the C4 and
O1 sensors.

The WCoh activity was broadly distributed from ∼150 s
until ∼450 s with a multi-sensor prominent peak at ∼325 s
when the NI levels of TM-1 and TM-2 were low (<0.05 bits).
The elevated WCoh activity was globally distributed across
the scalp being present in all sensors except at F7 and F8
(sensors 3, 7) in the frontal region, and P3, P4, T4, and O1
(sensors 14, 16, 12, and 18) in the parietal/occipital regions
(Figure 4C).

The MI was more restricted over a 45 s period with the
highest levels in the Fp1, F3, Fz, Cz, C4, T4, and Pz sensors
(1, 4, 5, 10, 11, and 15; Figure 4D). The correlation between
scalp-averaged MI and WCoh was r = 0.68 for the performance,
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FIGURE 4

Neurodynamics of the Briefing Segment (1–500 s). The NI values are plotted at each sensor for (A) TM-1 and (B) TM-2. The bottom row shows
surface plots for (C) WCoh and (D) MI values. (E) This figure plots the WCoh-MI correlation at each sensor for 1,290–1,350 s; correlation
p-values < 0.01 are indicated by asterisks (∗).

and a channel-by-channel analysis showed that the highest
(positive) correlations were at sensors Fz (5), Cz (10), Pz (15),
and (negative) at C4 (11) (Figure 4E).

These results suggest that when present, the WCoh and MI
levels were elevated outside the times of elevated NI and that
they were more globally expressed than the peaks of NI in the
Briefing.

Equipment failure

The rhythm of the team was perturbed between
1,300–1,500 s when the ventilator machine failed to initialize
properly for the size and weight of the infant. During this period,
the NI levels of both TM-1 and TM-2 increased, although not
in parallel (r = -0.49, p = 0.05). The elevated levels of NI with
peaks >0.4 bits indicated high levels of uncertainty, confirmed
by statements like. “How come I can’t. . . and It’s not coming up
like usual for non-invasive.” There was also a small peak of MI
in the profile in Figure 5A.

The sequence of events during this period began at 1,280 s
with TM-2 focusing on arranging the breathing hoses prior
to attaching them to the ventilator and the baby. These
activities were associated with elevated NI at the P4 and

O2 sensors (16, 19) (Figures 5A,C). When TM-2 changed
tasks and began assisting TM-1, her NI activity rapidly
decreased, and at the time when both team members’ NI
was low (∼1,340 s), the MI rose while they co-entered
settings into the ventilator (Figures 5A,B,D). When the team
realized the machine was not initializing properly, the NI of
TM-1 elevated in the frontal regions and decreased in the
sensorimotor regions for ∼45 s as she worked unsuccessfully
to reset the machine. Around 1,370 s, the NI activity in
the Pz and O2 sensors of TM-2 rose as she assumed
control in adjusting the settings. At 1,420 s the instructors
intervened to help reset the machine and by 1,500 s the
Scenario continued.

Estimating the frequency, magnitude,
and duration of NI and MI peaks

Scalp-averaged NI levels, representing periods of uncertainty
vary based on their frequency, magnitudes, and durations
of neurodynamic organization, while for MI and WCoh,
these characteristics would apply to periods of IBC. The
frequency and magnitude of NI peaks can be estimated
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FIGURE 5

(A) Sensor-averaged profiles of the NI from TM-1 and TM-2, and the MI during the same episode. The dotted line indicates the start of the MI
elevation. (B,C) The NI sensor profiles during the 1,300–1,500 s interval. (D) The average MI sensor profile over the same interval.

FIGURE 6

This figure shows the relationship between the magnitude and duration of the NI peaks for TM-1 (A) and TM-2 (B), and the MI of the dyad (C).
The mean duration was calculated for each panel from the top five data points for (A,B) and the top four data points for (C).

by peak-finding routines that identify peaks based on the
magnitude and the relationships with their neighbors. One
function is Matlabr findpeaks.m which identifies a peak
as being a data sample that is larger than its neighbors
and has a specified prominence (magnitude). In addition,
the function calculates the extent (duration) of the peak at

half prominence. For the data in Figure 6, the data was
considered a peak if it was at least 0.05 bits larger than
neighboring peaks. Subsequently, the peak measures were
selected based on them being within the intervals ranging
from 0.005 to 0.7 bits for Figures 6A,B or 0.005 to 0.4 for
Figure 6C.
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FIGURE 7

(A) Scalp averaged profiles of the NI and MI of TM-1 and TM-2 are shown for the entire performance. (B) Scalp-averaged profiles for the Briefing
segment of the performance. (C) Sensor profiles are shown for the NI of TM-1 and TM-2, as well as for the MI and WCoh during the Briefing
segment. (D) Correlation between MI and WCoh for the Briefing Segment; the asterisks indicate p < 0.01.

The data stream for TM-1 was a concatenation of the
1–40 Hz frequency bins for each sensor for both team members
(total epochs = 1,288,770). The occurrence of NI peaks was
0.074 for both TM-1 and TM-2 while the occurrence of
MI peaks was 0.016 for the dyad. The MI was chosen for
this comparison as the peaks were more discrete than those
of WCoh. The peak durations for the NI of TM-1 and
TM-2 were 26.8 s and 28.8 s, respectively while those of
MI were 14.5 s.

Medical flight team
neurodynamics—example 2

The neurodynamic profiles of a second medical flight team
are shown in Figure 7. In this performance the team members’
NI-NI correlation was (r = 0.49, p < 0.01) and there were
negative correlations between MI and the team member’s NI
(r = -0.49, p < 0.01 and r = -0.41, p < 0.01) for TM1 and TM2
and between WCoh and NI for the team members (r = -0.20,

p < 0.01 and r = -0.30, p < 0.01). The correlation between the
team’s MI and WCoh values was r = 0.36, p < 0.01.

Like the first team performance, there was greater NI, MI,
and WCoh activity in the Briefing for this team. The first NI
segment for TM-1 (120–318 s) occurred when the dyad was
developing its management plan for the infant. Then TM-1
entered the helicopter (474–800 s) to initialize the onboard
medical equipment (Figures 7A,B). The major NI peak for
TM-2 occurred between 955 and 1,160 s inside the helicopter
after the Briefing and when patient management began. There
were also minor peaks ∼732 and 793 s (Figures 7B,C)
when TM-2 was watching TM-1 initialize the machines;
this NI activity was centrally (C3 and C4 sensors) located
(Figure 7C).

The major MI profile between 830 and 952 s occurred while
the NI of both team members was low. This peak was more
uniform than the parallel peak of WCoh. The broad region of
WCoh activity from ∼200 to 600 s was visible in the MI profile
but at a low rate. The highest WCoh levels were in sensors
C4 (11) and P4 (16). These were also present in the major MI
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FIGURE 8

(A) The scalp-averaged NI levels for the Red, Green, and Blue team members, and the MI for the Red-Green, Red-Blue, and Green-Blue dyads
respectively. (B) The NI levels for the Red, Green, and Blue team members during the 150 s interval when the patient was intubated (350 s to
500 s of the performance). The figure to the right of the first row is the 1–40 Hz frequency profile for the Cz sensor of Blue. (C) The MI for the
Red-Green, Green-Blue, and Red-Blue dyads during the 151 s intubation segment.

profile along with others in the frontal [Fp1 (1), Fp2 (2), F4
(6) T4 (12), and parietal regions P3 (13), P7 (14), P8 (17)].
The WCoh—MI correlation was greatest at the Fp1 (1) and O1
(18) sensors.

Example 3 - three-person medical
student team

The above experienced team studies showed that persistent
periods of elevated MI and WCoh were present when elevated
periods of NI were low. These persistent IBCs were often at
sensor locations different from those contributing to elevated
NI and were of smaller magnitude and shorter duration. There
were also correlations between the mutual information and

the wavelet coherence measures that differed with the sensor
location.

The final example modeled the neurodynamics of three
fourth-year medical students (designated Red, Green, and Blue)
managing a patient with a benzodiazepine overdose. No team
roles were assigned to the students, and individual activities were
informally decided as the case evolved. For instance, the Blue
team member calculated doses, while the Red team member led
the intubation procedure with Green assisting.

The scalp-averaged NI values for Red, Green, and Blue were
0.039 bits, 0.052 bits, and 0.063 bits respectively, and the dyadic
MI levels were: Red-Green, 0.054 bits; Red Blue, 0.055 bits,
Green-Blue, 0.065 bits. Mutual information is used in this
example as a measure of IBC as it provides more discrete peak
profiles than WCoh. The scalp-averaged NI and MI profiles are
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FIGURE 9

This figure shows the relationship between the magnitude and duration of the NI peaks for the Red, Green, and Blue team members (top), and
for the MI peaks for the Red-Green, Red-Blue, and Green-Blue dyads (bottom). The mean duration was calculated for each panel from the top
five data points for the top row figures, and the top four data points for the bottom row figures.

shown in Figure 8A. There was a short Briefing at the beginning,
and a more extensive Debriefing at the end of the simulation than
with the medical flight teams.

The most prominent MI peak coincided with the decision to
intubate the patient and continued during the two attempts that
followed (the second one was successful). This segment is shown
by the highlighted region from 375 to 525 s. This 151 s segment
was accompanied by elevations in NI and MI for different team
members prompting the more detailed analysis in Figure 8B.
During this 151 s period, the team was relatively quiet with
Red speaking 28 s and Green and Blue speaking 40 s and 13 s,
respectively.

The NI levels were greatest for Blue and Green when the
decision to intubate was being made, and when the second
attempt at the intubation procedure occurred. For Blue, there
was a large peak of NI at the Cz sensor when the first intubation
was unsuccessful and when the second attempt began. A further
analysis at the frequency level indicated most of the activity was
around 2–4 Hz. A similar peak of theta band activity around
the Cz sensor has been associated with an interruption-based
deterioration of task performance (Zikerick et al., 2021).

The lower dotted line in the first panel of Figures 8B,C
indicates the point when the decision to intubate had been
made, while the upper dotted line indicates when the second,
and successful intubation procedure started. Most of the IBC
occurred between these two lines. In other words, the greatest
IBC occurred while the team watched/participated in the first,
and unsuccessful intubation.

A final set of analyses were performed with the medical
student team to estimate the frequency, magnitude, and duration
of NI and MI of the team members (Figure 9). Consistent with
the medical flight team findings in Figure 6, the average duration
of the NI peaks was 28.3 ± 3.8 s while those of the MI was
16.0 ± 5.1 s (t = 8.02, p < 0.001).

Discussion

We have compared the neurodynamics of healthcare teams
across time and brain regions during autonomous (individuals
resolving uncertainty) and collaborative (wavelet coherence and
mutual information) segments of activity to determine whether
their dynamics were independent, interdependent, or perhaps
mutually exclusive. Uncertainty, as measured by NI, is often a
persistent state (>15 s; Stevens and Galloway, 2014, 2017, 2019),
is multifractal (Likens et al., 2014), and can be decomposed into
periods of shorter duration (Figures 6, 9). The practical benefits
from obtaining evidence higher up the temporal hierarchy of
cognition, and closer to observable behaviors is that the system
may be amenable to change through interventions.

While both NI-related measures of uncertainty and inter-
brain coherence have histories of operating at small time frames
such as milliseconds-seconds, and while periods of elevated NI
have been shown to persist over time frames of seconds to
minutes, it was unclear how common persistent IBC states were
during real-world task performance.
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Evidence that persistent IBC states may exist has come
from dissecting the structures of a neurodynamic organization
during the continuously evolving tasks (Stevens et al., 2018b).
These studies showed that continuous quantitative estimates of
team NI could be deconstructed into those of the individual
team members, and across 49 dyads performing in different
teaming domains, the sum of the team member NI accounted
for ∼90% of that of the team NI. There was always a residual
amount (3%–15%) of information that was shared among
the team members (Stevens et al., 2018a). These periods
of neurodynamic mutual information were often distributed
throughout the task and briefing/debriefing segments but were
poorly correlated with changes in the NI of team members
or the speech patterns of the teams (Stevens and Galloway,
2015; Stevens et al., 2017). In other words, it was not clear
whether MI reflected inter-brain coupling in the sense of
that modeled by other inter-brain measures like coherence
(Bastos and Schoffelen, 2016), or whether it represented other
forms of information sharing (or creation) activity among
team members.

Persistent states of WCoh were observed in all teams in
this study. The across subject scalp-averaged MI and WCoh
levels of the seven performances were not correlated (r = 0.27.
p = 0.26), but became so (i.e., Figures 3, 7) when individual
teams were studied. When measured within subjects at the
EEG sensor level (Figures 4, 7), correlations were large and
significant. The WCoh-MI sensor-level correlations showed that
although there was often a close concordance between MI and
WCoh activities, they were not identical, showing both positive
and negative sensor-level differences. This diversity may be from
WCoh measures being derived from both the power and phase
and MI being power-derived.

Nevertheless, examples of persistent (>15 s) IBC, both
WCoh and MI derived, were found in all teams studied, and most
frequently present during the briefings and debriefings where
the simulation was being framed or discussed, respectively.
Briefings are a critical part of simulation training as it is
when the instructor gives the patient history (Petranek, 1994;
Fanning and Gaba, 2007). During these times, the dyads were
generally still and mostly silent. These segments may represent
organizations that occur when the rhythm of the team members
has been captured or entrained by task elements and/or the
actions of other members, like the instructor (Adrian and
Matthews, 1934; Galambos et al., 1981). As an extension, they
also resemble periods of complex collective cognition while
groups view emotionally-rich movie scenes (Hasson et al., 2004;
Domachowski et al., 2012).

At any moment, increased IBC, as well as NI could
be found in a single or across multiple sensor channels.
Observationally, the number of sensors involved was related
to the level of the measure. From a cognitive perspective, this
would be consistent with the distributed nature of uncertainty
(Grupe and Nitschke, 2013) and would represent an expansion

from a local to a more global search (Lewis et al., 2019).
From a network perspective, a larger and more connected
network allows a perturbation to propagate across the network
and results in more system amplification. At a critical point
(critical amplification) a perturbation can grow to encompass
a significant faction of system resources (Daniels et al., 2017).
The neurodynamic magnitude and duration curves shown in
Figures 6, 9, suggest that the critical amplifications for NI and
MI may be reached ∼30 s for NI and half that for MI (∼15 s).
These estimates may provide the durations within which to work
for training interventions.

The most notable differences during periods of IBC and
NI were their temporal dynamics. Previously we showed in
a variety of teaming situations that NI levels elevate during
periods of uncertainty, similar to those experienced by the
equipment failure in Figure 5 and the intubation attempts in
Figure 8. Han et al.’s (2011) emphasis on uncertainty being
a “subjective perception” highlights the singular nature of
the state.

When measured at the aggregated scalp level there were no
positive correlations between the IBC and NI suggesting that the
factors elevating and resolving uncertainty are singular processes
and that the involvement of increased IBC is minimal.

The closest example of simultaneous IBC and NI dynamics is
shown in Figure 5 during the over 3-min segment while the team
tried to resolve the equipment failure. Even here, the elevated
IBC occurred during a short gap when the NI decreased for both
TM-1 and TM-2.

Elevated levels of MI were near, but not coincident
with periods of NI (Stevens and Galloway, 2015). A similar
relationship was seen in this study where the temporal difference
of both WCoh and MI varied for tens of seconds away from NI
peaks (Figures 4, 5) to a minute or more away (Figure 7). The
significance of these temporal associations is unknown.

Neurodynamic information in the context of uncertainty
exists, at least partially, as a conscious (i.e., to be verbalized)
and observable aggregate behavior with hesitations and pauses.
The possibility exists that the lack of success (to date) in linking
MI with behaviors may mean that MI and (WCoh) are more
unconscious intermediate representations between the micro
and macro layers of teamwork, and are those that influence
subsequent aggregate behaviors, but do not directly participate
in them (Flack J., 2017).

Nevertheless, these studies show that the persistent
expressions of NI and MI were not simultaneous, suggesting
that it may be difficult for team members to maintain inter-brain
coherence while simultaneously reducing their individual
uncertainties (and vice versa).

A mechanism behind these observations might be resource
allocation. While an attractive candidate for such a resource
would be working memory (Huynh Cong and Kerzel, 2021),
the temporal timeframe of working memory is generally much
shorter than the time frames being modeled here. The models
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being generated in this study, however, are amenable to being
studied over shorter time frames.

A second possibility is that individual and shared
information represent phases of the collective decision-making
process. From millisecond neuronal decision-making to crowd
sourcing, collective decision-making shows bi-phasic properties
(Daniels et al., 2017) with the accumulation of evidence by
individuals preceding a more rapid group consensus-building
phase.

During teamwork, the dynamics of individual information
would represent the accumulation of evidence by each team
member. In the second phase, the accumulated evidence would
be integrated across team members into a decision through
a more-rapid information sharing process. The attractiveness
of this model is: (1) that periods of increased individual
information would be temporally more prolonged than those of
the shared information, and (2) much of the shared information
would occur outside the times of the maximum individual
neurodynamic organization, trends consistent with NI and MI
dynamics.

Limitations and future studies

This is an exploratory study subject to the challenges and
limitations of teams, tasks, sample sizes, and the large temporal
scales over which the performances were collected. Nevertheless
it provides evidence that teamwork and taskwork are not
always interdependent and may be mutually exclusive when
measured at scales close to observable functional outputs. It also
suggests future directions. For instance, network graphs of the
segments before, during, and after perturbations will provide
quantitative estimates of the shifting network structures of both
NI and IBC, and refined views of possible interdependencies. For
WCoh, and particularly MI, similar analyses can be performed
within smaller brackets of duration (and magnitude) to better
understand the finer temporal dynamics leading to the critical
amplifications characterizing uncertainty.

In this article, few attempts have been made to provide
interpretations for the brain region spatial and connectivity
expressions of NI, MI, and WCoh in the context of the
task events. Our previous experiences suggest that the use of
machine learning tools (Stevens and Galloway, 2019) might
be a worthwhile approach for determining the neurodynamic
relationships of IBC and NI across sensors and frequencies. The
discrete nature of NI and MI peaks at a 1 s resolution would
facilitate the search for these peaks/motifs.
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