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post-stroke patients during
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In hemiplegic patients with stroke, investigating the ipsilesional limb may

shed light on the upper limb motor control, impairments and mechanisms

of functional recovery. Usually investigation of motor impairment and

rehabilitative interventions in patients are performed only based on the

contralesional limb. Previous studies found that also the ipsilesional limb

presents motor deficits, mostly evaluated with clinical scales which could lack

of sensibility. To quantitatively evaluate the performance of the ipsilesional

limb in patient with stroke, we conducted an observational study in which 49

hemiplegic patients were enrolled, divided in subgroups based on the severity

of impairment of the contralesional limb, and assessed with a kinematic,

dynamic andmotor control evaluation protocol on their ipsilesional upper limb

during reaching movements. Measurements were repeated in the acute and

subacute phases and compared to healthy controls. Our results showed that

the ipsilesional limb presented lower kinematic and dynamic performances

with respect to the healthy controls. Patients performed the movements

slower and with a reduced range of motion, indicating a di�culty in controlling

the motion of the arm. The energy and the power outputs were lower in

both shoulder and elbow joint with a high significance level, confirming the

limitation found in kinematics. Moreover, we showed that motor deficits were

higher in the acute phase with respect to the subacute one and we found

higher significant di�erences in the group with a more severe contralesional

limb impairment. Ipsilesional upper limb biomechanics adds significant and

more sensible measures for assessments based on multi-joints dynamics,

providing a better insight on the upper limb motor control after stroke.

These results could have clinical implications while evaluating and treating

ipsilesional and contralesional upper limb impairments and dysfunctions in

patients with stroke.
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Introduction

Stroke is one of the major leading cause of death worldwide

and it is the third cause of disability in adults: it is estimated

that stroke affects about 795,000 people every year (1). For

post-stroke survivors, the physical, psychological and financial

consequences strongly affect patients, their families and society

(2). The functional limitations in patients with stroke are mainly

related to deficits in the contralesional side of the body such

as impaired control of multi-joint movements coordination,

muscular weakness or spasticity (3). Furthermore, unilateral

stroke limits the motor function of the ipsilesional side,

which is generally considered as “unaffected” (4). Although

ipsilesional deficits are less severe than contralesional, they could

impact negatively on the performance of daily activities of

stroke survivors. Understanding the role of the damaged brain

hemisphere on the ipsilesional side motor control may support

the global functional recovery of patients (5). Nevertheless,

potential causes of the role of a hemisphere to the ipsilesional

movement have been hypothesized. First, while most of the

anatomical pathways of corticospinal motor fibers cross to the

opposite side in the spinal cord, 10–15% of fibers descend

in the same side of the cortical origin (6). It follows that

each hemisphere plays a role in controlling the movements

of both sides. Moreover, the interconnection between the

two hemispheres via the corpus callosum provokes that the

contralateral hemisphere is involved to modulate the activation

of the ipsilateral one (7). Lastly, the contralateral motor activity

acts as an efferent copy of the ipsilateral limb state (5); if the

contralateral efference copy is missing or reduced, the ipsilateral

limb can be affected as well.

Previous studies have confirmed that the ipsilesional side

shows deficits in dexterous tasks (8), in movement coordination

(9) and in wrist movements (10) when comparing the motor

performance to healthy subjects. Ipsilesional impairment is

mainly related to movement speed and smoothness (11) and

is maximum immediately after the stroke event, even if motor

performance improves in time (8, 11). In fact, patients have

shown slower movements in the ipsilesional upper extremities

(12), probably due to an increased cognitive demand in

sequencing the movement (13). Moreover, greater ipsilesional

deficits are present in patients with a major extension of the

lesion in the contralateral hemisphere (14, 15). These studies

demonstrated the impairment of the ipsilesional limb and most

of them use clinical scales for the evaluation, offering a great

variety of assessments. However, these scales could have some

biases due to the operator and they are sensible only for

gross motor improvements (16). A biomechanical assessment

provides a quantitative evaluation of the performance, including

more objectivity and higher sensibility, as already shown

in kinematic analysis of the contralesional limb (17, 18).

Quantifying the biomechanics of the ipsilesional upper limb

function post-stroke paves the way for implementing specific

rehabilitation programs, extending traditional approaches a

focus on both the contralesional and ipsilesional upper limbs

(19, 20).

The aim of this study was to provide a quantitative

assessment of the ipsilesional upper limb of patients with stroke

performing frontal reaching movement. Patients were evaluated

in acute and subacute stage, comparing kinematic, dynamic and

motor control variables to healthy controls.

Materials and methods

Study design

We conducted an observational study in which kinematic,

dynamic andmotor control data of the ipsilesional limb of stroke

patients were compared to age-matched controls performing

reaching movement, a multi-joint movement requiring refined

coordination (21). Patients were assessed at two different post-

stroke phases (acute and subacute stage) in order to evaluate

the motor impairment at different times after the stroke event.

To investigate the existence of a correlation between the severity

of motor performance of the contralesional and the ipsilesional,

patients were divided in groups based on their motor capacity.

Participants

Two cohorts of participants were included in this study.

Eligible post ischemic patients with stroke, with unilateral upper

limb deficit from Villa Beretta Rehabilitation Center, Ospedale

Valduce, Costa Masnaga, Italy were recruited. Inclusion criteria

were: ischemic stroke survivors; unilateral upper limb deficit;

ability to understand the instructions and ability to remain in

a sitting posture. Exclusion criteria were: bilateral impairment;

cognitive impairment; other severe medical problems. Patients

were evaluated at T0—acute stage (<15 days from the acute

event) and at T1—subacute stage (about 45 days after T0) and

were divided into three subgroups based on the upper limb

evaluation with the total Motricity Index (22) administered

by an experienced physician: severe (MI ≤ 30); moderate

(30 < MI ≤ 70) and mild (MI > 70). Healthy control

participants were included if they were age-matched andwithout

neurological or musculoskeletal impairments. Prior to testing,

all healthy subjects were questioned and clinically evaluated for

the presence of neurological or orthopedic signs, and excluded

if any.

Ethical approval was granted by the local ethical committee

at ATS Insubria and the experimental trial was conducted in

compliance with the Declaration of Helsinki (23). All healthy

people and patients have given their informed consent for

participation in the research study. Both healthy subjects and
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FIGURE 1

Lateral view of arm reaching performed by a healthy subject.

patients were then instrumented with markers (24, 25) by an

experienced bioengineer.

Since patients were expected to have lower performances

with respect to the control group, relatively low subjects are

needed due to the large effect size expected. To determine the

number of subjects to be enrolled, we used the software GPower

3.1.9.7 software (Heinrich Heine University, Dusseldorf,

Germany). A clinically relevant threshold was imposed for

each measure in order to catch a functional difference between

patients and controls (e.g., 8◦ for shoulder elevation required 11

samples per group) and the GPower a priori test was repeated

for all the measures included in the work always leading to a

minimum range from 8 to 15 subjects per group.

Data collection procedure

Healthy people and patients followed a protocol presented in

recent studies (24, 25). The subjects sat on a chair, adjustable for

height, with the feet resting on the floor and the knees and hips

bent at 90 degrees. In the rest position, both hands were lying

on the thighs, and the arms were positioned with flexed elbow

and slightly extended shoulder. Starting from rest position,

subjects were asked to carry out the movements without moving

his/her back away from the backrest. To perform the reaching

movements, each subject had to move the hand toward a target

located in front of the subject at shoulder height, at a distance

slightly longer than that of the fully extended upper limb, as

shown in Figure 1. Each subject performed 20 repetitions of the

reaching movement.

Tracking data were collected with a 3-dimensional (3D)

optoelectronic motion tracking system (8 TVc 250Hz; SMART

BTS, Italy). In order to limit the overall setup time and facing the

stringent requirements of the clinical practices, and considering

further exploitations with low cost devices such as Kinect (18),

5 markers were used to track the arm kinematics. Markers

were applied to the spinous process of D5 (M1), the spinous

process of C7 (M2), acromion (M3), lateral epicondyle of the

elbow (M4), and styloid process of the ulna (M5). The target

marker M6 was placed in front of the subject slightly exceeding

reaching distance.

In this study, measurements for patients were repeated at

T0—acute stage (less than 15 days after the acute event) and

subacute stage T1 (about 45 days after T0). We assessed whether

the ipsilesional limb was comparable to healthy, both at T0 and

T1. For controls, measurements were acquired in one session.

The study took place at Villa Beretta Rehabilitation Center,

Ospedale Valduce, Costa Masnaga, Italy.

Data analysis procedure

The evaluation protocol extended previous works (24),

including a 3D dynamic model (26). All data analysis and pre-

elaborations were performed offline in MATLAB (Mathworks,

Natick, MA, USA).

In the pre-processing stage, all marker coordinates were

filtered with a 3rd order low-pass Butterworth filter with a cut-

off frequency of 6Hz, in order to remove noise and movement

artifacts (27). Each trial was segmented in subtasks, each one

beginning when the subjects started to elevate the arm until

they reached the target. The starting and the ending points were

identified with a threshold algorithm applied to the velocity

profiles of the shoulder flexion in the sagittal plane. All the

parameters of the assessment were computed for each task

separately and then collected for the statistical analysis. Our

outcome measures included several biomechanical parameters.

The task execution time TE was computed, as the time

required to perform each task, between each movement starting

and ending. The time to peak velocity TP (28) was calculated as:

TP =
t0 − tvp

TE
(1)

Where t0 is the task initiation time and tvp the time in which the

velocity peak occurs.

Movement smoothness was evaluated with the normalized

jerk NJ (29), computed as follows:

NJ =

√

1

2
·
t5tot
L2

·

∫

j2 dt (2)
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Where ttot is the task execution time, j is the third derivative of

the wrist 3D trajectory and L is the length of the wrist trajectory

during the execution of the task. The upper limb configuration

was then assessed using two clinical angles: shoulder flexion (SF)

and elbow flexion (EF). For both SF and EF we evaluated:

• The maximum angular displacement (MAXSF ,MAXEF), as

the maximum angle reached at the end of the task;

• The minimum angular displacement (MINSF , MINEF), as

the minimum angle at the beginning of the task;

• The range of motion (ROMSF , ROMEF), as the difference

between the maximum and the minimum angle.

Using the weight and height of each subject and anthropometric

tables (30), the inverse dynamics of the upper limb was

computed through Euler-Newton equations to compute joint

torques.Moreover, the analysis was extended to the computation

of the exerted power Pi and expended energy Ei for each

joint i; moreover, to permit inter subject analysis, all dynamic

parameters were normalized to the length of the subject’s arm

(La) and weight (Ma).

τ i (t) =
τi (t)

La ·Ma
(3)

Pi (t) = τ i (t) · ωi (t) (4)

Where τi is the torque, τ i is the normalized torque and ωi is the

angular velocity of the joint i. In order to evaluate the maximum

effort exerted by each subject, we considered the peak power

PMAX , computed as the maximum value of the power P time

series for shoulder (PSF) and elbow (PEF).

Finally, the normalized expended energy ESF and EEF for

shoulder flexion and elbow flexion were computed as follows:

Ei =

∫ tend

t0

Pi (t) dt (5)

Where t0 and tend are the initial and the ending time of the

task, and Pi(t) is the power time course calculated in equation

(4). Only the normalized power and energy were considered in

the comparison.

Statistical analysis

All data distributions were tested for normality through the

Kolmogorov-Smirnov test. As the results for all parameters of

interest were normally distributed, a parametric statistic test

was used. For all the proposed variables of the assessment

(kinematic and dynamic), a two-sample t-test was computed

to compare each subgroup of patient (severe, moderate,

mild) at each stage (T0 and T1) to the control group,

performing a total of six tests for each variable. The

significance level was set at p < 0.05. Statistical analyses were

performed using Matlab2021b software (MathWorks, Natick,

MA, USA).

Results

A total of 49 patients was enrolled in this study: 16 in the

severe subgroup [10F, 6M, 71.9 (8.1) years, 68.4 (8.3) kg, 166.5

(7.7) cm]; 16 in the moderate [2F, 14M, 66.3 (12.5) years, 75.3

(11.2) kg, 170.4 (8.3) cm] and 17 in the mild one [8F, 9M,

65.9 (11.9) years, 71.53 (8.9) kg, 169.8 (9.9) cm]. From healthy

age-matched control subjects, 20 limbs were included [5F, 5M,

age 64 (8) years, weight 62 (10) kg, height 170.0 (10) cm].

The CONSORT flow diagram (31) for the study is shown in

Figure 2.

Figure 3 illustrates the kinematics, the dynamics and motor

control indexes of the subjects’ upper limbs. In the first

three rows, the kinematics of each group is shown for the

shoulder joint: angular position, velocity, and acceleration are

portrayed. Dynamic parameters (including normalized torque

and normalized power output) are shown in the last two

rows.

The biomechanical performances of the groups of

patients and controls are presented in Figure 4 and

the results of patients are compared with the healthy

controls in details in the following sections, based on the

group subdivisions.

Mild patients (MI > 70)

With respect to healthy individuals (mean = 0.79 s), the TE

parameter was larger for mild patients in acute phase TE= 0.95 s

(p = 0.008) and improved in the subacute phase TE = 0.82 s

(p = 0.42). For motor control parameters, NJ was higher than

controls (p < 10−3), while no significant differences were found

in the TP parameter in both acute and subacute stage.

Mild patients showed a significantly higher MINSF in acute

(p < 10−5) and subacute (p = 0.008) phase, while MAXSF

was very similar to the healthy controls. The total ROMSF was

smaller with respect to control group (ROMSF = 87.6◦) in both

stages (acute, p = 0.0003; subacute, p = 0.003). PSF and ESF of

mild patients were significantly lower than control subjects in

both stages, except for ESF in acute phase (p= 0.08).

For elbow joint, MINEF and MAXEF were very similar to

controls and significant difference was found in acute phase

for MINEF (p = 0.018) and in both stages for MAXEF(acute,

p= 0.03; subacute, p = 0.016). The ROMEF was lower in acute

(p ≤ 0.001) and subacute (p = 0.006) phases. Both PEF and

EEF were smaller than healthy group, but only EEF showed

significant differences (acute, p= 0.002; subacute p= 0.009).
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FIGURE 2

Consolidated Standards of Reporting Trials (CONSORT) flow diagram.

FIGURE 3

Detailed representation of the kinematics and dynamics of each group for the shoulder flexion. Each subject is represented with a line (as

average for all the repetitions performed by that subject). The black line is the average of all subjects. Healthy subjects are represented with blue,

mild patients (MI > 70) at T0 and at T1 are represented with red, moderate patients (30 < MI ≤ 70) at T0 and at T1 are shown in green, and severe

patients (MI ≤ 30) at T0 and at T1 are shown in purple.
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Moderate patients (30 < MI ≤ 70)

Moderate patients showed a significantly higher TE in the

acute phase (TE = 0.95 s, p = 0.008) that improved in the

subacute one (TE= 0.85, p= 0.12). As for mild group, moderate

patients presented a higher NJ than controls (p < 10−3) and no

significant differences in the TP parameter.

MINSF was significantly higher only in acute phase

(p < 10−5), while MAXSF was similar to the healthy group.

ROMSF was significantly reduced in both stages (acute,

p < 0.001; subacute, p = 0.028). PSF and ESF of mild

patients were significantly lower than control subjects in

all stages.

Both MINEF and MAXEFwere similar to healthy group

and did not showed significant differences, while ROMEF was

significantly lower only in the acute phase (p = 0.043). No

differences were found in dynamic parameters of the elbow joint

(PEF and EEF).

Severe patients (MI ≤ 30)

Severe patients showed the highest differences in almost all

the parameters. TE was 1.04 s (p < 10−4) in acute phase and

did not improved in subacute phase (TE = 1.02 s, p = 0.001).

NJ was significantly higher than controls (p < 10−3) and no

significant differences in the TP parameter, as for the mild and

moderate group.

MINSF was significantly higher in acute (p < 10−5) and

subacute (p < 10−5) phase, while MAXSF was similar to the

healthy group. Severe patients presented the most reduced

ROMSF in both stages group [ROMSF = 55.4◦ in the acute phase

(p < 10−5) and ROMSF = 61.1◦ in subacute phase (p < 10−5)].

PSF and ESF of severe patients were lower than control subjects

in all stages.

For elbow joint, MINEF was significantly different only in

the acute phase (p = 0.03), while MAXEFand ROMEF were

significantly lower in both phases (MAXEF p ≤ 0.001; ROMEF

p < 10−4). Both PEF and EEF achieved by severe patients were

lower than healthy control in acute (p = 0.01; p < 10−5) and

subacute (p= 0.014; p < 10−5) phase.

Discussion

In this study, we analyzed the performance of the ipsilesional

limb in patients with stroke during multi-joint reaching tasks,

comparing kinematic and dynamic data with controls. We

showed that motor deficits in the ipsilesional side were present

in all the groups of patients.

First, patients showed a tendency in performing slower

movements. This result is in partial accordance with previous

studies (32, 33), in which patients took longer time to complete

reaching tasks in the horizontal plane. The smoothness of

the trajectory (normalized jerk) was lower in all patients,

indicating a difficulty in controlling the ipsilesional upper limb

in multi-joint movements, probably due to altered activation

and coordination of muscles (10).

Patients’ elbow and shoulder joints showed limited ROM.

We noticed that in severe patients, limited shoulder ROM was

related not only to the lowermaximum angle reached, but also to

the higher starting angle, indicating that patients had a different

postural accommodation that affected the range of motion.

Dynamic measures provided further evidences of the motor

control deficits of the ipsilesional upper limb during complex

multi-joint movements in post-stroke patients. The energy and

the power outputs were lower both in shoulder and in elbow

joint with a high significance level.

Moreover, our study highlighted that higher ipsilesional

motor control impairments were present in severe patients.

This result agrees with previous studies (11, 15), that showed

that motor impairment in the ipsilesional limb varied with

the severity of the contralesional limb. Furthermore, patients

reported higher motor deficits in the acute stage, regardless

of the severity level. This finding proved that the motor

impairment was more pronounced immediately after the stroke

event (11).

Summarizing, significant difference was found between

healthy people and patients’ ipsilesional limbs when quantifying

motion biomechanics. However, some points are still opened

for further studies. First, we noted how some of the assessed

parameters are partially dependent from the starting position.

With the data in our possession, we cannot quantify whether

these biomechanical differences reflect mainly a postural trunk

control strategy or are intimately related to efficiency of the

upper limb movement itself. However, since subjects were

instructed to adhere at best to the proposed protocol (including

the starting configuration), we conclude that trunk posture

cannot be separated from the upper limb gesture and is by all

means part of the assessment: in fact, it was demonstrated that

trunk control posture is altered in stroke patients affectingmotor

performance (34). Furthermore, the effect of motivation was

not tested in this study. It is indeed not quantifiable whether

the effect of low-motivation can influence biomechanical

performances (35). Recent studies demonstrated that better

motor performances can be achieved if a subject is acting

with the purpose of achieving specific aims (36). Moreover,

improved motor performances were achieved in patients that

were involved in a virtual reality environment (37) or receiving

feedbacks from robot-assisted technologies (38). Under the

effect of such drivers, we cannot exclude that motor performance

might increase, comparing to our protocol including reaching

movements at natural speed. It was also demonstrated with

kinematic assessment that performing a well-learned upper limb

movement with concurrent cognitive task leads to decreased

efficiency of motor control in chronic stroke survivors (39).
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FIGURE 4

Results of the biomechanical assessment. Comparison between each of the patients’ group (severe, moderate mild) at T0 and T1 and the

age-matched controls are shown and matched with an asterisk when significantly di�erent. Healthy subjects are represented with blue barplots,

mild patients (MI > 70) at T0 and at T1 are represented with red barplots, moderate patients (30 < MI ≤ 70) at T0 and at T1 are shown in green,

and severe patients (MI ≤ 30) at T0 and at T1 are shown with purple barplots.

Lastly, in this study, we did not investigate if the ipsilesional

deficits were related to the damaged hemisphere. Previous

studies (32, 33) showed that patients with the dominant

hemisphere damaged had deficits in controlling the arm

trajectory while non-dominant hemisphere damaged patients

had problems in achieving the accurate final position.

Their results supported the idea of the lateralization of

motor control between the two hemispheres (40, 41)

and that interhemispheric relationship may optimize

motor control.

One limitation of our study was to verify the sensibility of

a simplified protocol applied in clinical practice that employs a

limited set of markers for tracking the kinematic data. However,

this protocol already proved to be effective on healthy people

(24) and on patients (17); in fact, we are able to detect relevant

dynamic ipsilesional upper limb dysfunctions. The simplified

protocol also matches well with the wide spreading use of

low-cost sensors-based applications for motor evaluation in

domiciliary context (18). Further studies could expand on this

protocol by using more extensive kinematic models to increase
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its sensibility. Furthermore, we analyzed only the kinematics

of each group, that in any case is related to intention of

movement. Authors foresee the inclusion of electromyography

to provide better insight into neuromuscular patterns at the

motor control level.

Conclusions

In this paper, we provide evidence that the ipsilesional

upper limb of post-stroke patients shows motor deficits on

kinematic, dynamic, motor control and energy consumption

parameters during multi-joints movements. Patients present

ipsilesional upper limb lower performances in the acute and

subacute stage of the recovery. We found that patients with

severe contralesional upper limb deficit are more impaired in

terms of ipsilesional performances, suggesting to consider the

ipsilesional limb in post-stroke patients to define their functional

profile, to plan treatments and evaluate their efficacy. These

results raise a need to further analyze the factors influencing the

low performances of the ipsilesional limb in post-stroke patients.
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