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Gestational diabetes mellitus (GDM) is associated with considerable imbalances

in intestinal microbiota that may underlie pathological conditions in both

mothers and infants. To more definitively identify these alterations, we

evaluated the maternal and infant gut microbiota through the shotgun

metagenomic analysis of a subset of stool specimens collected from a

randomized, controlled trial in diet-controlled women with GDM. The

women were fed either a CHOICE diet (60% complex carbohydrate/25% fat/

15% protein, n=18) or a conventional diet (CONV, 40% complex carbohydrate/

45% fat/15% protein, n=16) from 30 weeks’ gestation through delivery. In

contrast to other published studies, we designed the study to minimize the

influence of other dietary sources by providing all meals, which were eucaloric

and similar in fiber content. At 30 and 37 weeks’ gestation, we collected

maternal stool samples; performed the fasting measurements of glucose,

glycerol, insulin, free fatty acids, and triglycerides; and administered an oral

glucose tolerance test (OGTT) to measure glucose clearance and insulin

response. Infant stool samples were collected at 2 weeks, 2 months, and 4–5

months of age. Maternal glucose was controlled to conventional targets in both

diets, with no differences in Homeostatic Model Assessment of Insulin

Resistance (HOMA-IR). No differences in maternal alpha or beta diversity

between the two diets from baseline to 37 weeks’ gestation were observed.

However, women on CHOICE diet had higher levels of Bifidobacteriaceae,

specifically Bifidobacterium adolescentis, compared with women on CONV.

Species-level taxa varied significantly with fasting glycerol, fasting glucose, and
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glucose AUC after the OGTT challenge. Maternal diet significantly impacted the

patterns of infant colonization over the first 4 months of life, with CHOICE

infants showing increased microbiome alpha diversity (richness), greater

Clostridiaceae, and decreased Enterococcaceae over time. Overall, these

results suggest that an isocaloric GDM diet containing greater complex

carbohydrates with reduced fat leads to an ostensibly beneficial effect on the

maternal microbiome, improved infant gut microbiome diversity, and reduced

opportunistic pathogens capable of playing a role in obesity and immune

system development. These results highlight the critical role amaternal diet has

in shaping the maternal and infant microbiome in women with GDM.
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Introduction

Gestational diabetes mellitus (GDM), defined as glucose

intolerance that arises during pregnancy, has increased

worldwide over the past decade, reaching up to 20% of all

pregnancies depending on the diagnostic criteria (1). GDM is

associated with increased risk for preeclampsia, cesarean section

delivery, and preterm birth (2), with up to 50% of women

developing type 2 diabetes within 10 years. Infants born to

women with GDM have a higher risk of developing type 2

diabetes, obesity, and other chronic inflammatory diseases (3).

Diet is the primary treatment for GDM, and accordingly, the

dynamic interactions between GDM and the maternal and

infant gut microbiome have received substantial attention. The

composition of the gut microbiota is altered in women with

GDM during late pregnancy (4–6) and is associated in some

cases with changes in blood glucose levels (7). Women who

develop GDM undergo shifts in gut microbiota composition

characterized by an enrichment of potential opportunistic

pathogens in the family Enterobacteriaceae, while beneficial

bacteria like Bifidobacterium or Lachnospiraceae are depleted

(8). Higher abundances of Enterobacteriaceae have been linked

to prediabetes and untreated type 2 diabetes (9) and increased

circulating levels of lipopolysaccharide in adults, which can

promote the development of obesity and insulin resistance by

inducing a chronic inflammatory state (10). On the other hand,

Bifidobacterium and Lachnospiraceae produce short-chain fatty

acids (SCFAs), such as acetate, propionate, and butyrate, which

help to decrease the production of pro-inflammatory cytokines

and control the overgrowth of Enterobacteriaceae in adults (11).

Further, maternal and early life exposures during pregnancy

and lactation, such as maternal obesity or diabetes, influence the

development of the infant microbiome and have an impact on

the occurrence of common diseases, such as diabetes, allergic
02
and atopic disease, cardiovascular disease, and obesity in the

offspring (12). Studies on the neonatal microbiome report lower

richness and differences in microbial composition in infants

born to women with GDM compared with women without a

GDM diagnosis (13–16). However, to our knowledge, only one

study has investigated the impact of GDM on the infant

microbiome beyond 2 weeks of age (16) and no studies have

investigated this paradigm between 2 weeks and 6 months of age.

Evidence suggests that the microbiome within the first 2 months

of life impacts immune cell development patterns up to 3

months of age (17), and others found an association between

increased Lachnospiraceae abundance at 3–4 months of age and

childhood overweight/obesity at 1 and 3 years (18). Therefore, a

need exists for studies that investigate the microbiome of infants

born to women with GDM within the first 4 months of life.

Although diet is a major driver of microbiota composition

and functions (19), the impact of maternal diet therapy in

women with GDM on the maternal and infant microbiome

and potential consequences of diet therapy remains unexplored.

Diet therapy for women with GDM conventionally involves

lower carbohydrate intake to blunt postprandial glucose

excursion, at the cost of increasing dietary fats (20) since

protein intake is typically constant and difficult to appreciably

modify. A maternal high-fat diet, especially with an increase in

saturated fats, promotes insulin resistance in human and animal

models (20, 21), can lead to increased fetal fat accretion (22, 23),

and may put the offspring at a higher risk of developing

metabolic syndrome due to excess lipid exposure in utero (24,

25). Thus, alternate diets are needed to improve maternal/infant

health in women with GDM without the unintended

consequences that may arise from administering a high-fat

CONV diet. From a microbiome perspective, a need for more

highly controlled diet studies (26) is warranted to investigate the

effects of dietary intervention in women with GDM and how diet
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impacts the maternal and infant microbiome and determine

whether these alterations to the microbiome are linked to

improvements in maternal and infant health outcomes.

However, a previous study examining the maternal dietary

effect on the maternal and infant microbiome in GDM had

confounding influences of dietary intake that were not

controlled (14). Here, we conducted a randomized, controlled

dietary intervention (RCT) in GDM, directly comparing a

conventional CONV diet or a diet higher in complex

carbohydrates and lower in fat [CHOICE, Choosing Healthy

Options in Carbohydrate Energy (27–29)]. Notably, all meals

were provided for the duration of the study. The isocaloric

nature of the diet was critical to ensure no differences in

gestational weight gain (GWG) between diets. Furthermore,

the percentage of saturated, polyunsaturated, and

monounsaturated fats were identical and both simple sugars

and fiber were also well controlled.

In the larger RCT of 46 women and infants who

completed the study, we previously found that between-

group maternal glycemic profiles were nearly identical (29).

Although fasting free fatty acid (FFA) profiles were not

different between the diet groups, the postprandial FFA

profiles were lower with the CHOICE diet (29), likely

suppressed by a higher postprandial insulin response.

Between the diet groups, GWG was not different and

insulin resistance indices were similar at 37 weeks, and the

usual increase in the insulin resistance of pregnancy was

blunted on both diets (29). Infant adiposity by air

displacement plethysmography (PEAPOD), the primary

endpoint on which the RCT was powered, was also not

different, and cord blood glucose, C-peptide, FFAs, and

triglycerides (TGs) were similar (29). From the larger RCT

of 46 women, we collected a subset of stool samples in 34

women at 30 and 37 weeks’ gestation and in 24 infants at 2

weeks, 2 months, and 4–5 months of age to examine the

impact of a controlled, third-trimester diet on the maternal

microbiome and on infant microbial colonization during the

first 4 months of life. We hypothesized that the consumption

of the CHOICE, compared with CONV, would favorably alter

maternal and infant microbiome composition consistent with

improvements to the maternal measures of glucose tolerance.
Materials and methods

Participants

This study was approved by the Colorado Multiple Internal

Review Board and was registered at http://www.clinicaltrials.gov

(NCT02244814). All studies were performed in accordance with

relevant guidelines and regulations. GDM was diagnosed using

the Carpenter and Coustan criteria (30) between gestational

weeks 24 and 28. Women were randomized to a diet group and
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entry criteria included the age of 20–36 years, a BMI of 26–39

kg/m2, a singleton pregnancy, no significant or obstetric

comorbidities, no history of preterm labor or preeclampsia

prior to term, and the treatment of GDM with diet alone.

Informed consent was obtained from all women, and all

women planned to breastfeed for at least 4 months and were

otherwise healthy. Participants were excluded if they met any

criteria for overt diabetes or were likely to fail the diet and

require medical attention (fasting glucose >115 mg/dl or fasting

TGs >400 mg/dl, which would place them at risk for TG-induced

pancreatitis). Women taking beta blockers, antihypertensives, or

glucocorticoids were excluded as were smokers and non-English

speaking women. Maternal stool samples were excluded if they

took antibiotics within 4 weeks of the sampling time. Infant stool

samples were excluded if their mother received antibiotics at

delivery, if they took antibiotics within 4 weeks of the stool

sample collection, or if they were missing information on

antibiotic use at the sample collection. From the original

cohort of 46 women with GDM, 34 women in this subgroup

had complete measurement data and stool samples from the

study visits at 30 and 37 weeks’ gestation (n=16, CONV; n=18,

CHOICE). Twenty-four infants had stool samples collected

(n=14, CONV; n=10, CHOICE).
Study protocol

The enrolled women with newly diagnosed GDM began

dietary intervention between gestational weeks 30 and 31 and

continued to delivery. Detailed information on the diets has been

described (28). Briefly, diets were eucaloric, contained similar

amounts of fiber (~23.5 and ~29.3 g/day for CONV and

CHOICE, respectively), and had the following macronutrient

distributions: CONV, 40% complex carbohydrate/45% fat/15%

protein; CHOICE, 60% complex carbohydrate/25% fat/15%

protein. Both diets were matched for fat percentage (35%

saturated fatty acids/45% monounsaturated fatty acids/20%

polyunsaturated fatty acids) and simple sugars (≤18% of

kilocalories) and were composed of foods with a low-to-

moderate glycemic index. Daily kilocalories were distributed as

25% breakfast/25% lunch/30% dinner/20% snacks. We defined

complex carbohydrates as “polysaccharides and starches

primarily derived from grains, vegetables, and fruits that tend

to attenuate a sharp postprandial rise in plasma glucose” (28).

All menus were tailored to individual participant food

preferences, and meals were prepared by the Clinical

Translational Research Center Nutrition Services at University

of Colorado Anschutz Medical Campus. Meals were picked up

by the participants or delivered every 72 h when they met with

investigators. Women were provided with formula to

supplement or replace breastfeeding when necessary (Gerber

Good Start, Arlington, VA, USA). Supplementary Figure 1

shows a summary of the study design.
frontiersin.org

http://www.clinicaltrials.gov
https://doi.org/10.3389/fendo.2022.921464
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sugino et al. 10.3389/fendo.2022.921464
Blood measures

Maternal blood measures were performed at two different

visits at 30–31 and 36–37 weeks’ gestation. A fasting (10-h) blood

sample was collected prior to a 2-h oral glucose tolerance test

(OGTT) at baseline (30–31 weeks) and again after 6–7 weeks on

the diet (36–37 weeks). OGTT measurements were taken at 0, 30,

60, 90, and 120 min using a peripheral intravenous line. The

Matsuda index was calculated using the standard method (31).

HOMA-IR was calculated as [fasting insulin x (fasting glucose/

18)]/22.5. Hepatic insulin resistance was calculated by multiplying

glucose AUC by insulin AUC calculated during the first 30 min of

the OGTT. GWG was determined by the change in weight from

the first prenatal visit to delivery and weight gain on diet by the

change in weight from time of diet randomization to delivery.

Additional blood measures (i.e., TGs, FFAs, glycerol, glucose, C-

peptide, and insulin) were performed at breakfast meal studies at

baseline and 36–37 weeks’ gestation, where participants consumed

a standardized breakfast meal (30% of total daily energy intake)

after an overnight fast (≥10 h) as previously (28). When possible,

cord blood was obtained to measure infant C-peptide, glucose,

insulin, and HOMA-IR.
Infant measurements

The infant breastfeeding status was determined by a

questionnaire and was grouped by whether they were

exclusively breastfed (yes, no, or mixed). The delivery mode

was recorded as vaginal, cesarean section with labor, or cesarean

section without labor; however, we grouped the cesarean section

variables together due to low sample size. Birth weight and infant

anthropometrics were obtained and newborn percent body fat

was measured by air displacement plethysmography (PEAPOD)

at delivery and the 2-week, 2-month, and 4–5 month

postpartum visits (COSMED, Rome, Italy) (28).
Stool sample collection and
metagenomics processing

Maternal stool samples were collected at 30–31 and 36–37

weeks’ gestation by mothers within 24 h of their clinic visit and

stored at -20°C until delivery to the laboratory, whereupon

aliquots were separated and stored at -80°C until analysis.

Infant stool samples were obtained at 2 weeks, 2 months, and

4–5 months, and DNA extraction was carried out as previously

described using the QIAamp PowerFecal DNA kit (Qiagen Inc,

Carlsbad, CA, USA). Triplicate shotgun metagenomic libraries

were constructed for each stool sample (except for one pair of

maternal samples, which was sequenced in duplicate) using the

plexWell LP384 kit (seqWell Inc., Beverly, MA, USA) following
Frontiers in Endocrinology 04
the manufacturer’s protocol. The shotgun metagenomic

sequencing of the pooled libraries was performed on the

NovaSeq 6000 (Illumina, San Diego, CA, USA) at 2 × 150-bp

read length by Novogene Inc. (Sacramento, CA, USA). Raw

sequence reads were trimmed and processed for quality using

BBMap (32). Briefly, the default options in bbduk were used to

remove the adapter sequence and quality trimming before

removing contaminant sequences with the Kmer filtering

option. The tadpole command was then used in the error

correction mode using default parameters. The triplicate/

duplicate runs were then concatenated for further processing.

The average sequencing depth, average number of contigs, and

average contig length are shown in Supplementary Table 1.

Metaphlan2 was used to retrieve the taxonomy and relative

abundances using default settings (33). The participants’

sequence libraries at all timepoints were further concatenated

for contig assembly using MEGAHIT (34). Contigs ≥1,000 bp

were mapped to the MEGAHIT coassembly using bowtie2 (35).

Contigs were predicted for gene function with Prodigal (36)

using default settings and annotated to the Kyoto Encyclopedia

of Genes (KEGG) database (37–39) using KofamScan (40).

Reads per kilobyte million (RPKMs) were calculated for each

annotation for downstream analysis.
Statistical analysis

Population characteristics
Maternal BMI and blood measures were log-scaled then

standardized using the mean and standard deviation; the

normality of the data was checked using a Shapiro–Wilk test.

To test for differences between the groups, a repeated-measures

ANOVA was performed on the continuous variables against the

diet group and time. Continuous infant characteristics were

modeled using the same repeated-measures ANOVA

procedure as for the maternal characteristics, and categorical

variables were tested for differences between the diet groups

using a chi-squared test.

Microbial analysis
Bacterial sequence counts were rarefied to 100,000 reads per

sample, without replacement, 999 times and averaged across all

sampling iterations before rounding to the nearest integer.

Rarefaction curves were run to confirm that sample richness

reached an asymptote within 100,000 reads and Good’s coverage

was used to confirm adequate rarefaction (>99% for each

sample) (41). Shannon diversity and Chao1 richness indices,

calculated at the family, species, and gene annotation levels, were

used as the measures of alpha diversity, and the Bray–Curtis

dissimilarity index was used as a measure of beta diversity. Alpha

and beta diversities were calculated using the vegan

package (42).
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Modeling
Models were constructed at the family level of taxonomy using

alpha diversity, beta diversity, and taxonomic abundances—a

deeper insight into species-level differences in taxonomic

abundances was also calculated. Gene annotation abundances

were investigated using the same modeling procedures. To

evaluate these models, we used the function lmer from the lme4

package (43) for alpha diversity and the gene annotation data

(linear mixed effects models), adonis2 from the vegan package for

beta diversity (PERMANOVA),and glmmer.nb from the lme4

package for taxonomic abundance comparisons (negative

binomial regression). For each dataset, modeling was performed

as follows: 1) our simplest model included the diet group, sampling

timepoint, and the interaction of diet group and sample timepoint

within the framework of a repeated-measures design. 2) Additional

models were built by adding a single explanatory variable to the

simple model (12 additional models in the maternal analysis and

four in the infant analysis). 3) A full model was constructed by

adding all variables into one multivariate regression. The corrected

Akaike information criterion (AICc) was computed for each of the

models, where a lower AICc is indicative of a better model fit and an

AICc score of 2 or lower suggests a significantly better model fit (44,

45). 4) If multiple explanatory variables from (2) had AICc scores 2

or lower than the simple model, the variables were added to amodel

together with group and time, and the AICc was calculated once

more. 5) If there was a large difference between the AICc scores

used in (4), the variable from (2) within the best-fitting model (i.e.,

the one with the lowest AICc) and variables in models within 2

AICc scores of the best-fitting model were included together in an

additional model and the AICc again calculated. Once computed,

the AICc scores were compared and the lowest AICc model was

used for statistical analysis. If there were multiple models within 2

AICc points of each other, the simpler model of the two was used

(e.g., if a model from (2) was close in AICc to our simple model (1),

we would choose the simple model). If both models are equally

parsimonious, the lower AICc model was chosen. If a model failed

to converge or was found to be singular between the taxon and the

variable of interest, the model was discarded.

Once the final models were calculated, the P-values were

compiled and corrected for the false discovery rate (FDR) using

the Benjamini–Hochberg procedure. AICc was calculated using

the MuMIn package (46), except for the adonis2 models, which

used a custom R script to calculate AICc from the residual sums

of squares (47). In the negative binomial regression models, taxa

at the family and species levels were included in the modeling if

they were present in at least 60% of the samples and had at least

5,000 reads summed across all samples. The number of OTUS

and percent read coverage after applying these filtering

procedures are shown in Supplementary Table 1. To define the

gene annotation based on mapping genes in the KEGG

Orthology database, we used KEGG orthologous terms present

in at least 60% of the samples, where they were then summed

into gene families for further analysis using lmer.
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Results

Maternal and infant characteristics were
similar between the diet groups

Similar to the findings in the whole cohort (29), we found no

differences in maternal characteristics between the diet groups in

this subgroup (Table 1). The majority of infants in this subgroup

were delivered vaginally (~70%) and exclusively breastfed

throughout the collection period, and the body fat percentage

was not different between the diet groups (29) (Table 2).
Maternal microbial and gene-annotation
diversity did not differ between the diet
groups and were not associated with any
maternal measures

We first evaluated whether the overall structure of the

maternal microbiome was altered by the dietary intervention.

To this end, we assessed the significance of alpha- and beta-

diversity measures from maternal stool samples at the family,

species, and gene annotation levels. At the family level, both alpha

diversity metrics—Shannon diversity and Chao1 (richness)—

were best modeled by the simplest model, which included only

the diet group, time, and their interaction. However, none of

these variables were significantly associated with either alpha

diversity metric (p>0.05) (Supplementary Figure 2). At the

species level, Shannon diversity was best modeled by the

simplest model, but no terms were significant (p>0.05)

(Supplementary Figure 3). Chao1 was best modeled by the full

model, which included the diet group, time, and their interaction

as well as all 11 of the maternal measurements. However, none of

these variables were significantly associated with Chao1 richness

at the species level (p>0.05). At the gene annotation level, we

found results similar to those of the microbiome at the species

level, where Shannon diversity was best modeled by the simplest

model, but no terms were significant (p>0.05), and Chao1 was

best modeled by the full model, but no terms were significant

(p>0.05) (Supplementary Figure 4).

In the family level, beta-diversity models, the simplest model

fit the data best, but the diet group, time, and their interaction

were not associated with maternal microbiome beta diversity

(p>0.05) (Supplementary Figure 5). Similar results were found at

the species (simplest model, all p>0.05) and gene annotation

levels (full model, all p>0.05) (Supplementary Figures 6 and 7).

Maternal microbiome displayed moderate
associations with diet and maternal measures
at the family level

Next, we identified individual taxa with differential

abundances in maternal microbiota at the family level and

found several taxa associated with maternal measures (Table 3
frontiersin.org
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and Supplementary Figure 8). We found that Rikenellaceae was

negatively associated with maternal fasting FFA levels (p=0.02).

Other associations were found between Bifidobacteriaceae and

insulin AUC and an increase in Bifidobacteriaceae abundance

over time on CHOICE but a decrease on CONV. However, these

associations did not survive FDR correction. Likewise, we found

that Prevotellaceae abundance was positively associated with the

Matsuda index and Erysipelotrichaceae was similarly associated

with HOMA-IR, but these associations did not survive FDR

correction. A full list of models and their respective results are

available in Supplementary Table 2.

CHOICE diet increased maternal abundance of
Bifidobacterium adolescentis

At the species level, we found that several taxa were

associated with maternal diet and other maternal measures

(Table 4 and Supplementary Figure 9). Bifidobacterium

adolescentis was the main species responsible for the

Bifidobacteriaceae increase on CHOICE and decrease on

CONV (p=0.02). Similarly, Prevotella copri showed a trend
Frontiers in Endocrinology 06
decrease on CHOICE but increase on CONV (p=0.07). Two

species of Alistipes were differentially associated with fasting

glucose levels, with A. finegoldii displaying a negative

relationship (p=0.04) while A. shahii had a positive

relationship (p=0.03). A. shaii, A. finegoldii, Alistipes

putredinis, and Bacteroides vulgatus were all negatively

associated with fasting glycerol levels, but the association with

A. shahii did not survive FDR correction. Four species,

Streptococcus thermophilus, Eubacterium ramulus, Dorea

longicatena, and Roseburia hominis were associated with

glucose AUC after the OGTT challenge. However, only the

association with E. ramulus was significant (p<0.001), while

the others showed trend associations after FDR correction

(p<0.1). A full list of models and their respective results are

available in Supplementary Table 3.

Maternal gene annotation pathways were not
altered by diet

Finally, we analyzed maternal microbiome gene annotations

and found several associations between maternal measures and
TABLE 1 Maternal population characteristics.

Group CONV CHOICE p-value

Maternal age (years)1 32.96 ± 3.08 31.96 ± 4.77 0.49

Days on diet1 33.75 ± 4.17 33.0 ± 6.12 0.68

Weight gain on diet (kg)1 0.5 ± 1.43 0.62 ± 1.29 0.81

GWG (kg)1 8.9 ± 5.79 10.27 ± 4.47 0.44

Ethnicity, n (%) 0.21

Caucasian 11 (68.8) 16 (88.9)

Asian 4 (26.7) 1 (5.6)

American Indian or Alaska Native 1 (6.3) 0 (0)

Other 0 (0) 1 (5.6)

Parity, n (%) 0.19

0 6 (37.5) 12 (66.7)

1 9 (56.3) 4 (22.2)

2 1 (6.3) 1 (5.6)

3 0 (0) 1 (5.6)

Timepoint 30 Weeks 37 Weeks 30 Weeks 37 Weeks

Sample Size, n 16 16 18 18

Maternal BMI (kg/m²)1 31.47 ± 4.95 31.71 ± 4.86 32.93 ± 5.69 33.16 ± 5.79 0.94

Fasting Glucose (mg/dl)1 77.81 ± 7.17 73.56 ± 6.53 79.83 ± 6.49 72.72 ± 6.14 0.23

Fasting Insulin (uIU/ml)1 11.5 ± 5.89 11.62 ± 5.29 15.39 ± 6.57 13.67 ± 4.59 0.25

log2(Glucose AUC)1 14.19 ± 0.16 14.17 ± 0.17 14.14 ± 0.11 14.05 ± 0.14 0.11

log2(Insulin AUC)1 13.3 ± 0.9 13.44 ± 0.78 13.54 ± 0.65 13.64 ± 0.6 0.85

Fasting Free Fatty Acids1 8.79 ± 0.42 8.83 ± 0.32 8.85 ± 0.44 8.84 ± 0.43 0.74

Fasting Triglycerides1 198 ± 60.05 226.25 ± 56.43 216.78 ± 54.26 260.61 ± 58.89 0.27

Fasting Glycerol1 100.44 ± 34.78 102.38 ± 36.65 113.17 ± 29.48 126.44 ± 41 0.45

Hepatic IR1 22.07 ± 0.89 21.93 ± 0.78 22.27 ± 0.72 22.16 ± 0.62 0.84

HOMA IR1 2.23 ± 1.22 2.12 ± 1 3.08 ± 1.43 2.47 ± 0.9 0.16

Matsuda Index1 3.48 ± 1.89 3.4 ± 1.48 2.57 ± 0.87 2.77 ± 0.85 0.44
fronti
1Values shown are mean ± SD.
GWG, gestational weight gain.
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metabolic, transport, degradation, and infection-related

pathways, but none of them survived FDR correction. A full

list of models and their respective results are available in

Supplementary Table 4.

Microbial family-level richness increased with
age in infants born to women on CHOICE

Next, we evaluated the overall structure of the infant

microbiome and whether it was altered by maternal dietary

intervention. We assessed the significance of alpha- and beta-

diversity measures in the infant stool samples at the family,

species, and gene annotation levels. At the family level, we found

no association between Shannon diversity and diet group, infant

age, or the interaction of the two terms (Figure 1A). The infant

microbiome Chao1 index decreased over time in CONV infants

and increased in CHOICE infants (p=0.009), resulting in a

significantly higher richness score in the CHOICE infants

compared with CONV at 4–5 months (Figure 1B). Cesarean

section delivery was associated with increased microbiome

richness compared with infants born by vaginal delivery

(Figure 1C). At the species level, Shannon diversity was

associated with a trend increase over time (p=0.06), while the

Chao1 index was not associated with any terms (p>0.05), as best

modeled by the full model (diet, age, diet/age interaction and
Frontiers in Endocrinology 07
GWG, delivery mode, breastfeeding status, and sex)

(Supplementary Figure 10). At the gene annotation level,

results were similar to those found at the species level, and no

terms were significant for the simplest model in Shannon

diversity (p>0.05) or for the full model in the Chao1 index

(p>0.05) (Supplementary Figure 11).

Bray–Curtis beta diversity at the family level was modeled

best by the simple model and displayed a trend association with

the diet group (p=0.06) and diet group by infant age (0.09)

(Supplementary Figure 12). At the species level, we found a

significant difference in the infant gut community between the

diet groups (p=0.01) and how the microbiota developed over

time (p=0.01) (Supplementary Figure 13) but not their

interaction (p=0.18). Similar results were found at the gene

annotation level but only reached trend significance (diet

group and age, p=0.06, Supplementary Figure 14; diet and age

interaction p=0.10).

Infant family-level abundances were altered
with infant age, maternal diet group, and
their interaction

Like we did with the maternal microbiome data, we

identified individual taxa with differential abundances in the

infant microbiota at the family level. Multiple taxa differed in
TABLE 2 Infant population characteristics.

Group CONV CHOICE p- value

Sample Size, n 14 10

Vaginal Delivery, n (%) 11 (78.57) 6 (60.0) 0.59

Female, n (%) 7 (50.0) 6 (60.0) 0.94

Gestation Period (months)1 39.4 ± 0.3 38.9 ± 0.35 0.31

Birth Weight (g)1 3254 ± 101 3083 ± 119 0.29

% Body Fat at Delivery1 7.7 ± 7.5 7.5 ± 1.3 0.94

Cord C-peptide1,a 0.78 ± 0.23 0.86 ± 0.44 0.65

Cord Fasting Glucose1,b 58.25 ± 8.31 63.25 ± 11.32 0.40

Cord Fasting Insulin1,c 4.00 ± 1.00 3.75 ± 1.26 0.72

Ethnicity, n (%) 0.48

White 11 (78.6) 7 (70.0)

Asian 3 (21.4) 2 (20.0)

American Indian or Alaska Native 0 (0) 1 (10.0)

Infant Age 2 Weeks 2 Months 4–5 Months 2 Weeks 2 Months 4–5 Months

Sample Size, n 11 13 11 9 10 9

Infant Weight (kg) 3.50 ± 0.36 5.24 ± 0.71 6.60 ± 0.78 3.23 ± 0.41 4.96 ± 0.51 6.32 ± 0.60 0.21

% Body Fat 10.39 ± 4.7 21.93 ± 4.0 25.19 ± 4.3 8.43 ± 4.3 18.37 ± 5.8 23.53 ± 3.9 0.24

Exclusively Breastfed, n (%) 0.71

No 1 (9.09) 1 (7.69) 2 (18.18) 0 (0) 1 (10.0) 2 (22.22)

Mixed 3 (27.27) 3 (23.08) 2 (18.18) 0 (0) 1 (10.0) 1 (11.11)

Yes 7 (63.64) 9 (69.23) 7 (63.64) 9 (100) 8 (80.0) 6 (66.67)
fron
1Values shown are mean ± SD.
aMissing 10 observations; CONV n=9, CHOICE n=5.
bMissing 12 observations; CONV n=8, CHOICE n=4.
cMissing 13 observations; CONV n=7, CHOICE n=4.
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abundance in association with maternal or infant variables

(Table 5 and Supplementary Figure 15). Staphylococcaceae and

Streptococcaceae were enriched at 2 weeks of age and decreased

in abundance over time at 2 months and 4–5 months of age

(both p<0.001). Ruminococcaceae increased at 2 months and

remained stable through 4–5 months of age (p<0.001), while

Veillonellaceae also increased in abundance at 2 months but

decreased at 4–5 months of age (p<0.001). Coriobacteriaceae and

Eubacteriaceae increased in abundance over time (p=0.03 and

p<0.001, respectively). Two families were associated with the

diet group alone: CONV infants had higher levels of

Enterococcaceae (p=0.002) and a lower abundance of

Clostridiaceae (p=0.03).

Several families were significantly associated with the diet

group and infant age. Clostridiaceae began higher in CHOICE at

2 weeks of age and decreased at 2 months but remained stable in

the CONV infants (p<0.001). Eubacteriaceae was stable in

CHOICE infants but was enriched at 4–5 months in CONV

infants (p<0.001) Finally, Veillonellaceae began at a high

abundance in 2-week-old CONV infants and decreased over

time, while this family was low in abundance in CHOICE infants

at 2 weeks of age and increased in abundance over time (p=0.04).

Independent of the infant age, Lactobacillaceae was

impacted by the delivery mode; infants delivered vaginally had

a lower abundance than infants born via cesarean section

(p=0.01). The abundance of Verrucomicrobiaceae was higher

in female infants (p<0.001) . Enterococcaceae and

Lachnospiraceae were both positively associated with maternal

GWG, where Enterococcaceae increased by 0.18% relative

abundance for every 1 kg gained during pregnancy (p=0.04)

and Lachnospiraceae increased by 0.48% relative abundance for

every kilogram (p=0.006). A full list of models and their

respective results are available in Supplementary Table 5.
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Species-level abundances in infants change
over time and displayed different colonization
patterns between maternal diet groups

At the species level, B. breve, B. longum, Collinsella

aerofaciens , B. ovatus , B. thetaiotamicron , E. rectale,

Faecal ibacterium prausnitzi i , and Subdoligranulum

unclassified increased in abundance from 2 weeks to 4–5

months (Table 6 and Supplementary Figure 16). The

opposite association was observed for Staphylococcus

epidermidis, S. anginosus, S. vestibularis, Clostridium

per f r ingens , Vei l l one l la d i spar , and Haemophi lu s

parainfluenza, which decreased in abundance as the infant

aged. V. atypica increased in abundance at 2 months of age

before returning to the level similar to that seen at 2 weeks.

Four species were associated with diet—Enterococcus faecalis,

S. anginosus, C. perfringens, and V. parvula—all of which were

higher in CONV infants independent of infant age.

Several species were associated with changes in

abundance within a diet group over time. B. ovatus, S.

anginosus, and Enterobacter cloacae displayed a pattern of

abundance in CONV infants that changed over time (either

up or down), whereas no change in the abundance of these

species was observed in CHOICE infants . With C.

perfringens, increased abundance was seen at 2 weeks of

age in CHOICE infants and decreased by 2 months,

whereas this species was depleted in CONV infants at 2

weeks and increased in abundance at 2 months. Similar

differential colonization patterns over time between the

diet groups were also seen for B. longum, V. parvula, and

Veillonella unclassified.

C. perfringens was higher in abundance in infants born via

cesarean section. S. epidermidis and S. anginosus were both

higher in abundance in exclusively breastfed infants compared
TABLE 3 Variables associated with maternal family-level taxa determined by negative binomial regression.

Variable/Taxa p-value Adjusted p-value

Timepoint1 30 weeks 37 weeks

Bifidobacteriaceae 1.91 ± 0.38 2.04 ± 0.4 0.03 0.34

Diet Group by Timepoint1 CONV 30W CONV 37W CHOICE 30W CHOICE 37W

Bifidobacteriaceae 2.07 ± 0.59 1.46 ± 0.44 1.76 ± 0.48 2.85 ± 0.73 0.004 0.12

Matsuda Index2 Predicted Slope

Prevotellaceae 0.47 ± 0.27 0.01 0.19

log2(Fasting FFAs)2

Rikenellaceae -0.002 ± 0.001 <0.001 0.02

HOMA-IR2

Erysipelotrichaceae 0.22 ± 0.21 0.02 0.24

log2(Insulin AUC)3

Bifidobacteriaceae 0.22 ± 0.21 0.01 0.19
1Values shown are mean ± SEM.
2Number refers to the change in relative abundance per 1 unit increase in the variable being reported.
3Number refers to the change in relative abundance per 1 unit increase in the log-adjusted variable being reported.
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TABLE 4 Variables associated with maternal species–level taxa determined by negative binomial regression.

Variable/Taxa p-value Adjusted p-value

Timepoint1 30 weeks 37 weeks

Bifidobacterium adolescentis 0.58 ± 0.2 0.43 ± 0.16 0.01 0.12

Eubacterium eligens 0.33 ± 0.11 0.41 ± 0.12 0.04 0.22

Anaerostipes hadrus 0.14 ± 0.07 0.26 ± 0.09 0.05 0.24

Dorea longicatena 0.73 ± 0.17 0.75 ± 0.17 0.02 0.15

Coprobacillus unclassified 0.06 ± 0.04 0.12 ± 0.06 0.04 0.22

Diet Group1 CONV CHOICE

Bifidobacterium longum 1.07 ± 0.23 0.86 ± 0.2 0.03 0.19

Bacteroides xylanisolvens 0.3 ± 0.1 0.16 ± 0.07 0.03 0.19

Clostridium symbiosum 0.14 ± 0.08 0.03 ± 0.03 0.03 0.19

Eubacterium hallii 1.04 ± 0.22 2.52 ± 0.41 0.01 0.08

Ruminococcus bromii 0.17 ± 0.12 0.88 ± 0.49 0.02 0.15

Klebsiella oxytoca 0.03 ± 0.03 0.11 ± 0.06 0.03 0.20

Diet Group by Timepoint1 CONV 30W CONV 37W CHOICE 30W CHOICE 37W

Bifidobacterium adolescentis 0.54 ± 0.28ab 0.16 ± 0.1b 0.62 ± 0.28ab 1.17 ± 0.5a 0.001 0.02

Prevotella copri 0.19 ± 0.19 0.36 ± 0.35 0.14 ± 0.14 0.07 ± 0.08 0.01 0.07

Eubacterium ramulus 0.14 ± 0.09 0.18 ± 0.1 0.33 ± 0.14 0.24 ± 0.13 0.02 0.14

Lachnospiraceae bacterium 0.05 ± 0.06 0.03 ± 0.04 0.07 ± 0.06 0.13 ± 0.09 0.04 0.22

Matsuda index2 Predicted Slope

Bifidobacterium bifidum -0.57 ± 0.34 0.01 0.12

Parabacteroides distasonis 0.42 ± 0.23 0.01 0.09

Maternal BMI2

Bacteroides fragilis -0.15 ± 0.06 0.04 0.22

Bacteroides thetaiotaomicron -0.1 ± 0.05 0.03 0.19

Alistipes finegoldii -0.078 ± 0.065 0.02 0.15

HOMA-IR2

Bacteroides uniformis 0.38 ± 0.16 0.004 0.07

Fasting Glucose2

Alistipes finegoldii -0.049 ± 0.044 0.002 0.04

Alistipes shahii 0.033 ± 0.032 0.001 0.03

Anaerostipes hadrus 0.04 ± 0.04 0.02 0.15

Ruminococcus bromii -0.07 ± 0.03 0.005 0.07

log2(Fasting Triglycerides)3

Faecalibacterium prausnitzii -1.35 ± 0.29 0.01 0.12

log2(Fasting FFAs)3

Ruminococcus obeum -0.29 ± 0.35 0.02 0.13

Escherichia coli 0.83 ± 0.43 0.02 0.14

Escherichia unclassified 1.78 ± 0.83 0.01 0.08

log2(Fasting Glycerol)3

Bacteroides thetaiotaomicron -0.21 ± 0.24 0.01 0.12

Bacteroides vulgatus -0.91 ± 0.28 <0.001 0.01

Alistipes finegoldii -0.53 ± 0.52 <0.001 0.01

Alistipes putredinis -0.53 ± 0.52 <0.001 0.01

Alistipes shahii -0.38 ± 0.59 0.03 0.19

log2(Insulin AUC)3

Bacteroides fragilis -0.32 ± 0.35 0.01 0.11

Eubacterium ventriosum 1.2 ± 0.37 0.01 0.13

log2(Glucose AUC)3

(Continued)
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with mixed feeding and formula-only feeding. Female infants

had a trend for higher abundance of S. anginosus compared

with male infants. Three species were positively associated

with GWG: E. faecalis increased by 0.14% relative abundance

per 1 kg of weight gained, S. salivarius by 0.42%, and R. gnavus

by 0.01%. A full list of models and their respective results are

available in Supplementary Table 6.
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Infant gene annotation pathways were not
different between maternal diet groups

Finally, we analyzed infant microbiome gene annotations and

found only one pathway that was significant with any of the tested

maternal/infant variables after FDR correction. A trend between

the mannose-type O-glycan biosynthesis pathway and the

breastfeeding status was observed (p=0.09) where infants who
TABLE 4 Continued

Variable/Taxa p-value Adjusted p-value

Streptococcus thermophilus -3.33 ± 1.95 0.005 0.07

Eubacterium ramulus 3.56 ± 1.67 <0.001 <0.001

Dorea longicatena 1.67 ± 1.15 0.003 0.06

Roseburia hominis -3.73 ± 1.4 0.003 0.06
Values in a row that do not contain the same superscript are significantly different, p<0.05
1Values shown are mean ± SEM.
2Number refers to the change in relative abundance per 1 unit increase in the variable being reported.
3Number refers to the change in relative abundance per 1 unit increase in the log-adjusted variable being reported.
A

B C

FIGURE 1

Infant microbiome alpha diversity at the family level. A repeated-measures mixed-effects model was used to test for statistical significance.
(A) Association of Shannon diversity and infant age (n=20, 2-week; n=23, 2-month; n=20, 4–5-month). (B) Chao1 index association with diet
group over time (n=11, CONV 2-week; n=13, CONV 2-month; n=11, CONV 4–5-month; n=9, CHOICE 2-week; n=10, CHOICE 2-month; n=9,
CHOICE 4–5-month). (C) Association of Chao1 index with delivery mode (n=17, vaginal; n=7, cesarean).
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were not breastfed had amuch higher abundance of genes involved

in this pathway than mixed feeding or exclusive breastfeeding

(Supplementary Figure 17). A full list of models and their

respective results are available in Supplementary Table 7.
Discussion

To our knowledge, this is the first study to compare maternal

and infant gut microbiome outcomes in a dietary intervention of

two different diet compositions (all meals provided) in women with

GDM. We ascertained how the diets impacted the maternal gut

microbiome and the relationships with maternal metabolic

characteristics and the infant microbiome under eucaloric diet

conditions and equivalent GWG. Surprisingly, we found that the

probiotic family Bifidobacteriaceae, specifically B. adolescentis,

increased in the microbiota of women on the CHOICE diet.

Bifidobacteria are generally beneficial bacteria that attenuate

intestinal inflammation and dysbiosis, in part by enhancing

SCFA production (7), inhibiting and reducing lipopolysaccharide-

induced injury of the gut epithelium (48), and by metabolizing
Frontiers in Endocrinology 11
resistant starches such as human milk oligosaccharides and other

complex carbohydrates like fructooligosaccharides and

galactooligosaccharides (49). B. adolescentis abundance is

correlated with lower HbA1c and basal insulin requirements (50),

suggesting that it conveys an overall protective effect of the

CHOICE diet on pancreatic b-cell function in women with

GDM. Others have found similar increases in Bifidobacteria after

supplementing adults with prediabetes with galactooligosaccharides

for 12 weeks (51). Furthermore, other studies suggest that the

supplementation of resistant starches in healthy adults also

increases Bifidobacteria (52), while the depletion of dietary

carbohydrates in a gluten-free diet results in a likewise depletion

of Bifidobacteria (53). Together, this suggests that higher intake of

complex carbohydrates in the diet, in pregnant and non-pregnant

individuals, increases Bifidobacteriaceae abundance in

the microbiome.

The maternal microbiome at the family and species levels

also varied significantly with the fasting levels of FFAs, glycerol,

and glucose AUC after the OGTT challenge. Specifically, we

found a negative association between Rikenellaceae and fasting

FFAs. Other studies in adults have found an inverse association
TABLE 5 Variables associated with infant family-level taxa determined by negative binomial regression.

Variable/Taxa p-value Adjusted p-value

Infant Age 2 Weeks 2 Months 4-5 Months

Coriobacteriaceae 0.02 ± 0.01c 0.13 ± 0.06b 0.51 ± 0.27a 0.005 0.03

Staphylococcaceae 0.91 ± 0.42a 0.05 ± 0.02b 0.01 ± 0.01c <0.001 <0.001

Streptococcaceae 6.35 ± 1.98a 1.16 ± 0.34b 0.87 ± 0.27b <0.001 <0.001

Clostridiaceae 0.54 ± 0.22 0.18 ± 0.07 0.3 ± 0.12 0.04 0.15

Eubacteriaceae 0.01 ± 0.002b 0.01 ± 0.003b 0.15 ± 0.04a <0.001 <0.001

Ruminococcaceae 0.04 ± 0.02b 0.15 ± 0.06a 0.2 ± 0.09a <0.001 <0.001

Verrucomicrobiaceae 0.01 ± 0.004c 0.42 ± 0.14a 0.05 ± 0.02b <0.001 <0.001

Diet Group CONV CHOICE

Enterococcaceae 0.43 ± 0.13 0.07 ± 0.03 <0.001 0.002

Clostridiaceae 0.29 ± 0.16 0.4 ± 0.25 0.01 0.03

Ruminococcaceae 0.17 ± 0.08 0.06 ± 0.04 0.05 0.16

Veillonellaceae 4.49 ± 2.32 1.55 ± 0.94 0.03 0.12

Diet Group by Infant Age CONV 2W CONV 2M CONV 4-5M CHOICE 2W CHOICE 2M CHOICE 4-5M

Clostridiaceae 0.11 ± 0.07ab 0.45 ± 0.29ab 0.5 ± 0.34ab 1.84 ± 1.41a 0.09 ± 0.07b 0.39 ± 0.3ab <0.001 <0.001

Eubacteriaceae 0.01 ± 0.003b 0.01 ± 0.003b 0.88 ± 0.34a 0.01 ± 0.003b 0.01 ± 0.01b 0.02 ± 0.01b <0.001 <0.001

Veillonellaceae 6.59 ± 3.96a 5.37 ± 3.1a 2.56 ± 1.54ab 0.93 ± 0.64b 1.23 ± 0.83ab 3.24 ± 2.23ab 0.01 0.04

Delivery Mode Vaginal C-section

Lactobacillaceae 0.12 ± 0.05 0.97 ± 0.53 0.002 0.01

Eubacteriaceae 0.02 ± 0.01 0.01 ± 0.01 0.03 0.12

Sex Male Female

Verrucomicrobiaceae 0.02 ± 0.01 0.15 ± 0.04 <0.001 <0.001

GWG1 Predicted Slope

Enterococcaceae 0.18 ± 0.04 0.01 0.04

Lachnospiraceae 0.48 ± 0.22 0.001 0.01
Values in a row that do not contain the same superscript are significantly different, p<0.05
All values shown are mean ± SEM.
1Number refers to the increase in relative abundance per 1 kg increase in gestational weight gain (GWG).
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TABLE 6 Variables associated with infant species–level taxa determined by negative binomial regression.

Variable/Taxa p
value

Adjusted p
value

Infant Age 2 Weeks 2 Months 4-5 Months

Bifidobacterium
adolescentis

0.02 ± 0.01 0.04 ± 0.03 0.03 ± 0.02 0.036 0.151

Bifidobacterium bifidum 0.03 ± 0.01 0.03 ± 0.02 0.08 ± 0.04 0.028 0.125

Bifidobacterium breve 0.82 ± 0.46b 2.94 ± 1.62a 4.22 ± 2.37a 0.002 0.017

Bifidobacterium longum 0.55 ± 0.28b 1.58 ± 0.78b 8.02 ± 4.14a 0.002 0.017

Collinsella aerofaciens 0.002 ± 0.001b 0.003 ± 0.002b 0.02 ± 0.02a 0.001 0.011

Bacteroides ovatus 0.01 ± 0.01b 0.02 ± 0.01b 0.04 ± 0.02a <0.001 <0.001

Bacteroides
thetaiotaomicron

0.006 ± 0.003b 0.007 ± 0.004b 0.01 ± 0.008a 0.003 0.025

Staphylococcus epidermidis 0.15 ± 0.06a 0.002 ± 0.001b 0.001 ± 0.0005b <0.001 <0.001

Streptococcus anginosus 0.015 ± 0.007a 0.003 ± 0.001b 0.001 ± 0.0005b <0.001 <0.001

Streptococcus vestibularis 1.79 ± 0.88a 0.17 ± 0.08b 0.02 ± 0.01c <0.001 0.002

Clostridium perfringens 1.0 ± 0.47a 0.21 ± 0.10b 0.11 ± 0.05b 0.016 0.075

Eubacterium rectale 0.008 ± 0.002b 0.01 ± 0.003ab 0.015 ± 0.005a 0.014 0.069

Faecalibacterium
prausnitzii

0.007 ± 0.002b 0.009 ± 0.003ab 0.01 ± 0.004a 0.009 0.052

Subdoligranulum
unclassified

0.02 ± 0.01b 0.05 ± 0.02a 0.09 ± 0.04a <0.001 0.002

Veillonella atypica 0.02 ± 0.01b 0.05 ± 0.02a 0.03 ± 0.01ab 0.010 0.058

Veillonella dispar 0.04 ± 0.02a 0.03 ± 0.02ab 0.01 ± 0.01b 0.012 0.062

Enterobacter cloacae 0.03 ± 0.02 0.06 ± 0.03 0.03 ± 0.02 0.032 0.138

Haemophilus
parainfluenzae

0.006 ± 0.006ab 0.009 ± 0.009a 0.002 ± 0.002b 0.017 0.078

Diet Group CONV CHOICE

Bifidobacterium longum 2.26 ± 1.27 1.61 ± 1.06 0.045 0.177

Enterococcus faecalis 0.35 ± 0.11 0.05 ± 0.02 <0.001 0.001

Streptococcus anginosus 0.02 ± 0.008 0.0006 ± 0.0003 <0.001 <0.001

Clostridium perfringens 0.41 ± 0.15 0.2 ± 0.08 <0.001 <0.001

Veillonella parvula 1.06 ± 0.59 0.15 ± 0.1 <0.001 0.003

Diet Group by Infant Age CONV 2W CONV 2M CONV 4-5M CHOICE 2W CHOICE 2M CHOICE 4-5M

Bifidobacterium longum 1.55 ± 1.06ab 0.94 ± 0.61b 7.89 ± 5.36a 0.19 ± 0.15c 2.63 ± 1.99ab 8.15 ± 6.34ab 0.003 0.022

Bacteroides ovatus 0.01 ± 0.01b 0.01 ± 0.01b 0.09 ± 0.06a 0.02 ± 0.02ab 0.02 ± 0.02ab 0.02 ± 0.02ab 0.004 0.028

Enterococcus faecalis 0.77 ± 0.42 0.27 ± 0.14 0.22 ± 0.12 0.03 ± 0.02 0.03 ± 0.02 0.15 ± 0.09 0.043 0.175

Streptococcus anginosus 0.57 ± 0.31a 0.01 ± 0.007b 0.001 ± 0.001c 0.0004 ± 0.0003c 0.0005 ± 0.0003c 0.001 ± 0.0007c <0.001 <0.001

Clostridium perfringens 0.13 ± 0.08c 1.43 ± 0.84ab 0.36 ± 0.24b 7.78 ± 5.32a 0.03 ± 0.02c 0.03 ± 0.02c <0.001 <0.001

Veillonella parvula 3.35 ± 2.8a 0.9 ± 0.64ab 0.4 ± 0.3ab 0.05 ± 0.04b 0.18 ± 0.15ab 0.36 ± 0.28ab 0.006 0.035

Veillonella unclassified 0.39 ± 0.36ab 0.49 ± 0.44ab 0.13 ± 0.12b 0.3 ± 0.32ab 0.34 ± 0.36ab 1.24 ± 1.31a 0.006 0.035

Enterobacter cloacae 0.05 ± 0.04a 0.05 ± 0.04a 0.01 ± 0.01a 0.02 ± 0.02ab 0.06 ± 0.06a 0.08 ± 0.07a 0.012 0.062

Klebsiella unclassified 0.01 ± 0.01 0.04 ± 0.04 0.03 ± 0.03 0.09 ± 0.1 0.02 ± 0.02 0.05 ± 0.06 0.027 0.124

Delivery Mode Vaginal C-section

Clostridium perfringens 0.05 ± 0.01 1.82 ± 0.84 <0.001 <0.001

Sex Male Female

Streptococcus anginosus 0.002 ± 0.0008 0.006 ± 0.003 0.012 0.062

Breastfeeding Status No Mixed Exclusive

Staphylococcus epidermidis 0.002 ± 0.002b 0.004 ± 0.002b 0.05 ± 0.01a <0.001 <0.001

Streptococcus anginosus 0.003 ± 0.002b 0.0007 ± 0.0004b 0.02 ± 0.005a <0.001 <0.001

(Continued)
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between this family and the levels of visceral adipose tissue in

elderly adults (54), a negative association with obesity (55), and

depleted abundance in adults with non-alcoholic fatty liver

disease (56). Interestingly, species within the genus Alistipes,

part of the family Rikenellaceae, were inversely associated with

fasting glycerol and fasting glucose levels but not FFAs. A.

finegoldii and A. putredinis were negatively associated with

fasting glycerol levels along with B. vulgatus. Blood glycerol

levels are a measure of adipose tissue lipolysis and TGs (57) and

feed directly into the gluconeogenesis pathway. Together, our

data suggest that bacteria in the family Rikenellaceae help lower

FFAs, but specific members of the family (i.e., Alisitpes) have a

relationship with a different part of the same pathway, notably

fasting glycerol and glucose levels.

B. uniformis was positively associated with HOMA-IR in our

cohort, although this was only a trend association after FDR

correction. Supplementation studies have found that B.

uniformis can reduce body weight gain, liver TGs, and

inflammation in the context of a high-fat diet in mice (58, 59).

However, in humans with metabolic syndrome, increases in the

stool levels of B. uniformis had no effect on body composition or

insulin sensitivity (60). Pregnant women with type 1 diabetes

have increased abundance of B. uniformis (61). More work needs

to be done to elucidate the role of B. uniformis in diabetes risk.

Maternal diet significantly impacted the patterns of infant

colonization over time, with CHOICE infants showing increased

microbiome alpha diversity (richness), greater Clostridiaceae,

and decreased Enterococcaceae. To our knowledge, there are

only two studies that have investigated the impact of maternal

diet on the infant microbiome in humans. Lundgren et al. (62)

observed that increased maternal fruit and vegetable intake was

associated with higher levels of Streptococcus and Clostridium

and decreased abundances of Enterobacteriaceae in offspring at 6

weeks of age. Chu et al. (19) found that a maternal diet higher in

fat was associated with greater Enterococcus abundance in the

meconium and higher Bacteroides abundance in infants at 6

weeks of age. We found a similar result in our cohort, where

Enterococcaceae abundance was increased in infants born to

mothers on the higher-fat CONV diet. Enterococcaceae, like E.

faecalis, is known to influence healthy intestinal immune system

development, but the members of this family can also act as
Frontiers in Endocrinology 13
opportunistic pathogens (63). In healthy infants, this family

decreased in abundance as other bacteria began to colonize and

populate the gut, suggesting that early Enterococcaceae

colonization is important for proper immune training but an

overabundance in the early life could increase the risk of

Enterococcus infection.

The abundances of infant microbiome species were impacted

by the maternal diet group as the infant aged. For example, C.

perfringens was enriched in the gut of CONV infants; a relative

abundance of 1.43% and 0.36% was observed at 2 months and 4–

5 months of age, respectively. In contrast, C. perfringens started at

a higher abundance at 2 weeks of age in CHOICE infants before

dropping to 0.03% relative abundance at 2 and 4–5 months.

Other groups have associated cesarean section delivery with a

higher abundance of C. perfringens (64), which is consistent with

our results. Moreover, the microbiome of germ-free mice

colonized with gut microbes from infants born to women with

obesity was enriched in Clostridia (65) and the enrichment of this

taxa has been associated with adolescent obesity (66). This

suggests that the higher-fat CONV diet exacerbated obesity-

associated microbiome signals within a population that is

already at risk for adverse health events due to the maternal

GDM status. We found an association between a higher

abundance of Lactobacillaceae and cesarean section delivery,

which is surprising considering that vaginally delivered infants

have a much higher exposure to vaginal Lactobacillus species

compared with cesarean section–delivered infants. However, a

recent systematic review by Shaterian et al. concluded that

cesarean section delivery is associated with a higher abundance

of Lactobacillus in the first 3 months of life, while vaginally

delivered infants have higher abundances of this taxa after 3

months of age (67), which matches our results. Moreover, gut

Lactobacillus species do not appear to originate from the

maternal vaginal microbiome (68), likely due to differences in

species-specific adaptations needed to colonize the vagina versus

the human gastrointestinal tract. Together, this suggests that the

delivery mode impacts Lactobacillaceae colonization not because

of the direct transmission of Lactobacillus from a mother to a

child but because of differential successional patterns of

colonization prompted by early bacterial exposures. In our

other comparisons, we the family Lachnospiraceae was
TABLE 6 Continued

Variable/Taxa p
value

Adjusted p
value

GWG1 Predicted
Slope

Enterococcus faecalis 0.14 ± 0.03 <0.001 0.001

Streptococcus salivarius 0.42 ± 0.08 0.005 0.030

Ruminococcus gnavus 0.01 ± 0.003 <0.001 0.002
Values in a row that do not contain the same superscript are significantly different, p<0.05.
All values shown are mean ± SEM.
1Number refers to the increase in relative abundance per 1 kg increase in gestational weight gain (GWG).
frontiersin.org

https://doi.org/10.3389/fendo.2022.921464
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sugino et al. 10.3389/fendo.2022.921464
positively associated with maternal GWG and was predicted to

increase in relative abundance by 0.5% for each kilogram increase

in GWG. Other studies have noted a positive association between

maternal overweight/obesity and infant Lachnospiraceae

abundance (13, 18), which was linked to infant risk for

overweight/obesity later in life (18). More studies are needed to

determine whether individual genera/species within

Lachnospiraceae are contributing to infant adiposity and

whether specific metabolites produced by this family are

responsible for this association with overweight/obesity risk

in offspring.

Two species in infant stool were associated with the

breastfeeding status: S. epidermidis and S. anginosus, both of

which were enriched in the gut of infants who were exclusively

breastfed. S. epidermidis is acquired from skin and can be found

in breastmilk, may play a role in educating the immune system

and can act as an opportunistic pathogen in neonates (69). Less

is known about the role of S. anginosus in the commensal human

gut, although it has been shown to be a common member of the

skin, respiratory, and intestinal microbiomes and has the

potential to cause infection (70). Breastfeeding for the first 6

months of life is the recommended practice to optimally support

infant survival, nutrition, and development (71). Our results

suggest that exclusive breastfeeding results in distinct

communities in the infant gut and increases the abundance of

bacteria important for immune training.

A major strength of our RCT study is that the mothers were

well matched, the study design allowed for well-controlled dietary

constituents that impact the microbiome (fiber, calories, all meals

provided), and GWG was nearly identical. We also controlled for

antibiotic exposure, excluding any maternal or infant stool

sample when antibiotics were reported within 4 weeks of

collection. Importantly, we collected maternal and infant stool

samples at several timepoints, allowing us to interrogate how the

maternal diet group related to changes in the microbiome across

gestation and infant age. Another strength is that the gut

microbiota of study participants was not confounded by anti-

hyperglycemic agents. Our trial also had certain limitations,

including the small sample size and the predominantly

Caucasian participants, and thus needs confirmation in a larger

RCT including women with different ethnicities. Additionally,

due to limitations inherent in macronutrient research, we cannot

be certain that the differences reported in women on CHOICE

are due to a higher intake of carbohydrates rather than a lower

intake of fats. However, we emphasize carbohydrate intake in this

study since the administration of complex carbohydrates to

women with GDM makes this study unique and provides an

alternative to the higher-fat CONV GDM diet. Although the

infant sample size was small, all results were corrected for FDR,

and subspecies occurrence with divergent functionalities was

identified with metagenomic sequencing. Many of the bacteria

investigated were, on average, less than a percent of the total

relative abundance in the participants’ microbiome. While the
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higher-abundance taxa will interact more with the host and gut

environment, rare taxa have been shown to disproportionately

contribute to shifts in a microbiome community over time (72)

and may act as metabolic keystones to bridge gaps between the

functional repertoires of the microbiome as a whole (73). The

entire study cohort was powered to detect differences in

postprandial FFA AUC, placental FATP2 expression, and

neonatal adiposity (primary outcome) between groups.

However, this subanalysis of the study trial may not be

adequately powered to detect small differences in microbiota

abundances and should thus be interpreted with caution. As this

was an exploratory study, more work needs to be done in a larger

cohort. In addition, although the two groups were extremely well

matched for age, BMI, parity, and ethnic distribution (see

Table 1), we cannot exclude other socioeconomic factors or

unknown environment differences in the two cohorts. The goal

of these studies was to recruit, to the greatest extent possible,

women with similar starting metabolic characteristics, the ability

to follow their diets (compliance), and without the need to go on

to require insulin therapy. More work needs to be done to

elucidate the roles of rare taxa in the maintenance of a healthy

microbiome and the functional pathways in a larger cohort,

despite their relative rarity.

Overall, our results show that an isocaloric diet high in

complex carbohydrates and low in fat consumed by women with

GDM is associated with a bacterial environment that is

metabolically favorable, demonstrating greater bacterial

diversity and a reduction in potential pathogens in infants

during the first 4 months of life. Improving the gut

microbiome diversity and reducing opportunistic pathogens

capable of playing a role in obesity and immune system

dysbiosis suggest the exciting possibility of using a targeted

intervention to modulate these taxa and modify disease

progression in a precision medicine–based approach in future

studies. The potential implications of the abundance of these

taxa for overall metabolic health across various phenotypes of

infants from women with GDM await further elucidation.
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