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Tumor infiltration of central nervous system (CNS) malignant tumors may

extend beyond visible contrast enhancement. This study explored tumor

habitat characteristics in the intratumoral and peritumoral regions to

distinguish common malignant brain tumors such as glioblastoma, primary

central nervous system lymphoma, and brain metastases. The preoperative MRI

data of 200 patients with solitary malignant brain tumors were included from

two datasets for training. Quantitative radiomic features from the intratumoral

and peritumoral regions were extracted for model training. The performance of

the model was evaluated using data (n = 50) from the third clinical center.

When combining the intratumoral and peritumoral features, the Adaboost

model achieved the best area under the curve (AUC) of 0.91 and accuracy of

76.9% in the test cohort. Based on the optimal features and classifier, the model

in the binary classification diagnosis achieves AUC of 0.98 (glioblastoma and

lymphoma), 0.86 (lymphoma and metastases), and 0.70 (glioblastoma and

metastases) in the test cohort, respectively. In conclusion, quantitative

features from non-enhanced peritumoral regions (especially features from

the 10-mm margin around the tumor) can provide additional information for

the characterization of regional tumoral heterogeneity, which may offer

potential value for future individualized assessment of patients with

CNS tumors.
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1 Introduction

Malignant tumors of the central nervous system (CNS) are

among the most resource-consuming and disabling diseases in

neurology. Generally, typical neuroradiological findings in

conventional magnetic resonance imaging (MRI) raise the

initial suspicion for CNS tumors. Radiologists rely upon visible

characteristics to describe CNS tumors, with contrast-enhanced

regions being important elements for evaluation. In recent years,

quantitative parametric MRI techniques have further facilitated

substantial progress in the diagnosis, therapy monitoring, and

evaluation of CNS tumors (1). More recently, by extracting high-

throughput features, radiomics technologies further allow the

non-invasive capture of microscale tumoral information (2, 3).

At present, computer-assisted medical diagnosis technology has

been successfully applied to clinical diagnosis (4), molecular

marker evaluation (5), and prognosis prediction (6) of CNS

tumors. However, due to overreliance on the visible regions of

the tumor habitat, such as the necrosis, enhancement, and

edema parts, many studies seem to mainly focus on the

intratumoral information, ignoring the peritumoral brain zone

(PBZ) that also plays a prominent role in the progression and

recurrence of malignant CNS tumor (7–9).

Currently, the volume of enhancement in contrast-enhanced

MRI (CE-MRI) usually serves as a radiological reference for

defining the burden of high-grade CNS tumors, which guides

invasive biopsy or surgical resections (10) as well as radiation

therapy planning. Due to their infiltrative and heterogeneous

nature, GBMs are difficult to evaluate and treat (7, 11), and

complete resection of the contrast-enhanced parts is considered

radical resection (10). In cases with complete radical resection of

the enhanced portion of GBM, however, 85% of recurrences are

still localized to the resection PBZ margin (9), which ultimately

leads to treatment failure. Previous studies have shown that

GBM cells can be located a few centimeters away from the tumor

enhancement margin in CE-MRI (7, 8, 12), suggesting that the

radiological boundary of the tumor does not exactly match the

cytological boundary. The glioma infiltration may be

unenhanced before the formation of high-permeability

neovascularization (8, 13). Therefore, no enhancement does

not suggest the absence of tumoral infiltration in PBZ. The
Abbreviations: Adaboost, adaptive boosting; AI, artificial intelligence; AUC,

area under the receiver-operating-characteristic curves; CE-MRI, contrast-

enhanced MRI, CNS, central nervous system; GBM, glioblastoma; GBDT,

gradient boosting decision tree; ICCs, the intraclass correlation coefficients;

LASSO, least absolute shrinkage and selection operator; LMPA, primary

central nervous system lymphoma; META, metastases; MRI, magnetic

resonance imaging; NBH, the Affiliated Brain Hospital of Nanjing Medical

University; PBZ, peritumoral brain zone; RF, random forest; ROI, regions of

interest; SVM, support vector machine; T1CE, T1 contrast-enhanced MRI

sequences; T2, T2-weighted MRI sequences.
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hyper-focusing on the enhanced portions of the tumor in CE-

MRI effectively guides the surgical target, which may also lead to

the neglect of residual non-enhancing parenchyma in PBZ

regions in clinical practice or radiological research.

In the context of CNS tumor imaging, the information

provided by T2-weighted sequences (T2) is generally related to

tissue water content. The coverage areas of edema in T2 caused

by brain tumors are often larger than the enhancement lesion

itself and are often considered to represent the peritumoral area

in many radiomics studies (14, 15). Nevertheless, just like the

spatio-temporal heterogeneity of GBMs at the molecular scale

(16), the GBMs similarly have heterogeneous phenotypes at the

macroscopic radiological scale (17). The edema of the tumor is

variable and affected by different factors, which may not reflect

the real condition of peritumoral invasion. Remarkably, based

on the tissues even from similar edema regions of different

GBMs, the content of tumor cells confirmed by biopsy can be

highly variable (10–80%) (17), suggesting that using only

hyperintensity in T2 (edema) to assess the characteristic of

PBZ may be challenging. Thus, can the distance-quantitative

peritumoral features of the tumor be used to weaken the effect of

tumor radiological heterogeneity in different MRI data?

Whether the quantitative features around the PBZ can better

capture the characteristics of a malignant CNS tumor is

currently unknown.

Among malignant CNS tumors, preoperative differentiation

of GBM, brain metastasis (META), and primary central nervous

system lymphoma (LMPA) can be challenging. The three types

of tumors can present similar enhancement and edema patterns

on traditional MRI, resulting in difficulties in clinical

differentiation before surgery. The therapeutic strategies for

these tumors are entirely different: newly diagnosed GBM

often requires maximum resection, followed by chemotherapy

and radiotherapy (18); META requires postoperative stereotactic

radiosurgery and systemic treatment for the primary tumor (19),

while LMPA usually only requires stereotactic biopsy followed

by chemotherapy and sometimes combined with whole-brain

radiation therapy (20). Therefore, preoperative accurate

identification among these tumors has a significant clinical

relevance. Onishi et al. (21) have attempted to discriminate the

tumors with several perfusion indicators. The small sample size

and single-center data limit the generalizability of the findings.

Additionally, several recent radiomics studies have tried to

perform differential diagnoses between GBM, META, and

LMPA (4, 22, 23). However, on one hand, most radiomics

studies only focus on the binary classification problems of the

tumors mentioned, which limits the generalization and clinical

application of the models. On the other hand, these studies

regarded almost exclusively intratumoral features and edema

itself, leading to the loss of peritumoral information. In this

exploratory and multicenter study, we not only evaluated the

visible intratumoral regions of interest (ROI) but also focused on

the distance-quantitative peritumoral regions from PBZ. In
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doing so, we attempted to address two questions in this study.

First, we examined whether radiomic analysis will facilitate the

multiple classifications of the three common malignant CNS

tumors. Second, we explored if the features extracted from PBZ

regions can provide additional biological information for the

evaluation of a malignant brain tumor. Additionally, binary

classifications (GBM-LMPA, GBM-META, and LMPA-

META) were also performed using the optimal features.
2 Materials and methods

2.1 Patient enrollment

Patients diagnosed with malignant CNS tumors were recruited

from three cohorts. Retrospective MRI data (GBM, META, and

LMPA) were collected from the Nanjing Brain Hospital-Brain

Tumor Neuroimaging Project database (from January 2016 to

June 2020) for training, which is described in Supplementary

Materials S1. Additionally, half of the GBM data in the training

cohort was also included from The Cancer Imaging Archive project

(TCIA, http://www.cancerimagingarchive.net). In order to assess

the generalization of the model, three types of patients in the test set

were included from the Nanjing Drum Tower Hospital (from July

2019 to December 2020) in the same ratio as that in the training

group. For the training set, 324 patients with pathologically

confirmed malignant brain tumors were originally included,

including 134 patients with GBM (63 patients were enrolled from

the TCIA database), 82 patients with LMPA, and 108 patients with

META. For the testing set, 109 patients were originally included (n

= 47 for GBM, n = 28 for LMPA, and n = 34 for META). The

exclusion criteria were as follows: (1) patients with inadequate MRI

data or scanning quality problems, (2) patients with a lesion only

located in the skull, brain stem, or cerebellum, (3) patients withMRI
Frontiers in Oncology 03
data that have preprocessing problems. The enrollment flow chart is

briefly illustrated in Figure 1. This study was approved by the

Institutional Ethical Committee for Clinical Research of the

Affiliated Brain Hospital of Nanjing Medical University.
2.2 Data acquisition and pre-processing

The details about the sequence parameters of the T1CE and

T2 protocols are described in Supplementary Materials S1. The

MRI scanning parameters varied among the different centers,

reflecting the heterogeneity of imaging data in the clinical

context. Further description of data pre-processing and quality

control is provided in Supplementary Materials S2.
2.3 Region-of-interest segmentation

Radiologically, each tumoral habitat contains two portions,

including the traditional subregions and distance-quantitative

PBZ subregions. In our study, the traditional subregions refer to

ROIs visible to the naked eye on the different MRI sequences,

including enhancement and whole tumor parts in T1CE as well

as the edema in T2 sequences. The distance-quantitative

subregions start from the boundaries of the enhanced lesion in

the T1CE sequence and are quantitatively defined by a certain

spatial distance, such as 10, 20, and 30 mm. The features

extracted from the traditional subregions mentioned above

were defined as traditional features. Similarly, features

extracted from the distance-quantitative PBZ subregions were

defined as quantitative features. The choice of considering 30-

mm peritumoral areas was motivated by the fact that the

invasion of GBM can reach 3 cm beyond the enhancement

boundaries in MRI sequences (7, 8), and this distance also covers
FIGURE 1

Data organization of the patients from three data sets.
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the high-frequency recurrence regions (9). For patients with

multiple lesions, if the distance between the enhanced borders of

the lesions is greater than 5 cm, the largest lesion will be used for

delineation, else the tumors would be regarded as a whole for

delineation. We used semi-automated and automated methods

to segment the traditional regions and PBZ subregions,

respectively. The segmentation processes are described in

Figure 2. Further details are provided in Supplementary

Materials S3.
2.4 Radiomic feature extraction from
each subregion

The radiomic features were extracted from the ROIs on

T1CE and T2 images using PyRadiomics 3.0 (http://www.

radiomics.io/pyradiomics.html) (24). When extracting features

in T1CE, ROIs including enhanced tumor (ET) mask, whole

tumor (WT) mask, and peritumoral 10/20/30-mm mask in PBZ

(P1/P2/P3) were used, respectively. Edema (ED), WT, and

P1/P2/P3 masks were likewise used for T2. For each

morphologically visible mask (ET, WT, and ED), 14 shapes, 18

first-order, 24 gray-level co-occurrence matrix, 16 gray-level

run-length matrix, 16 gray-level size zone matrix, and 14 gray-

level dependence matrix as well as 5 neighborhood gray-tone

difference matrix were extracted from the corresponding images.

We also employed a widely used wavelet filter to explore the

potential radiological characteristics of tumors in the wavelet-
Frontiers in Oncology 04
transformed images. Thus, 744 wavelet features were extracted

from decomposed images by a wavelet filter, constituting a total

of 851 radiomic features for each ROI in one sequence. The

peritumoral ROI was not used to extract the 14 shape features.

Finally, a total of 8,412 features (851 × 3 + 837 × 7) were

obtained for each tumor. Both sets of ROI generated by the two

neuroradiologists would undergo the feature extraction process

and result in two sets of radiomic features. A schematic

workflow of data pre-processing and radiomic feature

extraction is shown in Figure 3. A detailed description of

these procedures is included in Supplementary Materials S4.
2.5 Radiomic feature assessment
and selection

To evaluate interobserver reproducibility, the intraclass

correlation coefficients (ICCs) of the two sets of features were

ca lculated. As suggested by the Image Biomarker

Standardization Initiative (25) and Koo et al. (26), features

with ICCs greater than 0.9 are considered to be of excellent

reliability and would be used for the following analysis. Further

descriptions can be found in Supplementary Materials S4.2.

According to the thumb rule, an effective sample size is needed

to cover 10–15 observations of each predictor variable to yield a

stable estimation (27, 28). In our study, the training data set

included 200 patients, and the maximum number of radiomic

features included was 20. Several typical feature selection
A B

FIGURE 2

Segmentation of the intratumoral and peritumoral subregions. (A) After image preprocessing, the visible tumors were segmented into different
subregions, including enhancement, whole tumor, and edema, based on a semi-automatic threshold and seed-growing algorithm. (B) The same
approach was used to segment individualized brain masks without ventricle, cortical sulci, and infratentorial structures. The morphological
binary expansion of the whole tumor is performed to delineate the peritumoral brain zone (PBZ) regions, which are confined within the
individualized whole-brain mask. In each iteration of voxel dilation, a 1-mm3 ring around the enhanced lesions will be obtained, and the
iterations eventually reach a radial distance of 30 mm. Then, the distance quantitative PBZ regions of interest (ROIs) are obtained by subtraction
calculation of the tumor mask. The purple, yellow, and blue ROIs represent the generated ROIs at 10, 20, and 30 mm from the border of the
enhanced tumor, respectively.
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methods were used, including least absolute shrinkage and

selection operator (LASSO), random forest (RF), adaptive

boosting (Adaboost), and gradient boosting decision tree

(GBDT) as well as extremely randomized trees (ExtraTree).

LASSO regression is a robust supervised learning approach

that will facilitate variable selection for the high-dimensional

dataset. Other algorithms were chosen because of their stable

ability for feature importance evaluation. For each method, all

features can be sorted based on their feature coefficient or

importance, and the top 20 ranked features are used for the

corresponding modeling.
2.6 Research design and
classifier selection

For the same set of features, different feature selection

methods and classifiers can present different performances (4).

We applied several classifiers including support vector machine

(SVM) with linear or radial basis function kernels, RF, Adaboost,

GBDT, and ExtraTree classifier. First, we implemented a K-fold

cross-validation with K = 10 to train the models separately using

different feature combinations. In order to better evaluate the

contribution of the quantitative features, we applied the

following four-step modeling strategy. In the first step, the top

20 ranked features of the 2,321 traditional features were used to

identify the best-performing model in the triple classification

tasks. Then, in step 2, the top 20 features of 3,533 quantitative
Frontiers in Oncology 05
features were used to train with the best combination identified

in step 1. Similarly, in step 3, top features selected from all (2,321

+ 3,533) features were also used to fit the model for triple

classification tasks. Finally, the best features selected from step 3

are used for binary classifications (GBM-LMPA, GBM-META,

and LMPA-META). At each step of the above-mentioned

processes, the importance of the features in the corresponding

model was calculated. Grid search was used to identify the best

parameter combinations in different feature-classifier

combinations. Accuracy and AUC were calculated for each

combination. A schematic workflow of modeling is shown in

Supplementary Materials S5.
2.7 Statistical analysis

Two-group and multi-group comparisons were assessed

with the Mann–Whitney U-test and Kruskal–Wallis test. Chi-

square tests were used to evaluate the baseline characteristics

across groups (gender and tumor hemisphere distribution). The

DeLong test was used to evaluate the AUC difference between

different models. P-values <0.05 were considered statistically

significant. The radiomic image processing, statistical analysis,

and figure plots were performed using Matlab (version R2013b),

Python (version 3.7.4), SPSS (version 21.0, IBM), and R (version

4.0.2) software. Machine learning model training and testing

were performed using the scikit-learn library (v0.24.1, https://

scikit-learn.org/stable/) implemented in Python.
A B

D E F G

C

FIGURE 3

Flow chart describing the present radiomics study. (A) Image preprocessing, including skull stripping, resampling, and registration. (B) Bias field
correction and intensity normalization. (C) Based on the quantitative regions of interest, radiomic features were extracted, including shape, first
order, textural, and wavelet features from T1CE and T2 images separately. (D) Radiomic feature assessment. (E) Feature selection using different
methods, such as lasso regression or random forest. (F, G) Modeling and evaluation using different classifiers, including support vector machine
and several ensemble learning methods.
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3 Results

3.1 Clinical and imaging characteristics

Eventually, 200 patients (GBM = 80, LMPA = 60, andMETA

= 60) and 50 patients (GBM = 20, LMPA = 15, and META = 15)

were included in the training and testing cohorts, respectively.

The clinical characteristics of the patients in the training and

testing sets are listed in Table 1. The histogram density curves of

raw MRI and preprocessed signal intensities are plotted in

Figure 3B, and the details are provided in Supplementary

Materials S2. After preprocessing, all subjects were used for

the subsequent radiomic analysis. The proportions of patients

with multiple supratentorial lesions (with a distance greater than

5 cm) in the training group and the test group are 6% (two GBM,

six LMPA, and four META) and 10% (one GBM, four LMPA,

and zero META), respectively.
3.2 ROI segmentation and qualitative
feature analysis

Based on the normalized images, semi-automatic delineation

can be effectively performed using voxel-level seeds and

threshold. All patients (n = 250) received lesion segmentation

that was separately performed by two neuroradiologists. For

patients (n = 17) with multiple lesions, only the largest lesion

was used for segmentation and expansion calculation. For the

training set, the stability was observed for shape (ICC = 0.91 ±

0.77), first-order (ICC = 0.92 ± 0.12), texture (ICC = 0.86 ± 0.20),

and wavelet (ICC = 0.81 ± 0.32), respectively. These results
Frontiers in Oncology 06
reflect the good stability of the semi-automated segmentation

method. In total, 5,854 of the 8,412 (69.6%) radiomic features

showed excellent stability with ICC >0.9, including 31 shape

features, 146 first-order features, 484 texture features, and 5,193

wavelet features. The boxplot of ICCs of the radiomic features

extracted from four feature classes is provided in Supplementary

Materials S4.2. For the testing set, the stability of the features was

observed for shape (ICC = 0.92 ± 0.64), first-order (ICC = 0.91 ±

0.31), texture (ICC = 0.84 ± 0.31), and wavelet (ICC = 0.83 ±

0.37), respectively.
3.3 Optimistic three-classifying model

Six classifiers [Lasso_SVM (RBF and linear), Adaboost, RF,

GBDT, and ExtraTree] were trained by the training data and

then applied to the independent test set to evaluate

the performance. Using the top 20 traditional features, the

performance of each classifier and the importance of the

features are summarized in Supplementary Materials S6.

Based on intratumoral and edema features, the Adaboost

achieved the best performance in the three-classification task

(AUC = 0.79 and accuracy = 70.6%). This classifier was selected

as the optimal model for the subsequent experiments. While

using quantitative features only, the model achieves AUC of

0.765 and accuracy of 62.0%. Once all features (2,321

traditional and 3,533 quantitative features) were put together,

using the top 20 features, the Adaboost achieved the highest

AUC of 0.91 (Figure 4A) and the best mean accuracy value

of 76.9%.
TABLE 1 The clinical characteristics of patients with central nervous system tumors in the training and testing sets.

Training set Testing set

GBM (n =
80)

LMPA (n =
60)

META (n =
60)

p GBM (n =
20)

LMPA (n =
15)

META (n =
15)

p

Ages, median (range) 60.0 (21–80) 66.0 (31–80) 62.0 (54–76) 0.025a 58.0 (35–72) 58.0 (45–79) 59.0 (39–72) 0.865

Gender (male/female) 56/24 35/25 40/20 0.347 11/9 9/6 12/3 0.290

Hemisphere (left/
right)

40/40 27/33 36/24 0.244 11/9 9/6 3/12 0.052

Tumor center location and the involved brain area (N, number of subjects)

Tumor cross midline 13 24 4 0.000a 2 8 2 0.012a

Frontal lobe 27 23 16 0.394 4 5 4 0.671

Temporal lobe 35 16 14 0.020a 8 2 0 0.010a

Parietal lobe 17 8 14 0.338 7 2 7 0.138

Occipital lobe 12 9 20 0.013a 5 3 3 0.916

Insular lobe 6 13 2 0.002a 3 4 0 0.108

Other locations 4 13 3 1 9 1
frontiers
Age was expressed as the median (range). Age differences between different groups were analyzed using the Kruskal–Wallis rank-sum test. One tumor can involve multiple brain regions at
the same time. Chi-square test was used to evaluate the baseline characteristics across groups (gender and tumor hemisphere distribution).
ap-values <0.05 were considered statistically significant.
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3.4 The importance and habitat
characteristics of the top features

Compared to using traditional features only, the Adaboost

achieved the best performance when combined with quantitative

peritumoral features. The top 20 features showed that the high

weights were derived from different tumor habitats. Eleven

features were derived from the contrast enhancement (ET, n =

4) and whole tumor (WT, n = 7) regions inside the tumor in the

T1CE sequence. Moreover, five features were picked from the

edema regions (ED, n = 5) using the T2 sequence. The remaining

features were selected from the quantitative regions (n = 4).

Notably, the whole-tumor ROIs were outlined through the T1CE

sequence. Based on these ROIs, the two wavelet features

extracted from the T2 sequence (Supplementary Figure S6)

perform well in the final model, with average importance of

0.065 and 0.037, respectively. The weights of the features in the

model are shown in Supplementary Figure S7. The features

from the peritumoral 10-mm region (Figure 5), no matter on

T1CE or T2 sequence, likewise have a good contribution to the

optimal model. The average weight of the peritumoral features

was 0.080 and 0.033, respectively. When focusing on

peritumoral features, only two features from 10 mm around

the enhanced boundary were ranked at the top and selected for

modeling. The Kruskal–Wallis test indicated significant

differences among the three groups in the peritumoral 10-mm
Frontiers in Oncology 07
T1CE-derived wavelet feature (H = 6.206, p = 0.045). The post-

hoc analyses revealed significant differences between LMPA and

META (Z = 2.486, p = 0.013). No significant differences were

found between GBM and LMBA (Z = 1.07, p = 0.284) or GBM

and META (Z = 1.550, p = 0.121). No significant differences

were observed in the peritumoral 10-mm T2-derived wavelet

feature (H = 2.653, p = 0.265). The weights and statistics details

of the final 20 features are summarized in Supplementary

Materials S7.
3.5 Binary-classifying modeling

Based on the best model and the best features determined by

the triple classification tasks, binary classifications (GBM-

LMPA, GBM-META, and LMPA-META) were also

performed. The results of the 10-fold cross-validated ROC

curve of the Adaboost classifier in the test cohort are shown in

Figures 4B–D. The Adaboost model with combined traditional

and quantitative features performs better in the task of

discriminating between GBM and LMPA (AUC = 0.98, 95%

CI: 0.80 to 0.99, accuracy = 89.71%, sensitivity = 87%, and

specificity = 100%) (Figure 4B) as well as LMPA and META

(AUC = 0.86, 95% CI: 0.52 to 0.94, accuracy = 80.33%, sensitivity

= 93%, and specificity = 73%) (Figure 4C). However, the same

model did not perform well when used to discriminate between
A B

DC

FIGURE 4

Receiver operating characteristic (ROC) curves for different classification tasks. (A) ROC curve of the Adaboost classifier for the differentiation of
glioblastoma (GBM), metastases (META), and primary central nervous system lymphoma (LMPA) (using the top 20 features from the traditional
and quantitative peritumoral regions). The two dashed lines represent the micro-average and macro-average ROC curves, respectively. (B–D)
ROC curve of the best classifier for the binary classification between GBM and LMPA, LMPA and META, as well as GBM and META, respectively.
Each solid line represents the ROC curve of each fold cross-validation. The thick blue line represents the mean ROC curve (with the standard
deviation represented by the gray shadow).
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GBM and META (AUC = 0.70, 95% CI: 0.61 to 0.92, accuracy =

61.71%, sensitivity = 61%, and specificity = 75%) (Figure 4D).

The weight of the wavelet feature from the peritumoral 10 mm in

T1CE in the above-mentioned classification was 0.098, 0.047,

and 0.067, respectively. The weights of the features in binary

classification are summarized in Supplementary Materials S8.

Compared to the model that only used traditional features, the

model combining traditional and peritumoral features exhibited

higher AUC for the binary classification between GBM and

LMPA (DeLong test Z = 2.24, p = 0.025). We also observed an

improvement in AUC for the binary classification between

LMPA and META, although the difference was not significant

(Z = 1.69, p = 0.090). The peritumoral feature did not provide a

significant improvement over the differentiation between GBM

and META (Z = 0.77, P = 0.443).
4 Discussion

The diagnosis of CNS malignant tumors may be very

challenging to make due to similar imaging findings on

conventional MRI. In recent years, machine learning models

have begun to outperform previous methods and are gaining

increasing attention in differential diagnosis research (4, 23).

However, although those models performed well in the
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validation group, the single-center and dichotomy nature of

the studies may limit the generalization of the findings. Based on

the fact that radiomic techniques can provide insight into

biological information that is invisible to the naked eye (2),

relying only on the tumor morphology in a certain sequence may

lead to the loss of a lot of important information. Previous

studies have tried to divide the tumor habitat into different

subregions (6, 29), including necrosis, enhancement, and edema.

For different CNS malignant tumors, the tumoral behavior

adjacent to the brain parenchyma is different, and peritumoral

evaluation may provide extra-biological information (21, 30, 31),

especially for differentiating META from other tumors in this

study. Compared to the model using only features derived from

intratumoral and edema regions, the addition of peritumoral

features could improve the performance of the models. These

results show that the peritumoral features may contain

important biological information that can be uncovered by

radiomic analysis. Like the layer of spatial–temporal

complexity that peritumoral residual cells have added to

tumor biology (7, 30), peritumoral radiomic features may

similarly add to the biological imaging of a CNS tumor.

Therefore, a better understanding of the tumor behavior also

requires a careful assessment of peritumoral infiltration.

Radiologically, the biological information contained in the

peritumoral regions has also been verified in other tumors (32,
A

B

C

FIGURE 5

Peritumoral radiological and pathological characteristics of the tumors. Each row represents a single patient. The first column shows the axial
slice of patients with central nervous system tumors, and the second and third columns show the enhanced tumor and peritumoral 10-mm
regions, respectively. The red outline in the second column is the border of the enhanced tumor. The third column shows the enhanced (black
box) tumor and non-enhancing (white box) biopsy regions. The colored heat map represents the expression of wavelet feature around
peritumoral 10-mm regions. The last two columns show the pathological section (HE staining; ×400) of the tumor and peritumoral tissue,
respectively. (A) A female patient with right temporal glioblastoma (GBM); the histopathologic slides of enhanced and peritumoral tissue samples
show both biopsy samples infiltrated with malignant GBM cells. (B) A male patient with right parietal–occipital primary central nervous system
lymphoma; the histopathological sections show the large size of the lymphoid infiltrate in both enhancement and peritumoral biopsy specimens
in this patient. (C) A female patient with left temporal metastatic adenocarcinoma; the histopathological sections show large numbers of
malignant cells which infiltrated the enhanced region, while only a few tumor cells infiltrated the peritumoral 10-mm regions.
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33). In our study, the distance-quantitative subregions, including

10, 20, and 30 mm from the enhanced margins, were taken into

account. According to importance, two features extracted from

the 10-mm PBZ regions were selected, which were derived from

T1 and T2 sequences, respectively. Compared with using only

intratumoral features, the association of the traditional and

quantitative features has improved the performance of the

model. Our study is congruent with a recent study by Joo

et al. (32), such that the radiomic model combining

peritumoral features can help to predict brain invasion by

meningioma. What is noteworthy is that the top-ranked

radiomic features used in their model were derived from the

10-mm-thick brain-to-tumor-interface ROIs. These results

altogether indicate that peritumoral radiomic features have the

potential to reduce the impact of radiological heterogeneity,

enabling quantitative and objective measurements of tumor

infiltration. Interestingly, among all the peritumoral features

extracted from PBZ regions for final modeling, only the features

from peritumoral 10-mm PBZ showed higher weights instead of

the ROIs from 20- or 30-mm peritumoral regions. One possible

explanation is that, as the distance increases, the distribution of

tumor cells becomes sparse. Although tumor infiltration can

reach a distance of 3 cm or more, it is difficult to capture long-

distance biological information by neuroimaging.

In the present study, most of the radiomic features included

in the optimal model were textural features from wavelet-filtered

T1CE and T2 images. The texture is a representation of pixel

intensity, their inter-relationship, and their distribution, which

may or may not be distinguishable to the human eye (34).

Wavelet transformations conduct filtration and noise removal to

the original images. Thus, these transformed features may

effectively capture critical tumor heterogeneity and better

predict tumor biology. The wavelet features may reflect certain

cytological characteristics or specific expressions of certain

molecules of the tumor microenvironment (35). The

underlying biological mechanism remains to be elucidated.

When focusing on the features from peritumoral 10-mm

regions, the wavelet features tend to show higher expressions

in LMPA (5.821 ± 1.21), followed by GBM (5.628 ± 1.03), and

META (5.356 ± 0.75). As one of the most common types of

intracranial tumors, META is well demarcated from the brain

parenchyma. The peritumoral of META dominantly manifests

as vasogenic edema and the absence of tumor cells (36). Thus,

compared with the features within the intratumoral regions, the

features from PBZ regions may also reflect the biological

characteristics of the tumor from the perspective of

peritumoral infiltration. Similarly, like GBM, LMPA also

diffusely infiltrates peritumoral brain tissue adjacent to

enhanced tumor masses (37). The high expression of the

textural feature around the LMPA improves the prediction

performance of the binary classification model (Figures 4B,

C). The microscopic tumor infiltration of LMPA is reportedly

indistinguishable from vasogenic edema or even from normal
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brain tissue on T2 images (38). This may explain why the

textural feature from peritumoral 10-mm regions of LMPA

patients was significantly higher than that in META patients.

Our results can be further supported by a previous MRI study

(39) which showed that increased peritumoral perfusion

indicators in LMPA and GBM can reveal tumor-related

changes beyond the enhancing borders of the solid tumor

entities. Additionally, past research has shown that the

apparent diffusion coefficient (ADC) map can provide

additional information for the differential diagnosis of

malignant brain tumors (40, 41). Zhang et al. (41) reported

that the ADC-based texture analysis can help differentiate GBM

from solitary brain metastasis. Choi et al. (40) found that ADC

parameters extracted from the tumor were higher in GBM than

that in LMPA. These findings suggest that the diagnostic

performance of our model might be further improved in the

future by combining quantitative features around the tumor in

images from different modalities (such as ADC). Taken together,

our results show that quantitative radiomic features provide a

potentially useful complement to the noninvasive assessment of

a CNS tumor and may provide imaging guidance for future

individualized oncology.

There are several limitations to the present study. First,

although multi-center data were included in this research, the

overall sample size is still relatively small. Prospective studies

carried out at multi-centers with larger sample sizes are required

to confirm these findings. Second, our radiomic analysis only

used T1CE and T2 images, which are the most common

structural MR images in the clinical context. In fact, GBMs

bear genomic and imaging heterogeneity, either in intratumoral

or peritumoral regions (7, 17). In future research, additional

imaging techniques, such as dynamic susceptibility contrast

imaging or functional MRI technique, are needed to reveal the

underlying landscape of aggressiveness of the tumor.

In conclusion, by incorporating peritumoral information

into the model, the presented classifier can differentiate GBM

from LMPA and META preoperatively. We believe that the

combination of peritumoral information might help to further

improve the preoperative evaluation of CNS tumors and guide

clinical practice.
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