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Aboveground biomass (AGB) is an essential assessment of plant development 

and guiding agricultural production management in the field. Therefore, efficient 

and accurate access to crop AGB information can provide a timely and precise 

yield estimation, which is strong evidence for securing food supply and trade. 

In this study, the spectral, texture, geometric, and frequency-domain variables 

were extracted through multispectral imagery of drones, and each variable 

importance for different dimensional parameter combinations was computed 

by three feature parameter selection methods. The selected variables from 

the different combinations were used to perform potato AGB estimation. The 

results showed that compared with no feature parameter selection, the accuracy 

and robustness of the AGB prediction models were significantly improved 

after parameter selection. The random forest based on out-of-bag (RF-OOB) 

method was proved to be  the most effective feature selection method, and 

in combination with RF regression, the coefficient of determination (R2) of the 

AGB validation model could reach 0.90, with root mean square error (RMSE), 

mean absolute error (MAE), and normalized RMSE (nRMSE) of 71.68 g/m2, 51.27 g/

m2, and 11.56%, respectively. Meanwhile, the regression models of the RF-OOB 

method provided a good solution to the problem that high AGB values were 

underestimated with the variables of four dimensions. Moreover, the precision of 

AGB estimates was improved as the dimensionality of parameters increased. This 

present work can contribute to a rapid, efficient, and non-destructive means 

of obtaining AGB information for crops as well as provide technical support for 

high-throughput plant phenotypes screening.
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Introduction

One of the 4th largest staples in the world, the potato enjoys an 
unparalleled position when it comes to food safety (Li et al., 2018b). 
Aboveground biomass (AGB) is a key metric to evaluate crop 
performance and is inextricably linked to yield, and its dynamics 
directly reflect the strength and trophic state of the crop (Zheng 
et al., 2019). Therefore, accurate and efficient monitoring of AGB 
can provide timely messages on crop growth and production 
estimation, which matters to guide fine farming management.

Currently, unmanned aerial vehicle (UAV) remote sensing 
technology has gained widespread attention in crop AGB monitoring 
due to the virtues of its flexible application, simple operation, and 
access to high space–time resolution images (Watanabe et al., 2017; 
Yang et al., 2017). The multispectral sensors can be compatible with 
the advantages of the hyperspectral and RGB sensors, such as being 
economically suitable, containing the red-edge and near-infrared 
bands, and allowing comparable spectral data to be  obtained 
through radiometric calibration, thus gaining widespread interest in 
quantitative remote sensing in agriculture (Deng et  al., 2018). 
Therefore, it is necessary to discuss the application of multispectral 
imagery in AGB estimation (Han et al., 2019).

The parameters that can be  extracted from UAV images to 
characterize crop growth can be broadly classified into the following 
four categories. (i) Spectral variable (SV): Spectral indices (e.g., 
vegetation indices, VIs) are the most extensively employed 
parameters in precision agriculture since they have explicit physical 
meaning, but for many crops, the accuracy of the model is prone to 
saturation due to canopy closure during the late growth stage (Zheng 
et al., 2019). (ii) Texture variable (TV): Textures reflect the gray-scale 
properties of images and the spatial position of image pixels, which 
makes it possible to combine them with spectral variables to reduce 
the underestimation of crop parameters using VIs alone and thus 
improve the applicability of the estimation model (Li et al., 2020). 
The most prevalent and effective texture available is the gray level 
co-occurrence matrix (GLCM). (iii) Geometric variable (GV): 
Canopy height and fractional vegetation cover (FVC) are frequently 
used and valid indicators of geometric variables, reflecting the 
growth of the crop in both vertical and horizontal directions (Wan 
et al., 2020). (iv) Frequency-domain variable (FDV): The frequency-
domain variable is characterized by a spectrum representing the 
distribution of energy. The algorithm represented by the Fourier 
transform converts the imagery from space to frequency dimension 
containing only different frequency information (high- and 
low-frequency information), which can highlight or suppress the 
details and noise of the image (Yang et al., 2019).

The joint employment of some of the above variables is 
presently common in precision agriculture, but few reports reveal 
the contribution of different dimensional variables and how they 
were selected. Therefore, with such a large number of variables, it 
is necessary to effectively extract the most appropriate variables 
for AGB prediction. The selection of feature variables has rarely 
been considered in most studies (Zheng et al., 2019; Liao et al., 
2020; Maimaitijiang et al., 2020; Wan et al., 2020). The commonly 

applied methods for feature parameter selection are RReliefF (Li 
et al., 2020; Acikgoz, 2022) and machine learning (Janitza et al., 
2018) such as random forest (RF). However, the difference and 
effectiveness of these methods for variable selection have been less 
studied. Moreover, there are few studies on biomass estimation in 
potato crops and the predictive variables are mainly focused on 
spectral indices and height (Li et al., 2020).

Considering that few studies have used variables from the 
above four dimensions simultaneously to predict AGB and to 
explore the impact of different feature parameter selection 
methods, in this study, parameters of the spectral, texture, 
geometric, and frequency domain were extracted from UAV 
multispectral images and three methods were chosen to calculate 
the importance of the variables, and finally, the most important 
parameters were selected to predict potato AGB. The major targets 
of the article are to (1) extract as many multi-dimensional 
parameters as possible that have the predictive potential for potato 
AGB; (2) compare the differences of three feature parameter 
selection methods in determining the importance of different 
dimensional variables and their impact on potato AGB estimation; 
and (3) predict potato AGB with combinations of different 
dimensional variables and compare their performance.

Materials and methods

Experimental design

The potato plant trials were conducted from May to August 
2021 in Changchun City, Jilin Province, China (43.45°N, 124.99°E). 
Four widely cultivated varieties (Dongnong #310, Jishu #1, Chunshu 
#10, and Xuechuan #1) were involved. Different fertilizer treatments 
(N, P, and K) were used to simulate differentiated field cropping 
conditions. A total of four gradients (N1P1K1: no fertilization; 
N2P2K2: half of the normal fertilization; N3P3K3: normal 
fertilization; and N4P4K4: twice of normal fertilization) and three 
repetitions were set. The whole experimental area was divided into 
48 small plots of the same size, with an area of about 15  m2 
(6 m × 2.5 m). Figure 1C shows the experimental design details.

UAV data acquisition

The MS600 PRO multispectral sensor was installed on a DJI 
Matrice 200 drone at a 40-m altitude to collect the centimeter-level 
images with an 18.8 mm spatial resolution. Six independent camera 
lenses [central bands of 450@35 (B), 555@25 (G), 660@20 (R), 
720@10 (RE1), 750@15 (RE2), and 840@35 nm (NIR)] were 
equipped. The camera can realize automatic recognition of gray 
plate, real-time calculation of reflectance data, and synchronous 
preservation of reflectance images. In addition, its high-precision 
radiometric calibration and downline light sensor can ensure that 
users get a stable and accurate reflectance of ground objects, thus 
improving the consistency of data acquisition at different times and 

https://doi.org/10.3389/fpls.2022.948249
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2022.948249

Frontiers in Plant Science 03 frontiersin.org

under different environments. After the route flights (overlap both 
across-and along-track was 80%, flight speed was 2 m/s), Yusense 
Map software (Changguang Yusense Information Technology and 
Equipment Co., Ltd., Qingdao, China) was used to complete data 
preprocessing and generate DSM data. The process of acquiring 
reflectance images includes taking vertical downward shots of the 
matching calibration panels with the UAV in hand before takeoff, 
importing the original images and the calibration panels images 
into the software and framing the calibration area, and 
automatically conducting radiometric calibration and calculating 
reflectance according to the calibration panel DN values by the 
software. During the potato growth periods, we completed three 
flights from 11:00–13:00 on June 18 (seedling period, SP), July 17 
(flowering period, FP), and August 9 (tuber period, TP). After 
obtaining the reflectance images, a rectangular region of interest 
(ROI) was defined for each plot, and the mean reflectance within 
the region was treated as the plot-level reflectance of the plot.

Field data measurement

Field measured data include canopy height, hyperspectral 
curves of different endmembers, and AGB of each plot. The 
millimeter-scale ruler was used to measure the true value of 
potato canopy height at each period. After the execution of 
each flight, three potato plants in each plot were randomly dug 
out, then the roots were subtracted, and the rest were dried 

indoors. These plants were ovened at 110°C for a few minutes 
before being kept at 75°C until the weight remained 
unchanged. Finally, the electronic balance was applied to 
weigh them and AGB was calculated in combination with the 
planting density. Hyperspectral curves of different 
endmembers at three stages were measured by the ASD spec 
four spectrometers.

Multi-dimensional parameters extraction 
based on UAV images

After each plot of the imagery was defined to acquire plot-
level reflectance, several VIs (plot-level VIs) commonly used in 
precision agriculture (shown in Table 1) were computed according 
to the plot-level reflectance.

In practice, most of the pixels obtained by sensors are mixed 
pixels, and there is little detailed description information about 
the components, so it is difficult to give a more accurate 
description inside the pixels. The linear model is extensively used 
in spectral mixture analysis (SMA) due to its simpleness and clear 
physical meanings (Chang, 2017). In this study, the linear model 
of fully constrained least-square (LM-FCL) was used to obtain 
pure vegetation information.

 
R Abd R µmp i

M
i i= +

=∑ 1
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FIGURE 1

Potato trial layout: (A) the trail location; (B) the field scene photo; (C) experimental design details.
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where Rmp and Ri represent the reflectance of the mixed pixel 
and pure endmember, respectively. Abd is the abundance of 
different endmembers, M denotes the endmember amounts, and 
ε shows the error.

GLCM was considered to be  the combined likelihood 
distributed of the pixel couple (Haralick et al., 1973). Six GLCM-
based textures, variance (VAR), homogeneity (HOM), contrast 
(CON), dissimilarity (DIS), entropy (ENT), and second moment 
(SEC), were selected to participate in the AGB prediction.

Geometric variables, such as canopy height (Jiang et al., 2019) 
and FVC (Wan et al., 2020), were considered as the important 
predictors of crop biomass and yield. The canopy height can 
be  accessed by subtracting the ground DEM from DSM. For 
assurance of the FVC precision achieved, the dimidiate pixel 
model (DPM) and the image classification method were used to 
check each other. The blue, green, and red bands were extracted 
from the multispectral images, and the true color synthesis was 
realized by RGB superposition. The support vector machine was 
applied for image classification to extract vegetation parts, and 
then, the FVC data can be obtained via the division of the plant 
pixel count by the overall. Moreover, the NDVI-based DPM was 
employed in the FVC estimation (Yan et al., 2022). Equation (4) 
shows the calculation principle.

         FVC = (NDVIM − NDVINS)/(NDVIPP − NDVINS)          (4)

where NDVIM, NDVINS, and NDVIPP denote NDVI values of 
mixed, naked soil, and pure plant pixels, respectively. In this paper, 
due to the inevitable noise, the maximum and minimum values of 
NDVIveg and NDVIsoil were set within the range of 98% confidence.

By transforming each spectral curve into ensembles of sine 
and cosine functions (see Eq. 5), the spectral domain data [Rj = (r1, 
r2, …, rn), j is the band serial number (j = 1, 2, …, n), r is the 
reflectance, and n is band number] is converted into the frequency 

domain, thus obtaining parameters such as constant terms (A0/2), 
amplitude (At, Bt, Ct), and phase (φt) that characterize the function 
(Jiang et al., 2021).
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where t is the decomposition times.

Feature parameter selection methods

RReliefF algorithm
RReliefF algorithm is a feature selection method based on 

statistical correlation (Robnik-Sikonja and Kononenko, 2003). By 
randomly selecting a sample R in the training set, and then, 
searching its adjacent samples (the same class H and diverse class 
M), weights of each feature are updated according to the distance 
between R, H, and M. For continuous feature values, the difference 
[Dif(F, R1, R2)] between two samples R1 and R2 for feature F is 
defined as:

 
Dif F R R

R F R F
, ,1 2

1 2( ) = ( ) − ( )
−max min          

(11)

where Max and Min represent the maximum value of F.
The weight [W(F)] of feature F can be given by approximate 

probability distribution:

       W(F) = P(Dif(F, R1, R2)|M) − P(Dif(F, R1, R2)|H)              (12)

For the regression problem, two resampling probabilities are 
introduced to judge if they are in the same class. Probabilistic 

TABLE 1 VIs of different band combinations for predicting potato 
AGB.

Vegetation 
indices

Formula References

NDVI (R840nm − R660nm)/(R840nm + R660nm) Rouse et al., 1974

NDRE (R840nm − R720nm)/(R840nm + R720nm) Gitelson and Merzlyak, 1997

MTCI (R840 − R720nm)/(R720 + R660nm) Dash and Curran, 2004

EVI2 2.5(R840nm − R660nm)/

(R840nm + 2.4R660nm + 1)

Jiang et al., 2008

VARI (R555nm − R660nm)/(R555nm + R660nm) Gitelson et al., 2002

OSAVI (1 + 0.16)(R840nm − R660nm)/

(R840nm + R660nm + 0.16)

Rondeaux et al., 1996
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determinations make it possible to model and forecast the 
corresponding intervals between two resamples.

                                    P1 = P(Dif(F)|H)                  (13)

                            P2 = P(Dif(prediction)|H)          (14)

where P1 and P2 are the simulated and predicted values of the 
distance probability of two similar samples.

According to the conditional probability:

                 P2|1 = P(Dif(prediction)|Dif (F)|H)                      (15)

Combined with Eq. (12) and Eq. (15):

           W(F) = (P2|1 × P1)/P2 − [(1 − P2|1) × P1]/(1 − P2)         (16)

RF algorithm based on Gini index and error of 
out-of-bag

Bootstrap resampling technology is used in RF to collect a 
certain amount of samples in the target dataset. In each round 
of random sampling of bagging, some data in the training set 
are not selected (out-of-bag, OOB). This part is not engaged 
in the data simulation and thus serves to check the 
model’s robustness.

The Gini index selection standard can be expressed that each 
sub-node reaches the highest purity (Boulesteix et al., 2012), that 
is, all observations falling in the sub-node belong to the same 
classification. For the decision tree (DT) in RF, there are v (v = 1, 
2, …, q) classes of samples altogether. Assuming a sample falls into 
class v with probability pv, the probability distribution of Gini 
index [G(PD)] can be defined as Eq. (17).

 
G PD p p p

v

q
v v v

q
v( ) ( )= − = −

= =∑ ∑1 1

2

1 1

          
(17)

Procedure for measuring the importance of features through 
the error of OOB includes:

 (i) The OOB data that correspond to every DT was chosen to 
compute the error (E1)

 (ii) The noise is appended to F to compute the OOB error (E2)
 (iii) The assumption is that there are a total of K DTs, the 

importance of F (IMPF) can be calculated:

                       IMPF = ∑ (E2 − E1)/K                      (18)

IMPF is able to account for the importance of F in that if there 
is a marked reduction in the precision of the OOB data after the 
addition of noise (i.e., an increase in E2), this indicates that F 
strongly influences the predicted outcome.

Regression algorithms and accuracy 
evaluation

In this paper, the selected multi-dimensional feature 
parameters were used to estimate potato AGB in multiple 
periods by two regression algorithms (partial least squares 
regression, PLSR; random forest regression, RFR). The model 
precision was quantitatively characterized by R2, RMSE, MAE, 
and nRMSE (Dong et  al., 2020) using a separate validation 
dataset (Figure 1C).

Results

Acquisition of SVs based on the SMA of 
dynamic endmembers

The spectral endmembers in the field become more and 
more complex with the growth and development of potatoes. 
At SP, the light leaf (LL), shaded leaf (SL), light soil (LS), and 
shaded soil (SS) were included. At FP, the flower was added. At 
TP, the leaves can be divided into green and yellow ones. Thus, 
unlike FP, the light green leaf (LGL), shaded green leaf (SGL), 
and yellow leaf (YL) were added. By taking the mean value of 
measured spectral reflectance in the corresponding band range, 
spectral endmembers used for SMA in different periods are 
shown in Figure 2.

The results of LM-FCL-based SMA in different periods using 
dynamic endmembers are shown in Figure 3. It can be indicated 
that there are significant differences in abundance images of the 
same endmember at different stages (the more colored parts 
represents the greater abundance). For example, at SP, the colored 
parts of the leaf abundance (including LL and SL) are relatively 
lower than that at FP and TP and the soil abundance (including 
LS and SS) images show the opposite. Moreover, with the arrival 
of TP, the abundance of the flower and YL increases.

The VI calculated by the plot-level reflectance was defined as 
VI[plot]. To obtain the vegetation spectral parameters without soil 
background information, the product of the sum of abundances 
excluding soil and VI[plot] was defined as VI[v]. The correlation 
between potato AGB and VIs with different definitions is shown 
in Figure 4. It is seen that all listed VIs[v] were more correlated 
with the potato AGB than VIs[plot]. Thus, the VIs[v] were 
regarded as the SVs to predict the potato AGB.

Extraction of TVs in different bands and 
computational directions

Six bands of the multispectral images were used to calculate 
textures in three different directions [parallel (D//) and 
perpendicular (D⊥) to the ridge, and an angle of 45° (D∠) to the 
ridge]. The correlation in Figure 5 shows that HOM and SEC were 
negatively correlated with AGB, while VAR, CON, DIS, and ENT 
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A B C D E F G H I J K L M N O P Q R

FIGURE 3

The abundance images of different potato growth stages: (A–E) LL, SL, LS, SS at SP; (F–K) LL, SL, LS, SS, flower at FP; (L–R) LGL, SGL, YL, LS, SS, 
flower at TP.

FIGURE 4

Correlation between potato AGB and VIs.

were positively correlated with AGB. Furthermore, the correlation 
between VAR, ENT, SEC, and AGB was consistent in different 
directions, while the correlation between HOM, CON, DIS, and 
AGB was significantly different in three directions.

In terms of different bands, the B, RE2, and NIR-based 
textures had a high correlation with AGB. The textures of other 
bands showed instability in different directions. Therefore, the 
B-based textures in the D⊥direction with the highest correlation 
with AGB were referred to as TVs.

Extraction and validation of GVs

The UAV-based canopy heights were compared with the 
manually measured values (Figure 6A). The results showed 
that the heights acquired by UAV were highly correlated with 
the observed values (R2 = 0.9262, RMSE = 0.0404 m). In 
addition, the comparison of two methods of obtaining FVC 
(DPM and SVM) was performed (Figure  6B). It can 
be observed that the FVC obtained by these two methods has 
a good consistency (R2 = 0.9786 and RMSE = 0.0256). 
Therefore, we have reason to believe the accuracy of the FVC 
data extracted in this paper.

A B C

FIGURE 2

Field measured spectra of endmembers in different potato periods: (A) June 18; (B) July 17; (C) August 9.
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Acquisition of FDVs based on harmonic 
decomposition

To explain the harmonic decomposition process, the spectra 
of an arbitrary potato plot were selected as an example, and the 
harmonic decomposition parameters were calculated six times 
according to the formula of Ctsin(2πtj/n + φt). Figure 7 shows that 
the maximum amplitude appears in the sixth decomposition, and 
the amplitudes of the first five decompositions show little 
difference. Different amplitudes can represent high- and 
low-frequency information in the spectra.

The correlation between potato AGB and harmonic 
parameters of six decompositions is shown in Figure 8. The results 
indicated that except for the sixth decomposition, A and C 
obtained by the first five decompositions had a strong correlation 
with AGB. Also, the parameters of B obtained by six times of 

decomposition were strongly correlated with AGB. The correlation 
between φ and AGB obtained by all the decomposition times was 
weak. It concluded that low-frequency spectral information is 
more suitable for predicting potato AGB in multiple periods 
for FDVs.

RRelieff and RF for feature variables 
selection

In this paper, 39 variables of spectra were extracted. And 
three feature selection algorithms were used to calculate the 
importance of different parameters. Figure 9 shows the ranking 
results of feature importance values. The top 10 feature variables 
were exhibited in the dotted box. The results indicate that there 
are great differences among the top 10 important indices extracted 

A B C

FIGURE 5

Correlation between potato AGB and textures based on different bands and calculation directions: (A) D∥; (B) D⊥; (C) D∠.

A B

FIGURE 6

Verification of geometric parameters: (A) canopy height of potato; (B) canopy FVC of potato.
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FIGURE 7

Schematic diagram of different harmonic decomposition times.

FIGURE 8

Correlation between potato AGB and harmonic parameters of 
different decomposition times.

by the three methods, especially the RReliefF and RF-based 
methods. The importance of the variable calculated by RReliefF 
is based on the correlation with AGB. The higher the correlation, 
the greater the weight value. The top  10 important variables 
extracted by the two RF-based methods are very similar and 
parameters selected by RF-Gini are also highly correlated with 
AGB. However, the RF-OOB selected φ1 which is not highly 
correlated with AGB.

AGB estimation using different 
regression algorithms and 
multi-dimensional variables

The AGB prediction accuracy of calibration and validation 
datasets are shown in Table 2. It can be found that the accuracy 
without any feature variable selection is similar to that based on 
RReliefF and RF-Gini for the calibration dataset, but there is an 

obvious difference in the accuracy of the validation dataset. The 
accuracy of all parameters-based models (including PLSR and 
RFR) is much lower than that of the RReliefF and RF-Gini-based 
models, which shows that amount of parameters for forecasting is 
not the more the better, and the redundant variables will reduce 
the robustness of the models.

In terms of the feature selection method, the variables 
extracted by RF-OOB have the highest prediction accuracy of 
potato AGB (R2 = 0.90, RMSE = 71.68 g/m2, MAE = 51.27 g/m2, and 
nRMSE = 11.56% for the validation dataset). From the perspective 
of the regression algorithm, the RFR has more advantages than 
PLSR for all variable selection scenarios in this paper.

A comparison chart of measured versus estimated AGB values 
in the validation dataset is shown in Figure 10 (the dashed line 
indicates the 1:1 line). It can be seen that for all feature selection 
methods (including no selection), the PLSR algorithm tends to 
produce negative values at low values of AGB. Moreover, the None, 
RReliefF, and RF-Gini-based models are prone to underestimate at 
high AGB values, especially in the range of 500–700 g/m2. The 
RF-OOB-based models are a good solution to the problem of 
underestimation of high-value AGB (the regression line almost 
coincides with the 1:1 line). Hence, the RF-OOB-RFR model works 
best for the estimation of multi-period potato AGB using multi-
dimensional variables derived from multispectral imagery.

To measure the contribution of spectra and other variables to 
the potato AGB estimates, the variables of the four dimensions 
were combined into seven combinations. RF-OOB was then used 
to select the top ten most important parameters for modeling and 
validation (all variables would be selected if there were fewer than 
10 variables). As shown in Table  3, for the same regression 
algorithm, the accuracy of different combinations increases with 
the increasing dimensionality of the variables. For the same 
combination of variables, RFR models have higher precision 
compared to that of PLSR, except for SV + TV. This suggests that 
the selections of variables and regression algorithms are equally 
important for AGB prediction.

Discussion

Crop AGB is an essential indicator of crop growth as well as crop 
breeding and management, and is one of the key factors affecting 
crop yield and profitability (Zhao et  al., 2021). Potato has an 
irreplaceable role in ensuring food security, and the use of remote 
sensing technology to obtain potato AGB information can provide 
a basis for its yield estimation and provide decision-making 
information for farm production management and markets (Luo 
et al., 2020). The advent of remote sensing technology, especially 
UAV remote sensing, has made it possible to non-destructively and 
rapidly estimate crop AGB at the plot level (Osco et al., 2021).

Soil background or shadows can frequently affect the 
estimation of plant canopy parameters by radiation values (Wang 
et al., 2022). As shown in Figure 2, the spectral differences between 
components such as potato plants and background at different 
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growth periods of potato were quite pronounced, and the 
proportion of different components (Figure  3) also changed 
significantly as can be  seen by the abundance maps of each 
component. Therefore, spectral unmixing often results in good 
background removal when estimating crop parameters using 
spectral indices (Yang et  al., 2007; Wang et  al., 2022). The 
combination of VI and spectral unmixing results was often used 
to enhance the prediction of pure spectra (Zhou et al., 2018; Duan 

et al., 2019). In this paper, the product of VI and the abundance of 
vegetation was used to characterize the spectral information of 
potato, and the results showed that the correlation with AGB was 
significantly improved based on VI[plot] (Figure 4).

Moreover, the computational window scale has been shown 
no impact on the estimation of AGB when it comes to texture 
calculations (Li et al., 2020), but the choice involving specific 
orientation has been less reported. The results in Figure  5 

A

B

C

FIGURE 9

Variable importance ranking of different feature parameter selection methods: (A) RReliefF; (B) RF-Gini; (C) RF-OOB.

TABLE 2 Potato AGB prediction results based on different feature selection methods and regression algorithms.

Feature 
selection 
methods

Regression 
methods

Calibration Validation

R2 RMSE (g/m2) MAE (g/m2) nRMSE (%) R2 RMSE (g/m2) MAE (g/m2) nRMSE (%)

None PLSR 0.86 83.17 59.25 13.55 0.82 93.68 63.78 15.11

RFR 0.87 80.34 58.51 13.08 0.83 90.79 63.61 14.64

RReliefF PLSR 0.87 80.77 58.82 13.15 0.85 85.22 61.19 13.75

RFR 0.88 77.21 55.82 12.57 0.87 80.48 58.59 12.98

RF-Gini PLSR 0.85 85.32 61.25 13.90 0.84 88.30 62.23 14.24

RF 0.87 80.45 58.66 13.10 0.85 85.64 61.50 13.81

RF-OOB PLSR 0.89 73.54 53.85 11.98 0.88 77.15 56.37 12.44

RF 0.91 68.76 49.18 11.20 0.90 71.68 51.27 11.56
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FIGURE 10

Comparison of measured and predicted AGB using different feature selection and regression algorithms: (A) None-PLSR; (B) None-RFR; 
(C) RReliefF-PLSR; (D) RReliefF-RFR; (E) RF-Gini-PLSR; (F) RF-Gini-RFR; (G) RF-OOB-PLSR; (H) RF-OOB-RFR.

TABLE 3 Potato AGB prediction results based on different variable combinations and regression algorithms.

Variable 
combinations

Regression 
methods

Calibration Validation

R2 RMSE (g/m2) MAE (g/m2) nRMSE (%) R2 RMSE (g/m2) MAE (g/m2) nRMSE (%)

SV + TV PLSR 0.80 99.49 67.66 16.20 0.81 95.26 65.55 15.36

RFR 0.82 93.74 63.82 15.27 0.80 98.93 67.04 15.96

SV + GV PLSR 0.83 90.63 62.98 14.76 0.81 95.39 66.02 15.39

RFR 0.85 85.29 61.30 13.89 0.83 90.56 63.28 14.61

SV + FDV PLSR 0.82 93.87 64.02 15.29 0.81 96.33 66.89 15.54

RFR 0.85 85.28 61.20 13.89 0.83 89.25 62.88 14.40

SV + TV + GV PLSR 0.85 85.10 61.09 13.86 0.84 88.27 62.63 14.24

RFR 0.87 80.54 58.75 13.12 0.87 80.86 58.97 13.04

SV + TV + FDV PLSR 0.84 88.04 62.13 14.34 0.82 93.56 63.85 15.09

RFR 0.88 77.39 56.04 12.60 0.86 83.26 59.34 13.43

SV + GV + FDV PLSR 0.85 85.46 61.25 13.92 0.83 89.66 62.58 14.46

RFR 0.88 77.03 56.15 12.55 0.87 80.61 58.31 13.00

SV + TV + GV + FDV PLSR 0.89 73.54 53.85 11.98 0.88 77.15 56.37 12.44

RFR 0.91 68.76 49.18 11.20 0.90 71.68 51.27 11.56

demonstrated that among the six selected textures, VAR, ENT, 
and SEC are not affected by the computational direction, which 
is due to the fact that the computational equations of these three 
textures contain texture statistics reflecting the inside of the 
computational window, and a change in the computational 
direction does not cause a change in them, nor does it cause a 
change in the statistical values of all pixels within the window. In 
contrast, the calculation equations of HOM, CON, and DIS all 
contain information in different calculation directions, reflecting 

the texture statistics in the calculation direction within the 
window. Therefore, when there is an obvious texture pattern with 
direction in the image, a change in the calculation direction will 
have an obvious effect on these three textures. Potatoes are a 
planted-by-ridge crop, and their field morphology is directional, 
especially in the first and middle stages. Initially, there was a flat 
soil background in most of the canopy images, and seedlings only 
accounted for a small portion (Figure 3A), at which time the 
image homogeneity was high and heterogeneity was low. As the 
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plants grow, seedlings grow a large number of new leaves in all 
directions, and the proportion of soil background decreases and 
the proportion of disordered leaves increases in the images 
(Figure 3B), leading to a weakening of image homogeneity and 
an increase in heterogeneity. After flowering, as well as the 
appearance of yellow leaves, the complexity was further increased 
(Figure  3C). Therefore, during the growth of rice, the 
homogeneity of images kept weakening and heterogeneity kept 
increasing with the accumulation of biomass, leading to a 
negative correlation between textures reflecting homogeneity 
(HOM and SEC) and biomass, and positive correlation between 
textures reflecting heterogeneity (VAR, CON, DIS, and ENT) and 
biomass. And the trend of this correlation does not change with 
orientations. The correlations of three directions suggested that 
the texture perpendicular to ridges reflected the potato growth 
information best (Figure 5). This may be due to the fact that the 
texture parallel to the ridges gives more expression to the spatial 
relationship between the potato plants, while the texture 
perpendicular to the ridges characterizes the relationship 
between the plants and the background, which is more indicative 
of the growth of the vegetation. It also provides a reference for 
texture selection of other ridge crops.

In addition to spectra and textures, parameters such as height 
and FVC are frequently exploited to improve the accuracy of crop 
biomass and yield estimation (Ashapure et al., 2020; Xu et al., 
2022). In this study, the canopy height derived from DSM and 
DEM and FVC cross-validated by DPM and SVM (Figure 6) were 
obtained to participate in variable importance ranking and to 
improve the accuracy of AGB estimation. This is due to the fact 
that each of these parameters can characterize plant growth and 
development in different ways. For example, canopy height can 
provide stereoscopic information about the crop to compensate 
for the lack of canopy spectral information for estimating AGB (). 
LAI, which characterizes stereoscopic growth information of 
potato, was used to estimate yield and the results showed that its 
estimation was better than that of spectra (Luo et  al., 2020). 
Therefore, more variables that can characterize plant stereo 
information (e.g., parameters obtained by LiDAR) are worth 
exploring for estimating crop AGB and yield. FVC, which 
represents the lushness of plant growth, has good parameter 
estimation ability, especially before crop closure of the canopy 
(Wan et al., 2020). Moreover, harmonic parameters were shown to 
be effective in crop biophysical parameter inversion (Zhuo et al., 
2020; Jiang et al., 2021). However, the application of harmonic 
parameters in biomass estimation has been rarely reported. The 
results in Figures 7, 8 show that parameters highly correlated with 
the AGB could be  extracted from both high-frequency and 
low-frequency spectral information. After the parameters of four 
dimensions were extracted, feature parameter selection becomes 
a new challenge (Faris et al., 2018).

Feature selection is critical in crop yield prediction, parameter 
inversion, and data preprocessing strategy, and overly redundant 
variables can even lead to reduced model robustness and accuracy 
(Li et al., 2018a, 2020). Thus, in potato biomass estimation, direct 

prediction of variables with multiple dimensions is evident to 
be inappropriate and necessary for feature selection. The results 
based on the three feature parameter selection methods show that 
RReliefF mainly conducts variable sorting according to the 
correlation with the target parameter (de Oliveira et al., 2017), 
which will lead to the failure to remove redundant features 
effectively and reduce the robustness of the model. RF-Gini, while 
similar to RF-OOB, leaves out important parameters such as 
height. Height has been shown to perform a vital part in AGB and 
yield estimation (Li et al., 2020; Maimaitijiang et al., 2020; Wan 
et  al., 2020), which limits the accuracy of the model. The 
parameters selected by RF-OOB include not only highly correlated 
variables but also parameters such as height and φ1, although the 
correlation with AGB may not be high (Figure 9). This method 
mainly aims to reduce the error of the model.

The results of RF-OOB-RFR demonstrate that there is 
informational variability and complementarity between the 
parameters of different dimensions and that all these indices 
contribute to the estimation of AGB to different degrees. 
Additionally, RF-OOB algorithms are good at proposing indices 
with complementary information from parameters of different 
dimensions for the accurate estimation of AGB (Figure 10). This 
study can contribute to a scientific basis for timely and lossless 
monitoring of AGB in potatoes and other crops.

Conclusion

In this study, four dimensions of variables (SV, TV, GV, and 
FDV, see Table  4) and three methods of feature parameter 
selection (RRreliefF, RF-Gini, and RF-OOB) were used to analyze 
and compare the estimation accuracy of potato AGB. When 
extracting parameters in different dimensions from the UAV 
images, the LM-FCL-based SMA method using dynamic 
endmembers was found to be effective in removing the influence 
of background, thus improving the correlation between VIs and 
AGB. In addition, the B-based textures in the D⊥ direction could 
show the ridge distribution of potatoes well. Variables of different 
dimensions were subsequently exploited for PLSR and RFR 
modeling and validation. It was found that the accuracy of the 
models continuously improved with the addition of variables of 
different dimensions, but this happened with the feature variable 
selection. Without any variable selection, the robustness of the 
model was very poor. Furthermore, the PLSR was prone to 
produce negative values at low values of AGB, while the RFR 
models could accurately predict AGB, especially when using 
four-dimensional variables and RF-OOB, and the 
underestimation problem for high values of AGB was well solved. 
According to the above results, the RFR model combined with 
four-dimensional variables and RF-OOB proposed in this paper 
is promising for accurate prediction of AGB and provides 
technical and theoretical support for rapid extraction of remote 
sensing phenotypic information of crops and high-throughput 
screening of plant phenotypes.

https://doi.org/10.3389/fpls.2022.948249
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2022.948249

Frontiers in Plant Science 12 frontiersin.org

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

SL wrote the manuscript. YH and JL provided the study ideas 
and completed the experimental design. WJ provided suggestions 
and edited the manuscript. SZ, FX, ZH, and JS measured the 
experimental data. JY and XW conducted the UAV flights. XM 
and ZL provided comments on the revision of the manuscript. 
All authors contributed to the article and approved the 
submitted version.

Funding

This work was supported by the National Natural Science 
Foundation of China‘s “Study on temporally and spatially precise 
assessment on potato cultivation suitability based on dynamic 
process-oriented mode” (41771562) and “Innovation Project” of 
the Chinese Academy of Agricultural Sciences (2021–
2025, IARRP).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Acikgoz, H. (2022). A novel approach based on integration of convolutional 

neural networks and deep feature selection for short-term solar radiation 
forecasting. Appl. Energy 305:117912. doi: 10.1016/j.apenergy.2021.117912

Ashapure, A., Jung, J. H., Chang, A. J., Oh, S., Yeom, J., Maeda, M., et al. (2020). 
Developing a machine learning based cotton yield estimation framework using 
multi-temporal UAS data. ISPRS J. Photogramm. Remote Sens. 169, 180–194. doi: 
10.1016/j.isprsjprs.2020.09.015

Boulesteix, A. L., Bender, A., Bermejo, J. L., and Strobl, C. (2012). Random forest 
Gini importance favours SNPs with large minor allele frequency: impact, sources 
and recommendations. Brief. Bioinform. 13, 292–304. doi: 10.1093/bib/bbr053

Chang, C. I. (2017). Adaptive linear spectral mixture analysis. IEEE Trans. Geosci. 
Remote Sens. 55, 1240–1253. doi: 10.1109/tgrs.2016.2620494

Dash, J., and Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. Int. J. 
Remote Sens. 25, 5403–5413. doi: 10.1080/0143116042000274015

de Oliveira, M. P. G., Bocca, F. F., and Rodrigues, L. H. A. (2017). From 
spreadsheets to sugar content modeling: A data mining approach. Comput. Electron. 
Agric. 132, 14–20. doi: 10.1016/j.compag.2016.11.012

Deng, L., Mao, Z. H., Li, X. J., Hu, Z. W., Duan, F. Z., and Yan, Y. N. (2018). UAV-
based multispectral remote sensing for precision agriculture: A comparison between 

different cameras. ISPRS J. Photogramm. Remote Sens. 146, 124–136. doi: 10.1016/j.
isprsjprs.2018.09.008

Dong, J., Lu, H. B., Wang, Y. W., Ye, T., and Yuan, W. P. (2020). Estimating winter 
wheat yield based on a light use efficiency model and wheat variety data. ISPRS J. 
Photogramm. Remote Sens. 160, 18–32. doi: 10.1016/j.isprsjprs.2019.12.005

Duan, B., Fang, S. H., Zhu, R. S., Wu, X. T., Wang, S. Q., Gong, Y., et al. (2019). 
Remote estimation of rice yield with unmanned aerial vehicle (UAV) data  
and spectral mixture analysis. Front. Plant Sci. 10:14. doi: 10.3389/fpls. 
2019.00204

Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Al-Zoubi, A. M., Mirjalili, S., 
et al. (2018). An efficient binary Salp swarm algorithm with crossover scheme for 
feature selection problems. Knowledge Based Syst. 154, 43–67. doi: 10.1016/j.
knosys.2018.05.009

Gitelson, A. A., Kaufman, Y. J., Stark, R., and Rundquist, D. (2002). Novel 
algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 80, 
76–87. doi: 10.1016/s0034-4257(01)00289-9

Gitelson, A. A., and Merzlyak, M. N. (1997). Remote estimation of chlorophyll 
content in higher plant leaves. Int. J. Remote Sens. 18, 2691–2697. doi: 
10.1080/014311697217558

TABLE 4 The short glossary of terms in this study.

Full spelling 
words

Abbreviated 
glossary

Full spelling 
words

Abbreviated 
glossary

Aboveground biomass AGB Variance VAR

Coefficient of 

determination

R2 Homogeneity HOM

Root mean square error RMSE Contrast CON

Mean absolute error MAE Dissimilarity DIS

Normalized RMSE nRMSE Entropy ENT

Unmanned aerial 

vehicle

UAV Second moment SEC

Spectral variable SV Dimidiate pixel 

model

DPM

Vegetation indices VIs Out-of-bag OOB

Texture variable TV Decision tree DT

Gray level co-

occurrence matrix

GLCM Light leaf LL

Geometric variable GV Shaded leaf SL

Fractional vegetation 

cover

FVC Light soil LS

Frequency-domain 

variable

FDV Shaded soil SS

Random forest RF Light green leaf LGL

Flowering period FP Shaded green leaf SGL

Tuber period TP Yellow leaf YL

Spectral mixture 

analysis

SMA Partial least 

squares regression

PLSR

Linear model of fully 

constrained least-

square

LM-FCL Random forest 

regression

RFR

https://doi.org/10.3389/fpls.2022.948249
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://doi.org/10.1016/j.apenergy.2021.117912
https://doi.org/10.1016/j.isprsjprs.2020.09.015
https://doi.org/10.1093/bib/bbr053
https://doi.org/10.1109/tgrs.2016.2620494
https://doi.org/10.1080/0143116042000274015
https://doi.org/10.1016/j.compag.2016.11.012
https://doi.org/10.1016/j.isprsjprs.2018.09.008
https://doi.org/10.1016/j.isprsjprs.2018.09.008
https://doi.org/10.1016/j.isprsjprs.2019.12.005
https://doi.org/10.3389/fpls.2019.00204
https://doi.org/10.3389/fpls.2019.00204
https://doi.org/10.1016/j.knosys.2018.05.009
https://doi.org/10.1016/j.knosys.2018.05.009
https://doi.org/10.1016/s0034-4257(01)00289-9
https://doi.org/10.1080/014311697217558


Luo et al. 10.3389/fpls.2022.948249

Frontiers in Plant Science 13 frontiersin.org

Han, L., Yang, G. J., Dai, H. Y., Xu, B., Yang, H., Feng, H. K., et al. (2019). Modeling 
maize above-ground biomass based on machine learning approaches using UAV 
remote-sensing data. Plant Methods 15:10. doi: 10.1186/s13007-019-0394-z

Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural features for 
image classification. IEEE Trans. Syst. Man Cybern. SMC3 SMC-3, 610–621. doi: 
10.1109/tsmc.1973.4309314

Janitza, S., Celik, E., and Boulesteix, A. L. (2018). A computationally fast variable 
importance test for random forests for high-dimensional data. Adv. Data Anal. 
Classif. 12, 885–915. doi: 10.1007/s11634-016-0276-4

Jiang, Q., Fang, S. H., Peng, Y., Gong, Y., Zhu, R. S., Wu, X. T., et al. (2019). UAV-
based biomass estimation for rice-combining spectral, TIN-based structural and 
meteorological features. Remote Sens. (Basel) 11:19. doi: 10.3390/rs11070890

Jiang, Z. Y., Huete, A. R., Didan, K., and Miura, T. (2008). Development of a two-
band enhanced vegetation index without a blue band. Remote Sens. Environ. 112, 
3833–3845. doi: 10.1016/j.rse.2008.06.006

Jiang, X. Q., Luo, S. J., Fang, S. H., Cai, B. W., Xiong, Q., Wang, Y. Y., et al. (2021). 
Remotely sensed estimation of total iron content in soil with harmonic analysis and 
BP neural network. Plant Methods 17:116. doi: 10.1186/s13007-021-00812-8

Li, J. D., Cheng, K. W., Wang, S. H., Morstatter, F., Trevino, R. P., Tang, J. L., et al. 
(2018a). Feature selection: a data perspective. ACM Comput. Surv. 50, 1–45. doi: 
10.1145/3136625

Li, Q., Li, H. B., Zhang, L., Zhang, S. Q., and Chen, Y. L. (2018b). Mulching 
improves yield and water-use efficiency of potato cropping in China: a meta-
analysis. Field Crop Res 221, 50–60. doi: 10.1016/j.fcr.2018.02.017

Li, B., Xu, X. M., Zhang, L., Han, J. W., Bian, C. S., Li, G. C., et al. (2020). Above-
ground biomass estimation and yield prediction in potato by using UAV-based RGB 
and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 162, 161–172. doi: 
10.1016/j.isprsjprs.2020.02.013

Liao, Z. M., He, B. B., and Quan, X. W. (2020). Potential of texture from SAR 
tomographic images for forest aboveground biomass estimation. Int. J. Appl. Earth 
Obs. Geoinf. 88:102049. doi: 10.1016/j.jag.2020.102049

Luo, S., He, Y. B., Li, Q., Jiao, W. H., Zhu, Y. Q., and Zhao, X. H. (2020). 
Nondestructive estimation of potato yield using relative variables derived from 
multi-period LAI and hyperspectral data based on weighted growth stage. Plant 
Methods 16:150. doi: 10.1186/s13007-020-00693-3

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., and Fritschi, F. B. 
(2020). Soybean yield prediction from UAV using multimodal data fusion and deep 
learning. Remote Sens. Environ. 237:111599. doi: 10.1016/j.rse.2019.111599

Osco, L. P., Marcato, J., Ramos, A. P. M., Jorge, L. A. D., Fatholahi, S. N., Silva, J. D., 
et al. (2021). A review on deep learning in UAV remote sensing. Int. J. Appl. Earth 
Obs. Geoinf. 102:102456. doi: 10.1016/j.jag.2021.102456

Robnik-Sikonja, M., and Kononenko, I. (2003). Theoretical and empirical analysis 
of relief F and RReliefF. Mach. Learn. 53, 23–69. doi: 10.1023/a:1025667309714

Rondeaux, G., Steven, M., and Baret, F. (1996). Optimization of soil-adjusted vegetation 
indices. Remote Sens. Environ. 55, 95–107. doi: 10.1016/0034-4257(95)00186-7

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring 
vegetation systems in the great plains with ERTS. NASA Spec. Publ. 351:309.

Wan, L., Cen, H. Y., Zhu, J. P., Zhang, J. F., Zhu, Y. M., Sun, D. W., et al. (2020). 
Grain yield prediction of rice using multi-temporal UAV-based RGB and 
multispectral images and model transfer - a case study of small farmlands in the 
south of China. Agric. For. Meteorol. 291:108096. doi: 10.1016/j.
agrformet.2020.108096

Wang, W., Zheng, H., Wu, Y., Yao, X., Zhu, Y., Cao, W., et al. (2022). An assessment 
of background removal approaches for improved estimation of rice leaf nitrogen 
concentration with unmanned aerial vehicle multispectral imagery at various 
observation times. Field Crop Res 283:108543. doi: 10.1016/j.fcr.2022.108543

Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M., 
et al. (2017). High-throughput phenotyping of sorghum plant height using an 
unmanned aerial vehicle and its application to genomic prediction modeling. Front. 
Plant Sci. 8:11. doi: 10.3389/fpls.2017.00421

Xu, L., Zhou, L. F., Meng, R., Zhao, F., Lv, Z., Xu, B. Y., et al. (2022). An improved 
approach to estimate ratoon rice aboveground biomass by integrating UAV-based 
spectral, textural and structural features. Precis. Agric. 23, 1276–1301. doi: 10.1007/
s11119-022-09884-5

Yan, K., Gao, S., Chi, H. J., Qi, J. B., Song, W. J., Tong, Y. Y., et al. (2022). Evaluation 
of the vegetation-index-based dimidiate pixel model for fractional vegetation cover 
estimation. IEEE Trans. Geosci. Remote Sens. 60, 1–14. doi: 10.1109/
tgrs.2020.3048493

Yang, C. G., Everitt, J. H., and Bradford, J. M. (2007). Airborne hyperspectral 
imagery and linear spectral unmixing for mapping variation in crop yield. Precis. 
Agric. 8, 279–296. doi: 10.1007/s11119-007-9045-x

Yang, G. J., Liu, J. G., Zhao, C. J., Li, Z. H., Huang, Y. B., Yu, H. Y., et al. (2017). 
Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current 
status and perspectives. Front. Plant Sci. 8:26. doi: 10.3389/fpls.2017.01111

Yang, B. H., Wang, M. X., Sha, Z. X., Wang, B., Chen, J. L., Yao, X., et al. (2019). 
Evaluation of aboveground nitrogen content of winter wheat using digital imagery 
of unmanned aerial vehicles. Sensors 19:18. doi: 10.3390/s19204416

Zhao, L., Zhou, W., Peng, Y. P., Hu, Y. M., Ma, T., Xie, Y. K., et al. (2021). A new 
AG-AGB estimation model based on MODIS and SRTM data in Qinghai Province, 
China. Ecol. Indic. 133:108378. doi: 10.1016/j.ecolind.2021.108378

Zheng, H. B., Cheng, T., Zhou, M., Li, D., Yao, X., Tian, Y. C., et al. (2019). 
Improved estimation of rice aboveground biomass combining textural and spectral 
analysis of UAV imagery. Precis. Agric. 20, 611–629. doi: 10.1007/s11119-018-9600-7

Zhou, K., Cheng, T., Zhu, Y., Cao, W. X., Ustin, S. L., Zheng, H. B., et al. (2018). 
Assessing the impact of spatial resolution on the estimation of leaf nitrogen 
concentration over the full season of paddy rice using near-surface imaging 
spectroscopy data. Front. Plant Sci. 9:18. doi: 10.3389/fpls.2018.00964

Zhuo, W., Shi, R. H., Zhang, C., Gao, W., Liu, P. D., Wu, N., et al. (2020). A novel 
method for leaf chlorophyll retrieval based on harmonic analysis: a case study on 
Spartina alterniflora. Earth Sci Inform 13, 747–762. doi: 10.1007/ 
s12145-020-00465-6

https://doi.org/10.3389/fpls.2022.948249
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://doi.org/10.1186/s13007-019-0394-z
https://doi.org/10.1109/tsmc.1973.4309314
https://doi.org/10.1007/s11634-016-0276-4
https://doi.org/10.3390/rs11070890
https://doi.org/10.1016/j.rse.2008.06.006
https://doi.org/10.1186/s13007-021-00812-8
https://doi.org/10.1145/3136625
https://doi.org/10.1016/j.fcr.2018.02.017
https://doi.org/10.1016/j.isprsjprs.2020.02.013
https://doi.org/10.1016/j.jag.2020.102049
https://doi.org/10.1186/s13007-020-00693-3
https://doi.org/10.1016/j.rse.2019.111599
https://doi.org/10.1016/j.jag.2021.102456
https://doi.org/10.1023/a:1025667309714
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/j.agrformet.2020.108096
https://doi.org/10.1016/j.agrformet.2020.108096
https://doi.org/10.1016/j.fcr.2022.108543
https://doi.org/10.3389/fpls.2017.00421
https://doi.org/10.1007/s11119-022-09884-5
https://doi.org/10.1007/s11119-022-09884-5
https://doi.org/10.1109/tgrs.2020.3048493
https://doi.org/10.1109/tgrs.2020.3048493
https://doi.org/10.1007/s11119-007-9045-x
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.3390/s19204416
https://doi.org/10.1016/j.ecolind.2021.108378
https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.3389/fpls.2018.00964
https://doi.org/10.1007/s12145-020-00465-6
https://doi.org/10.1007/s12145-020-00465-6

	Multi-dimensional variables and feature parameter selection for aboveground biomass estimation of potato based on UAV multispectral imagery
	Introduction
	Materials and methods
	Experimental design
	UAV data acquisition
	Field data measurement
	Multi-dimensional parameters extraction based on UAV images
	Feature parameter selection methods
	RReliefF algorithm
	RF algorithm based on Gini index and error of out-of-bag
	Regression algorithms and accuracy evaluation

	Results
	Acquisition of SVs based on the SMA of dynamic endmembers
	Extraction of TVs in different bands and computational directions
	Extraction and validation of GVs
	Acquisition of FDVs based on harmonic decomposition
	RRelieff and RF for feature variables selection
	AGB estimation using different regression algorithms and multi-dimensional variables

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	References

