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Background: For brain-computer interface (BCI) communication,

electroencephalography provides a preferable choice due to its high

temporal resolution and portability over other neural recording techniques.

However, current BCIs are unable to su�ciently use the information from time

and frequency domains simultaneously. Thus, we proposed a novel hybrid

time-frequency paradigm to investigate better ways of using the time and

frequency information.

Method: We adopt multiple omitted stimulus potential (OSP) and steady-state

motion visual evoked potential (SSMVEP) to design the hybrid paradigm. A

series of pre-experiments were undertaken to study factors that would

influence the feasibility of the hybrid paradigm and the interaction

between multiple features. After that, a novel Multiple Time-Frequencies

Sequential Coding (MTFSC) strategy was introduced and explored

in experiments.

Results: Omissions with multiple short and long durations could e�ectively

elicit time and frequency features, including the multi-OSP, ERP, and

SSVEP in this hybrid paradigm. The MTFSC was feasible and e�cient.

The preliminary online analysis showed that the accuracy and the ITR

of the nine-target stimulator over thirteen subjects were 89.04% and

36.37 bits/min.

Significance: This study first combined the SSMVEP and multi-OSP in

a hybrid paradigm to produce robust and abundant time features for

coding BCI. Meanwhile, the MTFSC proved feasible and showed great

potential in improving performance, such as expanding the number of BCI

targets by better using time information in specific stimulated frequencies.

This study holds promise for designing better BCI systems with a novel

coding method.

KEYWORDS

hybrid brain-computer interface, steady-state visual evoked potentials, omitted

stimulus potential, multiple time-frequencies sequential coding, event-related

potential (ERP)
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Introduction

Compared with conventional assistive communication

technologies, brain-computer interface (BCI) establishes a

new pathway between the human brain and the external

environment, thereby assisting people with severe motor

disabilities to control external devices or re-establish

communication (Wolpaw et al., 2002; Chaudhary et al.,

2016). Among various neural recording techniques such as

magnetoencephalogram (MEG) and electrocorticography

(ECoG), electroencephalography (EEG) has attracted the most

attention due to its advantages in high temporal resolution,

portability, and low cost. The earliest EEG-BCI applications

were time-modulated visual evoked potential (VEP) (t-VEP)-

based BCIs represented by the event-related potential (ERP)

like P300. The transient time-locked response to visual stimulus

used to be extracted as the control command (Farwell and

Donchin, 1988; Donchin et al., 2000). However, further

development of traditional t-VEP-based BCI has been limited

by its deficits, such as the “repetition blindness” phenomenon

and weak features that could be influenced by mental load or

be easily contaminated by background noise (Squires et al.,

1977; Salvaris and Sepulveda, 2009; Yin et al., 2013a). On the

other hand, frequency-modulated VEP (f-VEP)-based BCIs

represented by steady-state visual evoked potential (SSVEP)

(which have been on focused more), provide a more robust

response than t-VEP-based BCIs (Bin et al., 2009a; De Neeling

and Van Hulle, 2019). However, most f-VEP studies adopted the

frame-based “on/off” flickering stimulation method, in which

only frequencies that are the aliquot number of the refresh rate

could be used for coding (Yin et al., 2013b, 2015; Allison et al.,

2014; Combaz and Van Hulle, 2015; Wang et al., 2015; Katyal

and Singla, 2020). Subsequent studies proposed frequency-

approximation approaches to overcome this problem, in which

adopting sampled sinusoidal stimulation to create frequencies

approximated to the ideal stimulation frequency (Wang and

Jung, 2010; Xie et al., 2012; Chen et al., 2014a). These sampled

visual presentations could be the time of the flickering frame

or additional information, such as the phase of luminance or

the motion of the stimulation targets. However, because of the

limited range of frequencies that could evoke detectable SSVEP

and the influence of harmonic components, the number of

available stimulation frequencies is still lacking (Herrmann,

2001; Wang et al., 2006). Thus, BCIs purely based on f-VEP or

t-VEP do not support widespread practical usage (Squires et al.,

1977; Wang et al., 2006; Salvaris and Sepulveda, 2009; Chen

et al., 2015; Singla and Jatana, 2017).

Continued exploration of the coding strategy is essential

for the development of the BCI communication system. This

is similar to the progress in mobile communication, in which

hybrid coding methods like the Orthogonal Frequency-Division

Multiple Access replaced the non-hybrid coding method using

single time or frequency information such as the Time Division

Multiple Address (TDMA) and the Frequency DivisionMultiple

Access (FDMA) (Chen et al., 2018). Parallel endeavors also

happened in VEP-based BCI field. Recently, hybrid BCI coding

methods such as frequency-phase modulation and multi-

frequency coding have shown great potential or outstanding

performance compared with that based on f-VEP or t-VEP

(Mukesh et al., 2005; Jia et al., 2010; Edlinger and Guger, 2012;

Zhang et al., 2012; Hwang et al., 2013; Yin et al., 2013a,b,

2015; Allison et al., 2014; Chang et al., 2014, 2016; Chen et al.,

2014a, 2015, 2017, 2018; Fan et al., 2014; Combaz and Van

Hulle, 2015; Wang et al., 2015; Katyal and Singla, 2020; Xu

et al., 2020). The time-frequency mixing modulation method is

another one among these novel methods, in which the frequency

and time information is implemented into the stimuli together.

However, this method has received relatively less attention in

recent years despite its importance and potential in coding

information from twomajor domains (time and frequency) than

other hybrid methods.

On the one hand, some related research adopted BCIs called

the sequential BCIs, in opposition to the simultaneous BCIs

(Pfurtscheller et al., 2010). In sequential methods, time and

frequency information were simply added together with the cost

of stimulus duration, while the information for communication

per unit time did not increase (Edlinger and Guger, 2012;

Fan et al., 2014). On the other hand, although some further

research adopted simultaneous BCIs to elicit P300 and SSVEP

simultaneously, they did not show much improvement (Chen

et al., 2014a, 2015; Chang et al., 2016). These research studies

focused on the combination of P300 and SSVEP, but their

respective defects remain unresolved (Squires et al., 1977;

Salvaris and Sepulveda, 2009; Yin et al., 2013a,b, 2015; Allison

et al., 2014; Combaz and Van Hulle, 2015; Wang et al., 2015;

Katyal and Singla, 2020). Besides, the P300 and SSVEP features

evoked in these studies were mainly realized by simultaneously

adopting two different visual presentation elements, such as

color, shape, size, and symbol (Yin et al., 2013b, 2015; Allison

et al., 2014; Wang et al., 2015; Chang et al., 2016). Thus, it could

also cause adverse effects on user performance and satisfaction

because of high mental workloads (Kerr, 1973; Schwent et al.,

1976; Pfurtscheller et al., 2010; Liu and Li, 2012; Choi et al.,

2017). Another defect is that these early research studies still use

the flickering method of SSVEP. In long-term use, continuous

light flicker and contrast changes may also cause disturbances or

visual fatigue (Sutter, 1992; Xie et al., 2012).

Recent research on the omitted stimulus potential (OSP, a

kind of ERP) or the SSVEP-blocking shows a simple method

to elicit ERP features on SSVEP stimuli. This method offers

benefits by omitting events or blocking SSVEP stimuli without

introducing extra visual presentation elements that may bring

mental workloads (Sutter, 1992; Xu et al., 2014; Wu et al.,

2016). Meanwhile, except for the SSVEP feature, an additional

SSVEP-blocking feature was found to supplement the P300

feature recognition (Wu et al., 2016). However, the frequency

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.859259
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Yue et al. 10.3389/fnhum.2022.859259

limitation on monitoring stimulators remains settled, except for

the research that adopts extra LED devices to present stimulators

(Sutter, 1992). Whether recent advances in breaking through

the frequency limitation of monitors, such as the frequency-

approximation approaches, could be used in this time-frequency

hybrid paradigm has not been explored (Wang and Jung, 2010;

Xie et al., 2012; Chen et al., 2014a). Besides, in these research

studies, further examination on how related detailed parameters

would influence the combination of ERP and SSVEP has not

been studied.

Thus, to investigate better ways of using the time and

frequency information, this paper proposed a novel hybrid

coding strategy to incorporate time modulated BCI with

frequency modulated BCI simultaneously. We explored a

hybrid BCI paradigm that combined multi-OSP and steady-

state motion visual evoked potential (SSMVEP), which can

simultaneously elicit multiple ERP and SSVEP features and

was unrestricted by the monitors’ refresh rate. A series of

pre-experiments were undertaken to study the feasibility of

combining single OSP andmulti OSPs with the SSMVEP stimuli,

and the interaction of multiple features under different factors.

Afterwards a novel Multiple Time-Frequencies Sequential

Coding (MTFSC) strategy was introduced to explore the

hybrid time and frequency coding method. We verified the

usability of this MSTFC method in experiment with a nine-

target stimulator. At last, the effectiveness, limitations, and how

this novel coding method would inspire other paradigms are

further discussed.

Methods

Subjects and data acquisition

Thirteen healthy subjects (seven males, six females, aged

22–26 years) were recruited for this research, after providing

informed written consent following a protocol approved by the

institutional review board of Xi’an Jiaotong University. All of

them had normal or corrected-to-normal vision. Subjects were

seated on a comfortable chair in a lit room, keeping a viewing

distance of approximately 70 cm to the monitor.

EEG signals were recorded with a 16-electrode EEG cap

using the g. USBamp system (g.tec Inc., Austria) at 1,200Hz

sampling rate according to the 10-10 international system.

Previous studies had shown that both SSVEP and ERP features

were usually acquired around the occipital and parietal regions

such as Pz, Oz and POz, while the ERP features could also

be found in frontal and central regions such as Fz, Cz, and

CPz (Krusienski et al., 2006; Bin et al., 2009b). Thus, similar to

other hybrid ERPs and SSVEP studies, we adopted the electrodes

around the above regions including O1, Oz, O2, PO7, PO3,

POz, PO4, PO8, P3, Pz, P4, CP3, CPz, CP4, Cz, and Fz for

our paradigm (Yin et al., 2013a, 2015; Wu et al., 2016). All

channels were referenced to a bilateral mastoid and grounded to

the frontal position (Fpz). EEG signals were band-pass filtered

at 0.01–100Hz to remove artifacts and notch filtered between

48 and 52Hz to remove power line interference in the online

filter stage.

Experiment design

The novel hybrid BCI paradigm was based on the

combination of SSMVEP and different OSPs, as illustrated in

Figure 1. The SSMVEP is a kind of special SSVEP evoked by

the motion-based frequency-approximation approach, in which

the “on/off” flickering frequency is replaced with the periodic

movement frequency to overcome the limitation of the refresh

rate (Volosyak et al., 2009; Xie et al., 2012; Chai et al., 2019;

Stawicki and Volosyak, 2020). In this study, the SSMVEP

stimuli were adopted from the previous Newton’s Rings method,

which elicited the SSVEP with the oscillating expansion and

contractions called motion reversal (Xie et al., 2012). The OSP

stimuli were introduced by pausing the periodic motion of

the Newton’s Rings. The 23 inches display used as the visual

stimulator had a 60Hz refresh rate and 1920 × 1080 screen

resolution. The simulation program was developed using the

Psychophysics Toolbox under MATLAB (MathWorks, Inc.).

There are three kinds of experiments included in this study:

SSMVEP+ single OSP, SSMVEP+ multi OSP, and MTFSC. The

first two experiments studied the feasibility and influence factors

of the novel paradigm to study how the single/multi OSPs would

interact with the SSMVEP, while the last experiment focused

on the feasibility of the MSTFC method in offline and online

BCI tasks. The exampled experimental sequence is illustrated

in Figure 1A, in which the number of runs and presentation of

stimulators may vary with different tasks. Each run contained

a 2s relax and 16 trials. Each trial started with a 2s display

of target prompt text, and the presentation of simulators, and

ended with a 1 s black screen. The subsections below provide

details of these experiments.

SSMVEP + single OSP

Considering that OSP had never been combined with

the motion-based SSVEP before, we studied three factors,

namely the omitting patterns, stimulation frequencies, and

the duration of omission, to investigate the feasibility and

the influence factors on this paradigm. The presentation

of stimulators contained one Newton’s ring stimulator with

different frequencies or omitting factors in the center of the

screen in each task. Experiments described in this subsection

contained four runs in each task.

a. Omitting Patterns.

Two tasks were included to study two types of omitting

patterns during the SSMVEP stimuli: blocking and

disappearing. In the blocking pattern, the SSMVEP stimuli
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FIGURE 1

The experimental sequence and the example of stimulus sequence. (A) The timing of the experimental sequence and behavioral task. For

di�erent experiments, the number of task runs, stimulators, or time duration may vary. (B) The bottom shows two simplified presentation

methods of the stimulus sequence in a waveform graph or rectangular bar. The solid black line (or the white rectangular bar) represents the

SSVEP stimuli, while the solid gray line (or the black rectangular bar) represents the omitting events. The top shows how this stimulus sequence

is realized by arranging the frames of Newton’s ring stimulator.

would block at the last phase frame during the omitting

event and continue the next phase frame after the omitting

event, while in the disappearance pattern, Newton’s Ring

would disappear during the omitting course and reappear

after the omitting event is finished.

- Frequency of SSMVEP stimuli: 15 Hz.

- Duration of omission: 0.1 s.

b. Stimulation Frequency.

Twenty-five tasks were included to study how stimulation

frequencies (from 6Hz to 30Hz with a step of 1Hz)

would influence the SSMVEP and the OSP features in this

novel paradigm.

- Omission pattern: disappearance pattern.

- Duration of omission: 0.1s.

c. Duration of Omitting.

Three tasks were designed to investigate the influences

of different omission durations on the SSMVEP+OSP

paradigm. Each task’s omission duration was 1, 0.1, and

1/15 s (namely, one cycle of the movement of the SSMVEP

stimuli). After that, an additional task with an omitting

duration of 0.6 s was designed to investigate the extra

potential features evoked by the reappearance of SSMVEP

stimuli in this paradigm.

- Frequency of SSMVEP stimuli: 15 Hz.

- Omission pattern: disappearance pattern.

SSMVEP + multi OSPs

a. Feasibility.

To investigate whether multiple OSPs could be evoked in

SSMVEP stimuli, the paradigm designed in this sub-experiment

included three short and one long omitting events, respectively,

with a duration of 0.1 and 0.4s. The omitting pattern used was
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the disappearance pattern. The whole stimulation lasted for 3 s,

with a stimulation frequency of 15 Hz.

b. Order of OSP.

Two tasks corresponding to two types of OSP orders were

designed to investigate whether the distinct orders would

influence the paradigm. The long omitting event was arranged

in the first or the second-order among all these four omitting

events. The whole stimulation lasted for 3 s, while each omitting

event started at 0.3 s after the preceding omission.

MTFSC

a. The MTFSC method.

Based on the features of the SSMVEP and multi-OSP, we

introduced the novel MTFSC strategy. In this method, omitting

events with different durations could be inserted into the

SSVEP stimuli to expand information from frequency domain

to time and frequency domain simply without introducing extra

visual elements. The following equations could generate the

motion phase of the stimulator with frequency fs and multi-

omitting events:

Stim(fs, t,oi,ri) =

{

S(t) = cos(2̟ fs∗
⌊t∗RR⌋
RR ), ift /∈ [oi,ri]

O(t) = Null, ift ∈ [oi,ri]

(1)

Where fs represents the stimulus frequency, RR represents the

refreshing rate of the monitor, t is the time of the stimuli, oi

indicates the start time of i-th omitting event, and ri indicates

the reappearance of the SSVEP stimuli after i-th omitting event.

When the t is not during the omitting events, the stimuli

are represented as S(t), a sampled sinusoidal stimulationmethod

for generating the motion phase of Newton’s ring stimulator.

When the t is during the omitting events, the stimuli omitted

as the disappearance pattern, represented as O(t), namely no

stimulator could be seen except the black screen. Figure 2A

shows an arrangement for omission sequences adopted in

this research.

b. The nine-target offline experiment.

A nine-target offline experiment explored the features of the

MTFSC method. There were nine tasks corresponding to nine

Newton’s Rings simulators. Each task contained four runs.

The presentation of stimulators is illustrated in Figure 2B. In

each trial, the target prompt was displayed for 0.5 s. After

that, the stimulators were presented for 3 s, followed by the

dark screen for 0.5 s relaxing, then repeated until sixteen trials

were completed.

c. The online experiment of 9 targets.

After that, the last online test paradigm evaluated the

performance of the MTFSC application. The experiment was

divided into a classifier training stage and an online test stage

for every subject.

In the training stage, subjects were asked to fixate on one

of the nine stimulators. Each task included two runs. The

stimulus sequence was the same as in the nine-target offline

experiment. There were ten runs in the online test stage. Each

run’s stimulus sequence was identical to the training stage,

except that the dark screen was replaced with result feedback

and the target prompt was displayed randomly in a trial. The

reason for introducing the random presentation was for better

reflection of the performance in practical application (in which

the commands were commonly uncertain or random) (Chen

et al., 2014a; Yin et al., 2014). The stimulators in the nine-

target online experiment were in the same arrangement as the

nine-target offline experiment.

Analysis and online performance

Data analysis

To analyze the feature of this hybrid BCI, all the EEG

data were processed offline in MATLAB. First, for pre-

processing, the signals were band-pass filtered from 1 to

30Hz (4th order zero-phase-shift Butterworth filter) to remove

baseline excursion and high-frequency noises for better analysis.

Previous studies have shown that evoked responses, such as

the transient visual and the steady-state potentials, are time

and phase-locked to the stimuli (David et al., 2006; Moratti

et al., 2007; Tsoneva et al., 2015). By averaging EEG data

to the identical stimuli, weak event-related potential signals

could be enhanced while the background noise would decrease

(Dawson, 1954). Thus, the primary time-domain information

is analyzed by averaging multiple raw signal trials in each

task. Then, the FFT and the topographies were analyzed to

study the SSVEP features and spatial distribution. Besides, the

empirical mode decomposition (EMD) method was adopted

to analyze the incorporation of the ERP and OSP features,

which brings more details by extracting the so-called intrinsic

mode components on the nonstationary and non-linear signal

(Flandrin et al., 2004; Chen et al., 2016). At last, the time-

frequency was analyzed to study the interplay features of the

MTFSC hybrid paradigm.

Template-based recognition

Canonical correlation analysis (CCA) is a classical

nonparametric multivariable analysis method. This method

investigates the inherent relation between two sets of variables

and found that the maximum individual template signals

outperformed the standard CCA (Hotelling, 1992; Mukesh

et al., 2005; Lin et al., 2006; Nakanishi et al., 2015) for

more extensive BCI applications. Besides, considering the
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FIGURE 2

The schematic diagram of the experimental stimulators. (A) A kind of arrangement for omitting events was adopted in this study with one long

omission (0.4 s) and three short omissions (0.1 s). OL−i represents the onset time of i-th long omission, while the OSj represents the onset time of

j-th short omission. The RLi (RSj) represents the end time of the i(j)-th long (short) omission, or the time of reappearance of the SSVEP stimuli

after the i(j)-th omission. (B) Distribution of nine stimulators on the screen. The stimulators were marked 1-9 from left to right and from top to

bottom. The stimulators in the same column oscillated with the same frequency, in which F1 was 5Hz, F2 was 17Hz, and F3 was 19Hz. Three

arrangements of omitting events di�er in rows. T1 for the first row, T2 for the second row, and T3 for the third row.

individual difference in EEG data and the potential mutual

interference between the time and frequency domains in

this paradigm, a template signal-based recognition would be

better for the complex features in this study. Considering that

the OSP and the SSVEP features are both time-locked, the

average template signal would contain sufficient features for

recognition. Thus, a template-based CCA was used for target

identification. This study used the Leave-One-Out Cross-

Validation (LOO-CV) method and the incremental learning

method to generate and update the target template, as illustrated

in Figure 3. Thus, the classification recognition model would

depend less on long-duration offline training and be good at

dynamic adaptation.

LOO-CV is a cross-validation method used to evaluate the

performance of a classifier by calculating classification accuracy

(Leamy andWard, 2010). N-1 samples were used as the training

set if there were N samples, while the remaining one was used as

the test set. It was repeatedN times, and the average classification

accuracy was calculated as the number of correct classifications

over N. Compared with other methods, LOO-CV can acquire

reliable results closest to the original sample distribution. We

employed the main idea of LOO-CV to generate a classifier in

this paper. The details were as follows.

(1) According to the prompt, subjects must fixate on one of

the M stimulus targets, each of which collects N groups of

EEG data. After pre-processing, data is stored by M classes,

and each class contains N groups.

(2) A data group is randomly taken from every class as

test data, and the remaining N-1 groups are taken as

training data.

(3) Training data are superimposed and averaged over N-1

times to obtain the waveform templates of each target, and

the templates of M targets are built into the classifier.

(4) CCA is performed between the test data of M targets

and templates. When the correlation between one group

of test data and one template is maximum, the test data is

identified as the same target stimulator as the template.

(5) If all M targets are recognized correctly, the classification

accuracy is 100%, and the templates of M targets are the

target template. Otherwise, templates are discarded.

(6) Repeat steps (2)–(5) until the iteration is 100 times.

The target template is superimposed and averaged to

obtain a better target classifier that stores all target

waveform templates.

An incremental learning method was used during the online

experiment to improve the classifier’s performance (Molina,

2007). In this study, incremental learning was mainly used to

improve the performance of the recognition algorithm. The

recognition algorithm used here was based on the template

trained from offline data with small sample size. To improve

the generalization capability of the system, we used the new

EEG data in the online cued experiments to update the template

trained from the offline data. This was realized by adding online

samples that were correctly recognized to the total template

in specific weight. Thus, the recognition algorithm would be

dynamically updated as the template was expanded with more

information. As shown below:

Template_Online =
Template_Base+ω ∗Online_NewData

1+ω

(2)
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FIGURE 3

The flow chart of the recognition algorithm is based on CCA and a complex template.

Assume that Template_Base is the classifier template

generated by LOO-CV, and Online_NewData is new data

generated during the online experiment. CCA was adopted

between them to identify the target. When the recognition

result was judged correct with a high confidence level,

Online_NewData would be added to the template based on the

rule of the above formula, where ω is the maximum correlation

coefficient. If otherwise, it was discarded.

Information transfer rate

The most common measure to evaluate the BCI paradigm

is information transfer rate (ITR), which is used to measure

the achievable information rate per unit of time. The

ITR (in bits per minute) calculation (Jia et al., 2010) is

given by

ITR =
60

T
[log2N + Plog2P + (1 − P)log2

1 − P

N − 1
] (3)

Where T is the decision transfer interval which includes

single detection time and the interval between detections, N is

the number of stimulators, and P is the mean accuracy averaged

over all stimulators.

Results

SSMVEP+ single OSP

Feasibility

As found in previous studies that combined OSP and

SSVEP-blocking with SSVEP (elicited by periodic flicker

stimuli), in this study too, the OSP feature was found when

FIGURE 4

Stimulus sequence of the stimulator and the typical occipital

EEG responses to the missing event on SSMVEP stimuli (64

trials). The moment at arrow “O” denotes the SSMVEP stimuli

omitting, while the arrow “R” denotes the stimuli’s reappearance.

Gray blocks presented the primary OSP features.

combined with SSMVEP (elicited by motion-based SSVEP

stimuli) (Xu et al., 2013, 2014; Wu et al., 2016). Figure 4 shows

the typical occipital EEG responses to the missing event on

SSMVEP stimuli, averaged by 64 trials. The primary OSP feature

(gray blocks) was found elicited after the omitting event (with

the duration of 0.1 s). A significant positive peak after about

300ms can be observed. A more detailed presentation of the

OSP feature could be found in signal reconstruction based

on EMD, as shown at the right of Supplementary Figure S1.

Besides, an ERP feature evoked by the appearance of SSMVEP

stimuli could also be found in the reconstruction signal (as

in the left of Supplementary Figure S1). Two positive peaks

are elicited in about 180 and 470ms after the SSMVEP

stimuli onset.
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FIGURE 5

(A) EEG responses to di�erent omitting durations. (B) The frequency analysis of the di�erent duration of omitting at Oz electrode, with a

stimulation frequency of 15Hz.

Influencing factors

a. Omitting patterns.

Both types of omitting patterns were available in eliciting

the OSP feature in this sub-experiment. As shown in

Supplementary Figure S2 (see Supporting Document), a positive

peak at about 300ms was found, similar to a previous study

(Wu et al., 2016). This positive peak was found in the central

region, such as Cz, for both the disappearance and blocking

omitting patterns. However, the positive peak elicited by the

disappearance omission pattern was more evident than that by

the blocking pattern in Poz and Pz. Thus, to elicit a more robust

OSP feature for recognition, other experiments in this study

adopted the omitting pattern of disappearance.

b. Stimulation frequency.

To analyze the influence of stimulus frequency, stimulus

frequencies from 6 to 30Hz were selected to study SSVEP and

ERP features. After being filtered between 1 and 30Hz, the

signal was superimposed and averaged over 64 trials to eliminate

irrelevant background signals. Response to different frequencies

was recorded by typical electrodes Pz and POz (see Supporting

Document: Supplementary Figure S3).

The OSP features could be found in all these frequencies at

about 200–500ms after the onset of omission. Similarly, the ERP

features evoked by the appearance of SSMVEP stimuli could also

be found in frequencies from 6 to 30Hz, after about 100–600ms.

The amplitude spectrum of SSVEP in different frequencies

was calculated by Fast Fourier Transform at POz (see Supporting

Document: Supplementary Figure S4). Most of these stimuli

frequencies showed clear peaks in FFT amplitude (15 out of

25). However, the amplitude of SSVEP features was higher

at frequencies of 7Hz, 10Hz, and 15–21Hz. Therefore, among

these frequencies, we chose 10, 15, 16, 17, 18, 19, and 20Hz to

avoid confusion between the harmonic frequency and nearby

frequency in the remaining experiments.

c. Duration of omitting.

The pre-processing data comparing the duration of omitting

were superimposed and averaged over 64 trials to acquire the

feature. All these durations of omission elicited OSP features,

with the same positive components at about 300ms, as in

Figure 5A. It shows that the primary OSP features were not

influenced by the duration of omission but only decided by

the onset of the OSP in the paradigm. However, features

in the frequency domain were affected by OSP when the

omission duration was 1 s, with 1 s blocking of SSVEP. A

longer duration of omission might negatively influence the

characteristic frequencies. As shown in Figure 5B, the SSVEP

frequency of 0.1 s omitting was much stronger than that of 1 s.

The omission with 1 s duration increased the time cost of

the stimuli while deteriorating the frequency feature. Thus, we

should avoid a too long omission duration. For the duration of

0.0667 s, it might be too short for catching the omission visually
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FIGURE 6

Stimulus sequence of the stimulator with 0.6 s duration, and the

averaged typical EEG responses (64 trials). The green shaded

area represents the OSP features, while gray shaded areas

represent the main ERP features.

during distraction. Therefore, the omission duration of 0.1 s is a

relatively superior setting for eliciting OSP features.

Considering that the onset of SSVEP stimulus can evoke ERP

features, we analyzed the data in the additional experiment of

0.6 s omission to find other possible ERP features. Interestingly,

except for the ERP feature that occurs after the onset of the

SSMVEP stimulus, a similar ERP feature can also be observed

after the reappearance of the SSMVEP stimulus. As illustrated in

Figure 6, a positive peak at about 180ms after the appearance

or reappearance of the SSMVEP stimuli can be found. They

both remain at the same latency, waveform, and amplitude.

Therefore, omitting events with different durations might be

used as additional information for coding with the ERP features.

Since OSP was prominent at about 300ms after the onset of

omission, long omission could be set as 0.4 s to elicit the ERP

features while avoiding the impact on ERP and shortening the

single stimulus cycle.

SSMVEP+ multi OSPs

Feasibility

Several segments with different omission durations were

inserted in the stimulus sequence to verify whether the

combination of multi OSPs and SSMVEP stimuli was workable.

The typical response of ERP and OSP was unaffected by each

other. All the features found in the single OSP experiments

could also be found in the multi-OSP experiment. As shown

in Figure 7, ERPs were elicited two times by the appearance

of a stimulus in the green-shaded area, and OSPs were elicited

four times by the absence of a stimulus in the gray-shaded area.

Different OSP and ERP features were evoked simultaneously

after combining different long and short omitting events.

FIGURE 7

Stimulus sequence and the typical EEG response of the stimuli

with four omitting events (64 trials). The Green shaded area

represents the primary ERP features, while gray shaded areas

represent the primary OSP features. The classical peaks of OSP

and ERP features are marked with square dots.

FIGURE 8

Comparison of two kinds of orders for the stimuli with multi

omission (64 trials). The Gray shaded area shows a similar

response after the long omitting duration in a di�erent order.

The prominent peaks of EPR and OSP are marked with square

dots.

Order of omitting events

Two different orders of omitting events can elicit the same

amount of two ERP and four OSP features (Figure 8). These

features had corresponding sequences as the order of OSP in

the paradigm and were not influenced by each other. Similar

to the single omission experiment, the primary feature of OSP

occurred before 300ms after the omitting event. The ERP

occurred before 500ms after the (re)appearance of SSMVEP

stimuli. Considering this, the arrangement of 300 ms’s interval

between omitting events was sufficient for the paradigm. Thus,

the order of omitting events could be used as additional

information to code the paradigm.
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MTFSC

Studies on the combination of SSMVEP and OSP inspired

the novel MTFSC method. To demonstrate how the features

were integrated and assess the preliminary performance of the

paradigm designed with the MTFSC method, a nine-target

paradigm generated by the MTFSC method was experimented

offline to analyze the ERP, OSP, and SSVEP features and their

interplay. Then, the nine-target paradigm was experimented

online to study its performance.

Features

a. ERP and OSP features.

Figure 9A shows the reconstructed ERP and OSP signal

by adopting the EMD analysis. After filtering out unrelated

SSVEP features and noise from the raw signal, the OSP and

ERP features were clear with typical peaks. Consistent with

Supplementary Figure S5 (see Supporting Document), four OSP

features were elicited at about 300ms after the omitting events.

Two features of ERP were found after the onset of Newton’s ring

at the beginning of the stimuli and the end of long omitting

events, with prominent peaks at about 180 and 480ms after the

events. Past research shows that multi-flash evoked in succession

may decrease the ERP performance (Jin et al., 2012). However,

this phenomenon was not found in our multi-OSP paradigm, in

which the peaks of OSP features were almost the same.

Scalp topographies were used to investigate the spatial

features of the brain’s response to the hybrid paradigm.

Series containing representative OSP and ERP features were

analyzed (Figures 9B–D). ERP can be found in 500ms after the

appearance or reappearance of SSMVEP, where there are two

positive peaks at 130–190 and 450–500ms. ERP feature of the

first peak was distributed in an occipital and parietal region

including Oz, O2, PO3, POz, PO4, and Pz, and the second peak

was distributed in the parietal and adjacent central and occipital

regions (Pz, CPz, and POz). OSP was found in 290–310ms after

the onset of stimulus absence and it seems stronger over frontal,

central, parietal, and partly occipital regions (Fz, Cz, Pz, P4, POz,

PO4, Oz, and O2). However, the feature at 200 and 320ms was

SSMVEP robustly observed in the occipital region.

b. SSVEP feature.

According to the EEGLAB toolbox in MATLAB, Figure 10

gives the power spectral density (PSD) and the corresponding

scalp topographies. The SSVEP feature frequencies are still

apparent with multi omitting events inserted in the paradigm,

as shown in Figure 10B. Different omission sequences did not

influence the prominent frequency peaks for the targets with

the same stimulation frequency (see Supporting Document:

Supplementary Figure S6). After the 6–30Hz band-pass filter

(4th order zero-phase-shift Butterworth filter), SSVEP features

were prominent in the visual cortical areas in the occipital and

adjacent parietal regions, especially at O1, Oz, O2, POz, PO4,

and PO8.

c. Time-Frequency feature.

Since this paradigm is a time-frequent joint coding method,

it was essential to analyze the features elicited in the time

and frequency domains simultaneously. According to the above

analysis, a time-frequency analysis based on the represented

electrode Poz (presented in Figure 11), as all related features

could be found on this site. Like previous studies, SSVEP

features were stable before the omitting event and blocking

during the event (Xu et al., 2013). However, when multi

omitting events were inserted, the SSVEP feature was broken

into discontinuous pieces, demonstrating that omission times

impacted the stimulus series. Although the frequency of the

stimuli was still recognizable in the frequency domain, as shown

in the FFT curve, the features of SSVEP were influenced by OSP

and ERP when considering the time domain.

The OSP and ERP features in the time-frequency domain

were nearly accordant with the above time-domain analysis,

with accordant latency. However, they were also influenced

by the low-frequency component of SSVEP features, in which

the boundary of SSVEP and ERP or OSP was not that clear.

This phenomenon was interesting. It might have been caused

when the SSVEP stimuli were broken into small fragments by

the insertion of multiple OSP, as the time was too short for

the SSVEP to evolve from transient to steady-state. This result

showed that, as multi-time and frequency information is used

together to code the paradigm, it is unavoidable that these

features would be influenced by each other.

Online performance

All the subjects finished the online task, and no unfavorable

conditions occurred during the task. The mean accuracy and

standard deviation for thirteen subjects were 89.04± 6.53%, and

the ITR (mean ± SD) for all subjects was 36.37 ± 5.34 bits/min.

The accuracy and ITR of all runs for each subject are displayed

in Figure 12. The average accuracy for all subjects increased as

the runs increased.

Discussion

The SSMVEP-OSP paradigm and
influencing factors

Previous studies have shown that OSP features could be

elicited by omission events in periodic flickering stimuli (Bullock

et al., 1994; McCullagh et al., 2009). In our study too, we
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FIGURE 9

The ERP and OSP feature in the time domain and spatial distribution (64 trials). (A) The signal reconstructed based on the EMD method. (B,C)

The representative scalp topographies of ERP features. (D) The representative scalp topographies of OSP feature. The corresponding time of the

scalp topographies is illustrated in (A).

FIGURE 10

The spatial distribution and power spectral density (PSD) spectrum of the SSVEP feature. (A) 16-electrode locations were selected in the

experiment. (B) PSD spectrum of 16 channels and its corresponding scalp topographies in di�erent stimulus frequencies.

FIGURE 11

Time-frequency analysis at POz for left: one-time omission and for right: four-times omission including one long omission and three short

omissions (64 trials). The stimulation frequency is 15Hz.

found this feature to be compatible with the SSMVEP paradigm,

showing the same OSP with a positive peak at about 300ms

after the omission (Bullock et al., 1994; McCullagh et al., 2009;

Xu et al., 2013, 2014; Wu et al., 2016). This result extends

the application range of OSP, without the limitation of the

monitor’s refresh rate in the periodic flickering stimuli. As
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FIGURE 12

The BCI performance of 13 subjects on the nine-target online experiment. The left figure shows the increasing trend of average accuracies

against the number of runs. The figure on the right shows the average performance of trials of each of the 13 subjects.

presented in Supplementary Figures S3, S4, OSP features seem

obvious in nearly all frequencies from 6 to 30Hz with the step

of 1Hz. In addition, the frequency feature in the spectrogram

remained recognizable among most of these frequencies in our

experiments. Thus, except for simultaneous eliciting of f-VEP

and t-VEP features, more frequency information was available

for coding targets in this paradigm compared to existing studies

(Xu et al., 2014; Wu et al., 2016). It should be noted that the OSP

might have the potential for more extensive application in other

prevailing stimuli such as SSVEP based on luminance, given its

similarity to SSMVEP (Chen et al., 2014a,b).

The duration of omission is another key factor in this

hybrid paradigm. Only one existing study explored the influence

of omission duration. Wu et al. (2016) concluded that the

omission duration of minimum value (1/Stimulus Frequency)

would be better, after briefly comparing it with the duration

of 0.1 s. However, after comparing multiple duration, we found

that too short or too long durations were both limited. A

too short duration might be easily ignored visually and cause

a less prominent OSP feature, as shown in Figure 5, while

a too long duration might weaken the SSVEP feature and

make the duration of the whole stimuli longer. Thus, in

our study, we choose a short duration of 0.1s for trade-

offs. It is worth noting that the duration of omission would

reduce the SSVEP response, as shown in Figures 5, 11.

However, this could be resolved by adopting omission with

appropriate duration and recognizing both t-VEP and f-

VEP features.

When comparing short and long durations of omission, we

found an interesting phenomenon that an extra ERP feature

was elicited after the reappearance of SSMVEP stimuli, when

the omission duration was longer than 400ms. As far as we

know, none of the previous studies have explored how the

SSVEP is influenced by preceding omission events in the VEP-

BCI paradigm. We surmised that the brain’s dynamic response

resulted in this phenomenon. This ERP feature was almost the

same as the ERP after the SSVEP onset (with the same positive

peak at about 180ms and a similar waveform), consistent with

the dynamic response of SSVEP in the previous study (Ferrari

et al., 2010). One explanation is that the OSP and ERP interplay

with each other (Xu et al., 2016a). In past research, multi-ERP

events in succession lead to epoch “overlaps” for P300 features

(Martens et al., 2009). While the OSP feature lasts for more

than 300ms, the following ERP may be negatively influenced

by similar “overlaps” when OSP and the ERP event are close to

100ms. Another possible explanation is that, when the omission

duration is long, the brain may have enough time to prepare for

the subsequent ERP events, similar to the “repetition blindness”

effect in the P300 response (Kanwisher, 1987; Salvaris and

Sepulveda, 2009).

Combining multi OSPs to evoke multiple t-VEP features in

the SSVEP BCI paradigm has not been studied thus far. We

verified the feasibility of this method in our study. Moreover,

we found that OSPs were not influenced by the interval of

events, as the other ERPs (like P300 in oddball) were. In

our study of the multi omission paradigm, the peaks of OSP

features were not attenuated when arranged with an interval

of 400ms (Figures 7, 9). Previous studies have shown that the

evoked P300 response would be attenuated when two identical

targets were presented in a stream of non-targets at intervals of

<500ms influenced by the “repetition blindness” phenomenon

(Kanwisher, 1987; Salvaris and Sepulveda, 2009; Jin et al., 2011).

However, the ERP with background SSVEP was less influenced

by this phenomenon. Previous studies have shown that the ERP

varies with different background SSVEP, which might be caused

by the non-linear phase resetting of neural oscillations (Xu

et al., 2014, 2016a,b). Similarly, in our study, the Transient-State

Response (TSR, namely ERP here) was reset faster by the Steady-

State Response (SSR, namely SSVEP here), to allow shorter

intervals for an intact ERP response in the stimuli events that
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followed. However, further studies are needed to understand

this finding.

The disappearance pattern of omissions showed a higher

amplitude of OSP compared with the blocking pattern. This

finding is similar to a previous study, in which the two patterns

were missing white and missing black under the black-white

flickering SSVEP paradigm (Wu et al., 2016). It might be

explained that, as a P300-like ERP, the OSP would also be

modulated by both stimulus significance and novelty (Bullock

et al., 1994; Chen et al., 2014b). Compared with the OSP

response evoked by the SSVEP stimuli omission in the blocking

pattern, an extra ERP evoked by the concurrent disappearing

event would be superimposed. Thus, the response reinforced

by the disappearing pattern brought more novel and significant

visual perception.

The coding method

The MTFSC is a novel time-frequency coding method

proposed in this research that could elicit abundant features,

including SSVEP, OSP, ERP, and timing and permutation of

SSVEP-OSPs. As a result, this method can use more information

from time and frequency domains simultaneously compared to

other frequently used VEP coding methods. Figure 13 illustrates

the comparison between these VEP-based BCIs from the

perspective of the coding method design.

Unlike adopting different visual elements such as color and

symbol to elicit ERP or SSVEP in the early studies about the

time-frequency coding method, our study adopts a visually

simple method to elicit multiple time and frequency features

only by SSVEP stimuli with omissions (Yin et al., 2013b, 2015;

Allison et al., 2014; Wang et al., 2015; Chang et al., 2016).

Xu et al. proposed a time-frequency coding strategy in which

the interruption of the flicker was similar to the omission in

our research (Xu et al., 2014). However, only one omission

with a duration of constant 200ms was used in their method.

Besides, they used an extra LED device to provide stimulation

frequency, which was not convenient to use on the computer.

Using sequential coding methods for time-frequency paradigms

has also been studied in previous research (Zhang et al., 2012;

Kimura et al., 2013; Dehzangi et al., 2014). However, only

frequency sequences (sequence with multi-frequency) were used

in their research. The information per unit stimulation time

was limited because each epoch only offered one frequency

information, while time information was not used. To use the

time information in SSVEP stimuli, Lin et al. (2016) tried to

use SSVEP with two different onsets (0 or 0.5 s) to discriminate

the SSVEP paradigm. This method was similar to the SSVEP

combined with a single OSP (occur in different moments) and

improved the ITR and accuracy in their study. Similarly, Xu

et al. adopted the same method but used shorter SSVEP stimuli

(200ms) with nine different onsets (0–0.8 s with the step of 0.1 s),

and generated nine sub-targets in a single SSVEP stimulus (Xu

et al., 2020). Although only three sequences were demonstrated

in our study, the MTFSC method has great potential in coding

far more targets in a single SSVEP stimulus. Fig.13 demonstrates

an extended application of the MTFSCmethod. The 1 s stimulus

could generate 44 sequences in this method under a specific

frequency of the stimulus, as shown in Figure 14. Table 1 lists

the number of stimuli sequences generated theoretically in

the different stimuli durations and different omission numbers

under the extended MTFSC protocol. Compared with previous

research, a slight increase in the stimuli duration in this method

largely improved the number of targets (Zhang et al., 2012;

Dehzangi et al., 2014; Xu et al., 2020).

Other recent studies have combined the phase and frequency

information for coding hybrid paradigms (Manyakov et al.,

2012; Chen et al., 2015; Xu et al., 2020). Although we used the

motion phase in our method, it was only used to break through

the limitation of the monitor’s refresh rate on SSVEP stimuli,

instead of coding extra information as these studies do. Notably,

our MTFSC is compatible with the phase-frequency joint coding

method because previous studies had integrated the phase and

frequency into an SSVEP stimulus of 0.2 s duration, while the

SSVEP stimuli fragment in our study was longer than 0.3 s.

We also compared these methods with the c-VEP method,

similar to the t-VEP and f-VEP methods. The c-VEP method

fully used the time information in every frame to code the

targets. Although the features in the single frame are blurred,

the coding feature formed by these features helps to identify

the specific target. It was interesting to note that, visually

speaking (Figure 13), these stimuli look more like the c-

VEP stimuli as more f-VEP information was used in f-VEP

stimuli, compared to those adopting only one periodic code

or event (Mukesh et al., 2005; Zhang et al., 2012; Hwang

et al., 2013; Yin et al., 2013a, 2015; Dehzangi et al., 2014).

Besides, the target recognition method was also similar. The

template matching method had been well used in the c-VEP.

Currently, this method is increasingly used in recent time-

frequency coding method research with good performance

(Mukesh et al., 2005; Jia et al., 2010; Zhang et al., 2012;

Hwang et al., 2013; Chen et al., 2015, 2017; Nakanishi

et al., 2015; Xu et al., 2020). Perhaps the method using the

template containing more coupled time-frequency information

performs better than separately using simple frequency or time

characteristics when recognizing the coupling characteristics

coded by more time-frequency information. As shown in

Figure 11, when multiple time-frequency information was used

in coding, the time-frequency graphwasmore blurred compared

with the one omission event. Besides, the comparison presented

in Supplementary Figure S8 (see Supporting Document) also

showed that the accuracy based on the hybrid recognition

method was better than the step-by-step method (recognizing

SSVEP and ERP separately). Thus, the experience in studying

the c-VEP might be used to help further use the time
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FIGURE 13

A comparison of coding methods on the current VEP BCI paradigm based on time, frequency, phase, and code information.

FIGURE 14

(A) An extended application of the MTFSC method. Each square represents the 0.1s stimuli. Omissions with di�erent duration and numbers are

inserted into the SSVEP stimuli. The onset of SSVEP stimuli and the interval between omissions must be longer than 0.3 s to produce stable

SSVEP and OSP features. (B) An example of all stimuli sequences of 1 s stimuli produced by the MTFSC method under one stimulation frequency.

Each row represents one specific stimuli sequence, for a total of 44.

TABLE 1 The number of stimuli sequences that can be generated in the di�erent stimuli duration when di�erent omission numbers are used under

the extended MTFSC protocol, with only one stimulus frequency used.

Stimuli

duration

Omission number Total number

0 1 2 3 . . . N

8*0.1 S 1 15 1 / / / 17

10*0.1 s 1 28 15 / / / 44

12*0.1 s 1 45 70 1 / / 117

. . . 1 . . . . . . . . . . . . . . . . . .

M*0.1 s 1
M−3
∑

k=1

k
M−7
∑

k=1

[

(M − 6− k) *
k

∑

j=1

j

]

M−11
∑

k=1

[

(M − 10− k) *
k

∑

j=1

j

]

. . .
M−4N+1

∑

k=1

[

(M − 4N + 2− k) *
k

∑

j=1

j

]

. . .
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information while being compatible with other frequency and

phase information.

Limitations and direction for future
research

Recent research on BCI for communication largely

improved performance in ITR (over 200 bits/s) or the number

of targets (over 100 targets) (Chen et al., 2015; Nakanishi

et al., 2017; Xu et al., 2020). Although our study focused

more on the feasibility of the novel coding method instead of

pursuing performance improvement, it is still meaningful to

compare and analyze the limitation of our study for further

improvement.

The 3 s duration of the stimuli cycle in our study is too

long, compared with the 1 s stimuli cycle in other research

(Chen et al., 2015; Xu et al., 2020). It would lead to severe

decreases in ITR, considering that the time duration stimuli

are the denominator in the ITR formula. Thus, to improve

the ITR in future research, the primary task is to decrease

the duration of the stimuli cycle. It is worth mentioning

that our MTFSC method increased the information without

sacrificing time because the time information was inserted in

the SSVEP stimuli. As shown in Figure 14 and Table 1, the

MTFSC method code even had the capacity to code more

targets under the short stimuli cycle. Another key limitation is

that we only used nine targets while other studies used dozens

or even over 100 targets. However, increasing the number of

targets might largely decrease the accuracy of the paradigm

if it is unable to carry enough discriminated information. In

fact, we made a preliminary test of 28 targets (7 frequencies

and 4 omission sequences) among five subjects. As shown in

Supplementary Figure S9, the accuracy was slightly decreased

while the ITR was nearly doubled compared with the nine target

performance. Thus, there is still room for improving theMTFSC

method based paradigm.

To further improve the MTFSC method, we have to do

a trade-off between coding more information in a limited

time and being recognizable. Studies focused on the brain’s

dynamic response to VEP are essential for guiding this trade-

off, considering that all visual stimuli would be filtered and

interplay with each other in the non-linear neural pathway.

For instance, in c-VEP, the autocorrelation function of the

evoked potential would not keep the same sharpness as in the

visual stimuli sequence (Bin et al., 2011; Wei et al., 2018). In

addition, as previous studies have shown, the ERP varies with

different background SSVEP. In our study, the “blind repetition”

phenomenon in the pure ERP paradigm was not obvious

when combined with the SSVEP paradigm (Kanwisher, 1987;

Salvaris and Sepulveda, 2009; Jin et al., 2011). These findings

on the EEG dynamic response show that SSVEP stimuli and

omission events reduced the negative impact of conventional

ERP stimuli. Thus, it would help design a better paradigm, such

as the extended MTFSC method protocol, by fully using time-

frequency information. Recent studies that focus on exploring

dynamic responses (Xu et al., 2016a; Zhang et al., 2018)

contribute to other research to improve performance, such as

shortening the stimuli duration and training time (Han et al.,

2019; Xu et al., 2020). In the recent research by Xu et al., by

referencing the study of a dynamic model, an SSVEP and ERP

stimuli as short as 200ms were proposed along with a significant

expansion in the number of targets (Xu et al., 2014, 2016a, 2020).

These dynamic responses help us understand how the brain

works (Xu et al., 2016a; Zhang et al., 2018). For example, Xu.

et al. studied the dynamic model of ERPs under the SSVEP

pre-stimulus and revealed the “three-period-transition” for ERP

generation (Xu et al., 2016a). However, our study provides

just a brief presentation of the dynamic response while further

experiments are needed to study the exact mechanism of the

dynamic response as in these studies. Thus, more quantitative

studies on the dynamic response of our hybrid paradigm are

required. TheMTFSCmethod serves as a perfect tool to research

the dynamic response of the brain to VEP stimuli. Because

multiple f-VEP and t-VEP stimuli fragments are used together,

many SSR and TSR are involved and interplayed. Therefore,

many factors could be included to study the dynamic model

conveniently for each fragment. For example, when considering

each stimuli fragment’s phase, we could study whether the

stimuli that follow in a consistent phase would strengthen the

SSR or if the stimuli that follow with the antiphase would rapidly

attenuate the TSR as in other methods (Notbohm et al., 2016;

Zhang et al., 2018; Otero et al., 2020). These studies would

help us optimize the time-frequency paradigm and evaluate

whether extra phase information could be coded together with

this MTFSC method.

Overall, the MSTFC method shows great potential in

building a BCI communication system with a large number

of command codes. The proposed method would promote the

application in scenes that demand large control orders, for

example, the spelling keyboard that supports multiple languages

(like English and Chinese), or the GUI controlling an operation

system developed for assisting paralyzed patients in a practical

environment. Besides, the extended MSTFC method shows a

great capacity to contain more time information while being

compatible with other VEP-BCI systems. Further studies that

shorten the stimuli cycle in this study would also be helpful for

people who need to do complex tasks on multiple devices in a

concerted manner.

Conclusion

This study proved that the SSMVEP and multi-OSP

could be used in a hybrid paradigm to produce robust and
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abundant time and frequency features. OSP features seem

obvious in nearly all frequencies, from 6 to 30Hz with the

step of 1Hz. We found an interesting phenomenon of an

extra ERP feature being elicited after the reappearance of

SSMVEP stimuli when omission duration was longer than

400ms. This study also proposed a novel MTFSC coding

method, which was investigated according to the preliminary

results. Time information could be incorporated into frequency

modulated BCI. Although these time and frequency features

deeply interplay with each other according to the time-frequency

spectrum analysis, the feature is still recognizable with the

template-based CCA method. The MTFSC is feasible and

efficient, eliciting time and frequency features including the

multi-OSP, ERP, and SSVEP. The preliminary online analysis

showed that the accuracy and the ITR (mean ± standard

deviation) of a nine-target stimulator with 13 subjects were

89.04% and 36.37 bits/min. The MTFSC proved feasible and

shows great potential in improving performance by better using

time information in specific stimulation frequencies. This study

holds promise for developing better BCI systems with a novel

coding method.
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