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outcomes in colorectal cancer
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1Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China, 2Department
of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 3Department of Hematology,
The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
Cancer-associated fibroblasts (CAFs) are actively involved in cancer progression

through generating extracellular matrix and orchestrating the crosstalk within the

tumor microenvironment (TME). This study aimed to develop and validate a CAF-

derived lncRNA (long non-coding RNA) (CAFDL) signature for predicting clinical

outcomes in colorectal cancer (CRC). Clinical data and transcriptomic profiles of

2,320 patients with CRC from The Cancer Genome Atlas (TCGA)-COAD and

TCGA-READ datasets and 16 Gene Expression Omnibus datasets were included in

this study. CAFDLs were identified using weighted gene co-expression network

analysis. The CAFDL signature was constructed using the least absolute shrinkage

and selection operator analysis in the TCGA-CRC training set. Multiple CRC

cohorts and pan-cancer cohorts were used to validated the CAFDL signature.

Patients with high CAFDL scores had significantly worse overall survival and

disease-free survival than patients with low CAFDL scores in all CRC cohorts. In

addition, non-responders to fluorouracil, leucovorin, and oxaliplatin (FOLFOX)/

fluorouracil, leucovorin, and irinotecan (FOLFIRI) chemotherapy,

chemoradiotherapy, bevacizumab, and immune checkpoint inhibitors had

significantly higher CAFDL scores compared with responders. Pan-cancer

analysis showed that CAFDL had prognostic predictive power in multiple

cancers such as lung adenocarcinoma, breast invasive carcinoma, stomach

adenocarcinoma, and thyroid carcinoma. The CAFDL signature was positively

correlated with transforming growth factor-beta (TGF-b) signaling, epithelial–

mesenchymal transition, and angiogenesis pathways but negatively correlated

with the expression of immune checkpoints such as PDCD1, CD274, and CTLA4.

The CAFDL signature reflects CAF properties from a lncRNA perspective and

effectively predicts clinical outcomes in CRC and across pan-cancer. The CAFDL

signature can serve as a useful tool for risk stratification and provide new insights

into the underlying mechanisms of CAFs in cancer immunity.

KEYWORDS
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Introduction

Colorectal cancer (CRC) is the thirdmost common cancer and

the second leading cause of cancer-related death worldwide.

Standard treatments for CRC include surgery, adjuvant or

neoadjuvant chemotherapy and radiotherapy, and targeted

therapy (1). In recent years, immune checkpoint inhibitors (ICIs)

have revolutionized the treatment of patients with CRC, especially

those with microsatellite instability-high (MSI-H)/mismatch-

repair-deficient (dMMR) status (2). Cancer-associated fibroblasts

(CAFs) are the most abundant of all stromal cells that populate the

tumor microenvironment (TME). CAFs modulate the biological

properties of cancer cells and other stromal cells through

orchestrating the crosstalk within TME and releasing a variety of

regulatory factors (3). The extracellularmatrix remodeled by CAFs

acts as a physical barrier supporting tumor cell invasion and

inhibiting infiltration of antitumor leukocytes, leading to cancer

progression, immune evasion, and immunotherapy resistance (4).

In addition, CAFsmay confer substantial therapeutic resistance by

impairing drug delivery and immune signaling pathways (5).

Previous studies have shown that high CAF infiltration indicates

poor survival. CAFs are identified by protein biomarkers such as

alpha–smooth muscle actin or fibroblast activation protein (6).

Herrera et al. recently reported a CAF-derived gene signature for

predicting CRC prognosis involving 596 protein-coding genes (7).

Accumulating evidence suggests that long non-coding RNAs

(lncRNAs), a subset of non-coding RNAs with >200 nucleotides

in length, are closely implicated in the biological behaviors of CAFs

(8, 9). However, comprehensive analysis of lncRNAs associated

with CAFs is still lacking. Therefore, studies revealing the roles of
Frontiers in Immunology 02
CAF in cancer immunology from a lncRNA perspective are

warranted. CAFs have a higher infiltration level in CRC

compared with other cancer types, suggesting that CAFs play a

more important role in CRC than in other cancers. CRC has a large

number of high-quality sequencing datasets containing lncRNA

expression profiles.

In this study, we developed and validated a CAF-derived

lncRNA (CAFDL) signature based on clinical data and

transcriptomic profiles of 2,320 patients with CRC from 18

datasets. The CAFDL signature could serve as a robust

predictor of overall survival (OS) and disease-free survival

(DFS), as well as response to all mainstay treatments of CRC,

including chemotherapy, chemoradiotherapy, targeted therapy,

and immunotherapy. Moreover, pan-cancer analysis revealed

the predictive power of the CAFDL signature in multiple

cancers, and its molecular and immune correlates were

explored (Figure 1). Our study opens up new avenues for risk

stratification and provides new insights into the underlying

mechanisms of CAFs in CRC and across pan-cancer.
Materials and methods

Data acquisition and processing

Transcriptomic RNA sequencing and corresponding clinical

data of 10,148 patients across 33 cancer types including colon

adenocarcinoma (COAD) and rectal adenocarcinoma (READ)

were downloaded from the TCGA database (https://portal.gdc.

cancer.gov). The raw read count was converted to transcripts per
FIGURE 1

Flow chart of this study.
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kilobase million (TPM) format and log2(x+1)-transformed.

Expression profiles and clinical information obtained from the

GeneExpressionOmnibus (GEO) for 16CRCdatasets (GSE17536,

GSE17537, GSE19860, GSE28702, GSE29621, GSE31595,

GSE33113, GSE37892, GSE38832, GSE39582, GSE45404,

GSE62080, GSE69657, GSE72970, GSE92921, and GSE143985)

using the Affymetrix® GPL570 platform. For immunotherapy

cohorts, transcriptome and clinical information of IMvigor210

(10) was downloaded from the online database (http://research-

pub.gene.com/IMvigor210CoreBiologies). Gene expression

profiles and clinical data of Gide’s (11), Nathanson’s (12), Kim’s

(13), Braun’s (14), and Liu’s (15) cohorts were obtained from their

articles. Expression profiling and clinical data of GSE91061 (16)

weredownloaded from theGEOdatabase.The “ComBat” tool from

the “sva” package of the R software was applied to correct for

systematic batch effects among the TCGA and GEO datasets. The

“ComBat” tool fromthe “sva”packageof theR softwarewas applied

to correct for systematic batch effects between the TCGA-COAD

and TCGA-READ datasets and among 16 GEO datasets,

respectively. Patients with a follow-up or survival duration of less

than 30 days were excluded from survival analysis to rule out the

bias due to loss to follow-up or perioperative death.
Tumor immunemicroenvironment analysis

CAF infiltrations were evaluated using three algorithms: EPIC

(17), xCELL (18), and MCPcounter (19). Tumor purity and the

presence of infiltrating stromal/immune cells in tumor tissues were

predicted using ESTIMATE algorithm (20). Immune cell

infiltrations in 33 cancer types were calculated using seven

algorithms: TIMER (21), EPIC, xCELL, CIBERSORT (22),

QUANTISEQ (23), MCPcounter, and TIDE (24).
Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is

a systematic bioinformatics algorithm capable of integrating

highly coordinated expressed genes into several gene modules

and investigating the relationship of modules to phenotypes of

interest. An appropriate soft power threshold (b) was chosen to

find the best balance to generate the largest number of modules

without loss of gene module membership (MM). WGCNA was

conducted using the “WGCNA” package in R.
Construction of the prognostic signature

The TCGA-CRC cohort was randomly divided into a training

set and an internal validation set in a 1:1 ratio. All CAFDLs

identified from WCGNA were included in the least absolute
Frontiers in Immunology 03
shrinkage and selection operator (LASSO) Cox regression model

to construct the powerful prognostic signature. LASSO analysis was

repeated for 1,000 iterations until the area under the curve (AUC) of

time-dependent receiver operating characteristic (ROC) analysis

reached a maximum value in both the training and internal test

cohorts. A multivariate Cox regression model was finally used to

determine the coefficient and construct a prognostic signature based

on the candidate lncRNAs generated from the LASSO analyses. A

risk score for each patient was calculated as the sum of each gene’s

score, which was obtained by multiplying the expression of each

gene and its coefficient. The sensitivity and specificity of the

prognostic signature were accessed by ROC curves and area

under the ROC curves (AUC values).
Single-sample gene set
enrichment analysis

The enrichment scores of cancer hallmark gene sets were

calculated by single-sample gene set enrichment analysis

(ssGSEA) method with the “ssGSEA” package in R. Cancer

hallmark gene sets were downloaded from Molecular

Signatures Database.
Quantitative real-time PCR

TRIzol reagent (Thermo Fisher Scientific, Carlsbad, CA,

USA) was used to extract the total RNA from CRC and

normal tissues according to the manufacturer’s protocol.

Reverse transcription was performed using a Prime Script RT

reagent kit (Takara Biotechnology, China). Applied Biosystems

7900 Real-time PCR System (Thermo Fisher Scientific) was used

to perform the quantitative real-time PCR (qRT-PCR) assay.

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used

to normalize lncRNA expression.
Results

Assessing CAF infiltrations
in CRC cohorts

First, we established two integrated cohorts, namely, TCGA-

CRC and meta-GEO. The TCGA-CRC cohort of 625 patients

consisted of TCGA-COAD (N = 458) and TCGA-READ (N =

167) datasets. On the other hand, the meta-GEO cohort of 1,116

patients was pooled from six GEO datasets with OS data:

GSE17536 (N = 177), GSE17537 (N = 55), GSE29621 (N =

65), GSE38832 (N = 122), GSE39582 (N = 573), and GSE72970

(N = 124). CAF infiltrations in each CRC sample were evaluated

using three algorithms: EPIC, MCPcounter, and xCELL

(Table S1).
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WGCNA identified CAFDLs

After gene symbol annotation, 12,644 lncRNAs in the

TCGA-CRC and 2,023 lncRNAs in the meta-GEO cohort were

obtained. A total of 1,993 lncRNAs were shared by both cohorts.

We performed WGCNA on the lncRNA expression profiles of

TCGA-CRC and meta-GEO cohorts, respectively. The optimal

soft threshold used to generate modules was 3 for both cohorts.

The numbers of modules identified byWGCNA for TCGA-CRC

and meta-GEO cohorts were 14 and 9, respectively (Figure 2A).

We analyzed the relationship between modules and CAF

infiltrations assessed by EPIC, MCPcounter, and xCell

algorithms. CAF infiltration was significantly associated with

turquoise module in TCGA-CRC (REPIC = 0.67, RMCP = 0.74,

and RxCell = 0.54, respectively) (Figure 2A). The correlation

coefficient between the gene significance (GS) of CAF infiltration

and MM in the TCGA-CRC turquoise module reached 0.81

(Figure 2B). In meta-GEO, CAF infiltration was significantly

associated with green module (REPIC = 0.64, RMCP = 0.45, and

RxCell = 0.55, respectively) (Figure 2A). The correlation

coefficient between GS of CAF infiltration and MM in the

meta-GEO green module reached 0.84 (Figure 2C). The

turquoise module of TCGA-CRC contains 153 lncRNAs,

whereas the green module of meta-GEO contains 654

lncRNAs. We obtained 703 lncRNAs in these two modules,

which were defined as CAFDLs (Figure 2D).
Development of the CAFDL signature

The TCGA-CRC cohort was randomly divided into a

training set and an internal validation set. LASSO regression

analysis was used to select the optimal CAFDLs for building a

risk prediction model (Figure 2E). A multivariate Cox regression

model was finally used to determine the coefficient and construct

a prognostic signature based on the candidate lncRNAs

generated from the LASSO analyses (Figure 2F). The CAFDL

signature consists of 21 lncRNAs (HOTAIRM1, LINC01082,

MSC-AS1, LINC00460, USP30-AS1, AC096531.2, CASC15,

DGCR9, CT75, JAKMIP2-AS1, LINC00574, LINC00839,

LINC01686 , LINC01711 , LINC02044 , LINC02593 ,

MIR181A2HG, PAX8-AS1, SLC25A21-AS1, WEE2-AS1, and

ZEB1-AS1), and its corresponding risk score (CAFDL Score) is

the sum of the products of all lncRNA expression values and

coefficients. We examined the expression of these 21 lncRNAs in

CRC and normal tissues. Among the 21 lncRNAs, 14 lncRNAs

(HOTAIRM1, LINC01082, LINC00460, USP30-AS1,

AC096531.2, CASC15, CT75, LINC00574, LINC01711,

LINC02593, MIR181A2HG, SLC25A21-AS1, WEE2-AS1, and

ZEB1-AS1) were significantly differentially expressed between

CRC and adjacent normal tissues. LINC00460, CASC15,

LINC01711, MIR181A2HG, and ZEB1.AS1 were significantly
Frontiers in Immunology 04
upregulated in CRC tissues, whereas the remaining lncRNAs

were significantly downregulated in CRC compared with normal

tissues (Figure 2G). Next, we analyzed the OS and DFS of

patients with CRC with high or low expression of the 21

lncRNAs, as suggested by the reviewers. CT75, DGCR9,

HOTAIRM1, LINC00460, LINC01082, LINC01711,

LINC02044, USP30-AS1, and ZEB1.AS1 were significantly

associated with OS (Figure S1A), and AC096531.2, CT75,

DGCR9, HOTAIRM1, LINC00839, LINC01082, LINC02044,

LINC02593, MIR181A2HG, SLC25A21-AS1, WEE2-AS1, and

ZEB1.AS1 were significantly associated with DFS (Figure S1B).

Each cohort was divided into high and low CAFDL groups

according to the optimal cutoff value calculated by the

“survminer” package in R. Kaplan–Meier survival analysis

showed that patients with high CAFDL scores in the TCGA-

CRC cohort had significantly worse OS than patients with low

CAFDL scores [P < 0.001, hazard ratio (HR) = 2.41, 95%

confidence interval (CI) 1.64–3.55] (Figure 3A). We collected

20 pairs of CRC and adjacent normal tissue samples for qRT-

PCR analysis. The expression of 11 of 21 lncRNAs

(HOTAIRM1, LINC01082, LINC00460, USP30-AS1, CASC15,

JAKMIP2-AS1, LINC00574, LINC01711, LINC02593,

SLC25A21-AS1, and ZEB1-AS1) was significantly different

between CRC and adjacent normal tissues. Among them,

LINC00460, CASC15, JAKMIP2-AS1, LINC01711, and ZEB1-

AS1 were significantly upregulated in CRC tissues, whereas

HOTAIRM1, LINC01082, USP30-AS1, LINC00574,

LINC02593, and SLC25A21-AS1 were significantly

downregulated in CRC tissues (Figure S2A).
Validation of the predictive value of
CAFDL signature for OS in CRC cohorts

We apply the CAFDL signature to eight CRC cohorts to

validate its predictive value for OS. In the TCGA-COAD (HR =

2.54, P < 0.001), TCGA-READ (HR = 2.67, P = 0.026),

GSE17536 (HR = 2.30, P < 0.001), GSE17537 (HR = 2.91, P =

0.023), GSE29621 (HR = 3.55, P = 0.004), GSE39582 (HR = 2.37,

P < 0.001), GSE72970 (HR = 1.90, P = 0.008), and total CRC

cohorts (HR = 2.18, P < 0.001), patients with high CAFDL scores

had significant worse OS compared with those with low CAFDL

scores (Figure 3A, Figure S3), except for GSE38832 (P = 0.172,

HR = 1 .79) , whose OS di ff e rence d id not reach

statistical significance.
Validation of the predictive value of
CAFDL signature for DFS in CRC cohorts

Next, we validate predictive value of CAFDL signature for

DFS in 12 cohort with DFS data. In the TCGA-COAD (HR =
frontiersin.org

https://doi.org/10.3389/fimmu.2022.934221
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2022.934221
2.06 P < 0.001), TCGA-READ (HR = 2.05, P = 0.045), GSE17536

(HR = 3.03, P = 0.015), GSE17537 (HR = 2.44, P < 0.029),

GSE29621 (HR = 5.29, P = 0.02), GSE31959 (HR = infinity, P =

0.004), GSE33113 (HR = 4.53, P < 0.001), GSE37982 (HR = 2.82,

P < 0.001), GSE38832 (HR = 7.26, P = 0.025), GSE39582 (HR =

1.79 P < 0.001), GSE92921 (HR = 8.47 P < 0.019), and
Frontiers in Immunology 05
GSE143982 (HR = 3.31, P = 0.016) cohorts, all patients with

high CAFDL scores had significantly worse DFS compared with

those with low CAFDL scores (Figure 3B). We performed ROC

analysis of the CAFDL signature in each of the TCGA and GEO

datasets for the predictive ability of DFS and OS at 1, 3, and 5

years and calculated its AUC values (Figure S2B).
B

C

D E F

G

A

FIGURE 2

WGCNA identified CAFDL and LASSO analysis. (A) WGCNA identified modules associated with CAF infiltration calculated by EPIC, MCPcounter,
and xCell in TCGA-CRC and meta-GEO cohorts. (B) Correlation between gene significance for CAF infiltration and module membership in
turquoise module in TCGA-CRC cohort. (C) Correlation between gene significance for CAF infiltration and module membership in green
module in meta-GEO cohort. (D) A Venn diagram showing the number of lncRNAs in the turquoise module in the TCGA-CRC cohort and the
green module in the meta-GEO cohort. (E) LASSO analysis identifies 21 CAF-derived lncRNAs. (F) Multivariate Cox analysis calculated the
coefficient for each lncRNA in the CAFDL signature. (G) Expression of 21 CAF-derived lncRNAs in CRC and normal tissues. **P < 0.01, ***P <
0.001, NS non-significant.
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CAFDL signature is an independent
prognostic factor for OS and DFS

Univariate (Figures S2C, E) and multivariate Cox analyses

(Figures S2D, F) were performed for multiple clinicopathological

factors (age, gender, histological differentiation, and American

Joint Committee on Cancer (AJCC) TNM stage) together with

the CAFDL signature in the TCGA-CRC cohort. The results

showed that CAFDL signature, age, and TNM stage were

independent prognostic factors for OS, whereas CAFDL

signature and TNM stage were independent prognostic factors

for DFS.
CAFDL signature predicts response to
chemotherapy, radiotherapy, and
targeted therapy

Chemotherapy, radiotherapy, and targeted therapy are the

mainstay treatments for CRC. Non-responders to FOLFOX
Frontiers in Immunology 06
(GSE28702 and GSE69657; Figures 4A, B) and FOLFIRI

(GSE62080; Figure 4C) chemotherapy had significantly higher

CAFDL scores compared with responders. The AUC values of

CAFDL signature for predicting response to chemotherapy in

GSE28702 (Figure 4A), GSE69657 (Figure 4B), and GSE62080

(Figure 4C) were 0.639, 0.715, and 0.750, respectively. In

addition, CAFDL signature can also effectively predict the

response to chemoradiotherapy in patients with rectal cancer

(GSE45404, AUC = 0.72); non-responders had significantly

higher CAFDL score than responders (Figure 4D). Notably,

CAFDL signature had excellent predictive power for response

to bevacizumab (GSE19860, AUC = 1); all responders belonged

to the low CAFDL score group (Figure 4E).
CAFDL signature predicts
immunotherapy outcomes

We appl ied the CAFDL signature to mul t ip le

immunotherapy cohorts and found that non-responders to
B

A

FIGURE 3

CAFDL signature can effectively predict the prognosis of patients with CRC. (A) Patients with high CAFDL scores have significantly worse overall
survival than those with low CAFDL scores in TCGA-CRC, TCGA-COAD, TCGA-READ, GSE17536, GSE17537, GSE29621, GSE38832, GSE39582,
GSE72970, and total CRC cohorts. (B) Patients with high CAFDL scores have significantly worse disease-free survival than those with low CAFDL
scores in TCGA-COAD, TCGA-READ, GSE17536, GSE17537, GSE29621, GSE31595, GSE33113, GSE37892, GSE38832, GSE39582, GSE92921, and
GSE143985 cohorts.
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ICIs had significantly higher CAFDL scores compared with

responders in Gide’s cohort (melanoma treated with anti–

programmed cell death 1 (PD-1)/cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) antibody; Figure 4F), Kim’s

cohort (gastric cancer treated with anti–PD-1 antibody;

Figure 4G), and GSE91061 (melanoma treated with anti–PD-1

antibody; Figure 4H). The AUC values of CAFDL signature for

predicting response to immunotherapy in Gide’s cohort

(Figure 4F), Kim’s cohort (Figure 4G), and GSE91061

(Figure 4H) were 0.753, 0.649, and 0.705, respectively.

Moreover, patients with high CAFDL scores had a significantly

worse prognosis than those with low CAFDL scores in Braun’s
Frontiers in Immunology 07
cohort (clear cell renal cell carcinoma treated with anti–PD-1

antibody), Gide’s cohort, IMvigor210 (bladder urothelial

carcinoma treated with anti–programmed death ligand 1 (PD-

L1) antibody), Liu’s cohort (melanoma treated with anti–PD-1

antibody), andNathanson’s cohort (melanoma treated with anti–

CTLA-4 antibody) (all P < 0.05; Figure 5A). In the IMvigor210

cohort, patients in the low CAFDL score group had significantly

higher PD-L1 protein expression levels in immune cells

(Figure 5B) and tumor cells (Figure 5C). The high CAFDL score

group had higher proportion of immune desert phenotype, lower

proportion of immune-inflamed phenotype (Figure 5D), and

lower CD8+ T effector infiltration (Figure 5E).
B

C D

E F

G H

A

FIGURE 4

CAFDL signature can effectively predict the response to mainstay treatments of CRC. (A–E) Non-responders to FOLFOX (A, B) and FOLFIRI
(C) chemotherapy, chemoradiotherapy (D), and bevacizumab targeted therapy (E) had significantly higher CAFDL scores compared with
responders (left panels). ROC curves demonstrate the predictive power of the CAFDL signature for response to these treatments (right panels).
(F–H) Non-responders to ipilimumab/nivolumab (F), pembrolizumab (G), and nivolumab (H) had significantly higher CAFDL scores compared
with responders (left panels). ROC curves demonstrate the predictive power of the CAFDL signature for response to these treatments (right
panels). *P < 0.05, **P < 0.01, and ****P < 0.0001.
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CAFDL signature predicts prognosis
across multiple cancers

In addition to COAD and READ, we also attempted to

explore the predictive power of the CAFDL signature for clinical

outcomes in other cancers. The CAFDL signature is effective in

prognostic stratification in the most common cancers, including

lung adenocarcinoma (LUAD), breast invasive carcinoma

(BRCA), stomach adenocarcinoma (STAD), thyroid carcinoma

(THCA), bladder urothelial carcinoma (BLCA), kidney renal

clear cell carcinoma (KIRC), adrenocortical carcinoma (ACC),

cervical squamous cell carcinoma and endocervical

adenocarcinoma (CESC), kidney chromophobe (KICH),

sarcoma (SARC), thymoma (THYM), and uterine corpus

endometrial carcinoma (UCEC) (all P < 0.05; Figure 5F),

implying that CAFDL has broad applicability across pan-cancer.
Frontiers in Immunology 08
Immune correlates of CAFDL signature
across pan-cancer

To fully demonstrate the pan-cancer TME landscape, immune

cell infiltrations across pan-cancer were evaluated using seven

algorithms: TIMER, EPIC, xCell, CIBERSORT, QUANTISEQ,

MCPcounter, and TIDE (Figure 6A). As expected, the CAFDL

signature was closely associated with the CAF infiltration

(Figure 6A). Epithelial cells, another important member of the

stromal component, also had a strong correlation with the CAFDL

signature. In addition, the CAFDL signature was also significantly

associated with macrophage M2 in COAD and READ. CAFDL

signature showed no or negative correlation with major immune

cells such as CD8+/CD4+ T cells, B cells, and M1 macrophages.

Next, we used the ESTIMATE algorithm to evaluate the pan-

cancer stromal score and immune score. The CAFDL signature
B C D E

F

A

FIGURE 5

CAFDL signature predicts clinical outcomes in immunotherapy cohorts and pan-cancer cohorts. (A) Patients with high CAFDL scores have
significantly worse overall survival than those with low CAFDL scores in Braun’s, Gide’s, IMvigor210, Liu’s, and Nathanson’s cohorts. (B, C) In the
IMvigor210 cohort, patients in the low CAFDL score group had significantly higher PD-L1 protein expression levels in immune cells (B) and
tumor cells (C). (D)The high CAFDL score group had higher proportion of immune desert phenotype and lower proportion of immune-inflamed
phenotype. (E) The high CAFDL score group had significantly lower CD8+ T effector infiltration. (F) In addition to COAD and READ, patients with
high CAFDL scores have significantly worse overall survival than those with low CAFDL scores in 12 TCGA datasets: LUAD, BRCA, STAD, THCA,
KICH, KIRC, ACC, SARC, BLCA, CESC, THYM, and UCEC. **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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showed a positive correlation with the stromal score, with an

overall correlation of 0.14 for the entire pan-cancer cohort and a

median correlation of 0.16 across 33 cancers, ranging from −0.25

to 0.71 (Figure 6B). However, CAFDL exhibited negative

correlations with the immune score (R = −0.14; Figure 6C)

and the ESTIMATE score (the integration of the stromal score

and the immune score, R = −0.02; Figure 6D), respectively.

Notably, CAFDL signature showed moderate correlation with

stromal score in COAD (R = 0.51) and READ (R = 0.56) and

weak correlation with immune score in COAD (R = 0.36) and

READ (R = 0.39), respectively. These results indicated that

CAFDL could specifically reflect the properties of stromal

components in TME but had a weak correlation with immune

cell infiltration.
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Molecular features of CAFDL signature

We calculated the enrichment scores for cancer hallmark

gene sets across 33 cancer types using the ssGSEA method. The

CAFDL signature was significantly positively correlated with

epithelial–mesenchymal transition (EMT), WNT/b-Catenin
signaling, angiogenesis, and TGF-b signaling pathways across

pan-cancer, which are important mechanisms that occur in the

tumor stroma to promote tumor development and metastasis

(Figure 7A). Moreover, we analyzed the correlation of CAFDL

signature with expression of immune regulators. TGF-b is well

known to be one of the most important regulators of CAF

activation (25). The CAFDL signature was significantly

positively associated with TGFB1, CD276, CD40, VEGFA,

VEGFB, etc., but showed significantly negative correlation

with immune checkpoints (such as CD274, PDCD1, CTLA4,
B

C

D

A

FIGURE 6

Pan-cancer immune correlates of CAFDL signature. (A) Correlation of CAFDL signature with immune cell infiltration evaluated using seven
algorithms: TIMER, EPIC, xCELL, CIBERSORT, QUANTISEQ, MCPcounter, and TIDE across pan-cancer. (B–D) Correlation of CAFDL signature
with stromal score (B), immune score (C), and ESTIMATE score (D) across pan-cancer.
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TIGHT, and HAVCR2) and anti-cancer immune regulators

(IFNG, IDO1, and GZMA) (Figure 7B).
CAFDL signature is associated with
immune exclusion

The TIDE online tool was used to assess the potential of

immune escape across pan-cancer. The TIDE score consists of

two components: immune dysfunction and immune exclusion.

CAFDL signature was positively correlated with exclusion score,

with an overall correlation of 0.14 for the entire pan-cancer

cohort and a median correlation of 0.24 across 33 cancers,

ranging from −0.16 to 0.49 (Figure 7C). However, CAFDL

signature had little correlation with dysfunction score (R =

0.04; Figure 7D) and TIDE score (R = 0.07; Figure 7E),

suggesting that CAF prevents immune cells from killing tumor

cells more by generating extracellular matrix (immune

exclusion) than by directly causing immune dysfunction.
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CAFDL signature is independent of
tumor mutation burden and
microsatellite instability

Microsatellite instability (MSI) and tumor mutation burden

(TMB) are well-established predictors of response to

immunotherapy, but they are both intrinsic features of cancer cells

andare theoreticallyunrelated toCAFs. In theGSE39582,GSE92921,

and GSE143985 cohorts, there were no significant differences in

CAFDL scores between mutant and wild-type tumors of v-raf

murine sarcoma viral oncogene homolog B1 (BRAF) (Figures

S4A–C), kirsten rat sarcoma viral oncogene (KRAS) (Figures S4D–

F), and tumor protein P53 (TP53) (Figures S4G–I). Moreover, we

found little correlation between CAFDL signature and TMB across

33 cancers (Figure S5A), includingCOAD(R=0.13) andREAD(R=

0.02). Likewise, CAFDL scores of MSI-H/dMMR tumors were not

significantly different from those of MSS/pMMR tumors in TCGA-

COAD, TCGA-READ, GSE39582, GSE92921, and GSE143985

cohorts (Figures S5B–F).
B

C D E

A

FIGURE 7

Molecular features of CAFDL signature. (A) Correlation of CAFDL signature with cancer hallmark gene sets across pan-cancer. (B) Correlation of
CAFDL signature with common immune regulators across pan-cancer. (C–E) Correlation of CAFDL signature with immune exclusion score
(C), immune dysfunction score (D), and TIDE score (E) across pan-cancer.
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Discussion

CAFs are major components of the TME and interact with

cancer cells by secreting extracellular matrix proteins as well as

cytokines and growth factors. CAFs block immune cell

infiltration and drug delivery, leading to immune escape and

resistance to various treatments including chemotherapy,

radiotherapy, targeted therapy, and immunotherapy. In recent

years, several studies have shown that CAF is closely related to

the poor prognosis of patients with cancer (26–28), and the

underlying mechanisms have begun to be revealed. Chen et al.

reported that CAFs impact the survival outcomes and treatment

response in CRC by regulating immune system (27). Li et al.

discovered a subgroup of CAFs correlated with poor survival

outcomes in patients with gastric cancer using single-cell RNA

sequencing (29). Sun et al. demonstrated that prognostic

signature based on CAF-secreted cytokines were associated

with genetic alterations and clinical outcomes (30). Zheng

et al. revealed that CAFs play an important role in TME, and

their secreted extracellular protein can serve as a prognostic

marker for triple-negative breast cancer (31). However, these

studies on CAFs are based on protein-encoding genes, and

studies on lncRNAs are still lacking. Herrera et al. (7) reported

a CAF-derived gene signature for predicting CRC prognosis

involving 596 protein-coding genes rather than lncRNAs, which

is different from our study. Zhang et al. (8) found that DNM3OS,

a CAF-promoted lncRNA, confers radio-resistance by regulating

DNA damage response in esophageal squamous cell carcinoma.

This study focused on the biological function of a specific CAF-

related lncRNA, whereas our study was a comprehensive

analysis of CAF-related lncRNAs. Liu et al. (9) developed an

immune-derived lncRNA signature for improving outcomes in

CRC using machine learning methods. This study involved

immune-derived lncRNAs rather than specifically focusing on

CAFDLs. LncRNA signatures have been widely reported in

CRC, and these signatures are closely related to specific

biological behaviors, including tumor immunity (9), epigenetic

modification (32, 33), and cell death (34). To the best of our

knowledge, this is the first comprehensive study on CAFDLs in

CRC, to establish a CAFDL signature in CRC, which

is innovative.

WGCNA has been successfully applied to identify gene

modules with various biological functions or cellular

characteristics (35, 36). In our study, we used WGCNA to

establish a co-expression network of lncRNAs and obtained

multiple modules through co-expression relationships. We

analyzed the correlation between the expression level of each

module and CAF score in CRC tissues, identified CAF-related

lncRNA modules, and finally identified CAFDLs.

Many studies have established lncRNA-based prognostic

prediction models (37–40). Liu et al. developed a novel

immune-related lncRNA signature in endometrial carcinoma

(37), patients were randomly divided into training cohort and
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test cohort, univariate Cox analysis was used to screen lncRNAs

associated with prognosis, LASSO regression was used to screen

lncRNAs most associated with DFS, and finally multivariate Cox

was used to establish a scoring system. In another study

developing an EMT-related lncRNA signature (38), patients

were also randomly divided into training group and test

group, risk prediction model was built, and the weight of each

lncRNA was calculated using LASSO regression. Yuan et al.

identified m5C-related lncRNAs in pancreatic ductal

adenocarcinoma (39), a preliminary screening was performed

by univariate Cox, a prediction model was established by LASSO

regression, and a risk score was calculated. A recent study

constructed a mutation-derived genome instability-related

lncRNAs signature in endometrial cancer (40), patients were

randomized 1:1 into training or test sets, and risk prediction

models were built using univariate and multivariate Cox

regression. In our study, we used TCGA-CRC to build a risk

prediction model and used the meta-GEO cohort as external

validation. The TCGA-CRC cohort is randomly split into a

training set and an internal validation set in a 1:1 ratio. The

LASSO analysis was repeated for 1,000 iterations until the AUC

reached a maximum value in both the training set and the

internal test set. Multivariate Cox regression models were finally

used to determine coefficients and construct prognostic

signatures based on candidate lncRNAs generated by LASSO

analysis. In contrast to the previously mentioned literatures, we

did not perform a univariate analysis of the initial screening.

This is because lncRNAs that constitute prognostic risk models

may not reach statistical significance when prognostic analysis is

performed on individual genes. Potential prognostic information

may be lost if certain important lncRNAs are deleted. Then,

because the results of LASSO regression analysis may vary each

time, we used multivariate Cox analysis to finally determine the

weight coefficient of each lncRNA after LASSO regression

established the prognostic model, instead of directly using

LASSO regression to calculate the coefficient, which was

similar to the analysis method of Liu’s study (37).

Our study included 18 datasets of 2,320 patients with CRC,

including COAD and READ datasets from the TCGA database,

and 16 CRC datasets from the GEO database. We established the

CAFDL signature in TCGA-CRC training set and verified its

predictive value in all CRC datasets. The CAFDL signature can

effectively predict the prognosis of patients with CRC, including

OS and DFS. In addition, CAFDL has also demonstrated robust

predictive power for response to chemotherapy, radiotherapy,

and targeted therapy, which are the mainstays of treatment for

CRC. Seven additional immunotherapy datasets were

incorporated into our study, and we found that CAFDL can be

used as a predictor of response to ICIs. Through comprehensive

analysis based on large-scale clinical samples and transcriptomic

data, we demonstrate that CAFDL can serve as a robust tool for

predicting survival outcomes and treatment response in patients

with CRC.
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Furthermore, pan-cancer analysis showed that, in addition

to COAD and READ, CAFDL had prognostic predictive power

in multiple cancers (such LUAD, BRCA, STAD, and THCA).

The expression level of CAFDL in pan-cancer is not clear, and

the CAFDL signature may not be applicable in all tumors. The

purpose of pan-cancer analysis in our study is to try to expand

the applicability of CAFDL signature to other cancers. This

provides evidence for researchers to conduct further studies in

other cancer types in the future.

We further explored the molecular and immune

mechanisms and found that CAFDL signature was positively

correlated with TGF-b signaling, EMT, and angiogenesis

pathways but negatively correlated with the expression of

immune checkpoints such as PDCD1, CD274, and CTLA4.

Moreover, the CAFDL signature was independent of MSI and

TMB, both of which are intrinsic features of cancer cells rather

than stromal cells.
Conclusion

In summary, we developed the robust CAFDL signature that

can effectively predict the survival outcomes and response to

multiple treatments in patients with CRC. Our study provides a

roadmap for patient stratification and may help improve

strategies for personalized follow-up and individualized

decision making for CRC.
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SUPPLEMENTARY FIGURE 1

Survival analysis for the 21 lncRNAs constituting the CAFDL signature. (A)
Overall survival. (B) Disease-free survival.

SUPPLEMENTARY FIGURE 2

Validation of the CAFDL signature. (A) qRT-PCR detected the expression
levels of 21 lncRNAs constituting the CAFDL signature in paired CRC and

adjacent normal tissues. (B) ROC analysis of the predictive ability of
CAFDL signature on DFS and OS at 1, 3, and 5 years in CRC datasets. (C,
D)Univariate andmultivariate Cox analysis identify independent predictive
factors for OS in TCGA-CRC cohort. (E, F) Univariate and multivariate Cox

analysis identify independent predictive factors for DFS in TCGA-

CRC cohort.

SUPPLEMENTARY FIGURE 3

Landmark analysis of GSE17537.

SUPPLEMENTARY FIGURE 4

CAFDL score in patients with wild-type or mutant BRAF, Kras and TP53.

(A-C) CAFDL score in patients with wild-type or mutant BRAF in
GSE39582, GSE92921 and GSE143985 cohorts. (D-F) CAFDL score in

patients with wild-type or mutant Kras in GSE39582, GSE92921 and
GSE143985 cohorts. (G-I) CAFDL score in patients with wild-type or

mutant TP53 in GSE39582, GSE92921 and GSE143985 cohorts. ns,
non-significant.

SUPPLEMENTARY FIGURE 5

Correlation between CAFDL signature and TMB and MSI/MMR status. (A)
Correlation of CAFDL signature with TMB across pan-cancer. (B, C)
CAFDL scores of patients with MSI-H, MSI-L and MSS status in COAD

(B) and READ (C), respectively. (D) CAFDL scores of patients with dMMR
and pMMR status in GSE39582. (E, F)CAFDL scores of patients with MSI-H

and MSS status in GSE92921 (E) and GSE143985 (F), respectively. ns,
non-significant.
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