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Position weight matrix (PWM) is the traditional motif model representing the

transcription factor (TF) binding sites. It proposes that the positions contribute

independently to TFs binding a�nity, although this hypothesis does not fit

the data perfectly. This explains why PWM hits are missing in a substantial

fraction of ChIP-seq peaks. To study various modes of the direct binding of

plant TFs, we compiled the benchmark collection of 111 ChIP-seq datasets

for Arabidopsis thaliana, and applied the traditional PWM, and two alternative

motif models BaMM and SiteGA, proposing the dependencies of the positions.

The variation in the stringency of the recognition thresholds for the models

proposed that the hits of PWM, BaMM, and SiteGA models are associated

with the sites of high/medium, any, and low a�nity, respectively. At the

medium recognition threshold, about 60% of ChIP-seq peaks contain PWM

hits consisting of conserved core consensuses, while BaMM and SiteGA

provide hits for an additional 15% of peaks in which a weaker core consensus

is compensated through intra-motif dependencies. The presence/absence

of these dependencies in the motifs of alternative/traditional models was

confirmed by the dependency logo DepLogo visualizing the position-wise

partitioning of the alignments of predicted sites. We exemplify the detailed

analysis of ChIP-seq profiles for plant TFs CCA1, MYC2, and SEP3. Gene

ontology (GO) enrichment analysis revealed that among the three motif

models, the SiteGA had the highest portions of genes with the significantly

enriched GO terms among all predicted genes. We showed that both

alternative motif models provide for traditional PWM greater extensions in

predicted sites for TFs MYC2/SEP3 with condition/tissue specific functions,
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compared to those for TF CCA1 with housekeeping functions. Overall, the

combined application of standard and alternative motif models is beneficial to

detect various modes of the direct TF-DNA interactions in the maximal portion

of ChIP-seq loci.

KEYWORDS

de novomotif search, heterogeneity of transcription factor binding sites, high and low

a�nity of transcription factor binding sites, standard and alternativemotif recognition

models, ChIP-seq data analysis

1. Introduction

Transcription factors (TFs) read out the gene regulatory

nucleotide context (TF binding sites, TFBS) in a genome and

subsequently initiate RNA synthesis (Lambert et al., 2018).

Sequence motifs are short, recurring patterns in DNA that are

presumed to have a biological function of sequence-specific

binding sites (BSs) for certain TF (D’Haeseleer, 2006). TFs

bind genomic DNA directly or indirectly, through cooperation

with other TFs, or by modifying/remodeling chromatin proteins

(Iwafuchi-Doi, 2019; Srivastava and Mahony, 2020). One of the

most important tasks of molecular biology is to locate TFBSs

genome-wide and thereby detect a TF’s direct targets. Chromatin

immunoprecipitation followed by massive sequencing (ChIP-

seq) is a widely applied experimental technique to solve these

problems (Johnson et al., 2007; Farnham, 2009; Park, 2009).

Primary ChIP-seq data processing identifies genome loci, or

peaks, in which a target TF binds DNA directly or indirectly

through co-binding intermediary factors (Furey, 2012; Yu et al.,

2021). The lengths of peaks comprise hundreds of base pairs,

however, a TFBS usually does not exceed 20–25 base pairs in

length (O’Malley et al., 2016; Kulakovskiy et al., 2018). Thus, at

the second step in the ChIP-seq data processing, one searches

for exact positions of sites in peaks. To date, many tools have

been developed to solve this issue, the overwhelming majority of

them are based on the motif model of position weight matrix

(PWM; Stormo, 2000). The popular examples are STREME

(Bailey, 2021) and HOMER (Heinz et al., 2010). Different

implementations of the PWM model have been included in

almost every pipeline of ChIP-seq data processing (Lloyd and

Bao, 2019), despite that 20 years ago it was proved that this

model was not quite correct (Benos, 2002; Bulyk et al., 2002).

On average, the PWM model detects reliable hits for about

60% of ChIP-seq peaks; this low estimate may be a consequence

of (a) an indirect TF binding or (b) the disadvantage of PWM

models in ignoring the dependencies of nucleotides occurrences

in different site positions (Hunt et al., 2014; Gheorghe et al.,

2019). The latter may negatively affect the recognition accuracy

(Benos, 2002; Keilwagen and Grau, 2015). Therefore, alternative

motif models took into account the dependencies between

the nucleotides occurrences in distinct positions of a site

(Mathelier and Wasserman, 2013; Gheorghe et al., 2019). The

simplest alternative, the dinucleotide position weight matrix

(diPWM), took into account the dependencies of adjacent

positions (Zhang and Marr, 1993; Kulakovskiy et al., 2013).

Dependencies of several close positions (“short-range”) were

considered in more complicated “DNA shape” models (Zhou

et al., 2013; Yang et al., 2014; Samee et al., 2019) and Markov

chain models, e.g., BaMM (Siebert and Söding, 2016) and

InMoDe (Eggeling et al., 2017). Application of these models

revealed that BaMM might outperform PWMs (Siebert and

Söding, 2016; Ge et al., 2021; Tsukanov et al., 2021), and

InMoDe might predict TFBS of diverse structure (Eggeling,

2018). There were more general approaches to deduce both

short- and long-range (arbitrary) dependencies within the

motifs (Levitsky et al., 2007; Keilwagen and Grau, 2015). Earlier,

we proposed the model SiteGA (Levitsky et al., 2007), which

applied a genetic algorithm and deduced the discriminant

function of frequencies of locally positioned dinucleotides

within motifs. We experimentally proved the correctness of the

SiteGA predictions for mammalian TFs FOXA2 and SF-1 and

concluded that it might successfully complement traditional

PWM models in ChIP-seq data analysis (Levitsky et al., 2014,

2016). Recently, we proposed the approach MultiDeNA that

combined methodologically different de novo motif models

for ChIP-seq data analysis (Tsukanov et al., 2021). Thus,

we showed that alternative motif models might successively

complement predictions of the standard PWM model.

Obviously, the alternative models might find certain specific

nucleotide contexts besides well-known PWM consensuses in

ChIP-seq data.

Unfortunately, the standard PWM and its alternative

models were not applied systematically to solve the problem

of incomplete recognition of TFBS in ChIP-seq data. Hence,

here we apply MultiDeNA (Tsukanov et al., 2021) both to

deal with the structural heterogeneity of TFBSs and verify a

larger portion of ChIP-seq loci using different motif models.

To test the performance of this approach for plant TFs, we

analyze over a hundred of available ChIP-seq datasets fromGene

Transcription Regulation Database (GTRD) for Arabidopsis

thaliana (Kolmykov et al., 2021). We performed a more detailed

analysis of ChIP-seq datasets for CCA1, MYC2, and SEP3 TFs.
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The first TF CCA1 (CIRCADIAN CLOCK ASSOCIATED1)

from the Myb-like family is a key component of the circadian

clock regulation. CCA1 is able to initiate and set the phase

of clock-controlled rhythms (Nagel et al., 2015). Almost 90%

of Arabidopsis transcripts cycle in at least one condition and

most genes have peak expression at a particular time of day

(Michael et al., 2008). The second TF MYC2 from the basic

helix-loop-helix (bHLH) family is the master regulator of

jasmonates-mediated responses, it activates the expression of

the genes mediating plant defense against abiotic and biotic

stress, including the synthesis of glucosinolates, terpenoids, and

other specialized metabolites; MYC2 also plays a role in multiple

developmental processes (Kazan and Manners, 2013; Schweizer

et al., 2013). Jasmonates are plant hormones that regulate plant

growth and development (Howe et al., 2018). The third TF SEP3

(SEPALLATA3) from theMIKC_MADS family is a key regulator

of flower development (Smaczniak et al., 2012). In Arabidopsis,

SEP3 drives the formation of distinct multimeric complexes

important for floral organ identity (Immink et al., 2009).

We have confirmed that nucleotide context patterns

respecting the motif models PWM, BaMM, and SiteGA possess

only the moderate similarity, and various models define distinct

weakly conserved sequences outside of the more conserved

motif cores. Our analysis proposes that while the standard

PWMs describe the position-specific conserved nucleotide

context that is associated with sites of relatively higher

affinity, the alternative models BaMM/SiteGA incorporate many

dependencies of the various positions, which allows these

models to achieve a more accurate representation of low affinity

sites. A combination of methodologically various models takes

into account substantially greater numbers of options for in

vivo TF-DNA interactions; hence, the results of our analysis

supported a notably larger portion of ChIP-seq loci with context-

specific binding events.

2. Materials and methods

2.1. ChIP-seq data and motif models

For the analysis, we used ChIP-seq peak datasets for A.

thaliana from GTRD (https://gtrd.biouml.org; Kolmykov et al.,

2021). We included in the analysis the benchmark collection

of 111 ChIP-seq datasets supported by additional input control

experiments (Supplementary Table 1). For each dataset, we

used in analysis 1,000 top-scoring peaks according to GTRD

annotations of the MACS2 peak caller (Zhang et al., 2008). For

de novo motif search we used the standard motif model PWM

(STREME tool from the MEME suite version 5.4.1, https://

meme-suite.org/meme/doc/download.html; Bailey, 2021), and

two alternative models BaMM (https://github.com/soedinglab/

BaMMmotif2, version 2; Siebert and Söding, 2016) and SiteGA

(SiteGA package https://github.com/parthian-sterlet/sitega and

Supplementary methods; Levitsky et al., 2007).

In de novo motif search, we took ChIP-seq datasets as the

foreground datasets, and we compiled the background datasets

from the randomly chosen sequences from the whole genome.

The fractions of (A+T) nucleotides in the background sequences

respect those in peaks with 1% precision; the foreground and

background sequences possess the same distribution of lengths.

We ensured that any background sequence did not possess

even a partial perfect overlap with any sequence from the

foreground dataset. We included the background generation

program in the SiteGA package (see above). We used the

following values of parameters in this program: (a) the maximal

number of background sequences per one peak, the values 5

(PWM/BaMM) and 10 (SiteGA); in separate tests for three

motif models, we changed this parameter from 1 to 10 and we

confirmed that the performance estimates have remained almost

the same; (b) the total number of attempts to get the background

sequences from the genome per one foreground sequence, the

value 500 (this restriction was required to fasten calculations

for relatively rare peaks with extremely abnormal nucleotide

content). Hence, the exact size of the background dataset several

times exceeded the foreground dataset.

We used the cross-validation procedure to select parameters

of models and to estimate the recognition performance of

models. We selected model parameters within the following

ranges: the motif lengths 8, 12, 16, and 20 bp for all models;

the orders of the Markov model 1, 2, and 3 for BaMM;

and the numbers of locally positioned dinucleotides (LPDs)

40, 60, 80, and 100 for SiteGA. For all other parameters of

PWM STREME, BaMM, and SiteGA models, we applied their

default recommended by developers values. We applied the

2-fold bootstrap cross-validation procedure, alternately using

odd/even ranked peaks for the model training or estimating its

accuracy. For each true positive rate (TPR, a fraction of the

peaks containing at least one predicted motif in the foreground

dataset), we calculated a false positive rate (FPR, a frequency of

the predicted motifs in the background dataset) and drew the

receiver operating characteristic (ROC) curve. To estimate the

recognition performance of a model, we applied the measure

partial area under ROC curve (pAUC). pAUC is defined as the

sum of FPRs values below a certain threshold (McClish, 1989;

Siebert and Söding, 2016). We employed the FPR threshold 1E-

3 since the higher FPRs respected the recognition thresholds

that commonly were not applicable in wide-genome analysis.

We used the criterion of pAUC maximum for parameter

setting for the models. We selected the thresholds for all three

models as described earlier (Levitsky et al., 2019). Briefly, we

defined an exhaustive list of the recognition scores through

the computation of the expected recognition rates (ERRs) as

the probabilities of the site prediction for the whole genome

dataset of 1.5 kb long aligned upstream regions of A. thaliana

protein coding genes. The recognition scores for a model were
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transformed to the uniform scale of ERRs, i.e., we compared

the recognition scores of two distinct models that respected the

same range of ERRs. We estimated each recognition threshold

by a respective value of ERR and applied in analysis the

stringent, medium, and mild thresholds corresponding to ERRs

1E-4, 2.5E-4, and 5E-4. Supplementary Figure 1 illustrates the

parameters setting (the motif length, the number of LPDs) for

the SiteGA model of the ChIP-seq dataset for MYC2 TF.

2.2. Combination of models by
MultiDeNA pipeline

We used the Multiple de novo Analysis (MultiDeNA)

pipeline (https://github.com/ubercomrade/MultiDeNA;

Tsukanov et al., 2021), the software package for integrated

application of distinct de novo motif models for ChIP-seq data

analysis (Supplementary Figure 2). The pipeline takes several

motif models to represent heterogeneous direct binding modes

of a target TF and to achieve peaks classification according to

presence/positioning of structurally distinct TFBS types. The

pipeline includes the steps of accuracy assessment of models,

their parameters estimation, models training, selection of

applied recognition thresholds, scanning of peaks and their

classification according to presence/co-localization of sites of

separate models.

2.3. Statistical analysis

Data analysis and visualization were performed in the

Python 3.8 language package numpy (Harris et al., 2020),

pandas (McKinney, 2010), and matplotlib (Hunter, 2007). We

used the Tomtom motif comparison tool to estimate the

significance of motifs similarity (p-value < 0.05; Gupta et al.,

2007). To apply this tool for a non-PWM motif model, we

aligned its predicted sites and deduced a PWM motif, i.e., a

position frequency matrix. We used the DepLogo R package

(Keilwagen and Grau, 2015; Grau et al., 2019) to compare

the traditional and alternative sequence logos. The alternative

sequence logo visualizes the motif structure with respect to the

dependencies between the sequence positions in predicted BSs.

We applied the threshold of 0.05 for the DepLogo parameter

of the mutual information value. To perform gene ontology

(GO) enrichment analysis, we predicted the sites in the peaks

with the medium thresholds (recognition scores respecting ERR

6 2.5E-4). Next, we mapped the peaks or their predicted sites

within the entire genes and their upstream and downstream

regions of 2,500 bp length. We considered in the analysis

27,206 protein-coding genes from the TAIR10 release of the

A. thaliana genome. GO enrichment analysis was performed

with the R package clusterProfiler (Yu et al., 2012). We used

“biological processes” GO vocabulary only. We retained only

GO terms with significant enrichment, the adjusted p-value of

<0.05 (the significance of enrichment corrected for multiple

testing). For each GO term, we computed the fold enrichment

(see Table 1; Yu et al., 2012; Sherman et al., 2022) as the ratio

between the frequency of predicted genes annotated with a GO

term (Count_Obs+/Total_Obs) to the frequency of all genes

annotated with this GO term (Count_Exp+/Total_Exp). We

used the fold enrichment values to estimate the efficiency of the

motif models in recognition of the genes specific for significantly

enriched GO terms.

3. Results

3.1. Analysis of the benchmark collection
of A. thaliana ChIP-seq datasets

We compiled the benchmark collection of 111 A. thaliana

ChIP-seq datasets for 52 target plant TFs from the GTRD

(Kolmykov et al., 2021; see Supplementary Table 1 and Section

2). To ensure the reliability of this collection, we extracted

known motifs for all target TFs from the CIS-BP database

(Weirauch et al., 2014) and confirmed that for almost all

datasets the known motifs of target TFs were notably enriched

in respective ChIP-seq datasets (see Supplementary Table 1, we

detected the fold enrichment above the thresholds 1 and 1.5

for 109 and 89 ChIP-seq datasets). We performed de novo

motif search with three motif models: PWM (STREME; Bailey,

2021), BaMM (Siebert and Söding, 2016), and SiteGA (see

Supplementary methods; Levitsky et al., 2007).

We computed the distributions of the frequency of predicted

BSs according to the peak quality for PWM, BaMM, and

SiteGA motif models for the benchmark collection of 111 A.

thaliana ChIP-seq datasets, refer to Supplementary Figure 3.

This analysis suggested that (a) the peaks with relatively high and

low quality contained the proportional fractions of predicted BSs

of individual models; (b) the total 1,000 top-scoring peaks, in

general, were quite enough to detect the major structural types

of motifs respecting three models.

For each dataset, we estimated the recognition performance

of the models with the 2-fold cross-validation procedure

and selected the parameters of the models (see Section 2,

Supplementary Table 2). We constructed the ROC curves and

evaluated the performance of the models with the measure

pAUC (see Section 2). Figure 1A compares the distribution

of ROC curves for the benchmark collection for three motif

models. For each model, each value of axis Y for a certain TPR

threshold (axis X) shows the average FPR of all datasets from

the benchmark collection. We suggest that the scale of ERR

values that defines the stringent, medium, and mild recognition

thresholds (see Section 2), almost perfectly respects the scale of

FPRs, that defines the X axis in a ROC curve. We can conclude

that (a) for the stringent thresholds (FPR 6 1E-4), the SiteGA
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TABLE 1 2 × 2 contingency table explaining GO enrichment analysis.

GO term present GO term absent Total

Foreground (genes containing predicted sites of a model) Count_Obs+ Count_Obs Total_Obs

Background (all genes) Count_Exp+ Count_Exp+ Total_Exp

FIGURE 1

Performances of PWM, BaMM, and SiteGA motif recognition models for the benchmark collection of 111 A. thaliana ChIP-seq datasets. (A) ROC

curves for the model’s performance. We applied the bootstrap cross-validation procedure (see Section 2) and computed for each TPR (axis Y),

the average FPRs (axis X) for the benchmark collection. (B) Boxplot distribution of the performance measure pAUC for three models. The

boxplot presents the distributions of the Q1, Q2, and Q3 quartiles of the fractions of the peaks with recognized TFBS. Whiskers below/above the

Q1/Q3 respect the minimum/maximum values if they were located within 1.5 interquartile ranges (IQR = Q3 −Q1) from Q1/Q3, otherwise they are

equal to {Q1 − 1.5 ∗ IQR}/{Q3 + 1.5 ∗ IQR}, respectively. In the latter case, we marked all other points as outliers.

model yields a performance worse than those of PWM/BaMM;

(b) for the medium thresholds (1E-4 < FPR 6 2.5E-4), an

advantage of these two models is smaller, but BaMM is slightly

better than PWM; (c) for the mild thresholds (2.5E-4 < FPR

6 5E-4), three models show similar performance, but BaMM is

only slightly better than SiteGA, and SiteGA is better than PWM;

(d) for extra mild thresholds (5E-4 < FPR 6 1E-3), BaMM

and SiteGA are better than PWM. Figure 1B shows the boxplot

distribution of pAUC values for the benchmark collection. The

BaMM reveals the best pAUC (the median value 7.49E-4), PWM

and SiteGA show themedium andworst thresholds (6.98E-4 and

6.57E-4, respectively). Overall, the performance of the models

depends on the threshold selection: (a) the stringent or medium

thresholds support the performance of the standard PWM or

the alternative BaMM, which incorporates the framework of

PWM, but (b) themild or extramild thresholds engage the better

performance of both alternative models BaMM and SiteGA.

For more detailed analysis, we selected three ChIP-seq

datasets for CCA1, MYC2, and SEP3 TFs (GSM1808452,

GSM3856417, and GSM1279838/GSM1279839, respectively).

We ensured that predicted sites for these three ChIP-seq datasets

for models PWM, BaMM, and SiteGA are significantly similar

(similarity of motifs, p-value < 0.05) to the known motifs for

the target TFs from the CIS-BP database (Weirauch et al., 2014).

Figures 2A–C shows ROC curves for three datasets; Figure 2D

compares the performance measure pAUC for them. Overall, for

three datasets, PWM and BaMM possess almost equal accuracy

superior to that of SiteGA. Despite the SiteGA model possessing

the worst performance among three models in the range of

stringent (FPR 6 1E-4) and medium (1E-4 < FPR 6 2.5E-4)

thresholds, PWM and SiteGAmodels show similar performance

for the mild (2.5E-4 < FPR 6 5E-4) and extra mild (5E-4

< FPR 6 1E-3) thresholds. This result is in good accordance

with the behavior of the ROC curves respecting the benchmark

collection (Figure 1A).

3.2. The motifs of PWM, BaMM, and
SiteGA models show a distinct structure

The computed above estimates for the recognition

performance represent only how well we distinguish between

the functional and non-functional sites. Hence, next, we

enquired whether the different motif models were able to

complement each other, i.e., they represented the sites of

distinct structures. The simplest approach to answer this

question is to compare the traditional sequence logos for the

predicted sites of different models. To visualize these logos

in detail of the estimated binding affinity, for each model, we

compiled the list of predicted BSs in all peaks and sorted them

in the descending order of the model’s recognition score. Next,

we considered the stringent, medium, and mild recognition

scores ranges for ERR6 1E-4, 1E-4< ERR6 2.5E-4, and 2.5E-4
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FIGURE 2

Performances of PWM, BaMM, and SiteGA motif recognition models for three example ChIP-seq datasets. (A–C) Display ROC curves for

datasets of CCA1, MYC2, and SEP3 TFs. We applied the bootstrap cross-validation procedure (see Section 2) and computed for each TPR, (axis

Y) FPR values (axes X). (D) Compares performance estimates pAUC for three models and three datasets.

< ERR 6 5E-4, correspondingly (see Section 2). However, the

traditional sequence logo is unable to represent dependencies

between various positions of predicted BSs. We performed

the visualization of these dependencies with the alternative

sequence logo DepLogo that was recently proposed (Grau et al.,

2019). For a given alignment of sites, this approach classifies

dependencies of nucleotide occurrences in various site positions

in terms of the mutual information values and constructs the

alternative sequence logos depicting these dependencies. The

DepLogo approach partitions the alignment into the subsets

sequentially, according to the strength of position dependencies

(see example in Figure 3). The resulting clasterization shows

these subsets, and within each subset, the co-occurrence of

nucleotides are marked by colored boxes, so that multiple

pairwise dependencies create a common pattern for a given

input alignment of sites. Below all boxes, the traditional

sequence logo explains the nucleotide occurrences for all

positions; above all boxes, the matrix of mutual information

values estimates the interaction strength for all pairs of site

positions.

Supplementary Figure 4 presents the traditional and

alternative sequence logos for PWM, BaMM, and SiteGA motif

models for datasets of CCA1, MYC2, and SEP3 TFs. The PWM

model for all datasets does not show any dependencies. Note

for the PWM model, all triangle matrices do not contain gray

cells, and for all positions, the even vertical stripes respect the

nucleotide conservation of traditional logos shown underneath.

On the contrary, the application of alternative BaMM and

SiteGA models for all datasets reveal the dependency patterns,

though it seems that the SiteGA model shows a higher number

of dependencies. Thus, the SiteGA/BaMM shows gray cells

for three/one datasets, and the absence of a PWM-like pattern

of even vertical stripes is detected for three/one dataset(s),

respectively. Since we observed distinct peculiarities of ROC

curve behavior for PWM, BaMM, and SiteGA models, below

we consider the traditional and alternative logos separately for

predicted BSs of various estimated affinities.

Figure 3 and Supplementary Figures 5, 6 present the

traditional and alternative sequence logos for PWM, BaMM,

and SiteGA motif models for CCA1, MYC2, and SEP3

datasets, and for the stringent, medium, and mild ranges of

the recognition score. The traditional logos confirm that at

least part of the most conserved core sequence of a PWM

(hereinafter, a core) is detected for all TFs, for all models, and

all ranges of the recognition score. For various stringencies,

PWM and, to a slightly lesser extent, BaMM tend to preserve the

same nucleotides within a core. However, for these two models

at the stringent threshold (ERR 6 1E-4), the conservation

of nucleotides within a core (the bigger height of letters in a

traditional logo) is supplemented with more conserved flanks.
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FIGURE 3

Traditional and alternative sequence logos represent the alignments of sites predicted by PWM, BaMM, and SiteGA recognition models for CCA1

TF. Three columns show three models. Three rows show the growth of the recognition score: the bottom, middle, and top rows depict the mild,

medium, and stringent ranges of recognition scores (2.5E-4 < ERR 6 5E-4, 1E-4 < ERR 6 2.5E-4, and ERR 6 1E-4, respectively, see Section 2).

In each of the 3 × 3 cells, the traditional sequence logo is located under the alternative sequence logo (DepLogo, Grau et al., 2019). Above each

alternative logo, the triangle matrix shows the mutual information as a measure of the position interdependency. The dependencies are

visualized as horizontal boxes showing pairs of interacting nucleotides; from the left side of each logo, the total number of BSs (N) is designated.

BaMM and SiteGA divide a core into the conserved and variable

positions. For example, this effect is clearly observed for CCA1

for BaMM (polyT at 3’-flank) and for all TFs for SiteGA.

SiteGA shows the most similar logos to those of PWM for
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the mild recognition scores. While the medium and stringent

recognition scores show less similar patterns to those of PWM.

We interpreted this phenomenon as the capacity of the SiteGA

model to combine two factors: the dependencies of various

positions within a motif, and the motif conservation in terms

of a PWM model (see Supplementary methods, Equation (S1),

the factors E(X) and D(X), respectively). Most probably, for

the high scoring SiteGA BSs the factor of dependencies makes

a greater contribution, than the factor of conservation. Thus,

BaMM and SiteGA models show the motif conservation only

in a part of the cores respecting PWM. While the sequences

flanking these cores do not show notable conservation between

three models for any TF. Overall, the traditional sequence logos

respecting three models for the same TF are only moderately

similar.

The alternative logos, in general, show the reciprocal

patterns to those of the traditional logos (Figure 3;

Supplementary Figures 4–6). Thus, the PWM model for

any threshold is almost completely devoid of any dependencies.

BaMM at the stringent threshold also does not show any

dependencies, a small number of dependencies arise at the

medium threshold, and their amount is moderately increased

at the mild threshold. The SiteGA model revealed substantially

higher various dependencies for all thresholds compared

to BaMM. Notably, for the SiteGA model, the patterns of

mutually dependent positions estimated through the triangle

matrices of the mutual information values are moderately

similar for various ranges of recognition scores. Concluding, the

DepLogo visualization explains why the BaMM and especially

the SiteGA model may lose the conservation in terms of the

traditional sequence logo, but at the same time, these alternative

models may provide complementary predictions to that of

the PWM model. Moreover, additional information on the

interdependencies of various positions explains why BaMM and

SiteGA models successively compete with PWM in recognition

performance, especially in the range of FPR respecting mild

and extra mild recognition thresholds (2.5E-4 < FPR < 1E-3,

Figure 1A). The massive analysis of the benchmark collection

confirmed that the PWM detects only a limited number of

position dependencies, the BaMM shows a substantially higher

number of dependencies, and the SiteGA model detects the

dependencies almost for all datasets; the median values for the

benchmark collection are 0, 2, and 11 for PWM, BaMM, and

SiteGA, respectively (see Supplementary Table 3).

Next, we studied the pairwise similarity of the motif

models in terms of their recognition scores. We considered

three possible combinations of the models, BaMM/PWM,

SiteGA/PWM, and SiteGA/BaMM. We converted the

recognition scores of each model to the scale of ERR (see

Section 2). For each combination of two models, we compiled

the list of hits supported by these two models; the term “hit”

implies the overlapping of BSs predicted by two distinct

models. Supplementary Figure 7 shows the heatmaps for the

abundances of the hits possessing the recognition scores for

various pairwise combinations of the models. Clearly, the

combination BaMM/PWM showed a better match compared

to those of SiteGA/PWM and SiteGA/BaMM combinations.

But even for the PWM/BaMM case, for CCA1 and MYC2, the

major portion of the hits lies outside the diagonal line, i.e.,

a certain recognition score of the PWM model respects the

greater or lesser one of the BaMM. Moreover, the combinations

SiteGA/PWM, and SiteGA/BaMM showed matches of moderate

quality. Concluding, the pairwise comparisons of recognition

scores of PWM, BaMM, and SiteGA models suggest that these

models provide only moderately similar scoring of BSs.

3.3. Combined application of PWM,
BaMM, and SiteGA models

We have demonstrated above that the motifs predicted by

PWM, BaMM, and SiteGA models possess a distinct structure

in terms of traditional and alternative logos, we can expect

that the fractions of recognized peaks for various models are

overlapped only partially. In this section, we test whether

the combined application of three models respects higher

portions of recognized peaks, compared to the application of

individual models.

Figure 4 for the benchmark collection of ChIP-seq datasets

for stringent, medium, andmild recognition thresholds compare

the distributions of fractions of the peaks with TFBS predicted

by individual models with those computed by the combined

application of three models. It suggests that at the stringent

threshold (a) the fractions of peaks with PWM and BaMM BSs

are very similar, (b) the fraction of peaks with SiteGABSs is more

than twice less (the median values for PWM, BaMM and SiteGA

are 43.4%, 47.1%, and 20%, respectively). However, compared to

PWM/BaMM, the SiteGAmodel shows the most notable growth

in the fraction of peaks in the transition from the stringent to

the medium threshold (medians rise to 61.7, 65.9, and 40.8%)

and from the medium to the mild threshold (74.9, 79.1, and

61.4%). This means that (a) the majority of PWM hits possess

“high conservation,” while the majority of SiteGA hits show “low

conservation”; (b) BaMM BSs most probably are ambiguous; for

the stringent/medium thresholds, they are similar to those of

PWM; while for the mild threshold, BaMMpredicts distinct ‘low

conservation’ hits associated with the dependencies of positions.

Regardless of the threshold selection, the combined

application of three models adds about 15% to a model

with the maximal fraction of recognized peaks (15.9, 14.7,

and 13.8% for the stringent, medium and mild thresholds,

respectively, Figure 4). Next, we considered the background

datasets, i.e., those that are opposite to the foreground datasets

(ChIP-seq peaks) in the training of models (see Section

2, Supplementary methods). The analysis of the respective
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collection of the background datasets (Supplementary Figure 8)

confirmed that the fractions of individual models and those for

the combined application of three models were substantially less

than those for the foreground datasets.

Figure 5 depicts the Venn diagrams for the classification

of peaks predicted by only individual models, and certain

combinations of two, or three models. It can be concluded that

(a) the overwhelmingmajority of the peaks containing either hits

of PWM or BaMMmodels possessed hits of both models; (b) for

pairwise combinations, PWM/SiteGA and BaMM/SiteGA, i.e.,

if we considered the fractions of peaks containing the hits of

SiteGA, then about a third of these fractions respected prediction

of the sole SiteGAmodel. Concluding, the combined application

of standard and alternative models extended the portions of

predicted peaks compared to those predicted by any single

model. Alternative motif models BaMM and SiteGA detected

the prominent portions of the peaks that were not detected by

the standard PWM.

Next, since the large fractions of peaks contained the hits

of at least two models, we estimated how often the presence of

hits of two distinct models in a peak implied the overlapping

of their positions. We studied three pairwise combinations

of models PWM/BaMM, PWM/SiteGA, and BaMM/SiteGA.

We measured the fractions of peaks with the hits predicted

FIGURE 4

Comparison of application of PWM, BaMM, and SiteGA motif models and their combination for the benchmark collection of ChIP-seq datasets.

(A–C) Show boxplots computed with the stringent, medium, and mild thresholds (recognition scores respecting ERR 6 1E-4, ERR 6 2.5E-4, and

ERR 6 5E-4). Each boxplot shows the distribution of the fractions of peaks containing the BSs predicted by individual models, and the fraction of

peaks containing the BSs predicted by at least one model out of three (white boxes “All”). Red, blue, and yellow columns mark PWM, BaMM, and

SiteGA models, respectively. The boxplot presents the distributions of the Q1, Q2, and Q3 quartiles of the fractions of the peaks with recognized

TFBS. Whiskers below/above the Q1/Q3 respect the minimum/maximum values if they were located within 1.5 interquartile ranges

(IQR = Q3 − Q1) from Q1/Q3, otherwise they are equal to {Q1 − 1.5 ∗ IQR}/{Q3 + 1.5 ∗ IQR}, respectively. In the latter case, we marked all other

points as outliers.

FIGURE 5

Venn diagrams for overlaps between the fractions of peaks containing the BSs predicted by three di�erent models. (A–C) Show CCA1, MYC2,

and SEP3 datasets, respectively. Numbers denote the number of peaks. Totally, each dataset consists of 1,000 peaks. The analysis was

performed with the medium thresholds (recognition scores respecting ERR 6 2.5E-4).
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by individual models and divided the fractions of peaks

with the hits predicted by two models on two subfractions

with present/absent overlapping of the hits positions. Figure 6;

Supplementary Figure 9 show the results of this classification for

ChIP-seq datasets for CCA1,MYC2, and SEP3. Obviously, in the

case of PWM/BaMM, the presence of the hits of these models

in a peak almost always meant an overlapping of the hits. On

the contrary, in the cases of PWM/SiteGA and BaMM/SiteGA,

the fractions containing the hits predicted by two models were

almost equally divided between overlapped and non-overlapped

subfractions.

3.4. GO analysis

To perform GO enrichment analysis for predicted TFBS

hits of three recognition models, we mapped the peaks to A.

thaliana genes and predicted within the peaks BSs (see Section

2). Thereafter, we detected the lists of GO terms for biological

processes enriched in the gene lists for all peaks, and for

their TFBS predicted by PWM, BaMM, or SiteGA models (see

Supplementary Tables 4–6). In particular, for each GO term,

we computed the significance of enrichment (adjusted p-value,

p_adj) and the fold enrichment (see Table 1 and Section 2).

Supplementary Figures 10–12 display the significantly

enriched GO terms for CCA1, MYC2, and SEP3 datasets.

Among the top-ranked terms for the CCA dataset for three

models, we found the terms “circadian rhythm,” “rhythmic

process,” and “response to cold.” Concerning MYC2, about half

of the top-ranked GO terms correspond to all peaks and three

models (e.g., “response to wounding,” “response to jasmonic

acid,” and “response to fatty acid”), but almost all the rest half is

detected only for the SiteGA model. The top-ranked GO terms

for SEP3 “flower development,” “floral organ development” also

respect all peaks and three models. Some less significant GO

terms show the significance only for one model. For CCA1,

MYC2, and SEP3 datasets 1/16/0, 2/7/16, and 13/20/15 terms

were specifically detected for PWM/BaMM/SiteGA outputs,

respectively (Supplementary Tables 4–6). This proposes that

BSs of the alternative models correspond to specific biological

functions of genes. Notably, earlier we already observed the

specificity of predictions of the SiteGA model for ChIP-

seq data of human SF-1 TF, these BSs had a visible trend

to GO terms related to negative regulation and apoptosis

(Levitsky et al., 2016).

We found that for the overwhelming majority of the

significant GO terms (p_adj < 0.05, Supplementary Tables 4–6),

the SiteGA model possesses higher fold enrichments compared

to those of other models. For example, for CCA1, MYC2, and

SEP3 datasets, the corresponding first ranking terms “circadian

rhythm,” “response to wounding,” and “flower development”

show for the PWM/BaMM/SiteGAmodels the fold enrichments

4.42/4.46/5.56, 4.79/4.38/5.25, and 3.60/3.44/5.29, respectively.

We included in the analysis all GO terms with significant

FIGURE 6

Classification of peaks from the CCA1 dataset taking into

account the presence of the BSs and the overlaps of their

positions. Three pie charts show pairwise combinations of

PWM/BaMM, PWM/SiteGA, and BaMM/SiteGA models. Red, blue,

and yellow sectors mark the fractions of peaks recognized by

only one model in pairs (PWM, BaMM, and SiteGA, respectively).

Black/olive sectors denote the fractions of peaks recognized by

two models with/without overlapping hits. The white color

means that the hits of both models are absent. The analysis was

performed with the medium thresholds (recognition scores

respecting ERR 6 2.5E-4).

enrichment for any of three motif models; this yielded 9, 27, and

58 GO terms for CCA1, MYC2, and SEP3 datasets, respectively

(p_adj < 0.05, see Supplementary Tables 4–6). The scatterplots

in Figure 7 depict the pairwise comparisons of the models

BaMM/PWM, SiteGA/PWM, and SiteGA/BaMM in the fold

enrichments for these commonly detected significant GO terms.

In the pairs of models, SiteGA/PWM and SiteGA/BaMM, the

SiteGA model has the higher/lower fold enrichments in 9/1 and

10/0 GO terms for CCA1, 26/1 and 27/0 for MYC 2, 57/3 and

60/1 for SEP3. A ratio between the fold enrichments of two

models (Figure 7) estimates the efficiency of their application

for the prediction of the genes with a specific GO term since

for these two models the frequency of all genes annotated with

this GO term is the same (see Table 1). The higher efficiency of

the SiteGAmodel compared to those of other motif models may

reflect both (a) more accurate predictions in the genes that are

also predicted by PWM/BaMMmodels and (b) the extension of

the SiteGA predictions to the genes lacking the predicted sites

of other models. Separately for each dataset and for three motif

models, we considered all genes and all significant GO terms

(p_adj < 0.05, see Supplementary Tables 4–6). The classification

of these genes (Figure 8) suggests that both alternative motif

models substantially extend the predictions of the traditional

PWM model in the genes supported by significantly enriched

GO terms.
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FIGURE 7

E�ciency of PWM, BaMM, and SiteGA models in terms of the portions of genes with the significantly enriched GO terms among all genes with

predicted sites. (A–C) Show CCA1, MYC2, and SEP3 datasets, respectively. Axes in all scatterplots imply the fold enrichment respecting the

predictions of models (see Table 1 and Section 2). For each dataset, we included in analysis the same set of the GO terms; each GO term

possessed the significance of enrichment (p_adj < 0.05) for three motif models simultaneously.

Overall, GO analysis confirms that the combined application

of traditional and alternative models considerably extend the

prediction of BSs in the genes possessing the significantly

enriched annotations of the biological processes.

4. Discussion

Gene expression regulation is the main function of TFs

carried out through their binding to genomic DNA. One of the
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FIGURE 8

Venn diagrams for overlaps between the number of genes containing the sites predicted by PWM, BaMM, and SiteGA motif models and

supported by the significantly enriched GO terms. (A–C) Show CCA1, MYC2, and SEP3 datasets. For each dataset, we included in the analysis

the same set of the GO terms; each GO term possessed the significance of enrichment (p_adj < 0.05) for three motif models simultaneously.

important tasks of modern molecular biology is to identify these

binding sites, TFBSs. ChIP-seq is a widely applied experimental

technique to deduce the genome-wide sequence specificity of

TF binding in various cell/tissue types. The popular approach

to find out the genome-wide TFBS nucleotide context specificity

are as follows: (a) to use ChIP-seq peaks for consequent de novo

motif search and (b) to model in this search TFBS by a PWM

(Lloyd and Bao, 2019; Ma et al., 2019). This approach verifies

the reliable motifs of the target TFs for only a part of ChIP-

seq peaks (Hunt et al., 2014). We propose that the rationale

to this discrepancy comes from the structural heterogeneity

of TFBSs (Kim et al., 1995; Merkulov and Merkulova, 2009;

Omelina et al., 2011; Mitra et al., 2018; Morgunova et al., 2018;

Chen et al., 2019; Rogers et al., 2019). Earlier we proved that

for two mammalian TFs, FOXA2 and SF1, combinations of

several recognition models based on different principles allowed

to increase the portion of peaks containing predicted sites

compared to the application of the sole PWM models (Levitsky

et al., 2014, 2016). In particular, the integration of PWM/diPWM

(ChIPMunk/diChIPMunk) models (Kulakovskiy et al., 2010,

2013) and the SiteGA model (Levitsky et al., 2007) allowed the

identification of FOXA2 sites in up to 90% of the ChIP-seq loci

(Levitsky et al., 2014). Notably, there was no literature data on

the indirect interaction of FOXA2 TF with DNA.

Recently, we developed the MultiDeNA approach to

combine and uniformly apply distinct de novo motif models for

ChIP-seq data analysis (Tsukanov et al., 2021). We approved this

approach for 22 ChIP-seq datasets of mammalian TF FOXA2

and considered PWM, diPWM, BaMM, and InMode TFBS

models. On average, we confirmed potential TFBS in about

74% of peaks, while the sole PWM model verified only 47% of

them.We believe that a combination of several methodologically

distinct motif models to deduce TFBS nucleotide context

specificity from ChIP-seq data may extend the fraction of

verified ChIP-seq peaks. This extension is a consequence of

various mechanisms of TF-DNA interaction, e.g., including

cooperative binding with other TFs (Slattery et al., 2014;

Morgunova and Taipale, 2017).

In the current study, we compiled the benchmark

collection of 111 ChIP-seq datasets for TFs from A. thaliana

(Supplementary Table 1). We approved the reliability of this

collection with known motifs for target TFs, a few datasets with

missing enrichment of target TF’s motifs may be explained

either by the tethering (indirect DNA binding; Yu et al.,

2021), co-binding with partner TFs (Levitsky et al., 2020;

Yu et al., 2021) since we took into analysis the first ranking

motif from each model or available experimental data (in most

cases in vitro) on particular TFs still were not complete to

describe in vivo DNA affinity (see column “Motif Source” in

Supplementary Table 1).

We applied three methodologically different motif models

to plant ChIP-seq data. The first model is PWM in the

STREME implementation (Bailey, 2021). PWM is the most

popular and conventional TFBS model used in ChIP-seq data

analysis. The second model BaMM applies the framework

of PWM, i.e., independent contributions from site positions

to the total binding affinity, and extends them with impacts

of dependencies between close positions (Siebert and Söding,

2016). The third model SiteGA is developed independently from

the PWM, it deduces the set of most important locally positioned

dinucleotides with mutual dependencies within potential sites

(Levitsky et al., 2007; see also Supplementary methods).

Comparisons of the ROCs curves for PWM, BaMM, and

SiteGA models computed for the benchmark collection of 111

ChIP-seq datasets (Figure 1A), and those for three example

datasets (Figures 2A–C) suggest that PWM and BaMM show a

better performance for the stringent and medium thresholds,

while BaMM and SiteGA show a better performance for the

mild and extra mild thresholds.Wemay interpret this as follows.

The BaMM framework incorporates the standard PWM model.

If for the stringent and medium thresholds the hypothesis of

position independence is justified, then (a) the impacts to the
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total recognition score of BaMM from the dependent positions

are too small compared to those from independent positions,

i.e., BaMM and PWM provide similar results and (b) the

recognition performance of the SiteGA model is bad since

this model does not use the framework of the PWM model

directly as BaMM does. With regard to the mild and extra mild

thresholds, the PWM model compiles less frequent nucleotides

even within the core consensus; the transition to milder

thresholds most probably destroys the occurrence of nucleotides

within the most conserved positions of a core consensus.

Hence, a negative influence on the total recognition score of

these minor nucleotides within the core consensus probably

is better compensated through multiple dependencies between

positions. These dependencies are involved in alternative

BaMM/SiteGA models, but they are totally absent in the

standard PWM. Consequently, for the mild and extra mild

thresholds, the PWM allows changing nucleotides in a

certain position according only to respective weights in a

column of matrix (i.e., independently from other positions),

while this mutation process for the BaMM/SiteGA models

are restricted by certain dependencies of this position with

other positions.

Our results on visualization of TFBS with estimated

high, medium, and low affinities with the traditional and

alternative logos indicate that PWM, BaMM, and SiteGA

models provide distinct structures of TFBS. While the

popular PWM model reveals only the context pattern of

the canonical consensus, and, respectively, the predicted BSs

show strict consensuses at the stringent threshold, and this

pattern is gradually blurred at the mild threshold (Figure 3;

Supplementary Figures 5, 6). The dependency logos for the

PWM models for the ChIP-seq datasets of CCA1, MYC2, and

SEP3 TFs are almost completely devoid of the dependencies

between the occurrences of nucleotides in different positions

(Figure 3; Supplementary Figures 4–6). The BaMM shows a

moderate number of dependencies, and the SiteGA model

shows the highest results (BaMM exceeds PWM, and SiteGA

exceeds BaMM for about 70 and 95% of all the datasets,

see Supplementary Table 3). For any threshold, and for all

three TFs, the SiteGA model shows the mosaic pattern in the

dependency logo. This pattern reflects a number of various

dependencies between the nucleotide occurrences in different

positions. Thus, the visualization of BSs predicted by the

PWM, BaMM, and SiteGAmodels with the traditional sequence

logo and the dependency logo suggests that these models

provide mutually complementary results. While the canonical

PWM reveals the canonical consensus but ignores possible

interaction of positions; the alternative BaMM model extends

the traditional model and uses its framework to incorporate

the dependencies of positions. The SiteGA model preserves

only the main frame of the traditional consensus, but this

model deduces the integrated pattern of mutually dependent

dependencies of locally positioned nucleotide contexts within a

predicted motif. The dependency logo supports the considerable

advance of alternative BaMM and SiteGA models in explaining

the “non-canonical” TF binding in vivo. The results of the

analysis of predicted BSs with the traditional sequence logo and

the dependency logo are in good accordance with many recent

studies. The analysis of A. thaliana MYC2 in vivo and in vitro

genomic binding data (López-Vidriero et al., 2021) confirmed

that a particular nucleotide composition of flanking sequences

for MYC2 binding sites is necessary for MYC2 binding. Another

study (Käppel et al., 2021) found several diverse core binding

sites of A. thaliana SEP3 (SEPALLATA3) TF in vitro. However,

the different cores could act as SEP3 binding sites, preferred

AT-rich flanking motifs were almost always the same.

Pairwise comparison of recognition scores of PWM, BaMM,

and SiteGA models revealed the moderately similar estimated

affinity for PWM/BaMM, while the scores for PWM/SiteGA

and BaMM/SiteGA pairs show more diverse estimated

affinities (Supplementary Figure 7). We propose the following

explanation for these results. The BaMM methodologically

extends PWM, while the SiteGA is an independent model

from PWM.

Next, we enquired whether PWM, BaMM, and SiteGA

models provide almost complete verification of TFBS in peaks.

A comparison of the application of individual models and

their combinations for the benchmark collection of ChIP-

seq datasets confirmed that almost half of ChIP-seq data

contain the conserved consensuses (Figure 4). For the stringent

threshold, the fraction with recognized SiteGA BSs is too

small compared to those of PWM/BaMM (20 vs. 43.4/47.1%).

The transition from the stringent to the medium threshold

shows that the additions of all the models are similar (the

median increases to 18.3, 18.8, and 20.8% for PWM, BaMM,

and SiteGA, respectively). Note that SiteGA shows the greatest

increment, and BaMM slightly exceeds PWM. The transition

from the medium to the mild threshold indicates that the

additions of SiteGA are notably larger than those for other

models (13.2, 13.2, and 20.6% for PWM, BaMM, and SiteGA,

respectively). Hence, PWM representation (i.e., conventional

conserved consensus) is more accurate for the stringent and

medium thresholds, while BaMM/SiteGA models that take

into account the position dependencies provide the greater

additions for the mild threshold. Notably, the model SiteGA

that takes into account arbitrary dependencies shows the

greatest addition for the transition from the medium to

the mild threshold. To discuss the analysis of the Venn

diagrams, we consider the fractions of the peaks containing

the predictions of an individual model among all the peaks

predicted by this model. We may conclude that for all three

tested TFs (Figure 5), these fractions are notably smaller for

PWM and BaMM than those for the SiteGA model. Hence,

the SiteGA model is able to recognize potential sites of

diverse structures compared to those of PWM and BaMM.

This conclusion is additionally supported by the classification
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of the peaks of three datasets taking into account the

presence of BSs and the overlaps of their positions (Figure 6;

Supplementary Figure 9).

Finally, the GO enrichment analysis for CCA1,

MYC2, and SEP3 datasets (Supplementary Figures 10–12;

Supplementary Tables 4–6) confirms the consistency of the

previous conclusions. Though the most significant GO terms

are the same for PWM, BaMM, and SiteGA models, the

alternative BaMM/SiteGA models predict sites of the diverse

structure relative to those predicted by PWM since these models

possess additional specific significant GO terms. Finally, we

performed the analysis of the fold enrichments, respecting

the significantly enriched GO terms commonly detected by

all models (see Section 2; Table 1; Supplementary Tables 4–6).

SiteGA systematically demonstrated the higher fold enrichments

compared to those of PWM and BaMM (Figure 7). Hence,

among the three motif models, the SiteGA had the highest

ratios between the number of predicted genes possessing

the significantly enriched GO terms and the total number

of predicted genes. The classification of these genes for

the PWM, BaMM, and SiteGA models (Figure 8) suggests

that the higher fold enrichment of the SiteGA model is

the result of extending its predictions to genes without the

predictions of other models. The extensions in the number

of genes respecting two alternative models BaMM/SiteGA,

compared to that respecting PWM, are relatively small

for the CCA1 dataset (5 and 5/2 genes are specific for

individual models PWM and BaMM/SiteGA, Figure 8A),

but these extensions are distinctly seen for MYC2 and SEP3

datasets (Figures 8B,C). This conclusion is confirmed by the

respective analysis of peaks (for CCA1 only 37 and 50/44

peaks are specific for individual models, Figure 5). Possibly,

the higher abundance of the predicted non-canonical BSs

for MYC2/SEP3 TFs compared to that for CCA1 TF, is

explained by the specific biological functions of these TFs.

Thus, the first ranking significant GO terms “circadian

rhythm,” “response to wounding,” and “flower development”

that are detected, respectively, for CCA1, MYC2, and SEP3

datasets (Supplementary Tables 4–6) argue that the CCA1

TF is directly related to the housekeeping functions, while

MYC2/SEP2 TFs are more prone to the condition/tissue

specific functions.

We considered the benchmark collection of 111 ChIP-seq

datasets for A. thaliana TFs. The analysis of enrichment of

the known motifs for target TFs confirmed the consistency

of this collection. To recognize motifs of target TFs, we

applied three methodologically distinct motif models: the

traditional PWM neglecting dependencies between nucleotide

occurrences in various positions, and its alternatives BaMM, and

SiteGA permitting dependencies within the close and arbitrary

positions, respectively. Noteworthy, the BaMM extended the

PWM approach, while SiteGA was developed independently

from the PWM approach. We performed the bootstrap

cross-validation procedure that selected the parameters of

models and compared their recognition performance. We

assessed that PWM and BaMM models showed the superior

performance for the stringent and medium threshold, while

SiteGA and BaMM models reached the superior performance

for the mild and extra mild thresholds. We selected for further

detailed analysis three ChIP-seq datasets for CCA1, MYC2, and

SEP3 TFs. The visualization of BSs respecting various predicted

affinities for three models with the traditional logos suggested

that the transition from stringent to mild thresholds led to

the gradual destruction of a PWM consensus approximately

equal in all positions, while the alternative BaMM and SiteGA

models distinguished more and less conserved positions within

a consensus. We believe that these less conserved positions

reflect their dependencies with other positions. The visualization

by the dependency logo provided direct evidence that BaMM

and SiteGA models deduced the specific patterns of mutually

dependent nucleotide occurrences almost completely invisible

with a traditional sequence logo. Notably, the dependency

logo also proved that such dependencies were substantially

weaker or they were found at a much lower frequency in

potential BSs of the PWMs. The analysis of the changes

in the fractions of peaks with predicted BSs depending on

the recognition threshold for the whole benchmark collection

proposed that PWM BSs were clearly detected already for

the stringent and medium thresholds; the transition from

them to milder ones showed greater impacts of alternative

models compared to those of PWMs. Hence, the traditional

PWM model deduces a canonical motif of high affinity for

a target TF. More advanced BaMM/SiteGA models further

specify this motif, and this specification is clearer for BSs

of low affinity. Finally, GO enrichment analysis confirmed

that alternative models may notably extend predictions of

PWM in the genes possessing the inherent significant GO

terms of the target TFs. For CCA1 and MYC2/SEP3 TFs,

which have predominant housekeeping and condition/tissue

specific biological functions, we found a lower and higher

abundance of predicted binding sites specific for alternative

motif models, both in peaks and in genes supported by

the significantly enriched GO terms. Overall, the combined

application of the traditional PWM and the alternative

methodologically diverse BaMM and SiteGA models respect

various TF-DNA interaction options in vivo, therefore, our

approach notably extends a pool of context-specific TFBS

in ChIP-seq data.
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