

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Computer Vision and explainable
Reinforcement Learning applied to a self-

driving following car

Rafael de Jesus Guedes

DISSERTATION

MASTER THESIS

Advisor: António Pedro de Aguiar

09/09/2022

© Rafael de Jesus Guedes, 2022

Computer Vision and explainable Reinforcement Learning
applied to a self-driving following car

Rafael de Jesus Guedes

Master Thesis

09/09/2022

Abstract

 The interest in Reinforcement Learning has been growing over the last few years since it

gives the opportunity to create agents capable of learning complex tasks by themselves without

the necessity of being hard coded. This is possible because the training of these agents is performed

with interactions with simulators that tend to look like real world environments. For some less

complex tasks, the agents can, also, be developed in real world controlled environments. By

interacting with the environment, the agent starts learning what should be performed in order to

accomplish a goal based only on the environment perceived and the possible action it can take. In

that way, one does not need to think about every possible state that the environment can have

because the agent will learn how to act in every situation if it trains long enough.

 Scaling Reinforcement Learning principles to self-driving car is an active and huge area of

research with many challenges still to be tackled. One of the main challenges, apart from ethic

related issues, is the ability to have one car being driven by a human being (leader) and another

car following the behavior of the leader without any human intervention. This represents a huge

opportunity for supply chain of many companies and for human transportation companies in the

sense that these companies can transport twice (or more) goods or people with only one driver.

 As mentioned, ethic is a hot topic within the Artificial Intelligence area nowadays because

the reasoning behind the decisions taken by the algorithms must be explained and well understood.

Also, backup plans must be put into action when the decision is abnormal and can negatively

impact people’s lives.

 Motivated by the above, this dissertation proposes a Proximal Policy Optimization

architecture in a simulated environment for an agent capable of following another car from one

point to another using only computer vision, while avoiding crashing to the car leader and keeping

approximately the same safe distance from the car leader. To cope with the ethic area, this

dissertation will use hard constraints to avoid abnormal decisions from the agent when facing

unseen situations and SHAP values to analyze and understand the impact of each environment

characteristic on the predicted value.

Contents

Introduction ... 1

1.1 Context and Motivation .. 2

1.2 Objectives and Contributions .. 4

1.2.1 Task ... 5

1.2.2 Method .. 5

1.2.3 Metrics .. 6

1.2.4 Methodology ... 7

1.3 Organization of the Dissertation .. 10

Literature Review ... 11

2.1 RL Methods ... 11

2.1.1 Model-Free ... 12

2.1.2 Model-Based .. 24

2.2 Deep Learning and Computer Vision ... 27

2.2.1 Artificial Neural Networks .. 27

2.2.2 Convolutional Neural Networks .. 29

2.2.3 Transfer Learning ... 31

2.2.4 Image Segmentation ... 32

2.3 Safety .. 33

2.4 Explain Ability .. 34

2.5 Computer Vision and Reinforcement Learning in Self-Driving Cars and Platooning

vehicles ... 37

Reinforcement Learning .. 42

3.1 Proximal Policy Optimization .. 42

Computer Vision ... 47

4.1 Xception ... 47

PPO and Xception for Platooning Vehicles .. 53

5.1 Implementation ... 53

5.1.1 Problem Statement ... 53

5.1.2 Segmentation Camera .. 54

5.1.3 Xception ... 57

5.1.3.1 Network ... 57

5.1.3.2 Dataset ... 59

5.1.3.3 Training ... 61

5.1.3.4 Results ... 63

5.1.4 PPO Architectures .. 63

5.1.4.1 Steer Agent .. 64

5.1.4.1.1 State .. 64

5.1.4.1.2 Actions ... 65

5.1.4.1.3 Reward Function .. 66

5.1.4.1.4 Terminal State .. 66

5.1.4.1.5 Network Architecture ... 67

5.1.4.1.6 Training Results ... 68

5.1.4.1.7 Explain Ability ... 69

5.1.4.2 Throttle/Break Agent .. 70

5.1.4.2.1 State .. 70

5.1.4.2.2 Actions ... 71

5.1.4.2.3 Reward Function .. 71

5.1.4.2.4 Terminal State .. 72

5.1.4.2.5 Network Architecture ... 72

5.1.4.2.6 Training Results ... 73

5.1.4.2.7 Explain Ability ... 74

5.1.4.3 Both Agents .. 76

5.1.4.3.1 Training Results ... 76

5.1.5 Test results ... 77

Conclusion ... 79

References .. 81

List of Figures

Figure 1 – Representation of the interaction between the agent and the environment. Source: [53]

... 2

Figure 2 - Example of Platooning Trucks ... 3

Figure 3 – CARLA Source: https://carla.org/ ... 8

Figure 4 - Different environment conditions present in CARLA Source: [8] 9

Figure 5 – This plot is design to display an information-dense summary of how the top features in

a dataset impact the model’s output. Each instance the given explanation is represented by a single

dot on each feature. ... 10

Figure 6 - Different RL models developed Source:

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html ... 12

Figure 7 - Three possible options to implement Model-Free ... 13

Figure 8- A typical Actor-critic architecture. Source:

http://incompleteideas.net/book/first/ebook/node66.html .. 21

Figure 9 – Source: https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-

3c2b6f0aa323 .. 24

Figure 10 - Model Based flow Source: https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-

into-reinforcement-learning.html .. 25

Figure 11 - Convolution Operation using a 3x3 kernel on an input image 5x5 Source:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-

eli5-way-3bd2b1164a53 ... 30

Figure 12 - Pooling Operation using a filter 3x3 Source: https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 30

Figure 13 – Example of a CNN to classify the hand written digit in an image Source:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-

eli5-way-3bd2b1164a53 ... 31

Figure 14 - Encoder-Decoder architecture for image segmentation Source: [3] 33

Figure 15 – This image represents the power set of a dataset where the goal is to predict salary

based on 3 features (gender, job and age) which has 8 different predictive models with a set of

different features used in each model so that SHAP can estimate the impact of each feature in the

prediction of one single observation. Source: https://towardsdatascience.com/shap-explained-the-

way-i-wish-someone-explained-it-to-me-ab81cc69ef30 .. 35

Figure 16 – Weights associated to each model where ‘age’ is presented. Source:

https://towardsdatascience.com/shap-explained-the-way-i-wish-someone-explained-it-to-me-

ab81cc69ef30 .. 36

Figure 17 – Analysis of the impact of each feature in the predicted value of a particular observation.

... 37

Figure 18 - The state is processed by two dense layers of each 200 ReLu activations, while the

perception map is based on two convolutions with max polling in between, the first layer has 30

nodes and the second has 1 node. Then they flatten and process the data in a dense layer of 200

ReLU activations. Finally, they concatenate the outcome of both inputs and pass through a last

200 ReLu layer. ... 38

Figure 19 - Model architecture ... 39

Figure 20 - Communication process among agents .. 40

Figure 21 - Map where the agent was trained ... 41

Figure 22 – Shows how different loss functions would linearly interpolate the old policy (𝜃𝑜𝑙𝑑) to

the new policy (𝜃). It is noticeable that 𝐿𝐶𝐿𝐼𝑃 tends to 0 as the new policy diverges more from

the old policy. Source: [44]. ... 44

Figure 23 - Plots showing one term (i.e., a single timestep) of the surrogate function LCLIP as a

function of the probability ratio r, for positive advantages (left) and negative advantages (right).

The red circle on each plot shows the starting point for the optimization, i.e., r = 1. Source: [44]

... 45

Figure 24 – PPO algorithm. Source: [44] ... 46

Figure 25 - Simplified Inception Module. Source: [6] ... 48

Figure 26 - A strictly equivalent reformulation of the simplified Inception module. Source: [6] 48

Figure 27 - An “extreme” version of our Inception module, with one spatial convolution per output

channel of the 1x1 convolution. Source: [6] ... 49

Figure 28 - The Xception architecture: the data first goes through the entry flow, then through the

middle flow which is repeated eight times, and finally through the exit flow. Note that all

Convolution and SeparableConvolution layers are followed by batch normalization [22] (not

included in the diagram). All SeparableConvolution layers use a depth multiplier of 1 (no depth

expansion). Source: [6] ... 50

Figure 29 - The effect of non-linearity presence between depthwise and pointwise operations.

Source: [6] ... 51

Figure 30 - Impact of residuals on accuracy in Xception architecture. Source: [6] 52

Figure 31 - Example of segmented images collected to train Xception 60

Figure 32 - Distance Distribution with most of the values between 8 and 10 because it was the

range where the agent would get positive rewards (this will be explained later). 60

Figure 33 - Boxplot with percentile 25% on 6.35, median on 8.36 and percentile 75% on 8.44 . 61

Figure 34 - Loss Evolution ... 62

Figure 35 - Error distribution in the test set .. 63

Figure 36 - Process of extracting the state representation for the agent responsible for the steer 65

Figure 37 - Steer Agent Architecture. ... 67

Figure 38 - Cumulative steer reward per episodes (M2) .. 68

Figure 39 – SHAP values of each possible action. ... 70

Figure 40 - Predicting distance with Xception ... 71

Figure 41 – Throttle/Break Agent Architecture .. 73

Figure 42 - Cumulative throttle/break reward per episodes (M1) .. 74

Figure 43 – SHAP values for the throttle/break actions ... 75

Figure 44 - Image retrieved by our agent's camera in CARLA .. 76

Figure 45 - Quantity of Actions per episode (M4) ... 77

List of Tables
Table 1 - Mapping between tags and objects Source:

https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-segmentation-camera 54

Table 2 - Available Models in Tensorflow Source: https://keras.io/api/applications/ 58

Table 3 - Results of the entire system (2 RL algorithms and Xception) working in CARLA with

trained weights .. 78

Abbreviations

 DL Deep Learning

 CV Computer Vision

 RL Reinforcement Learning

 AI Artificial Intelligence

 IoT Internet of Things

 PPO Proximal Policy Optimization

ANN Artificial Neural Network

CNN Convolution Neural Network

 SG Semantic Segmentation

 VAE Variational Auto Encoder

 OR Object Recognition

 DQL Deep Q-Learning

 AC Actor-Critic

 SAC Soft Actor-Critic

 MB Model Based

 PB Policy Based

 CNN Convolution Neural Network

 SHAP Shapley Additive Explanations

 KL Kullback-Leibler

 TRPO Trust Region Policy Optimization

 MAE Mean Absolute Error

1

Chapter 1

Introduction

 Reinforcement Learning (RL) is an area of Artificial Intelligence (AI) that tries to train an

agent to make a sequence of decisions. This agent learns how to make the best decision based on

the current state of the environment through the past collected experience of trial-and-error

experiments. The sense of what is a good decision based on the current state is achieved by

providing negative or positive rewards for the actions the agent performs. The agent’s goal is to

maximize the total reward.

 RL is different from Supervised Learning in the way that no hint or suggestion of what

should be done is provided to the agent and it needs to figure out what actions allow the agent to

maximize its reward, starting completely random and finishing with refined skills.

 In other words, the process can be easily explained as:

1. The agent is in a certain state.

2. The agent collects information from the environment and based on previous experiences

decides the next action to be taken.

3. The agent takes the action which modifies the environment.

4. The environment responds with:

a. A scalar reward which allows the agent to understand the positive or negative

impact of its action.

b. A new state for the agent.

5. The agent learns and the process starts again.

 As stated above and as shown in Figure 1 – , this whole process is a closed loop that allows

to develop autonomous vehicles since there is no need to literally program every action the vehicle

needs to take when facing a certain state. Moreover, it would be impossible to define every single

state that a vehicle faces when it is on road due to the unpredictable behavior of human drivers.

That is why Reinforcement Learning could be a game changer in the autonomous vehicle field.1

1 https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/

2

Figure 1 – Representation of the interaction between the agent and the environment.

Source: [53]

1.1 Context and Motivation

 In the last two decades, the world has experienced a huge advance in technology that aims

to automate and increase efficiency of the tasks performed by the human being. One of the most

recently investigated tasks are related to autonomous vehicles. It does not only reduce the time lost

in commutes but, also, has a potential positive impact in a supply chain, more specifically in the

delivery part.

 Although, the idea of having autonomous vehicles is old and well-known, it was only

recently that the world has seen companies and universities researching this technology. This

happens because of the advances in the Artificial Intelligence field such as Deep Learning (DL),

Computer Vision (CV) and RL.

 However, not only the development on the AI field contributed to advancements in

autonomous vehicles but, also, the development in Internet of Things (IoT) which enabled smart

agents to communicate with each other. The combination of both fields allows to create supply

chains more efficient, sustainable, and faster.

 By creating several autonomous trucks that can drive in platoon formation, one is taking

advantage of AI technologies in the sense the trucks can drive autonomously using CV and Deep

RL and, is also taking advantage of IoT since those trucks can communicate to share information

about the road, other vehicles and, more importantly, their position in order to facilitate the

platooning process.

3

 One knows that there are still ethic concerns about completely autonomous vehicles.

However, this platooning process will allow to use in the truck leader a human driver. The truck

leader will be followed by the remaining trucks which are trying to replicate the human driver

behavior and, in that way, nearly surpass (or at least minimize) the ethic problem as shown in

Figure 2. Nevertheless, the autonomous trucks still need to assess dangerous and act according to

what its perceived in the environment, but most of the behavior of these trucks will be indirectly

defined by the human driver.

Figure 2 - Example of Platooning Trucks

 The potential positive impact is significant both for companies and society. With

platooning trucks, one would benefit on efficiency because it would be able to deliver more

quantity at the same time reducing costs with human assets (one driver can drive three trucks

instead of one, for example) and reduce the fuel spent in the trip by taking advantage of the air

tunnel created by the leader truck which reduces the fuel spent by the follower trucks. With the

decrease on fuel spent, one is also contributing to reduce the carbon footprint which is a major

4

concern in climate changes. And, finally, this process will also smooth the traffic and reduce the

probability of human error in the road, since there are fewer human drivers.

 After this contextualization, the general goal of this dissertation is to create the platooning

process described above. The next section will describe in more detail the main objectives of this

dissertation and its contributions.

1.2 Objectives and Contributions

 This dissertation is composed by four main goals, the first one it to create a self-driving car

which is able to avoid crashing and follow a leader (another self-driving car) performing what it

is called a platooning vehicle using PPO. The second one is to only rely on CV methods to process

the information retrieved by a monocular camera. The third one is to add a layer of safety that does

not allow the agent to reach dangerous velocities or perform sudden turns. Finally, the fourth and

final goal is to explain and understand the agent’s reasoning that leads to certain decision. This

dissertation will also evaluate and discuss the performance of the self-driving car according to

suitable measures of quality for both training and test phases.

 Besides the decision about what RL algorithm is the most suitable for this type of problem,

the design of a proper reward function and the definition of the state environment is crucial for a

good performance of the agent.

 On one hand, the reward function will be responsible for correctly guiding the agent

through the stated environment, avoiding crashing into the leader, keeping the car in the lane and,

ultimately, following the car leader. On the other hand, the state of the environment is going to be

important so that the agent can be aware about what is going on around it. Although RL algorithms

have shown an impressive performance on this task, they still rely on a good statement of the

reward function and the environment, otherwise it will not be successfully implemented.

 The subsection 1.2.2. presents the reasons behind the choice of the RL algorithm taking

into consideration the task to be performed and what already exists to be outperformed or to be

complemented with new capabilities developed during this thesis.

 Additionally, the subsection 1.2.4 will present the methodology for the accomplishment of

the proposed work for this dissertation.

5

1.2.1 Task
 The task that this dissertation aims to tackle is to drive a car from one point to another

while following another car with a well-defined distance, avoiding crashing into the leader and

being positionally centered according to the leader position. The choice of this task was motivated

by trying to simulate the behavior presented in subsection 1.1 of platooning vehicles.

 The problem to be solved consists in learning a policy that drives the car in the direction

of the waypoint-goal, while following the car leader when it appears in front of the car. The

velocity of the car will depend on the velocity of the leader car assuming null and positive values

and the available control actions will be discrete steering actions and continuous throttle actions.

The obstacles present in training process could be static such as buildings or dynamic such as other

vehicles and people.

 To create the state needed for the RL algorithm to work correctly, a monocular camera will

be used to retrieve visual information which will allow the agent to know if the leader is on the

left, ahead or on the right and to calculate the distance to the leader.

 Moreover, the safety and explain ability play an important role in this task. The safety part

will help to mitigate bad decisions that the agent can take due to the novelty of an unseen situation

and the explain ability part will be responsible for understanding the reason for any decision taken

based on the environment perceived and, in that way, increase the trustiness on the agent’s actions.

1.2.2 Method
 This dissertation aims to reproduce a Model-Free method sustained by PPO that can be

applied to platooning vehicles and obstacle avoidance. Apart from proving the applicability of the

RL method for this task, it also aims to show that providing to the agent the minimum number of

sensors is enough to perceive the environment and act accordingly to what it is perceived.

 The choice of PPO is based on the ability of this algorithm to allow the train of agents in a

continuous action space, which is crucial for their application as controller on a real-world system

like the self-driving car with the advantage of having a simpler implementation, better

performance, and better sample efficiency [44].

 For the processing of the information retrieved by the camera, the state-of-the-art

techniques for semantic segmentation namely AE (Auto Encoder) could be applied but since the

6

simulator already has an in-built segmentation camera, then this is going to be used. This is a

computer vision method that is able to classify each pixel with a label that will allow to identify

the position of the car leader in an image.

 The safety layer will be created through hard constraints that can be calculated based on

the data retrieved with the sensors such as the safety distance and it will only be used during the

testing phase. If the agent has this safety layer during training, it can compromise what the agent

learns because it will not allow the agent to explore and commit errors.

 Finally, the explain ability will be accomplished using the data recorded during the

simulations and using the SHAP values [31] (explained in more detail in Chapter 2) to understand

how each feature impacts the agent’s decision.

 The contribution of this dissertation is supported by a successful state representation as

well as a reward function that enables to accomplish the task of platooning vehicles and obstacle

avoidance with the minimum sensors possible to process information about the environment.

Moreover, it will contribute for the explainable AI community by analyzing methodically the

impact of each environment characteristic on the decision process.

1.2.3 Metrics
 As usual in a machine learning task, it is crucial to assess the performance of the model.

 This evaluation is done in two different periods: the training phase where the model adjusts

its parameters while trying to achieve the goal for what it was created; and, the testing phase where

the model is assessed in terms of the generalization capability of performing well with unseen data.

1. Training phase

 During this period, the objective is to monitor the convergence of the algorithm according

to specific variables such as:

• The difference between the predicted reward and the actual reward.

• The cumulative reward by episode which allows to understand if the agent is learning the

correct behavior and performing well. Depending on the designing of the reward function

the fact the agent accumulates more positive rewards or less negative rewards means that

it is improving towards the goal by maximizing the cumulative reward.

7

• A visual check in order to identify problems on the state representation or reward design

that are influencing the agent to have undesirable behaviors which is also known as reward

tempering [11].

 For the training phase the following metrics will be considered:

 M1 The cumulative throttle reward by episode (RL).

 M2 The cumulative steer reward by episode (RL).

 M3 The reason for the ending of the episode (RL).

 M4 The cumulative actions by episode (RL).

 M5 Mean Absolute Error of predicted distance using CNN (CV).

2. Testing phase

 During this phase the objective is to assess if the agent is able to go from point A to B

following the leader while avoiding crashing into the leader and performing the expected behavior

without any hack.

 For the testing phase the following metrics will be considered:

 M6 The cumulative throttle reward by episode (RL).

 M7 The cumulative steer reward by episode (RL).

 M8 The reason for the ending of the episode (RL).

 M9 The cumulative actions by episode (RL).

 M10 The average distance from the leader by episode (RL).

 M11 The average speed by episode (RL).

 M12 The number of successful episodes over the total number of episodes (RL).

 M13 Mean Absolute Error of predicted distance using CNN (CV).

1.2.4 Methodology
 To develop this dissertation, CARLA simulator (Figure 3) was used.

8

Figure 3 – CARLA

Source: https://carla.org/

 CARLA [8] is an open-source simulator for autonomous driving research developed by

Intel, Toyota, and a Computer Vision Center in Barcelona. This simulator provides urban layouts,

building and vehicles to support the development of urban driving systems. Moreover, it supports

flexible specification of sensors to be incorporated in the car like camaras, radars, lidars and other

sensor, and, also, different environmental conditions such as sunny, cloudy, or rainy days and day

or night setups. Figure 4 illustrates some of these features.

9

Figure 4 - Different environment conditions present in CARLA

Source: [8]

 CARLA, also, has a Python API where it is possible to control the car and program the

state representation, the possible actions, the reward functions and embed CV algorithms for object

recognition. Therefore, Python2 will be the programming language used in this dissertation.

 The explain ability of the decision process will resort to the SHAP (Shapley Additive

Explanations) library3 which is a game theoretic approach to explain the output of any machine

learning model. Game theory is the process of modeling the strategic interaction between two or

more players (in the case of machine learning, two or more features) in a situation containing a set

of rules and outcomes in which each player’s payoff is affected by the decision made by others. In

other words, the contribution of each feature is determined by what is gained or lost by removing

them from the model. One of the possible outcomes is presented in Figure 5 where it is observable

that lower values (blue color) of ‘LSTAT’ lead to higher values in the predicted value, while higher

values (red color) of ‘RM’ lead to higher values in the predicted value.

2 https://www.python.org/
3 https://shap.readthedocs.io/en/stable/index.html

10

Figure 5 – This plot is design to display an information-dense summary of how the top features in a dataset impact

the model’s output. Each instance the given explanation is represented by a single dot on each feature.

Source:https://shap.readthedocs.io/en/stable/example_notebooks/tabular_examples/tree_based_models/Catboost%20

tutorial.html

1.3 Organization of the Dissertation

 The dissertation starts with Chapter 1 that introduces the dissertation by providing the

context and the motivation for the work proposed, as well as the objectives, the problem statement

and the contributions of the work developed.

 Chapter 2 reviews the state-of-the-art techniques for Reinforcement Learning, Deep

Learning and Computer Vision, techniques for increasing safety of RL models and for explain

ability and the studies already performed in self-driving cars and platooning vehicles.

 Chapter 3 presents the reason for the RL algorithm chosen.

 Chapter 4 describes the CNN model used to predict distances.

 Regarding the practical part, Chapter 5 exposes the implementation of the RL and CV

methods, using PPO and Xception, respectively, and the results obtained.

 Finally, Chapter 5 draws the conclusion about the work and leaves future works

perspectives.

11

Chapter 2

Literature Review

 This chapter brings to light the state-of-the-art and an overview of the most recent literature

related to Reinforcement Learning applied to Self-driving and Platooning vehicles.

 Section 2.1 introduces the main applicable RL methods in the literature.

 Section 2.2 gives a briefly introduction about the CV methods available.

 Section 2.3 presents the safety layers developed to guarantee always safe decisions by RL

models.

 Section 2.4 shows one example of what can be done to increase the visibility on the reason

behind each agent’s decision.

 And, finally, section 2.5 introduces the main challenges RL is facing in the Self-Driving

and Platooning vehicles and, also, the state-of-the-art examples already developed.

2.1 RL Methods

 This section aims to provide an overview of the existing models for RL which is

summarized in Figure 6.

 There are two main types of RL models: the Model-Based and Model-Free. The main

difference between both models is whether the agent has access to a model of the environment or

not.

 Using the Model-Free method the agent does not need a model of the environment, which

is learned based on its own experience (trial-and-error).

 Using Model-Based methods the agent needs to have a prior knowledge of the environment

to be able to plan the next action once it predicts state transitions and rewards based on an action.

 The main advantage of having a Model-Based method is that it allows the agent to plan by

thinking ahead and see what would happen for a set of actions and explicitly decide the action

which maximizes its reward. The main disadvantage is that the model of the environment is in

many cases unavailable, and the agent needs to learn it. This raises the problem that the model may

12

not truly capture the environment, and in consequence the RL may exploit potential artificial bias

in the model making it have poor performance in the real environment.4

Figure 6 - Different RL models developed

Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

2.1.1 Model-Free
 RL Model Free methods are a set of algorithms that tries to learn how to act in a certain

environment (based on a policy, action-value function, or both) by trial-and-error through

interactions with the environment.

 As already mentioned, this methods do not know and do not have access to the transition

dynamics of the environment T(s’, a, s), where s’ denotes the current state, a the action and s the

next state. Therefore they learn and search the optimal policy π* through the experience collected

with the interactions with the environment.

 Model Free methods are more explored than Model Based methods because they are easy

to implement since it does not require prior knowledge about the environment [34], and they can

learn:

● Policy function πθ (a|s).

● Action-value function Qw(s,a).

● Both Policy function πθ (a|s) and Action-value function Qw(s,a).

4 https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

13

Figure 7 - Three possible options to implement Model-Free

2.1.1.1 Policy-Based
 Policy-Based is a type of method that learns a policy πθ, being the behavior of the agent

controlled by the parameter θ [53] . Using these parameterized policies, the agent can act without

consulting value-functions as it does in a Value-Based method. Those parameters are learned

through an iterative learning process in order to maximize the agent’s performance in a certain

environment.

 This method is pragmatic in finding and optimizing the policy needed, basically a map

from states to actions. There are two types of policies, stochastic and deterministic.

 Stochastics policies can be represented by the probability distribution over actions 𝑎 ∈

𝐴(𝑠) given a state 𝑠 ∈ 𝑆: 𝑎 = 𝜋(𝑠, 𝜃) = 𝑃𝑟	(𝑆! = 𝑠, 𝜃! = 	𝜃)	. Whereas, deterministic policies can

be represented as a straightforward mapping from states to actions 𝛼 = 	𝜇(𝑠, 𝜃). The ultimate

objective is to find the optimal policy π*(s) that maximizes the total reward for all states (∀𝑠 ∈ 𝑆).

 The maximization of the score function 𝐽(𝜃), or the reward, is achieved through gradient

ascent. The update of each parameter 𝛻𝜃 is performed by multiplying a learning rate 𝛼 ∈ [0,1] by

the gradient of the score function 𝛻"𝐽(𝜃!). The gradient allows the agent to understand the direction

in which it should update the parameters in order to maximize the score function 𝐽(𝜃), that is:

 ∆𝜃 = 𝜃!#$ − 𝜃! = 𝛼𝛻"𝐽(𝜃!) (2.1)

 In an episodic setting (𝑇 ∈ ℕ), the score function is the expected cumulative reward from

the initial state s0 to the terminal state T while following the policy 𝜋", where 𝑟! is the reward in t

and 𝛾 is the discount temporal factor. The expected cumulative reward is represented as:

14

𝐽(𝜃) = 𝑣%!(𝑠&) = 	𝔼%! CD𝛾!

'

!(&

𝑟!E

(2.2)

 To update the parameters, it must differentiate the score function [53], getting this final

expression, where 𝑅(𝜏) is the episodic return:

𝛻"𝐽(𝜃) = 	𝛦%! CD

𝛻"𝜋"(𝑎!|𝑠!)
𝜋"(𝑎|𝑠!)

'

!(&

𝑅(𝜏)E

= 𝛦%! CD𝛻"𝑙𝑜𝑔𝜋"(𝑎!|𝑠!)𝑅(𝜏)
'

!(&

E

(2.3)

 This expression means that the agent updates the parameters θ in the direction of the

gradient 𝛻". This direction points to a place in the parameter dimension that increases the

probability of taking at in future situation where the agent visits st again. The gradient’s direction

updates the parameters in the same proportion as the return of score 𝑅(𝜏), becoming actions that

retrieve higher returns more likely to happen than actions that retrieve lower returns. The

parameter update is also inversely proportional to the probability of taking at in st, 𝜋"(𝑠!). The

division by 𝜋"(𝑠!) guarantees that actions with lower probability but promising can have the

opportunity to increase their probabilities of being taken5. The 𝑙𝑜𝑔𝜋"(𝑠!) comes from this

simplification:

𝛻𝑙𝑜𝑔	𝑓(𝑥) 	=

𝛻	𝑓(𝑥)
𝑓(𝑥) (2.4)

 These policy gradient methods have good convergence, but they also struggle with high

variance caused by noise estimations6 of the policy value. Therefore, a more general form of

5 https://towardsdatascience.com/an-intuitive-explanation-of-policy-gradient-part-1-reinforce-aa4392cbfd3c
6 These noisy estimations, in vanilla Policy Gradient methods are typically computed by Monte Carlo returns Gt.
Gt accumulates rewards during the whole episode and so, there are a lot of variance, thus it is hard to assign credit to
each action taken during the episode. The policy is then poorly evaluated and the convergence takes longer.
9Actor-Critic methods quit Monte-Carlo episodic estimates and adopt Temporal-Difference estimations

15

reinforcement with baseline was created to improve the policy evaluation [53]. This method

subtracts a term Gt to reduce the variance and get a better convergence through the following

equation:

 ∆𝜃 = 𝛼𝛻𝜃𝑙𝑜𝑔	𝜋"(𝑎!|𝑠!)M𝐺! − 𝑏(𝑠!)P (2.5)

 The baseline 𝑏(𝑠!) helps improving performance and can be any value, however, a better

approach is to turn it into a state value function 𝑣(𝑠, 𝑤) so that the agent can learn a state-value

function which improves the learning process by making better evaluations.

 Nevertheless, even using a baseline, this value is only estimated for each state transition

and, for that reason, every reward from the episode is equally subtracted from this state-value

function. This takes to a new branch of Reinforcement Learning, Actor-Critic, where a dedicated

evaluator was created. The dedicator evaluator called Critic performs evaluations for cumulative

rewards in each state-action transition without the need to wait until the end of the episode. In this

way, the agent learns a separated action-value function 𝑄)(𝑠, 𝑎) or a state-value function 𝑉)(𝑠).

The Actor 𝜋"(𝑎|𝑠) is evaluated and helped by the Critic, improving its ability to learn and assign

credit for each action taken through better estimations and lower variances.

2.1.2.2 Value-Based
 Value-Based is a type of method that tries to estimate and optimize value functions. This

method only estimates critics, nonetheless implicit actors are extracted from these value functions,

meaning that an implicit policy is also improved through a greedy behavior according to these

value functions. Value-learning tries to estimate the expected cumulative reward of following

policy π from state s onwards:

 𝑣%(𝑠) = 	𝔼%[𝐺!|𝑆! = 𝑠]

𝑣%(𝑠) = 	𝔼%[𝑅!#$+	𝛾𝐺!#$|𝑆! = 𝑠]

𝑣%(𝑠) = 	𝔼%[𝑅!#$+	𝛾𝑣%(𝑆!#$)|𝑆! = 𝑠]

(2.6)

 The last two equations express the same thing, but the third one is useful to explain the

general concept of a state-value function. The value of being in the state s is the weighted sum of

16

the probability of acting a in s while behaving like π multiplied by the probability of transiting

from s to s’ and getting reward r after acting with a multiplied by the immediate return plus a

discounted value of being in the next state s’.

𝑣%(𝑠) =D𝜋(𝑎|𝑠)

*

+

D𝑝(𝑠′, 𝑟|𝑠, 𝑎)
+

,-,/

[𝑟 + 𝛾𝑣%(𝑠-)] (2.7)

 Following the Dynamic Programming framework [53], the states values can be updated

according to:

𝑣0#$(𝑠) =D𝜋(𝑎|𝑠)

+

+

D𝑝(𝑠′, 𝑟|𝑠, 𝑎)
+

,-,/

[𝑟 + 𝛾𝑣0(𝑠-)]

(2.8)

 The intuition behind this equation is that the agent can select an action based on state-

values, which means the agent looks one step ahead and selects the action that takes it to the state

with the highest reward. However, in a Model-Free dynamic, the agent does not have access to the

model dynamics, which means it will not know the reward if it would take action a.

 In Model-Free settings, action-value learning7 is what supports Value-Based methods. It

learns a parameterized action-value function 𝑄", a critic, which makes the action-values more

accurate as the time goes by. An actor is trained indirectly8 since a Value-Based agents acts

optimally based on the action-value function 𝑄. If the agent reaches convergence to the optimal

action-value function 𝑄∗, the optimal policy for each s will choose the action a that maximizes the

expected reward as:

 𝜋∗(𝑠) = 𝑎∗(𝑠) = 𝑎𝑟𝑔	max
+	∈	𝔸

𝑄∗(𝑠, 𝑎)		∀𝑠	 ∈ 	𝑆		 (2.9)

7 When no model is available, if the goal is to act based on value functions, one needs to act with respect to action-
value functions.
8 Since Q-value estimates are getting better, if the agent acts greedily according to those estimates, then it is an
optimal policy. Hence, there is an implicit actor, that, without being parameterized, is indirectly improving.

17

 In this equation 𝑄∗(𝑠, 𝑎) stands for the expected cumulative reward of taking action a in s

and acting based on the optimal policy:

 𝑄∗(𝑠, 𝑎) = max
%
𝔼 [G!|𝑆! = 𝑠! , 𝐴! = 𝑎]	 (2.10)

 In conclusion, there is a final connection that one can make between action-value and state-

value function9 which is the optimal state-value function is the maximum expected cumulative

reward for any given state s and following the optimal policy, such as:

 𝑉∗(𝑠) = max
%
𝔼 [G!|𝑆! = 𝑠] (2.11)

	

 Since 𝑄∗ is the optimal policy for an action-value learning, then one can consider that the

best state-value is equal to the best action-value if the best action is selected. Therefore, the optimal

𝑄∗ can be associated to the optimal 𝑉∗ [53], following the equation:

 𝑉%(𝑠) = 	𝔼+~%[𝑄%(𝑠, 𝑎)]

𝑉∗(𝑠) = max	
+
𝑄∗(𝑠, 𝑎)	

(2.12)

 𝑄∗(𝑠, 𝑎) = 𝔼[𝑅!#$ + 𝛾max% 𝔼[G!#$|𝑠!#$]|𝑆! = 𝑠, 𝐴! = 𝑎]	

𝑄∗(𝑠, 𝑎) = 𝔼[𝑅!#$ + 𝛾𝑉∗(𝑠!#$)|𝑆! = 𝑠, 𝐴! = 𝑎]
(2.13)

 Once stated the above, one of the classic algorithms is the Q-learning [53] which is one of

the most known and successful algorithms in the Value-Based domain. Its implementation is easy,

and it is able to solve several problems where the agent tries to find the best actions to solve a

relatively small and deterministic environment. This method is a tabular method because, through

the agent’s experience, it stores in a table a specific Q-value for each state-action combination

9 In other words, a connection between optimal policies derived by optimal action-value functions and optimal
state-value functions

18

𝑄(𝑠, 𝑎). Also, it is an off-policy algorithm meaning that it can learn a different policy compared

with the behavior policy being executed. This different policy could be a greedy behavior, and for

that reason, it will converge in its direction regardless of the policy obtained through the chosen

actions. If a proper exploration and enough visits for all state-action pairs were performed (being

the value of those pairs updated through the experience in the environment), then one was able to

correct the convergence to the optimal policy 𝑄∗. Q-value are updated, until the terminal state or

convergence, according to the equation10:

 𝑄(𝑠! , 𝑎!) ← 𝑄(𝑠! , 𝑎!) + 𝛼(𝑟!#$ + 𝛾max	+"#$
𝑄6(𝑠!#$, 𝑎!#$) − 𝑄(𝑠! , 𝑎!))	 (2.14)

 Moving onto deep RL methods, Deep Q-Networks [33] combines Q-learning with deep

neural networks and it has been successful in many tasks. This method tries to overcome the

disadvantage of Q-learning of struggling11 with high-dimensional and complex problems

involving extensive state-spaces. DQN12 is an end-to-end algorithm intensively applied to

dynamically complex domains using only raw high-dimensional data as input. It is used to achieve

near-human performance in the context of Atari Games, but it has shown an incredible

performance on other tasks such as Multi-Agent RL13. DQN has an architecture of a deep

convolution neural network that receives an input image and through 2D convolution layers

extracts relevant features14 to perceive the environment. Then, those features are fed to a dense

layer that predicts the Q-values for each action available for the agent15.

10 The "-" superscript on top of the 𝑄% was used only to reinforce the idea of off-policy learning: the target
prediction
for the next state, could be taken from a different policy other than Q.
11 It is not feasible in terms of time and memory consumption to construct a table for high-dimensional state-spaces.
It is when Q-learning is applied to more complex problems, that one chooses, instead, to approximate/estimate a Q-
function using powerful function approximation techniques like neural networks.
12 DQN could be easily considered as the most well-known deep RL algorithm.
13 https://paperswithcode.com/method/dqn
14 Deep Convolutional Neural Networks perform feature extraction autonomously. Hence, there is no need to
perform manual feature extraction.
15 The DQN neural network is typically fed with the agent’s state as input, outputting the corresponding Q-values
for each action. It could also be fed with the agent’s state and performed action as input, outputting a single Q-value
for the corresponding state-action pair in the input.

19

 However, DQN also has its own downside called Maximization Bias [51] which means an

overestimation of action-values caused by the max operator in the target estimate 𝑦789 produced

by the target network 𝑄(𝑠, 𝑎; 𝜃6), as demonstrated below:

 𝑦:
789 = 𝑟 + 𝛾max

+&
𝑄(𝑠-, 𝑎-; 𝜃:6)	 (2.15)

 To overcome the downside a Double DQN [18] was proposed and it changes the target

estimate to 𝑦7789, where the target network 𝑄(𝑠, 𝑎; 𝜃6) evaluates the action and the policy

network 𝑄(𝑠, 𝑎; 𝜃) selects the action such as:

 𝑦:
7;<=>?789 = 𝑟 + 𝛾𝑄(𝑠-,𝑎𝑟𝑔 max

+&
𝑄(𝑠-, 𝑎-; 𝜃:)	; 𝜃6)			 (2.16)

 With this implementation one can achieve faster convergence with steadier target

estimations (tackling the Maximization Bias) compared with the performance of DQN.

 Another architecture was proposed to improve the DQN principles, Dueling Networks [55].

The difference lays on the fully connected part, which is divided in two independent fully

connected layers, first one to estimate a state-value V(s), and the second one to estimate the action-

advantages 𝐴(𝑠, 𝑎). Before feeding the output layer, the output from both layers are combined

through an aggregation module. In that way, the Q-value can be explained as the sum of the value

of being in state s, with the advantage of taking action a in the same state:

 𝑄(𝑠, 𝑎) = 𝑉(𝑠) + 𝐴(𝑠, 𝑎) (2.17)

 This would be correct if it did not have identifiability issues16. This issue was solved with

two approaches (equation 2.20 and 2.21). If a max operator is added in 𝐴(𝑠, 𝑎-; 	𝜃, 𝛼, 𝛽) as shown

in equation 2.20, then the optimal action will be defined as:

 𝑎∗(𝑠) =𝑎𝑟𝑔 max
+&∈	𝔸

𝑄(𝑠, 𝑎-; 𝜃, 𝛼, 𝛽) =𝑎𝑟𝑔 max
+&∈	𝔸

𝐴(𝑠, 𝑎-; 𝜃, 𝛼) (2.18)

16 If one sums both values to get Q, then it cannot recover V and A, uniquely. Empirically, this resulted in poor
practical performance. If there is no identification for V and A, the backpropagation process will not differentiate
both estimates.

20

			

 Now, the Q-value for the optimal action will be equal to the state-value (equation 2.19). In

this approach 𝑉(𝑠, 𝑎, 𝜃, 𝛽) identifies the optimal action and 𝐴(𝑠, 𝑎, 𝜃, 𝛼) the remaining actions.

 𝑄(𝑠, 𝑎∗; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛽) (2.19)

 This second approach applies an average over the advantage estimates, removing the

identifying semantics for V and A (since they are subtracted by a scalar, and they are no longer

really V and A), which makes it steadier on optimization performance17.

 The separation of the state-value function through the advantage function, enabled DDQN

to estimate the state-value and to recognize how valuable it is to perform actions in a given state.

There are situations in which it is not worth acting and this network will know that. To finalize,

𝑉(𝑠; 𝜃, 𝛽) is the state-value stream function, 𝐴(𝑠, 𝑎; 𝜃, 𝛼) is the advantage-value stream function

and 𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) is the complete parameterized DDWQ Q-function, being α and β the

independent parameter vectors from the advantage-values function and the state-value function,

respectively and θ is the parameter vector from the convolutional layer. Finally, the output Q-

values from DDQN can be expressed as:

 𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛽) + (𝐴(𝑠, 𝑎; 𝜃, 𝛼) − max
+-	∈	|A|

𝐴(𝑠, 𝑎-; 𝜃, 𝛼))	 (2.20)

 And,

𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛽) + (𝐴(𝑠, 𝑎; 𝜃, 𝛼) −

1
|𝐴|D𝐴(𝑠, 𝑎-; 𝜃, 𝛼))

+

+-

 (2.21)

 DDQN overcomes the performance of DQN and Double DQN, in the Atari Games domain,

by changing its architecture that improves Q-value estimations.

17 In practice, the advantages change as fast as the mean, hence they don’t need to follow the optimal action’s
Advantage.

21

2.1.1.3 Actor-Critic
 Actor-Critic methods can learn both a value and a policy function. The actor chooses

actions and the critic criticizes the actor’s options, improving the evaluations performed by solitary

actors in Policy Based methods. It is considered a hybrid method because it combines Policy Based

and Value Based methods, where it learns a critic in the form of a parameterized state-value

function 𝑉(𝑠, 𝑤) or an action-value function 𝑄(𝑠, 𝑎, 𝑤) with parameters 𝑤 and it also learns an

actor in the form of a parameterized policy function 𝜋(𝑎|𝑠, 𝜃) with parameters 𝜃.

Figure 8- A typical Actor-critic architecture.

Source: http://incompleteideas.net/book/first/ebook/node66.html

 This type of method tries to maximize the performance of the policy by using a learnt

critical estimate to evaluate the transition. Usually, this critic’s estimate18 is in the form of a Q

function 𝑄)(𝑠, 𝑎), an Advantage function 𝐴)(𝑠, 𝑎) or a TD-error 𝛿. The following equation shows

an Actor-Critic actor’s parameter vector update, using an advantage critic evaluation being 𝛼" the

learning rate:

18 https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf - on the last slide there are all the possible critic
estimates.

22

 ∆𝜃 = 𝜃!#$ − 𝜃! = 𝛼"𝛻"𝐽(𝜃) (2.22)

 The intuition of using advantages is to update the gradients in the direction of the advantage

function. This direction shows the advantage of taking 𝑎! in 𝑠! compared to the value of being in

𝑠!. If it is positive than the probability of taking 𝑎! in the future increases, otherwise, that

probability is decreased.

 This update is achieved using gradient ascent in order to maximize the actor’s objective

function 𝐽(𝜃), using this equation:

 𝛻"𝐽(𝜃) = 	𝔼[𝛻"𝑙𝑜𝑔	𝜋" 	(𝑎!|𝑠!)𝐴)(𝑠! , 𝑎!)] (2.23)

 The advantage function estimate19, can be derived as:

 𝑄(𝑠! , 𝑎!) ≈ 𝑟!#$ + 𝛾𝑉(𝑠!#$)

𝐴(𝑠! , 𝑎!) = 𝑄∅(𝑠! , 𝑎!) − 𝑉)(𝑆!)

𝐴(𝑠! , 𝑎') ≈ 𝔼%"[𝑟!#$ + 𝛾𝑉)(𝑠!#$|𝑠! , 𝑎!)] − 𝑉)(𝑠!)

𝐴)(𝑠! , 𝑎!) = 𝑟!#$ + 𝛾𝑉)(𝑠!#$) − 𝑉)(𝑠!)

(2.24)

 Moreover, advantage AC method tries to minimize the error of the critic’s predictions,

therefore, an update of the critic’s parameters using an approximated TD-error20 is performed, as

follows:

 𝔼%"[𝛿!|𝑠! , 𝑎!] = 𝐴%"(𝑠! , 𝑎!) ≈ 𝑟!#$ + 𝛾𝑉)(𝑠!#$) − 𝑉)(𝑠!)

𝛿) = 𝑟!#$ + 𝛾𝑉)(𝑠!#$) − 𝑉)(𝑠!) = 𝐴)(𝑠! , 𝑎!)
(2.25)

 Since the goal is to minimize the critic’s objective function 𝐽(𝑤), gradient descent is used

to update the parameters,

19 It may seem that one needs two critics with parameters f and w, but if one learns a critic state-value function, one
only needs one critic.
20 While following policy 𝜋' , the TD-error is approximately equal to the advantage function if one performs 𝑎(in
𝑠(. Proof in the David Silver’s teaching slides at: https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

23

 𝛻)𝐽(𝑤) ≈ 𝛻)𝑉)(𝑠!)𝛿) (2.26)

 The update of the critic’s parameter vector using an independent learning rate 𝛼) is given

by:

 ∆𝑤 = 𝑤!#$ −𝑤! = −𝛼)𝛻)𝐽(𝑤) (2.27)

 Nowadays, there are several AC algorithms with great results in numerous applications

such as Atari games, simulated physics tasks and robotics tasks. Some of the most known and

successfully AC algorithms are described below:

 DDPG [26] is an off policy21 Deep RL AC algorithm, inspired by DQN [32] intuition, but

with the advantage of working in a continuous action domain. It has been used to solve complex

tasks like legged locomotion, dexterous manipulation, self-driving cars and Atari games keeping

the same network architecture, hyperparameters and learning algorithm. It can work with high-

dimensional input raw data by learning the end-to-end policy. This algorithm overcomes planning

algorithms with model dynamic knowledge and DQN by achieving the same performance with a

significant reduction in the training time.

 PPO [44] is also a Deep RL AC algorithm that has stability and reliability of trust-region

methods [45] but with the advantage of having a simpler implementation, better performance, and

better sample efficiency. At the moment, this is the state-of-the-art algorithm in continuous

controlling tasks and it will be described more deeply in Chapter 3.

 SAC [17] is another successful Deep RL AC algorithm and the first off-policy actor-critic

method in the maximum entropy reinforcement learning framework. The standard RL tries to

maximize the expected total reward, while maximum entropy RL has a more general goal, besides

of trying to maximize the expected sum of rewards, it also tries to maximize its policy’s entropy.

The intuition is to make the agent take as many random actions as possible but still collect high

rewards. This method has the advantage of being more robust in simulated environments and in

real-world environments, because since they can tolerate highly random behavior during training,

they will handle better random perturbation during the test phase22. In this way, SAC has a higher

21 Off-policy algorithms have the ability of learning from past experiences; thus they spend less samples to learn
because they reuse them. Hence, Off-policy Actor-Critic algorithms tend to be naturally more sample efficient.
22 https://ai.googleblog.com/2019/01/soft-actor-critic-deep-reinforcement.html

24

sample efficiency than other on-policy AC methods because it learns off-policy, and it also

overcomes the convergence weaknesses from other off-policy AC methods [16].

2.1.2 Model-Based
 Model-Based is a set of RL algorithms where the agent has the ability to predict what is

going to happen in the environment if it takes certain action. This happens because the agent has

access to the environment’s model, and it uses it to learn an optimal policy. MB algorithms are,

usually, used in planning tasks.

 The fact the agent has access to the model, makes these methods more sample-efficiency23

because they can learn not only with the interaction with the environment but also predicting steps

ahead, making the convergence time much lower. The following figure shows a comparison

between Model-Free and Model-Based in terms of sample-efficiency:

Figure 9 – Source: https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

 One main difference between Model-Free and Model-Based is the way they used real

experience. Whereas Model-Free methods use real experience to improve value functions and

policy functions, Model-Based methods use it for model-learning, by making the inner model more

similar to the real model. Basically, they do not improve their value or policy function in the

interaction with the environment but instead interacting with simulations performed from its inner

learned model, as follow:

23 A concise article about Model-Based RL: https://medium.com/@jonathan_hui/rl-model-based-
reinforcementlearning-3c2b6f0aa323

25

Figure 10 - Model Based flow

Source: https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html

 There are two categories of Model-Based agents:

1. Given a model, use planning to learn a global value and/or policy function.

2. Learn a model, focusing on learning a model and a global value-function and policy

function (more complete class of MB).

 The following subsection will give more details about the state-of-the-art in Model-Based

RL, but with less detail since the focus for this dissertation is Model-Free methods.

2.1.2.1 Given a model
 Model-Based RL algorithms can learn policies or value functions through tree-search

techniques [52] to plan and learn the best policy in a given environment, therefore they can skip

the intermediate step of learning the environment’s model by interacting with it. This brings the

advantage of sample efficiency, since by only having access to the rules of the game24, they can

achieve and surpass human performance. One example is the AlphaZero [48] which was able to

learn how to play several board games like go, chess and shogi within only 24 hours and still be

able to defeat world-champion humans in each game.

2.1.2.2 Learn a model
 This kind of Model-Based RL class consists in learning the dynamics of an unknown

environment using function approximation techniques25. A model of the environment can be

24 What differs this subsection from the following subsection Learn a model is the willing that an RL agent must
learn the dynamics of the environment, to build an inner model and learning policies and value functions inside of it.
In this subsection, the model is already estimated and given to the agent.
25 These techniques could be parametric or non-parametric. In the context of DRL the common chosen approach
is parametric using neural networks. It is not considering hugely memory demanding techniques like tabular

26

perceived as a representation of the most interesting aspects of the dynamics of the real

environment. The state-of-the-art methods in Model-Based that learn a model are:

 Dyna-Q [50] is an algorithm that learns how to act and, at the same time, learns the model

of the environment, meaning that it is able to combine model-learning with planning and

value/policy function learning. One specific type of Dyna-Q is the tabular form that embeds Q-

learning with model learning in a deterministic environment. The way Dyna-Q works is by acting

on the environment and collecting experiences and updating its Q-values based on the expected

reward 𝑟!#$ and the observed next state 𝑠!#$ influenced by the action taken 𝑎! and the current state

𝑠! . Thus, each dynamic transition is saved in a tabular model such as 𝑀𝑜𝑑𝑒𝑙(𝑆 = 𝑠! , 𝐴 = 𝑎!) ←

(𝑟!#$, 𝑠!#$). The number of iterations in its inner model to simulate the outcome (next state and

reward) of each possible action is controlled by the 𝑛 hyperparameter. Higher values of 𝑛 lead to

more simulations, better planning, and better decisions but at the same time, it will increase the

time needed to take an action. Nevertheless, this method showed to have increased the learning

speed and sample efficiency when compared with a standard Q-learning model without planning

ahead.

 Another algorithm of Model-Based with model learning is World Models (WM) [15] that

tries to create an agent that can learn a model and a policy inside of it. The intuition behind this

model is the human cognitive system composed of three components. The visual component that

is responsible for capturing visual information and for encoding it into a compressed

representation, the memory component that can predict future observations based on historical

compressed information, and lastly, the controller component that integrates the information

retrieved by the other two components and decide what is the best action to take. This method has

proven a good and robust performance in virtual environments of tasks like car racing or the

VizDoom game.

 Finally, there is the MuZero [42] model that applies end-to-end learning26 and achieves

nearly the same, or even better performance than the AlphaZero [48]. MuZero unlike AlphaZero

does not have access to the rules of the game and it learns the dynamics of the game from scratch.

This deep RL model combines planning, acting and training inside of the learned model and it uses

methods.
26 End-to-end is an approach where high-dimensional raw inputs are directly learned and mapped to outputs by a
single model in a single pipeline, without consulting any third-party. It is end-to-end in the sense that, from one end
to the other, autonomously and directly learns to map raw input data to desired outputs.

27

the Monte Carlo Tree Search (MCTS) [53] technique to simulate what is the next rewards 𝑟!#C

and environment states 𝑠!#C (planning) over the several possible actions 𝑎! and the current state

𝑠! (acting). The learning process consists in storing the previous experiences in a memory buffer

(training).

2.2 Deep Learning and Computer Vision

 This section will introduce deep learning and artificial neural networks and discuss what

has been developed for regression problems using CNNs, transfer learning and semantic

segmentation in the Computer Vision field.

2.2.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are computational networks of nodes and connections

resembling that of biological neural networks [14]. Formally, artificial neural networks in machine

learning refer to directed-acyclic graph with weights along each edge of the graph.

When a datapoint 𝑥: is fed to an ANN, it will propagate thought the network, and it will

end up with some prediction. The goal in machine learning is to find the best configuration of

network weights, often denoted W, with respect to some objective. This objective may, for

example, be to minimize the error of a regression predictor to ground truth values, that is, minimize

𝐿 = ∑ (𝑦h: − 𝑦:)D: over all labeled data, 𝑥: ⊂ X and 𝑦: ⊂ Y.

Gradient Decent: Gradient decent is the most common optimization technique used with

ANNs. It works by calculating the gradient of the loss function, L, with respect to the weights of

the network W. Once it has the gradients, it nudges the weight variables in the direction of greatest

decent as follows:

 𝑤:E ← 𝑤:E − 	𝛼
𝜕𝐿
𝜕𝑤:E

 (2.28)

Where α is a hyperparameter that determines how much we should nudge our weights in

the direction of steepest decent per step, and FG
F))*

 represents the direction of steepest ascent along

the loss function’s surface with respect to a particular weight 𝑤:E∈ W.

28

Another important part to have a good performance with ANN is the activation function

present in each node [35]. The choice of a proper activation function will help solving a common

problem that most of the learning-based systems have which is the way the gradient flows within

the network because some of the gradients will be sharp in specific directions and zero in another

directions, which can lead to vanishing and exploding gradients [37, 57].

There are several families of activation functions and in [35], the authors mention nine

families such as Sigmoid, Tanh, Softmax, Softsign, ReLU, Softplus, ELU, Maxout, Swish and

ELiSH fucntion that have some tweaked functions within each family and the default one which

is Linear.

For this dissertation, four of them were used and they will be the ones with a detailed

explanation:

1. Hyperbolic Tangent Function (Tanh) is a smoother [25] zero-centered function who

produces values between -1 and 1 and its formula is the following:

 𝑓(𝑥) = 	k
𝑒H − 𝑒6H

𝑒H + 𝑒6Hl (2.29)

2. Softmax is used to produce a probability distribution from an array of real numbers

therefore the output is a range of values between 0 and 1 with the sum of the

probabilities been equal to 1. The Softmax [21] function is:

𝑓(𝑥) = 	m

𝑒𝑥𝑝	(𝑥:)
∑ 𝑒𝑥𝑝	(𝑥E)E

n (2.30)

3. Rectified Linear Unit (ReLU) [2] rectifies the values of inputs less than zero by

forcing them to zero and eliminating the vanishing gradient problem observed with

other types of activation functions. It is usually applied in the hidden layers and

29

then, a different activation function is used in the output layer like Softmax or Tanh

already mentioned. Its function can be described as:

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) =	q𝑥: , 𝑖𝑓	𝑥: ≥ 0
0, 𝑖𝑓	𝑥: < 0 (2.31)

4. Linear function [21] is a linear mapping of an input to an output as performed in

the hidden layers before the final prediction of class score for each label is given

by the affine transformation in most cases. The transformation of the input can be

given by:

 𝑓(𝑥) = 𝑤'𝑥 + 𝑏 (2.32)

2.2.2 Convolutional Neural Networks
 A Convolutional Neural Network (CNN), in the CV context, is a Deep Learning (DL)

algorithm which takes as input an image and processes the image internally in order to find patterns

that are helpful for the predictive task [36]. Contrary to the traditional ML algorithms where there

is a need to heavily pre-process the data in order to create relevant features, the CNN is able to

perform the feature engineering process internally through convolution operations.

 Since an image is a matrix of pixels, one could flatten it and feed it to an Artificial Neural

Network (ANN) without the need of using CNNs. The problem with this approach is that spatial

and temporal dependencies would be lost while a CNN can preserve and understand them through

the application of relevant kernels/filters.

 The way a CNN works is the following:

1. Receives an image as input.

2. Performs convolution operations between the image and the kernel/filter which is a

matrix NxN defined by the user.

a. The user can also define as much filters as desired. In one hand, a large

number of filters increases model complexity, but, on the other hand, few

numbers of filters reduce the predictive power of a CNN.

b. Each filter will be responsible for extracting a feature from the image.

30

c. The first convolution layers will extract high-level features such as edges,

while the following convolution layers will extract more low-level features

such as gradient orientation. Therefore, a CNN should have more than one

convolution layer.

d. This operation produces features which have a reduced dimensionality

when compared to the input. However, Padding can be used to avoid this.

Figure 11 - Convolution Operation using a 3x3 kernel on an input image 5x5

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53

3. After a convolution layer, usually, a CNN has a Pooling layer which reduces the

spatial size of the convolved feature by returning the maximum or the average value

from the portion of the image converted by the filter (Max or Average Pooling).

This is useful to reduce the computational power required to process the data and

extracting dominant features which are rotational and positional invariant.

Figure 12 - Pooling Operation using a filter 3x3

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53

31

4. Finally, with all features created, a flatten operation is applied to be able to feed an

ANN for classification or regression purposes.

a. What differs from classification or regression will be the loss function (for

example, cross entropy or mean absolute error, respectively) and the

activation function in the output layer (for example, sigmoid/softmax or

linear, respectively).

Figure 13 – Example of a CNN to classify the hand written digit in an image

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53

2.2.3 Transfer Learning
 Transfer Learning is a technique used in ML where a model is trained to perform one task

and then, it is re-used to perform a second task that is similar. The goal is to reuse what has been

learned in one task to improve and, if possible, accelerate the weight optimization process in the

other task. The similarity between tasks will determine the amount of time needed to re-adapt the

model from one task to the other [5].

 Several python libraries such as Tensorflow or Pytorch have pre-trained CNNs in a dataset

called ‘ImageNet’ with more than 1 million images to be classified according to the different 1000

classes presented in the dataset [40].

32

Using TL, these CNNs start with the learned features on the ‘ImageNet’ dataset and adjust

these features according to the new task, speeding up the training of a CNN. Since the first layers

learn high-level features which are similar among different applications, those features do not need

to be learned again. Therefore, those layers are frozen and only the last ones need to learn new

features during training allowing the process to be less expensive and faster [10].

Apart from that, to correctly apply TL, one may need to change the architecture of the CNN

to be able to perform a different task. One example is to turn these CNNs trained to classify into

CNNs able to perform regression tasks. One simple way of doing this is removing the last layer

which has 1000 nodes with a softmax activation function to a 1 node layer with a linear activation

function.

2.2.4 Image Segmentation
 Image Segmentation consists in grouping parts of images together that belong to the same

object class. This type of algorithm has been used in different problems and industries such as

medicine for tumor detection, automobility for lane and road signs detection and many others.

 This method can be seen as a classification task where the algorithm must classify each

pixel according to the object in it. Like every ML algorithm there are advantages such as easily

get the objects in an image and disadvantages such neighboring pixels of the same class might

belong to different object instances and regions that are not connected may belong to the same

object image. For example, one person in front of a car visually divides the car into two parts [54].

 The most recent architectures in image segmentation consist of an encoder and a decoder.

The encoder is a CNN which extracts features from the image through filters, as explained

previously. The decoder is responsible for generating the final output which is usually a

segmentation mask containing the outline of the object [3]. One example, of this type of

architecture is U-Net [38].

33

Figure 14 - Encoder-Decoder architecture for image segmentation

Source: [3]

2.3 Safety

 This section aims to explore what has been done in order to increase the safety and

trustiness associated to Deep RL systems.

 Recently, Deep RL systems with continuous action spaces have been extensively explored

in context of real-world applications such as autonomous driving [41]. Contrary to the most usual

application of RL systems like games [32], self-driving cars developed to act in real situations

require a set of safety constraints to be fulfilled such as avoiding collisions by limiting velocity

and turning angles.

 The main problem is that in most of the cases the dynamic of the environment is unknown,

and for that reason, it is not possible to determine which actions are safe ahead of time. The

traditional approach is defining a reward function that ensures some safety, for example rewarding

negatively when a collision happened during training. However, the agent will not face all possible

collision states during training, therefore it will not be able to avoid collision every time a different

state is presented to it during the testing phase [46].

 In recent years, this topic has been researched by the authors in [28] where they propose a

framework called Intrinsic Fear that increases safety by training a neural network to identify unsafe

states, which is then used to shape the reward function. However, this approach faces the same

problem of not visiting all the states needed to gather enough information to avoid them.

 In a different line of research, the authors in [7] add a safety layer to the agent’s policy that

projects unsafe actions onto safe domains using a constraint function. The authors in [46] use the

34

same line of reasoning for multi-agent systems where they create a safety layer that combines the

actions from all agents to ensure coordination between agents and to minimize unsafe actions.

 This dissertation will follow the last line of research described by creating constrains to

correct the agent’s decision every time it can lead to dangerous situations such as limiting the

velocity if it does not comply with the safety distance or avoiding abnormal and sudden turns.

2.4 Explain Ability

 This section shows what are SHAP values and how it can be used to explain the agent’s

decisions.

 In the past, Data Scientists struggled to decide between accuracy and explain ability,

however with an increase of data collected, the need to use complex models to solve complex

problems started to be a reality and opting for white box models was no longer acceptable.

 SHAP values appeared to surpass the difficulty of explaining the output of a complex

model such as deep neural networks or gradient boosting algorithms through reverse-engineering

the output of any predictive model.

 As mentioned before, SHAP values are based on Shapley values which is a concept that

comes from game theory where the game is reproducing the outcome of the model for one single

observation (𝑥&) and the players are the features used in the model. The Shapley quantifies the

contribution of each feature for the prediction made by the model considering that the outcome of

each possible combination of features should be considered to determine the importance of a single

feature. Therefore, SHAP needs to train a distinct predictive model for each combination of

features where the hyperparameters and the training set are the same for each model [20].

35

Figure 15 – This image represents the power set of a dataset where the goal is to predict salary based on 3 features

(gender, job and age) which has 8 different predictive models with a set of different features used in each model so

that SHAP can estimate the impact of each feature in the prediction of one single observation.

Source: https://towardsdatascience.com/shap-explained-the-way-i-wish-someone-explained-it-to-me-ab81cc69ef30

 From Figure 15, one can see that two nodes connected by an edge only have one different

feature, therefore the difference on the predicted values between the model created by those two

nodes can be considered as the effect of that additional feature, which is the marginal contribution

of that feature.

 Using the example above and looking to node 1, this model with no features will predict

the average ‘salary’ (50k $). In node 2, where the model has ‘age’ as feature, the prediction is only

40k $, which means that the marginal contribution of ‘age’ is -10k $. To obtain the overall effect

of ‘age’, it is necessary to consider the marginal contribution (MC) of ‘age’ in all models where it

is used as feature that is then combined through a weighted average (Equation 2.25).

 𝑆𝐻𝐴𝑃AI?(𝑥&) = 𝑤1 ∗ 𝑀𝐶AI?,{AI?}(𝑥&) +

																																																						𝑤2 ∗ 𝑀𝐶AI?,{AI?,L?CM?/}(𝑥&) +

																																					𝑤3 ∗ 𝑀𝐶AI?,{AI?,N;=}(𝑥&) +

																																													𝑤4 ∗ 𝑀𝐶AI?,{AI?,L?CM?/,N;=}(𝑥&)

(2.25)

36

Figure 16 – Weights associated to each model where ‘age’ is presented.

Source: https://towardsdatascience.com/shap-explained-the-way-i-wish-someone-explained-it-to-me-ab81cc69ef30

 To determine the weights of each marginal contribution, it is assumed that the sum of all

the weights in the same row should be equal to the sum of all weights on any other row (Equation

2.26) and all the weights in the same row should be equal (Equation 2.27), which is defined as:

 𝑤1 = 𝑤2 + 𝑤3 = 𝑤4 (2.26)

 𝑤2 = 𝑤3 (2.28)

 With this, and bearing in mind that the weights should sum to 1, the weight value is 1

divided by the number of edges in that row, for example:

• 𝑤1	 = 	 $
O

• 𝑤2	 = 𝑤3	 = 	 $
P

• 𝑤4	 = 	 $
O

37

 This example leads to the general equation reported in [31], where F is the predictive

model:

 𝑆𝐻𝐴𝑃+,-(./,(𝑥) = - [|𝑠𝑒𝑡| ∗ 3
𝐹

|𝑠𝑒𝑡|5]
%0[𝑃𝑟𝑒𝑑𝑖𝑐𝑡1,((𝑥) − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡1,(\3,-(./,(𝑥)]

1,(:	3,-(./,	∈	1,(

 (2.29)

 The values resulted from this equation are easily interpreted through the chart on Figure

17, where the red color means a positive impact for target prediction and the blue color means the

contrary. In other words, and giving an example, the ‘RAD’ feature decreases the predicted value

while ‘LSTAT’ feature increases the predicted value.

Figure 17 – Analysis of the impact of each feature in the predicted value of a particular observation.

Source:https://shap.readthedocs.io/en/stable/example_notebooks/tabular_examples/tree_based_models/Catboost%20

tutorial.html

2.5 Computer Vision and Reinforcement Learning in Self-Driving

Cars and Platooning vehicles

 This section presents what has been implemented in the self-driving car domain using

reinforcement learning.

 In recent years, various methods of self-driving cars have been developed because of the

potential positive impact in sustainability through the possibility of car sharing and platooning

approaches that can yield to a more efficient way of using vehicles and roads.

 One example is the approach taken in [12]. In this paper, they combined Markov Decision

Process with a proximal policy optimization (PPO) that finds an optimal policy representing the

probability density of the agent’s action given a certain state. The agent learns how to map its

estimated state to acceleration and steering commands given the objective of reaching the final

38

state which is a parking slot in a public road considering obstacles. To get information about the

vehicle surroundings, laser scanners are used. The reward function was divided into two, one for

the driving process and the other one for the parking process. The first one is rewarding to quickly

reach the desired speed, whereas the stopper needs to approach the parking slot slowly and stop in

the end. The results of the simulation allowed to successfully implement this process in the real

world with a real car.

 Both Neural Network architectures (policy and value function) are described in Figure 18.

Figure 18 - The state is processed by two dense layers of each 200 ReLu activations, while the perception map is

based on two convolutions with max polling in between, the first layer has 30 nodes and the second has 1 node.

Then they flatten and process the data in a dense layer of 200 ReLU activations. Finally, they concatenate the

outcome of both inputs and pass through a last 200 ReLu layer.

 Another example is in the AWS DeepRacer simulator [4], they train a RL self-driving car

using a monocular camera and the PPO RL algorithm. The policy decides what action to take based

on the input image and the value network estimated the expected cumulative reward. Initially, the

agent starts to take random actions to interact with the environment and to collect data and update

the policy and value networks according to the algorithm’s loss function. The policy tries to

maximize the actions that give higher rewards on average and applies a higher weight to newer

versions of the policy being updated. The loss function uses the mean squared error between the

predicted and actual value and the predicted value is estimated by three CNN and two fully

connected layers for both networks (actor and critic). The reward function consists in keeping the

car in the middle of the track by identifying the edges of the track and then calculating the distance

between them.

39

 Moving to examples combining self-driving cars and platooning vehicles, we have the

study from [58] which proposes a deep reinforcement learning methodology for obstacle

avoidance and formation control using only a camera as sensor. They start by using a ResNet

(CNN model) for localization perception. The ResNet is trained in a data set with images from the

real-world environment where the agent will act in order to be able to predict the 2D position of

the agent.

 Then they propose a new actor-critic algorithm called Momentum Policy Gradient (MPG)

that is better than TD3 [13] by reducing the problem of under/overestimation. They also mention

that this new algorithm is efficient at solving leader-following problems with irregular leader

trajectories and, with a slight change in the reward function, the algorithm is able to solve the

collision avoidance and formation control problems.

Figure 19 - Model architecture

[29] proposes a distributed reinforcement learning method based on DQN and a consensus

algorithm to handle the multi-vehicle platoon problem, where there are a leader and the followers.

This process can be divided into two processes, the local training, and the global consensus.

 On one hand, the local training consists in the individual DQN of each vehicle which is the

way each vehicle learns how to keep the same space between the front and back car. Here, the

reward function takes into consideration the distance between the car and the midpoint of the front

and back car, the gap between the current velocity and the desired velocity, and the accelerated

40

velocity. The agent knows the position of the front and back car through communication about

their location among the agents.

 On the other hand, the global consensus consists in updating the DQN of all vehicles to

converge the vehicles to each other and ensure the platooning process.

Figure 20 - Communication process among agents

 The authors in [59] proposed an IoT framework, where the information captured by

camera, such as road edges, traffic lights and zebras lines are highlighted with computer vision.

The distance, direction and speed of obstacles are provided by sensors. And, finally, the location

of each vehicle is communicated among vehicles based on self-positioning.

 In this study, they used VGG16-Places365 to process the information provided by the

camera which basically identifies transit signals including traffic lights and lanes.

 Also, instead of using RL, the authors used MPC (Model Predictive Control) which is an

optimization algorithm that takes a vehicle’s motion model to plan out a path that makes more

sense given a set of constraints like the limits of the vehicle’s motion and a combination of costs

that define how they want the vehicle to move. Based on that, it predicts the trajectory that the

vehicle should take27.

 The authors concluded that the platooning-based information-sharing reduced the risk of

crashing when invisible moving obstacles appear, making it possible for the self-driving vehicle

to predict the trajectory of those obstacles and avoid collision.

 Finally, in [30] the author proposes a self-driving car using PPO RL algorithm, using only

the camera as sensor where Variational Auto-Encoder receives the information retrieved to

segment the road. In this study, CARLA simulator was used and one of the goals is to create an

27 https://medium.com/intro-to-artificial-intelligence/model-predictive-control-udacitys-self-driving-car-nanodegree-
ad7cf64fd0e4

41

agent capable of driving along the road, never skipping the center of the lane and never be driving

for less than 1 km/h for more than 5 seconds while driving for 1245m (3 laps) as shown in the

following figure:

Figure 21 - Map where the agent was trained

This dissertation is different to what was done in [30] because the state representation is a

simple and explainable array, while in [30] the state is defined through a Variational Auto

Encoder. Besides that, this dissertation was developed in a more complex map in a city

environment with different objects and a lot more roads, and it has another agent (the leader) that

brings more complexity like using CV to predict the distance to the other agent and avoid crashes.

42

Chapter 3

Reinforcement Learning

This chapter formally presents the necessary background and fundamental concepts to

support the choice of Proximal Policy Optimization (PPO).

3.1 Proximal Policy Optimization

 PPO was proposed by [44] with the objective of improving Trust Region Policy

Optimization (TRPO) [45] making it easy to implement, with higher sample efficiency and with

few hyperparameters to tune. This RL algorithm has better convergence properties than previous

RL approaches because it clips the policy loss and calculates the loss in terms of probability ration

instead of optimizing the policy’s likelihood directly.

 PPO is based on an actor-critic architecture that combines trust region optimization with

gradient descent to stabilize training by creating a loss function that only allows minor changes on

the policy, reducing variance and ensure that an outlier does not affect the whole training. As

mentioned, PPO is a better version of TRPO which formulates the objective function that

constrains the update step within some pessimistic lower-bound called trust region.

 In TRPO the upper-bound error is estimated by the Kullback-Leibler (KL) divergence [23]

which is a measure of how much one probability distribution differs from another. Using this

measure, it is possible to constrain the optimization step between the old and the new policy

ensuring that the new policy is not diverging too far from the old policy. In other words, the new

policy will be in the trust region of the old policy. This constraint allows to perform multiple update

steps per sample because the new policy will not diverge that much from the old policy from one

step to another, increasing the sample efficiency. To measure how much both policies are

diverging, one can express the optimization problem in terms of the new and old policy:

maximize

"
𝔼! }

𝜋"(𝑎!|𝑠!)
𝜋";>M(𝑎!|𝑠!)

Â!� (3.1)

43

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝔼![𝐾𝐿[𝜋";>M(∙ |𝑠!), 𝜋"(∙ |𝑠!)]] ≤ 𝛿

where 𝜋";>M is the old policy which means the policy before the update, 𝜋" is the new policy and

Â is the advantage function that is defined through equation 3.2, where T is the number of timesteps

𝛾 is the discounted factor and t specifies the time index [0, T]. The 𝛿! term is calculated using the

reward r at time t plus the 𝛾 times the value function at next state 𝑠!#$ minus value function at

current state 𝑠!:

 Â! = 𝛿! + (𝛾𝜆)𝛿!#$ +⋯+ (𝛾𝜆)'6!#$𝛿'6$ (3.2)

 where 𝛿! = 𝑟! + 𝛾𝑉(𝑠!#$) − 𝑉(𝑠!) (3.3)

 Although this new concept helps on sample efficiency, it is also true that it is complicated

to implement and incompatible with models that have noise (such as dropout), or models that share

parameters between the policy and the value function. PPO aims to improve the equation 3.1 that

needs to be optimized with a second-order optimization such as the conjugate gradient algorithm

instead of the first-order optimization methods such as gradient decent by reformulating the

objective function as a clipped objective function that can be optimized through gradient decent.

Let’s start by reformulating the equation 3.1 as an unconstrained loss function:

𝐿";>MQR (θ) =𝔼! }

𝜋"(𝑎!|𝑠!)
𝜋";>M(𝑎!|𝑠!)

Â!� (3.4)

where IS means importance sampling [43]. To directly optimize the policy of an agent by first-

order optimization, one needs to calculate ∇" log 𝜋"(𝑎|𝑠). On the other hand, the loss function

𝐿";>MQR (θ) is a loss expressed by the ration between the old and the new policy that can be proven

that these gradients are the same:

∇" log 𝜋"(𝑎|𝑠) |";>M =

∇"𝜋"(𝑎|𝑠)|";>M
𝜋";>M(𝑎|𝑠)

= ∇" k
𝜋"(𝑎|𝑠)
𝜋";>M(𝑎|𝑠)

l |";>M (3.5)

44

 With this reformulation it is possible to optimize 𝐿";>MQR (𝜃) with gradient decent because it

is equivalent of optimizing the policy gradient 𝛻" 𝑙𝑜𝑔 𝜋"(𝑎|𝑠) and, at the same time, imposing a

trust region constraint on the loss function in terms of the new and old policy as the authors in [44]

propose through a clipped loss function. Let’s consider 𝑟!(𝜃) =
%!(+|,)

%!789(+|,)
 :

 𝐿UGQV(𝜃) 	= 	𝔼!�[𝑚𝑖𝑛(𝑟!(𝜃)Â! , 𝑐𝑙𝑖𝑝(𝑟!(𝜃), 1 − 𝜀, 1 + 𝜀)	Â!)] (3.6)

 In this equation 3.6, 𝜀 is an important hyperparameter (usually 0.2) that determines how

much the new policy can diverge from the old policy to improve the policy. In other words, the

size of the trust region (Figure 22).

Figure 22 – Shows how different loss functions would linearly interpolate the old policy (𝜃:;<) to the new policy

(𝜃). It is noticeable that 𝐿=>?@ tends to 0 as the new policy diverges more from the old policy. Source: [44].

 The minimum in the objective function computes the minimum between the unclipped and

clipped objective, where the unclipped one is the regular 𝐿";>MQR loss, while the clipped one limits

the probability ratio 𝑟! to the interval [1-	𝜀,	1+	𝜀]	to ensure conservative changes. The minimum

term ensures that whenever the new policy is advantageous, that is, if 	

𝐴 > 0	and	𝑟!(𝜃) > 1 + 𝜀 or 𝐴 < 0	and	𝑟!(𝜃) < 1 − 𝜀, there is a constraint to the update keeping

it within the trust region (clipped objective). Otherwise, if the new policy is advantageous but

within the trust region, that is, 𝐴 > 0	and	𝑟!(𝜃) 	< 1 + 𝜀 or 𝐴 < 0	and	𝑟!(𝜃) > 1 − 𝜀, then the

unclipped side of the objective function is activated (Figure 23).	

45

Figure 23 - Plots showing one term (i.e., a single timestep) of the surrogate function LCLIP as a function of the

probability ratio r, for positive advantages (left) and negative advantages (right). The red circle on each plot shows

the starting point for the optimization, i.e., r = 1. Source: [44]

 As mentioned, the formulation of the optimization problem in terms of differentiable loss

function allows to use gradient decent, which, contrary to TRPO, a critic can be parameterized in

terms of 𝜃. PPO optimizes the critic by introducing a value loss function

𝐿WX = (𝑉(𝑠!; 𝜃Y) − 𝑅!(𝜏))D and an entropy term, − $
D
(log(2𝜋𝜎D) + 1). The final equation is

described as:

𝐿UGQV#WX#R(𝜃) 	= 	−𝔼!�[𝐿UGQV(𝜃) − 𝛼𝐿WX(𝜃) − 𝛽
1
2 (𝑙𝑜𝑔(2𝜋𝜎

D) + 1)] (3.7)

 Finally, the PPO algorithm is defined as in Figure 24 where the policy gradient loss

function is the clipped loss function, there is a loop repeating the gradient update on random mini

batches of samples over K epochs and the advantage estimate Â (equation 3.2) uses the more

accurate generalized advantage estimation.

46

Figure 24 – PPO algorithm. Source: [44]

47

Chapter 4

Computer Vision

This chapter aims to support the choice of Xception as the CNN chosen to perform the

regression task of predicting the distance to the car leader based on the segmented image.

4.1 Xception

 Xception stands for “Extreme Inception” because the hypothesis assumed to build this

CNN is stronger than the hypothesis assumed to build Inception [6].

 A convolution layer attempts to learn filters in a 3D space considering two spatial

dimension such as width and height and the channel dimension, therefore a convolution kernel

needs to simultaneously map cross-channel correlations and spatial correlations.

 The idea behind the Inception module is to make this process easier and more efficient by

splitting into a set of operations that would independently look at cross-channel and spatial

correlations. More specifically, the Inception module first looks at cross-channel correlations via

a set of 1x1 convolutions which maps the input data into 3 or 4 separated spaces that are smaller

than the input space. After that, it maps all correlations in these smaller 3D spaces, via regular 3x3

or 5x5 convolutions. To sum up, the assumption behind Inception is that cross-channel correlations

and spatial correlations are decoupled enough that it is preferable not to map them together.

 Looking into a simplified version of Inception that only uses 3x3 convolutions and does

not include an average pooling tower (Figure 25), the authors of Xception easily reformulated the

Inception module as a large 1x1 convolution followed by spatial convolutions that would operate

on non-overlapping segments of the output channels (Figure 26). Consequently, they raised the

following question “wouldn’t it be reasonable to make a much stronger hypothesis than the

Inception hypothesis, and assume that cross-channel correlations and spatial correlations can be

mapped completely separately?”.

48

Figure 25 - Simplified Inception Module.

Source: [6]

Figure 26 - A strictly equivalent reformulation of the simplified Inception module.

Source: [6]

Using this strong hypothesis, the authors proposed to first use a 1x1 convolution to map

cross-channel correlations and, then, separately map the spatial correlations of every output

channel as shown in Figure 27. This is identical to a depth wise separable convolution which is an

operation that has been used since 2014 [47].

49

Figure 27 - An “extreme” version of our Inception module, with one spatial convolution per output channel of the

1x1 convolution.

Source: [6]

The depthwise separable convolution is a spatial convolution performed independently

over each input channel. This is followed by a pointwise convolution which is a 1x1 convolution

that projects the channels output by the depthwise convolution onto a new channel space.

There are two differences between an extreme version of Inception module and a depthwise

separable convolution:

1. The order of the operations where depthwise separable convolutions firstly

performs channel-wise spatial convolutions and then 1x1 convolution, whereas

Inception performs 1x1 convolution first.

2. The presence of a non-linearity after the first operation. In Inception, both

operations are followed by a ReLU, whereas depthwise separable convolutions

are implemented without non-linearity.

The use of depthwise separable convolutions are the main modification and novelty

introduced by the authors on the Inception architecture. However, they also relied on the VGG-16

architecture [49] to build their own architecture and on the residual connections introduced by [19]

which they use extensively in Xception’s architecture.

50

Xception’s architecture is based entirely on depthwise separable convolution layers which

entirely decouples the mapping of cross-channels correlations and special correlations in the

feature maps of CNN.

 The architecture is composed by 36 convolutional layers that are responsible for the feature

extraction, followed by a logistic regression layer since the purpose of this network is to classify

images. Nevertheless, this last layer can always be modified to perform any other task such as

regression with a linear layer.

 The 36 convolutional layers are divided into 14 modules with linear residual connections

around them, except for the first and last modules as shown in Figure 28.

Figure 28 - The Xception architecture: the data first goes through the entry flow, then through the middle flow

which is repeated eight times, and finally through the exit flow. Note that all Convolution and SeparableConvolution

layers are followed by batch normalization [22] (not included in the diagram). All SeparableConvolution layers use

a depth multiplier of 1 (no depth expansion).

Source: [6]

51

Experimental results using the ImageNet dataset showed that Xception surpassed VGG-

16, ResNet-152 and Inception V3 in terms of the classification accuracy. In terms of speed,

Xception was faster than Inception V3 and it also has less parameters than Inception V3.

Regarding if the presence or absence of non-linearity between depthwise and pointwise

operations would benefit, or not, the performance of the model, the authors performed experiments

in the ImageNet and they concluded that the absence of non-linearity benefits the model’s accuracy

(Figure 29).

Figure 29 - The effect of non-linearity presence between depthwise and pointwise operations.

Source: [6]

The use of residuals in the architecture also helped improving accuracy as shown in the

Figure 30.

52

Figure 30 - Impact of residuals on accuracy in Xception architecture.

Source: [6]

53

Chapter 5

PPO and Xception for Platooning Vehicles

This chapter is organized in two parts. The first part consists of a detailed description about

the implementation of PPO and Xception. The second part presents the results in CARLA and the

explain ability of the model.

5.1 Implementation

 This section will give an overview of the global process implemented as well as all the

assumptions taken to reach the thesis goal. Subsection 5.1.1 will state the problem. Subsection

5.1.2 will explain how the segmentation camera available in CARLA works. Subsection 5.1.3 will

explain how transfer learning and Xception were used to predict the distance to the car leader.

Finally, subsection 5.1.4 will show the architecture of the two RL agents created to control the

steer and the throttle/break.

5.1.1 Problem Statement
 The problem that this dissertation aimed to study was how to create a RL agent able to

follow another car using only information retrieved by a monocular camera and, at the same time,

be able to explain the decisions taken by the RL model.

 To be able to reach this goal some assumptions were taken:

1. There was only one car to be followed in the simulations because there was not a

way in CARLA to create a distinctive sign on the car that the agent should follow.

2. Two independent agents were created. One to control the steer and another one to

control the throttle and break.

3. There were no people on streets or any other dynamic actors.

4. The car starts always at a distance of 6 from the leader (there is no distance unit

since it is a Euclidean distance) and with a velocity of 12 km/h.

5. The car cannot be at a distance higher than 25, otherwise the episode will end.

54

6. The label used to train the Xception model is the Euclidean distance between both

cars which is not optimal when the car curves.

7. The episodes had at most a duration of 60 seconds.

8. The use of segmentation camera provided by CARLA to simplify the process by

removing unnecessary constraints that can be quickly solved because there is already

research and proven results.

9. Moving backwards is not allowed.

The assumptions were taken to simplify some processes that either were already

investigated, or they are simply solved when implemented in the real life. They also allowed to

develop the dissertation in the time period defined.

5.1.2 Segmentation Camera
 As mentioned in the previous subsection a segmentation camera provided by the simulator

was used to retrieve the main information needed to create the environment states that feed the RL

agents.

 The segmentation camera classifies each object in a RGB image with a different tag that

allows to map the tag to the object identified through CARLA’s documentation (see Table 1).

When the simulation starts, every object in the environment is created with a tag.

 When this camera retrieves an image, the tag information is encoded in the red channel

meaning that a pixel with a red value of ‘10’ belong to the object with tag ‘10 28.

Table 1 - Mapping between tags and objects

Source: https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-segmentation-camera

28 https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-segmentation-camera

Value Tag Converted color Description

0 Unlabeled (0, 0, 0)

Elements that have not been categorized are

considered Unlabeled . This category is meant to

be empty or at least contain elements with no

collisions.

55

Value Tag Converted color Description

1 Building (70, 70, 70)

Buildings like houses, skyscrapers,... and the

elements attached to them.

E.g. air conditioners, scaffolding, awning or

ladders and much more.

2 Fence (100, 40, 40)
Barriers, railing, or other upright structures.

Basically wood or wire assemblies that enclose an

area of ground.

3 Other (55, 90, 80)
Everything that does not belong to any other

category.

4 Pedestrian (220, 20, 60)

Humans that walk or ride/drive any kind of vehicle

or mobility system.

E.g. bicycles or scooters, skateboards, horses,

roller-blades, wheel-chairs, etc.

5 Pole (153, 153, 153)

Small mainly vertically oriented pole. If the pole

has a horizontal part (often for traffic light poles)

this is also considered pole.

E.g. sign pole, traffic light poles.

6 RoadLine (157, 234, 50) The markings on the road.

7 Road (128, 64, 128)
Part of ground on which cars usually drive.

E.g. lanes in any directions, and streets.

8 SideWalk (244, 35, 232)

Part of ground designated for pedestrians or

cyclists. Delimited from the road by some obstacle

(such as curbs or poles), not only by markings. This

label includes a possibly delimiting curb, traffic

islands (the walkable part), and pedestrian zones.

9 Vegetation (107, 142, 35)
Trees, hedges, all kinds of vertical vegetation.

Ground-level vegetation is considered Terrain .

56

Value Tag Converted color Description

10 Vehicles (0, 0, 142)
Cars, vans, trucks, motorcycles, bikes, buses,

trains.

11 Wall (102, 102, 156) Individual standing walls. Not part of a building.

12 TrafficSign (220, 220, 0)

Signs installed by the state/city authority, usually

for traffic regulation. This category does not

include the poles where signs are attached to.

E.g. traffic- signs, parking signs, direction signs...

13 Sky (70, 130, 180) Open sky. Includes clouds and the sun.

14 Ground (81, 0, 81)

Any horizontal ground-level structures that does

not match any other category. For example areas

shared by vehicles and pedestrians, or flat

roundabouts delimited from the road by a curb.

15 Bridge (150, 100, 100)
Only the structure of the bridge. Fences, people,

vehicles, an other elements on top of it are labeled

separately.

16 RailTrack (230, 150, 140)
All kind of rail tracks that are non-drivable by cars.

E.g. subway and train rail tracks.

17 GuardRail (180, 165, 180) All types of guard rails/crash barriers.

18 TrafficLight (250, 170, 30) Traffic light boxes without their poles.

19 Static (110, 190, 160)

Elements in the scene and props that are

immovable.

E.g. fire hydrants, fixed benches, fountains, bus

stops, etc.

20 Dynamic (170, 120, 50)
Elements whose position is susceptible to change

over time.

57

5.1.3 Xception
 This section describes the changes needed in the architecture of Xception network to be

able to perform a regression task as well as the dataset used and the way it was collected, the

training evolution and, finally, the performance results.

5.1.3.1 Network
 Most of the CNNs available for Transfer Learning in Tensorflow [1] were trained in the

‘Imagenet’ dataset, where the goal is to classify an image based on the 1000 labels present in the

dataset.

 Since the goal for this dissertation is to predict distance, which is a regression problem, the

output layer was changed from 1000 nodes with a Softmax activation function to 1 node with a

Linear activation function.

 Before the output layer, a Global Average Pooling 2D [27] layer was used to flatten the

output of the previous layers since it applies average pooling on the spatial dimensions until each

spatial dimension is one. According to the authors, this approach reduces the number of trainable

parameters which reduces the tendency of over-fitting, that needs to be managed in fully connected

layers using dropout. They also argue that removing the fully connected classification layers forces

the feature maps to be more closely related to the classification categories which makes the model

more robust to spatial translations in the data.

Value Tag Converted color Description

21 Water (45, 60, 150)
Horizontal water surfaces.

E.g. Lakes, sea, rivers.

22 Terrain (145, 170, 100)
Grass, ground-level vegetation, soil or sand. These

areas are not meant to be driven on. This label

includes a possibly delimiting curb.

58

 The choice of Xception relied on what was explained in subsection 4.1 Xception and, also,

on the Table 2 which shows the trade-off between the number of parameters, accuracy, and time

for inference.

 In that table is possible to see that Xception is one of the models with highest accuracy and

low latency in GPU, which is important because the agent needs a fast prediction so that the

environment does not change significantly between retrieving the information and taking the

action.

Table 2 - Available Models in Tensorflow

Source: https://keras.io/api/applications/

Model
Size

(MB)

Top-1

Accuracy

Top-5

Accuracy
Parameters Depth

Time (ms) per

inference step

(CPU)

Time (ms) per

inference step

(GPU)

Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1

VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2

VGG19 549 71.3% 90.0% 143.7M 19 84.8 4.4

ResNet50 98 74.9% 92.1% 25.6M 107 58.2 4.6

ResNet50V2 98 76.0% 93.0% 25.6M 103 45.6 4.4

ResNet101 171 76.4% 92.8% 44.7M 209 89.6 5.2

ResNet101V2 171 77.2% 93.8% 44.7M 205 72.7 5.4

ResNet152 232 76.6% 93.1% 60.4M 311 127.4 6.5

ResNet152V2 232 78.0% 94.2% 60.4M 307 107.5 6.6

InceptionV3 92 77.9% 93.7% 23.9M 189 42.2 6.9

InceptionResNetV2 215 80.3% 95.3% 55.9M 449 130.2 10.0

MobileNet 16 70.4% 89.5% 4.3M 55 22.6 3.4

MobileNetV2 14 71.3% 90.1% 3.5M 105 25.9 3.8

DenseNet121 33 75.0% 92.3% 8.1M 242 77.1 5.4

DenseNet169 57 76.2% 93.2% 14.3M 338 96.4 6.3

DenseNet201 80 77.3% 93.6% 20.2M 402 127.2 6.7

NASNetMobile 23 74.4% 91.9% 5.3M 389 27.0 6.7

NASNetLarge 343 82.5% 96.0% 88.9M 533 344.5 20.0

EfficientNetB0 29 77.1% 93.3% 5.3M 132 46.0 4.9

59

Model
Size

(MB)

Top-1

Accuracy

Top-5

Accuracy
Parameters Depth

Time (ms) per

inference step

(CPU)

Time (ms) per

inference step

(GPU)

EfficientNetB1 31 79.1% 94.4% 7.9M 186 60.2 5.6

EfficientNetB2 36 80.1% 94.9% 9.2M 186 80.8 6.5

EfficientNetB3 48 81.6% 95.7% 12.3M 210 140.0 8.8

EfficientNetB4 75 82.9% 96.4% 19.5M 258 308.3 15.1

EfficientNetB5 118 83.6% 96.7% 30.6M 312 579.2 25.3

EfficientNetB6 166 84.0% 96.8% 43.3M 360 958.1 40.4

EfficientNetB7 256 84.3% 97.0% 66.7M 438 1578.9 61.6

EfficientNetV2B0 29 78.7% 94.3% 7.2M - - -

EfficientNetV2B1 34 79.8% 95.0% 8.2M - - -

EfficientNetV2B2 42 80.5% 95.1% 10.2M - - -

EfficientNetV2B3 59 82.0% 95.8% 14.5M - - -

EfficientNetV2S 88 83.9% 96.7% 21.6M - - -

EfficientNetV2M 220 85.3% 97.4% 54.4M - - -

EfficientNetV2L 479 85.7% 97.5% 119.0M - - -

5.1.3.2 Dataset
 Transfer Learning requires the existence of pre-trained weights in a dataset that are going

to be updated when trained on the dataset of the new task. As mentioned in subsection 2.2.3

Transfer Learning, this approach speeds up the training process because the first layers usually are

frozen which means their weights will not be updated since the high-level features are similar from

task to task.

 The dataset created for this work is composed by 25 448 images which were collected in 2

steps:

1. The first one was training the RL agent responsible for the throttle/break with the real

Euclidian distance and then, using this agent in a test environment so that the agent

could follow the leader and could collect segmented images like the following one in

Figure 31:

60

Figure 31 - Example of segmented images collected to train Xception

2. The second one was to enrich the dataset with distances that the first step could not

retrieve. Since the algorithm was already optimized and short distances, like 4 or 5

were not presented in the dataset made the model overpredicting the distance in those

cases and, consequently, crash into the leader.

The final dataset has an average of 7.97, a standard deviation of 1.44, a minimum of 3.94,

a maximum of 14.59 and a median of 8.36. The distribution and the boxplot can be seen in the

following images (Figure 32 and Figure 33):

Figure 32 - Distance Distribution with most of the values between 8 and 10 because it was the range where the agent

would get positive rewards (this will be explained later).

61

Figure 33 - Boxplot with percentile 25% on 6.35, median on 8.36 and percentile 75% on 8.44

5.1.3.3 Training
 The training set up was done by splitting the dataset into three datasets: training, validation,

and test set with 70%, 10% and 20% of images, respectively.

 For the back propagation of the network the optimizer used was Adam [24].

Adam is different from classical stochastic gradient descent because while the latter

maintains a single learning rate (termed alpha) for all weight updates and the learning rate does

not change during training, Adam combines the advantages of two other extensions of stochastic

gradient descent:

• Adaptive Gradient Algorithm (AdaGrad) [9] that maintains a per-parameter learning rate

that improves performance on problems with sparse gradients (e.g. natural language and

computer vision problems).

• Root Mean Square Propagation (RMSProp) [39] that also maintains per-parameter

learning rates that are adapted based on the average of recent magnitudes of the gradients

for the weight (e.g. how quickly it is changing). This means the algorithm does well on

online and non-stationary problems (e.g. noisy).

Instead of adapting the parameter learning rates based on the average first moment (the

mean) as in RMSProp, Adam also makes use of the average of the second moments of the gradients

(the uncentered variance).

62

Specifically, the algorithm calculates an exponential moving average of the gradient and

the squared gradient, and the parameters beta1 and beta2 control the decay rates of these moving

averages.

The initial value of the moving averages and beta1 and beta2 values close to 1.0

(recommended) result in a bias of moment estimates towards zero. This bias is overcome by first

calculating the biased estimates before then calculating bias-corrected estimates.

The metric to be optimized by Adam was Mean Absolute Error (MAE) which evaluates the

average absolute difference between the ground truth and the value predicted and it can be

interpreted as closer to zero the better. MAE is given by

𝑀𝐴𝐸 =	

1
𝑛D

|𝑥: − 𝑥|
C

:($

 (5.1)

, where n stands for the number of observations.

 Finally, regarding the number of epochs and the batch size, they were 40 and 64

respectively. The model took 5.45 hours to run in Google Colab using GPUs and the evolution of

the loss can be seen in Figure 34.

Figure 34 - Loss Evolution

63

 Figure 34 shows that the model only needs 4 epochs to achieve a low loss (MAE) in the

validation set. However, the convergency seems to be achieved in epoch 37, therefore, the weights

used to predict the distance are the ones from epoch 37 which was possible to save by using

callbacks during training which saves the weights from the best epoch.

5.1.3.4 Results
The model produced a MAE of 1.47 in the test set (M5), which means that there are errors

above and below 1.47 and this distribution can be seen in Figure 35.

From the distribution, it is possible to see that the model is overestimating the distance

since there are more negative values than positive ones, which is not a problem because it can

increase safety for lower values of distance. Also, 50% of the errors are between -1.51 and 1.78

which is a low value when comparing with the average distance in the dataset (7.97).

Figure 35 - Error distribution in the test set

5.1.4 PPO Architectures
This section provides an extensive overview related to the states, actions, reward functions,

terminal states, architectures, training results and explain ability charts of the RL algorithm. Since

64

two different agents based on PPO were developed, this section will be divided into two. The first

one will explain the agent responsible for the steer and the second one will explain the agent

responsible for the throttle/brake.

5.1.4.1 Steer Agent

5.1.4.1.1 State
The state for this agent consists only into two binary features called ‘left’ and ‘right’. When

‘left’ is 1 then ‘right’ is 0, this means that the agent is not aligned with the leader and that the

leader is on the left of the agent. When ‘right’ is 1 then ‘left’ is 0, this means that the agent is not

aligned with the leader and that the leader is on the right of the agent. When both ‘left’ and ‘right’

are 0, this means that the agent is aligned with the leader. Initially, the state had also the feature

‘aligned’, but it was realized that it would mean the same as ‘left’ and ‘right’ being 0, therefore,

to simplify even more the state, this feature was removed.

To extract this information a segmented image of 640x480 (width x height) from the

segmentation camera is used. This matrix is converted from a pixel range from 0 to 22 to a binary

matrix where 1 identifies where label 10 is presented which is the label for cars according to

CARLA documentation. Since there is only the car leader driving in the simulator, there is no need

to confirm if those labels really represent the car leader or any other car. To overcome this problem

would be necessary to use the license plate or attach an object to the leader so that the agent would

be able to identify the leader.

Using matrix manipulation, one can easily extract the following information to determine

if ‘left’ is 1 or 0 and if ‘right’ is 1 or 0 by following these rules:

1. If the center of the leader is on a pixel where the x coordinate is lower than 300 then

‘left’ is 1 and ‘right’ is 0;

2. If the center of the leader is on a pixel where the x coordinate is higher than 340 then

‘left’ is 0 and ‘right’ is 1;

3. Finally, If the center of the leader is on a pixel where the x coordinate is between 300

and 340 then ‘left’ is 0 and ‘right’ is 0.

Mathematically it can be expressed as:

65

𝑠𝑡𝑎𝑡𝑒 = �

𝑐𝑒𝑛𝑡𝑒𝑟 < 300,																𝑙𝑒𝑓𝑡 = 1, 𝑟𝑖𝑔ℎ𝑡 = 0
𝑐𝑒𝑛𝑡𝑒𝑟 > 340,																𝑙𝑒𝑓𝑡 = 0, 𝑟𝑖𝑔ℎ𝑡 = 1
300 ≤ 𝑐𝑒𝑛𝑡𝑒𝑟 ≤ 340,			𝑙𝑒𝑓𝑡 = 0, 𝑟𝑖𝑔ℎ𝑡 = 0

 (5.2)

The center of the leader is determined by the following equation:

 𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑚𝑖𝑛H +𝑚𝑎𝑥H

2 	

(5.3)

All the process is illustrated in Figure 36:

Figure 36 - Process of extracting the state representation for the agent responsible for the steer

5.1.4.1.2 Actions
The agent responsible for the steer has a discrete space of actions constituted for 3 different

actions: going straight, turn left and turn right.

The simulator requires a value from -1 to 1 for the steer control. To turn left the value must

be below 0 and to turn right the value must be above 0.

Since the agent has discrete action space instead of a continue action space, when the

probability of turning left is the highest, the steer value is -0.25. When the probability of turning

66

right is the highest, the steer value is 0.25. And, when the probability of going straight is the highest

then the steer value is 0.

The 0.25 value was defined based on trial and error with the goal of selecting the minimum

value possible that could reduce a strong zig zag behavior but at the same time was enough to

perform elbow curves. Besides that, here is introduced the first safety layer that avoids sudden

turns and, consequently, a dangerous and an aggressive driving behavior.

The steer action can be turned into a continuous value so that the agent can adapt how much

it wants to curve, however the state would need to be redefined in a non-binary way as well as the

reward functions associated to the steer agent. This is a good opportunity for future work.

5.1.4.1.3 Reward Function
The reward function is composed by 4 different components.

The first component is related to the collision in which the agent receives a negative reward

of -10 if a collision happens.

The second component evaluates if the leader was lost. In the case the leader is not visible

in the camera, then the agent receives a negative reward of -10.

The third component can be seen as an alignment component once it gives a negative

reward of -5 if the agent is not aligned with the leader and a positive reward of 5 otherwise.

Finally, the fourth component tries to guide the agent actions by giving a negative reward

of -5 if the agent turns left or goes straight and the leader is right, or the agent turns right or goes

straight, and the leader is left or the agent does not go straight when it is aligned. On the other

hand, if the agent takes the correct decision which means, turning left when the leader is left,

turning right when leader is right or going straight when the agent is aligned, then the agent

receives a positive reward of 5.

5.1.4.1.4 Terminal State
 The episode ends when:

1. The episode is running for longer than 60 seconds; or

2. The agent collides; or

3. There is no label 10 in the segmented image meaning that the agent lost the leader.

Mathematically it can be defined as:

67

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙	𝑠𝑡𝑎𝑡𝑒 =

⎩
⎨

⎧
𝑡𝑖𝑚𝑒 > 60𝑠,																																														𝑡𝑟𝑢𝑒
𝑙𝑒𝑛(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛?Y?C!,) > 0,																						𝑡𝑟𝑢𝑒
𝑠𝑢𝑚(𝑠𝑢𝑚M𝑖𝑚𝑔,?I == 10P = 0, 𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒

 (5.4)

5.1.4.1.5 Network Architecture
 The network is composed by four layers and can be seen in Figure 37:

• Input layer with 2 nodes with ReLU activation function.

• 2 Hidden layers with 64 nodes with ReLU activation function.

• Output layer with 3 nodes and Softmax as the activation function to predict the

probability of choosing one of the three actions possible given the actual state.

Figure 37 - Steer Agent Architecture.

68

5.1.4.1.6 Training Results
For the training phase the following hyperparameters were used:

• Batch size: 32

• Epochs: 10

• Gamma: 0.99

• Learning rate: 0.0003

• Policy clip: 0.2

• Episodes: 780

These hyperparameters were not defined using any optimization technique, i.e., they were

not fine tuned.

Figure 38 shows the evolution of the cumulative reward per episode in light blue and a

moving average with a window of 100 episodes in dark blue.

It is visible that around episode 500 there is a positive drift on the reward obtained by

episode, meaning that the agent started to learn what was expected. From episode 650 onwards,

the cumulative reward has stabilized and, therefore, one can consider that the model has converged,

and no more training is needed.

Figure 38 - Cumulative steer reward per episodes (M2)

69

5.1.4.1.7 Explain Ability
 As mentioned previously, the explainable part of the thesis will rely on SHAP values to

explain why the agent is taking certain decision based on the state perceived.

 As shown in Figure 39 each possible action has its own chart that allows to take the

following conclusions:

• The action to turn left is triggered by the state constituted by ‘left’ equal to 1 and

‘right’ equal to 0, since a red dot means a high feature value which is 1 in a binary feature.

In the chart, it is also possible to verify the impact on model output in the x axis, where in

this case the red dot points to an impact of more than 0.8.

• The action to go straight is triggered by the state that does not contain any 1 value

for either ‘left’ or ‘right’ because it will decrease the chance of taking this action since the

impact on model output is less than -0.8. This means, that a state defined by ‘left’ equal to

0 and ‘right’ equal to 0 will increase the chance of taking this action, since a blue dot means

a low feature value which is 0 in a binary feature. Indeed, from the chart it is easily

understandable that a 1 value in either ‘left’ or ‘right’ decreases the probability of going

straight.

• The action to turn right is triggered by the state constituted by ‘left’ equal to 0 and

‘right’ equal to 1. In the chart, it is also possible to verify the impact on model output in

the x axis, where in this case the red dot points to an impact of more than 0.8.

70

Figure 39 – SHAP values of each possible action.

5.1.4.2 Throttle/Break Agent

5.1.4.2.1 State
The state for this agent consists only into three features called ‘distance’, ‘previous

distance’ and ‘velocity.

The ‘distance’ is the prediction from Xception as well as the ‘previous distance’ which is

the prediction from the previous state. The velocity is the speed that the agent is driving in that

moment.

The agent was also trained only using two features ‘distance’ and ‘velocity’ in order to

reduce complexity; however it did not work out leading to consecutive crashes into the leader since

having ‘previous distance’ in the state definition allows the agent to understand the velocity of the

leader.

Apart from velocity, which is a sensor that every car has, to extract the remaining features

for the state, the same segmented image used in the steer agent with the same conversion process

to get a matrix filled with zeros except where the leader is in the image which is filled with ones

is used to feed the Xception CNN that predicts the distance to create the state.

The values that constitute the state are normalized by dividing the distance values by 25

(which is the maximum value allowed during training, otherwise the episode will end) and the

71

velocity is divided by 100 (which will range the velocity feature between 0 and 1.2 since the

maximum velocity allowed is 120 km/h).

All the process is explained in Figure 40:

Figure 40 - Predicting distance with Xception

5.1.4.2.2 Actions
The agent responsible for the throttle/break has a continuous space of actions that can range

between -1 and 1.

The simulator requires a value from 0 to 1 for the throttle and break control, therefore it

was defined that if the value is below 0 then the agent will break in the intensity of the absolute

number predicted, if the value is above 0 then the agent will accelerate in the intensity of the value

predicted.

During training, since the value predicted comes from a distribution with certain average

which is the value predicted by the PPO and a fixed standard deviation defined by the user, the

value can be higher than 1 and lower than -1, therefore a clipped was used to make that value -1

when the prediction is lower than -1 and 1 when the prediction is higher than 1.

5.1.4.2.3 Reward Function
The reward function is composed by 5 different components.

The first component is related to the collision in which the agent receives a negative reward

of -10 in case a collision has happened.

The second component evaluates if the leader is too far away from the agent: if the leader

is farer than a distance of 25, then the agent receives a negative reward of -10.

The third component is used to assess if the agent is at the desired distance to leader which

is between 8 and 10: if the distance is between those values the agent receives a positive reward of

+5, otherwise it receives a negative reward of -5

72

The fourth and fifth component can be seen as an guidance component. In case of the fourth

component it gives a positive reward of +5 if the agent is reducing the distance to the leader when

the distance is higher than 10 or is increasing the distance when the distance is lower than 8. In

case of the fifth component, it gives a negative reward of -5 when the agent is stopped which means

the velocity is 0 km/h and the leader is farer than a distance of 13 and the action chosen by the

agent was lower or equal to 0 which means the agent will break.

5.1.4.2.4 Terminal State
 The episode ends when:

1. The episode is running for longer than 60 seconds; or

2. The agent collides; or

3. The distance to the leader is higher than 25.

Mathematically it can be defined as:

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙	𝑠𝑡𝑎𝑡𝑒 = �

𝑡𝑖𝑚𝑒 > 60𝑠,																																														𝑡𝑟𝑢𝑒
𝑙𝑒𝑛(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛?Y?C!,) > 0,																						𝑡𝑟𝑢𝑒
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 25,																																							𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒

 (5.5)

5.1.4.2.5 Network Architecture
 The network is composed by four layers and can be seen in Figure 41:

• Input layer with 3 nodes with ReLU activation function.

• 2 Hidden layers with 64 nodes with ReLU activation function.

• Output layer with 1 nodes and Tanh as the activation function to predict a value

between -1 and 1.

73

Figure 41 – Throttle/Break Agent Architecture

5.1.4.2.6 Training Results
For the training phase the following hyperparameters were used:

• Batch size: 32

• Epochs: 10

• Gamma: 0.99

• Learning rate: 0.0003

• Policy clip: 0.2

• Episodes: 780

• Standard deviation: 0.55

• Standard deviation decay at each 350 episodes: 0.15

As for the steer agent most of the hyperparameters were not fined tuned, except the standard

deviation and the standard deviation decay which were defined through trial-and-error.

Figure 42 shows the evolution of the cumulative reward per episode in light blue and a

moving average with a window of 100 episodes in dark blue.

74

It is visible that around episode 430 a positive drift starts to appear on the reward obtained

by episode which means that the agent started learning what was expected. From episode 650

onwards, the cumulative reward has stabilized and, therefore, one can consider that the model has

converged, and no more training is needed.

Figure 42 - Cumulative throttle/break reward per episodes (M1)

5.1.4.2.7 Explain Ability
 As mentioned previously the explainable part of the thesis will rely on SHAP values to

explain why the agent is taking certain decision based on the state perceived.

 As shown in Figure 43 the action taken can be seen in the xx axis and that allows to take

the following conclusions:

• The break is mostly used by the agent when the value for the ‘velocity’ feature is

high and/or the value of ‘distance’ is low. It is also possible to see that ‘previous distance’

does not have the same importance for the break action as it has for the throttle. However,

low values of this feature also contribute to trigger the break. These values are what is

expected because a short ‘distance’ will require to break to keep up with the desired

75

distance and, also, when the ‘velocity’ is high, so that it is possible to keep a safety distance

that allows to break before crashing into the leader.

• The throttle is mainly triggered when the ‘velocity’ is low and/or the ‘distance’

and/or the ‘previous distance’ are high. Such fact makes sense since the agent should keep

a distance to the leader between 8 and 10 and therefore if the distance is higher than 10 it

must press the throttle.

Figure 43 – SHAP values for the throttle/break actions

76

5.1.4.3 Both Agents
 Figure 44 shows an image retrieved by the camera placed in the agent while it was

following the leader which a Tesla Model 3.

Figure 44 - Image retrieved by our agent's camera in CARLA

5.1.4.3.1 Training Results
Figure 45 shows the evolution of the cumulative actions per episode in light blue and a

moving average with a window of 100 episodes in dark blue.

It is visible that around episode 430 a positive drift starts to appear on the quantity of actions

taken by episode which matches the behavior from the cumulative reward obtained from

throttle/break agent. This fact could indicate that this agent is more important than the steer one.

From episode 650 onwards, the quantity of actions has stabilized, and this behavior matches the

behavior for both agents in regards to the convergence condition.

77

Figure 45 - Quantity of Actions per episode (M4)

5.1.5 Test results
 Table 3 shows the results of 20 episodes with a maximum duration of 5 minutes using the

trained weights for the three models used (2 PPO models and Xception) to create an agent which

is able to follow a leader. The agent was able to complete 20 episodes until the end without

crashing or losing sight of the leader, therefore the reason for ending the episode (M8) was only

the time.

 The average throttle and steer reward across the 20 episodes was 1047.8 and 3547.75,

respectively. The average quantity of actions was 465.4 actions with an average distance and

velocity of 8.53 and 7.5 km/h, respectively. The low average velocity happens due to red signs

from the traffic lights which generates 0 km/h values for a lot of the values being recorded.

 Finally, the MAE for Xception was on average 0.2531.

 A video from one of the episodes can be accessed here https://youtu.be/NQDdWA7UeZg.

78

Table 3 - Results of the entire system (2 RL algorithms and Xception) working in CARLA with trained weights. See
the definitions of M6-13 in Metrics.

Throttle Reward

(M6)

Steer Reward

(M7)

Successful

(M8)

Actions

(M9)

Avg Distance

(M10)

Avg Velocity

(M11)

MAE

(M13)

1065 3295 Yes 521 7.62 0 0.2985

1135 3295 Yes 494 7.7 0 0.2841

1145 3345 Yes 456 7.85 0 0.3080

1310 3550 Yes 448 7.92 0 0.2966

1570 4385 Yes 450 8.03 0 0.2771

1435 3785 Yes 462 8.13 0 0.2872

1645 3850 Yes 463 8.17 0 0.2870

1845 4485 Yes 459 8.27 0 0.2971

820 4305 Yes 480 9.84 46 0.2759

970 3955 Yes 483 9.81 40 0.2900

1095 4130 Yes 482 9.69 38 0.2789

1385 3435 Yes 486 9.39 14 0.0291

1615 2145 Yes 472 8.22 0 0.3058

380 4630 Yes 464 8.41 1 0.2767

376 4280 Yes 437 8.74 1 0.3146

400 2490 Yes 433 8.89 1 0.3015

405 2165 Yes 442 8.97 1 0.0294

355 3560 Yes 463 8.76 2 0.0290

1060 2950 Yes 466 8.13 2 0.3147

945 2920 Yes 447 8.13 4 0.2815

79

Conclusion

 As stated above, this dissertation aimed to act in four different aspects: Reinforcement

Learning, Computer Vision, Safety and Explain Ability.

 Reinforcement Learning is the principal focus, and it was based on Proximal Policy

Optimization since it enables to train the agent in a continuous action space, which is crucial for

self-driving car tasks with the advantage of having a simpler implementation, better performance,

and better sample efficiency than the Deep Q-Learning. Apart from the algorithm choice, the state

was selected to be defined through an array of meaningful and controllable variables for explain

ability concerns such as distance, velocity, and the relative position to the leader, instead of the

traditional image of the environment. Although this algorithm allows a continuous action space,

the steer actions were discretized in three possible actions in order to speed up the training and get

reliable results faster. However, it would be great to let the agent learn and decide how much it

wants to turn the wheel because it would not limit what the agent can do which can be beneficial

by allowing the agent to handle easily different situations. The state representation and the reward

functions were the most challenging part of this dissertation which took 3 months of experiments

to be able to produce the final result.

 Computer Vision played an important role on identifying and calculate the distance to the

leader using transfer learning on a Xception architecture, and matrix manipulation of segmented

images for the state representation. Using this approach, the agent does not need other types of

sensors like lidars or radars which make possible to keep driving if one of the other sensors fail.

However, this approach is harder, and more time consuming in terms of measuring distances and

identifying the different objects in the road than lidars and radars. With one camera there is the

need of training an image segmentation model to identify the different objects and then, a

regression model to predict the distances to those objects. To train those models, one needs to

collect the data (thousands of images) and label them which is always time consuming.

Nevertheless, nowadays the simulators provide images that look like real, and they can be used as

shortcut for data collection and labeling. Another alternative to be considered is to use GANs to

make images from the simulator look more real like what was done in [56].

 The safety layer was composed by two parts: one for the steer agent which only allows to

turn the wheel 25% in order to avoid sudden turns that can be dangerous. And the other part was

80

used on the testing phase and it is responsible for breaking in case the distance to the leader is too

short.

 The Explain Ability part was achieved due to the way the state is represented and using

SHAP values which allow to understand how much each variable contributes to the prediction

made by the agent. This is useful mainly for the constructor because it allows to verify why the

agent is taking certain decision based on the environment perceived, however it is not enough

when there are more obstacles in the road or when there are different climate conditions, therefore

those features should be added to the state representation.

 Future enhancements on this work include: (a) changing the steer agent from a discrete

action space to a continuous one with a different state representation where instead of binary

features regarding the relative position to the leader one could use how much misaligned the agent

is; (b) a more attentive choice of hyperparameters; (c) additionally, identify different obstacles

(dynamic and static objects) in the road and collect data regarding their distance to the agent so

that it can avoid obstacles and keep driving within the lane; (d) finally, add a identifier to the leader

to avoid the agent following other car and enable the point (c) to happen.

81

References

[1] Abadi, M. et al. 2016. TensorFlow: A system for large-scale machine learning. (May

2016).

[2] Agarap, A.F. 2018. Deep Learning using Rectified Linear Units (ReLU). (Mar. 2018).

[3] Badrinarayanan, V. et al. 2015. SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation. (Nov. 2015).

[4] Balaji, B. et al. 2019. DeepRacer: Educational Autonomous Racing Platform for

Experimentation with Sim2Real Reinforcement Learning. (Nov. 2019).

[5] Bird, J.J. and Faria, D.R. 2018. A Study on CNN Transfer Learning for Image

Classification.

[6] Chollet, F. 2018. Xception: Deep Learning with Depthwise Separable Convolutions.

[7] Dalal, G. et al. 2018. Safe Exploration in Continuous Action Spaces. (Jan. 2018).

[8] Dosovitskiy, A. et al. 2017. CARLA: An Open Urban Driving Simulator.

[9] Duchi JDUCHI, J. and Singer, Y. 2011. Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization * Elad Hazan.

[10] Eberhard, O. and Zesch, T. 2021. Effects of Layer Freezing on Transferring a Speech

Recognition System to Under-resourced Languages.

[11] Everitt, T. et al. 2019. Reward Tampering Problems and Solutions in Reinforcement

Learning: A Causal Influence Diagram Perspective. (Aug. 2019).

[12] Folkers, A. et al. 2019. Controlling an Autonomous Vehicle with Deep Reinforcement

Learning. (Sep. 2019). DOI:https://doi.org/10.1109/IVS.2019.8814124.

[13] Fujimoto, S. et al. 2018. Addressing Function Approximation Error in Actor-Critic

Methods. (Feb. 2018).

[14] Grossi, E. and Buscema, M. 2007. Introduction to artificial neural networks. European

Journal of Gastroenterology and Hepatology.

[15] Ha, D. and Schmidhuber, J. 2018. World Models. (Mar. 2018).

DOI:https://doi.org/10.5281/zenodo.1207631.

[16] Haarnoja, T. et al. 2018. Soft Actor-Critic Algorithms and Applications. (Dec. 2018).

[17] Haarnoja, T. et al. 2018. Soft Actor-Critic: Off-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor.

82

[18] van Hasselt, H. et al. 2016. Deep Reinforcement Learning with Double Q-Learning.

[19] He, K. et al. 2015. Deep Residual Learning for Image Recognition. (Dec. 2015).

[20] https://towardsdatascience.com/shap-explained-the-way-i-wish-someone-explained-it-to-

me-ab81cc69ef30: 2020. .

[21] I. Goodfellow et al. 2018. Deep learning. Genetic Programming and Evolvable Machines.

19, 1–2 (Jun. 2018), 305–307. DOI:https://doi.org/10.1007/s10710-017-9314-z.

[22] Ioffe, S. and Szegedy, C. 2015. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. (Feb. 2015).

[23] Joyce, J.M. 2011. Kullback-Leibler Divergence. International Encyclopedia of Statistical

Science. M. Lovric, ed. Springer Berlin Heidelberg. 720–722.

[24] Kingma, D.P. and Ba, J. 2014. Adam: A Method for Stochastic Optimization. (Dec. 2014).

[25] Lecun, Y. et al. 2015. Deep learning. Nature. Nature Publishing Group.

[26] Lillicrap, T.P. et al. 2015. Continuous control with deep reinforcement learning. (Sep.

2015).

[27] Lin, M. et al. 2013. Network In Network. (Dec. 2013).

[28] Lipton, Z.C. et al. 2016. Combating Reinforcement Learning’s Sisyphean Curse with

Intrinsic Fear. (Nov. 2016).

[29] Liu, B. et al. 2020. Platoon control of connected autonomous vehicles: A distributed

reinforcement learning method by consensus.

[30] Loo Vergara, M. 2019. Accelerating Training of Deep Reinforcement Learning-based

Autonomous Driving Agents Through Comparative Study of Agent and Environment

Designs.

[31] Lundberg, S. and Lee, S.-I. 2017. A Unified Approach to Interpreting Model Predictions.

(May 2017).

[32] Mnih, V. et al. 2015. Human-level control through deep reinforcement learning. Nature.

518, 7540 (Feb. 2015), 529–533. DOI:https://doi.org/10.1038/nature14236.

[33] Mnih, V. et al. 2013. Playing Atari with Deep Reinforcement Learning. (Dec. 2013).

[34] Moerland, T.M. et al. 2020. Model-based Reinforcement Learning: A Survey. (Jun. 2020).

[35] Nwankpa, C. et al. 2018. Activation Functions: Comparison of trends in Practice and

Research for Deep Learning. (Nov. 2018).

83

[36] O’Shea, K. and Nash, R. 2015. An Introduction to Convolutional Neural Networks. (Nov.

2015).

[37] Pascanu, R. et al. 2012. On the difficulty of training Recurrent Neural Networks. (Nov.

2012).

[38] Ronneberger, O. et al. 2015. U-net: Convolutional networks for biomedical image

segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) (2015), 234–241.

[39] Ruder, S. 2016. An overview of gradient descent optimization algorithms. (Sep. 2016).

[40] Russakovsky, O. et al. 2014. ImageNet Large Scale Visual Recognition Challenge. (Sep.

2014).

[41] Sallab, A. el et al. 2017. Deep Reinforcement Learning framework for Autonomous

Driving. (Apr. 2017). DOI:https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023.

[42] Schrittwieser, J. et al. 2019. Mastering Atari, Go, Chess and Shogi by Planning with a

Learned Model. (Nov. 2019). DOI:https://doi.org/10.1038/s41586-020-03051-4.

[43] Schulman, J. et al. HIGH-DIMENSIONAL CONTINUOUS CONTROL USING

GENERALIZED ADVANTAGE ESTIMATION.

[44] Schulman, J. et al. 2017. Proximal Policy Optimization Algorithms. (Jul. 2017).

[45] Schulman, J. et al. 2015. Trust Region Policy Optimization. (Feb. 2015).

[46] Sheebaelhamd, Z. et al. 2021. Safe Deep Reinforcement Learning for Multi-Agent

Systems with Continuous Action Spaces. (Aug. 2021).

[47] Sifre, L. 2014. Ecole Polytechnique, CMAP Rigid-Motion Scattering For Image

Classification.

[48] Silver, D. et al. 2017. Mastering Chess and Shogi by Self-Play with a General

Reinforcement Learning Algorithm. (Dec. 2017).

[49] Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Networks for Large-

Scale Image Recognition. (Sep. 2014).

[50] Sutton, R.S. and Barto, A.G. 2018. lanning and Learning with Tabular Methods: Tabular

Dyna-Q.

[51] Sutton, R.S. and Barto, A.G. 2018. Maximization Bias and Double Learning.

[52] Sutton, R.S. and Barto, A.G. 2018. Monte Carlo Tree Search.

84

[53] Sutton, R.S. and Barto, A.G. 2018. Reinforcement Learning An Introduction second

edition.

[54] Thoma, M. 2016. A Survey of Semantic Segmentation. (Feb. 2016).

[55] Wang, Z. et al. 2015. Dueling Network Architectures for Deep Reinforcement Learning.

(Nov. 2015).

[56] Xu, W. et al. 2021. Reliability of GAN Generated Data to Train and Validate Perception

Systems for Autonomous Vehicles.

[57] Y. Bengio et al. 1994. Learning long-term dependencies with gradient descent is difficult.

(1994).

[58] Zhou, Y. et al. 2019. Adaptive Leader-

Follower Formation Control and Obstacle Avoidancevia Deep Reinforcement Learni

ng.

[59] Zhou, Z. et al. 2019. A deep learning platooning-based video information-sharing Internet

of Things framework for autonomous driving systems. International Journal of

Distributed Sensor Networks. 15, 11 (Nov. 2019).

DOI:https://doi.org/10.1177/1550147719883133.

