
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Recovery of Software Architecture from
Code Repositories

Ricardo Jorge de Araújo Ferreira

Mestrado em Engenharia Informática e Computação

Supervisor: Prof. Filipe F. Correia

October 30, 2022

Recovery of Software Architecture from Code
Repositories

Ricardo Jorge de Araújo Ferreira

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Jácome Miguel Costa da Cunha

External Examiner: Prof. Florian Rademacher
Supervisor: Prof. Filipe Figueiredo Correia

October 30, 2022

Abstract

Architecture can result from multiple intangibly connected parts spread across source code and
other development artefacts, making it difficult to describe the architecture without resourcing to
additional documentation that puts this information together. Most of the time, this documentation
is manually created, rendering it a costly process that, over time, starts to be disregarded, and the
documentation becomes outdated and sometimes obsolete. There is significant inertia in producing
and keeping the existing documentation updated, resulting in missing documentation, and even if
it exists, it cannot be trusted.

Approaches to producing parts of the documentation in automated ways exist. However, find-
ing a set of tools general enough to be used without effort is no easy task. Most existing tools have
been built to analyse projects that obey certain conditions and formats. Moreover, the tools are
built on a paradigm of "run once - produce once", meaning that the documents produced are final.
The result cannot be changed and reused in subsequent runs. Imposing an extra burden on users
that must, on every run, correct and complete the information that the tool is producing.

In this thesis, we explore the fact that infrastructure frameworks, like docker, terraform, and
others, have well-defined structures and artefacts to propose a tool, which we name Infragenie,
to generate infrastructure diagrams ready to be used in the project’s documentation. By analysing
these infrastructure artefacts, the tool tries to capture all the relevant elements while allowing man-
ual changes and annotations, saved and reused on subsequent runs of the tool, generating diagrams
that can evolve with the project with minimal effort. By automatically producing infrastructure
diagrams and allowing the users to complete and improve the diagram with the certainty that those
changes will not be lost, the documentation becomes a living part of the project. The developed
tool is also compliant with the UML specification, something that is difficult to find on other tools.

To understand the usefulness and intention to use this tool, we conducted an empirical study
on a heterogeneous sample of projects from GitHub. Infragenie was used to analyse the projects,
and the result was sent to project owners in the form of pull requests where they were also invited
to answer a short survey about the tool. The results supported the answers to this thesis’s research
questions and helped confirm that there is a willingness to keep the documentation updated if that
is not a significant effort. Furthermore, auto-generating diagrams lead to an increased adoption,
specially if the diagram is showing relevant and complete information. More than 55% of the
enquirees were willing to use the developed tool and the produced diagrams in their projects.
Also, editing capabilities on this type of tool are a much-appreciated feature. However, Infragenie
is still in an early stage, as appointed by some users, and the fact that human intervention is needed
was one of the factors in reducing the adoption of the tool. Nevertheless, the tool has room for
improvement and to help projects to have Self-documenting Architecture.

Keywords: Infrastructure, Architecture, Automated documentation, UML

i

ii

Resumo

A arquitectura de um projecto pode ser constituída por várias partes conectadas intangivelmente,
espalhadas pelo código-fonte e outros artefactos de desenvolvimento. Isto impõe uma dificuldade
na descrição da arquitectura, obrigando à consulta de recursos adicionais para reunir toda a in-
formação. Na maioria das vezes, esta documentação é criada manualmente, um processo penoso
que, com o tempo, passa a ser desprioritizado levando a que a documentação fique desactualizada
e obsoleta. Há uma grande inércia em produzir e manter a documentação, resultando na falta de
documentação e quando existe esta não é confiável.

Existem abordagens para produzir partes da documentação de forma automatizada. No en-
tanto, encontrar um conjunto de ferramentas gerais o suficiente para serem usadas sem esforço
não é fácil. A maioria das ferramentas existentes foram desenvolvidas para analisar projetos que
obedecem a formatos específicos. Além disso, as ferramentas são construídas com um paradigma
de "run once - produce once", o que significa que os documentos produzidos são finais. O resul-
tado não pode ser alterado e reutilizado em execuções subsequentes. Impondo um ônus extra aos
utilizadores que devem, a cada execução, corrigir e completar as informações que a ferramenta
produz.

Nesta tese, exploramos o fato de que frameworks de infraestrutura, como docker, terraform e
outras, possuem estruturas e artefatos bem definidos para propor uma ferramenta, a que chamamos
Infragenie, para gerar diagramas de infraestrutura prontos para serem usados na documentação do
projeto. Ao analisar esses artefatos de infraestrutura, a ferramenta tenta capturar todos os elemen-
tos relevantes, permitindo alterações e anotações manuais, que podem ser reutilizadas em futuras
execuções da ferramenta, gerando diagramas que evoluem com o projeto com o mínimo de es-
forço. Ao produzir automaticamente diagramas de infraestrutura e permitindo que os utilizadores
os completem e melhorem, com a certeza de que essas alterações não serão perdidas, a documen-
tação torna-se uma parte viva do projeto. A ferramenta desenvolvida também é compatível com a
especificação UML, ao contrário de outras ferramentas.

Para aferir sobre a utilidade e intenção de uso da ferramenta, realizamos um estudo empírico
numa amostra heterogênea de projetos do GitHub. A Infragenie foi utilizada para analisar os pro-
jetos, e o resultado foi enviado aos proprietários na forma de pull-requests, onde também foram
convidados a responder a um questionário sobre a ferramenta. Os resultados apoiam as respostas às
questões de pesquisa desta tese e ajudaram a confirmar que existe intenção de manter a documen-
tação atualizada se isso não for um esforço significativo. Mais ainda, diagramas auto-generados
levam a uma maior adopção, especialmente se o diagram mostrar informação relevante e completa.
Mais de 55% dos utilizadores mostraram interesse em utilizar a ferramenta e os diagrams produzi-
dos. Além disso, os recursos de edição neste tipo de ferramentas são um recurso muito apreciado.
Contudo, a Infragenie ainda está em fase inicial, conforme apontado por alguns utilizadores, e a
necessidade de intervenção humana foi um dos fatores para a redução da adoção da ferramenta.
No entanto, a ferramenta tem espaço para melhoria e apoiar Arquiteturas auto-documentadas.

iii

iv

Acknowledgements

This dissertation would not have happened without people I hold dear supporting me along the
way, to whom I am deeply grateful. First and foremost to, my wife Marta, who supported this
(almost insane) idea of starting a new course after leaving the academia so many years ago. She
ensured the balance I needed to dedicate myself to the course while ensuring I had a life outside
of this. She was always there, reminding me about deadlines and encouraging me to keep going
but also remembering me about family time. Thank you for being there. To my five-year-old son,
Benjamim, who was only one when this adventure started. Despite hearing so many times, "I
cannot play with you right now", he always understood (at least for a couple of hours). He was
responsible for forcing me to take a break from time to time and keeping me sane.

Finally, but not less important, to Prof. Filipe Correia, who challenged me to do this work.
But most importantly, he was always available to guide and help me along the way. He helped
overcome all the bumps this path had, like changing the theme after six months of work. Prof.
Filipe was much more than a supervisor. He was my north star and a friend, always guiding and
motivating me, helping to find the best solution to my problems and never putting any kind of
pressure despite the delays that my professional commitments imposed. He had the kindness to
always adapt his schedule to mine to ensure that we meet at least once a week. We had valuable
discussions not only about the things gathered in this dissertation but also about methodology,
research and engineering in general. I am a much better engineer now than the one I was. This
more than a year and a half journey wouldn’t be possible without him, and I am very grateful for
that.

Ricardo Ferreira

v

vi

“Only those who will risk going too far
can possibly find out how far one can go.”

T.S. Eliot

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives and contributions . 2
1.4 How to read this dissertation . 3

2 Background 5
2.1 Software architectures . 5
2.2 Software architectural models . 6
2.3 DocOps: Applying agile and automation to documentation 6
2.4 Living documentation . 7

3 State of the art 9
3.1 Software Documentation Challenges . 10
3.2 Software Architecture Recovery . 11

3.2.1 Type of analysis . 12
3.2.2 Object of the analysis . 14
3.2.3 Level of automation . 14
3.2.4 Inputs and Outputs . 15

3.3 Tools for infrastructure visualization . 16
3.4 Discussion . 19

4 Problem statement 21
4.1 Scope . 21
4.2 Thesis statement . 22
4.3 Research questions . 23
4.4 Methodology . 23

5 Infrastructure recovery tool: Infragenie 25
5.1 Approach . 25
5.2 Desiderata . 26
5.3 Architecture . 27
5.4 Design decisions . 30

5.4.1 Creating different UML elements . 30
5.4.2 Building UML elements step by step 31
5.4.3 Accepting manual changes and persisting them 32
5.4.4 Updating the diagram and keeping manual changes 33
5.4.5 Providing different representations of the diagram 34

ix

x CONTENTS

5.5 API definition . 34
5.6 User interface and experience (UI/UX) . 39
5.7 Limitations . 43
5.8 Deployment . 43

6 Empirical Study 47
6.1 Study Goals . 47
6.2 Study design . 48

6.2.1 Sampling . 49
6.2.2 Instruments design . 51
6.2.3 Research variables . 52
6.2.4 Data analysis design . 52
6.2.5 Framing in the ACM SIGSOFT Empirical Standards 53

6.3 Data Analysis . 54
6.3.1 Participants characterization . 55
6.3.2 Acceptance . 56
6.3.3 Ease of use . 59
6.3.4 Usefulness . 60
6.3.5 Intention to use . 66
6.3.6 Improvements and comments . 68

6.4 Threats to validity . 70
6.5 Discussion . 72

7 Conclusions and Future Work 75
7.1 Summary . 75
7.2 Main contributions . 76
7.3 Future Work . 77

A File samples generated by Infragenie 81
A.1 Infragenie diagrams examples . 81

B Experimental Guide 85
B.1 Replication package . 85
B.2 Questionaire . 85

C Data crossing 95
C.1 Knowledge vs Ease of use . 95
C.2 Knowledge vs Usefullness . 95

References 103

List of Figures

3.1 Reverse architecting process flow chart proposed by Claudio Riva [46]. 12
3.2 Docker visualization generated by docker-compose-viz. 17
3.3 Docker visualization generated by docker-visualizer. 18
3.4 Docker visualization generated by dockerviz. 18
3.5 Graph representation of an infrastructure described with Terraform. 19

4.1 Steps of the methodology. 24

5.1 Prototype’s conceptual architecture. 28
5.2 Class diagram of the Domain Model. 30
5.3 Class diagram for the Factory and Builder design patterns implemented. 31
5.4 Infrastructure diagram with generated ids. 32
5.5 Infragenie simplified flow chart. 35
5.6 Class diagram for the Decorator design pattern implemented. 35
5.7 Infragenie: Homepage. 39
5.8 Infragenie: Pull request. 40
5.9 Infragenie: Edit page. 41
5.10 Infragenie: Context menus to edit the diagram. 41
5.11 Infragenie: Editor with changes. 42
5.12 Infragenie: Diagram with changes highlighted. 42
5.13 Technologies used in the deployment of the application. 44
5.14 Infragenie: Deployed infrastructure. 45

6.1 Study methodology steps and results. 49
6.2 Distribution of respondents by country. 55
6.3 Respondents educational attainment. 56
6.4 Respondents area of study. 56
6.5 Respondents professional experience in years. 56
6.6 Respondents knowledge level. 57
6.7 Distribution of pull requests states at the end of the study. 57
6.8 Infragenie ease of use evaluation. 60
6.9 Relation between text-based tools (like plantUML) knowledge and creating and

changing diagrams with Infragenie. 60
6.10 Relation between UML knowledge and creating and changing diagrams with In-

fragenie. 61
6.11 Infragenie usefulness for project documentation. 62
6.12 Infragenie usefulness for verifying future changes. 62
6.13 Infragenie usefulness of the diagram produced. 63
6.14 Infragenie usefulness of the edit capabilities. 63

xi

xii LIST OF FIGURES

6.15 Relation between user knowledge and maintaining documentation. 65
6.16 Relation between user knowledge and planning future changes. 65
6.17 Relation between user knowledge and edit capabilities allowing to increase dia-

gram value. 66
6.18 Percentage of projects that have architectural diagrams before Infragenie’s analy-

sis (YES) and how they compare. 67
6.19 Intention to use Infragenie. 67
6.20 UML compliance and automatic detection valorization. 70

C.1 Relation between user knowledge and ease to create diagrams. 95
C.2 Relation between user knowledge and ease to keep diagrams updated. 96
C.3 Relation between user knowledge and ease to keep diagrams consistent. 96
C.4 Relation between user knowledge and ease to add information. 96
C.5 Relation between user knowledge and ease to change diagrams. 97
C.6 Relation between user knowledge and ease to verify impact of changes. 97
C.7 Relation between user knowledge and usefullness to ensure complete documentation. 97
C.8 Relation between user knowledge and usefullness to ensure consistent documen-

tation. 98
C.9 Relation between user knowledge and usefullness to ensure precise documentation. 98
C.10 Relation between user knowledge and usefullness to ensure documentation is eas-

ier to consult. 98
C.11 Relation between user knowledge and usefullness to ensure documentation is eas-

ier to understand. 99
C.12 Relation between user knowledge and usefullness to ensure documentation is eas-

ier to maintain. 99
C.13 Relation between user knowledge and usefullness to plan future changes. 99
C.14 Relation between user knowledge and usefullness to understand impact of changes. 100
C.15 Relation between user knowledge and usefullness to introduce changes with con-

fidence. 100
C.16 Relation between user knowledge and usefullness to introduce changes faster. . . 100
C.17 Relation between user knowledge and showing a complete diagram. 101
C.18 Relation between user knowledge and showing a diagram with most relevant ele-

ments. 101
C.19 Relation between user knowledge and editor increases diagram value. 101
C.20 Relation between user knowledge and editor making the diagram more consistent. 102
C.21 Relation between user knowledge and editor ability to represent not captured ele-

ments. 102

List of Tables

3.1 Software architecture recovery tools and frameworks. 13

5.1 Object saved in the event files after edit. 34
5.2 API endpoints. 36
5.3 Object used in the \analyse enpoint. 36
5.4 Object used in the \edit enpoint. 37
5.5 Object used in the \preview enpoint. 37
5.6 Graph object used in the response of \graph endpoint. 38

6.1 Engineering research standard: Essential attributes followed. 53
6.2 Engeneering research standard: Desirable attributes followed. 54
6.3 Users reasons to close pull-requests. 58
6.4 Users answers to what was not being represented by Infragenie. 64
6.5 Users comments while comparing old diagrams with the one generated by Infragenie. 68
6.6 General users comments about Infragenie. 69

xiii

xiv LIST OF TABLES

Abbreviations

ADT Abstract Data Type
API Application Programming Interface
CSV Comma separated values
FEUP Faculty of Engineering of the University of Porto
MEIC Master in Informatics and Computing Engineering
MIEIC Integrated Master in Informatics and Computing Engineering
MSc Master of Science
Qx Question x
TAM Technology Acceptance Model
RQ Research question
UML Unified modeling language

xv

Chapter 1

Introduction

1.1 Context

Design decisions for a software product are described by its architecture, defined in line with the

business needs and significantly impact its quality. Ensuring that the implementation abides with

the design decisions should be a continuous task during the software development life cycle and

maintenance phases. This continuous evaluation is a challenge, requiring extensive communica-

tion and collaboration between architects, developers and other stakeholders, leading most of the

time to late evaluations [18]. Using software architecture models can improve this collaboration,

providing abstract descriptions of the system that are quickly understandable. Furthermore, these

representations help to cement the knowledge of the architecture.

However, software architecture models or diagrams will eventually become outdated like other

manually generated artefacts. This will become even more evident with the evolution of the

project, with the introduction of changes that are not captured in the diagrams, lack of document-

ing habits or even lack of knowledge to do the necessary updates [1]. Also, there is not only one

way to produce these artefacts and include them in the documentation. They can follow standard

specifications or have free and flexible structures, which could difficult their analysis, as stated by

Reinhold Plösch et al. in [41]:

“Especially for software documentation written in natural language, it is often difficult

to precisely specify quality requirements and to systematically evaluate its quality

with respect to defined quality characteristics.”

Jie-Cherng Chen et al. in [10] show that the most significant impacts on software maintain-

ability are: documentation obscure or untrustworthy, documentation inadequate, incomplete or

non-existent, documentation not consistent and documentation lacking traceability.

Give the need and importance of co-evolving related documentation artefacts, automatically

generating them is a way to promote consistency and good documentation practices [11]. Due to

1

2 Introduction

the repeatable nature of automatic processes, the artefacts produced by such methods will enforce

a specific pattern and consistent representations turning the interpretation easier. In fact, tooling to

automate the recovery of architectures, producing models and diagrams to document the architec-

ture exists [24]. Although, they tend to have limited applicability and be challenging to use. They

often do not comply with representation standards like UML, C4Model and others whilst offering

proper notations which require auxiliary materials to understand them.

1.2 Motivation

A lot of works have delved into how to best design and architect software systems [19, 9, 31].

With the popularity of cloud computing [45, 7, 25], some have more recently focused specifically

on cloud-native systems [8, 61, 52, 53, 54, 55, 56, 2, 29]. A common approach in the context of

such systems is the adoption of tools to describe infrastructures as code [51, 34, 44, 43]. Tools like

docker-compose, ansible, chef cookbooks, terraform, and others define a well-structured set of

artefacts used to describe the architecture. These artefacts usually live alongside other parts of the

source code, in code repositories. We see new opportunities in the widespread use of such tools for

mining software repositories and, namely, for recovering software architecture. Automating such

a process would allow to keep track of the changes introduced during the different development

cycles. Combining these processes with standard representations would produce valuable pieces

of information that can be used to document the application and improve the overall knowledge.

Finding a tool or a set of tools, well accepted by the software development community, which

are easy to use and suitable to be included in recurrent practices, will remove the burden of doc-

umentation and become just another automated step in the development pipeline. Besides this,

if the tool provides a simple process to allow changes to the generated artefacts it will render

those diagrams more complete. Although such changes can lead to inconsistencies between the

source code and the diagram, such manual changes may render the diagram more readable and

human-oriented, showing details that make sense for the development team. Therefore, we expect

that the value of the tool and diagram would increase. Despite increasing the knowledge of the

system, such a tool can also potentiate more informed changes in the architecture and accelerate

the development and change.

1.3 Objectives and contributions

The main objective of this thesis is to contribute a tool, named Infragenie, that will:

1. extract architectural-significant information from code repositories, namely from resources

such as docker-files;

2. use of the extracted information to synthesise architectural diagrams that will be kept in

sync with the code repositories;

1.4 How to read this dissertation 3

3. support the mechanisms that will allow a team to supply additional details to the architec-

tural model that cannot be inferred directly from the repositories.

We will present an approach to developing such a tool, using as background the state-of-the-

art review of available methodologies and tools where their weaknesses and strengths have been

leveraged.

To evaluate the value of the tool, this thesis also contributes with an empirical validation to

assert on the tool value, acceptance by the software development community and willingness to

use. We also explore the benefits brought by the tool and if the ability to include changes in the

auto-generated artefacts is, in fact, increasing its adoption. More specifically, this work will try to

answer the following questions:

• RQ1: To what extent does the adoption of Infragenie lead to better and updated documen-

tation?

• RQ2: To what extent does the adoption of Infragenie improve the knowledge about the

system architecture?

• RQ3: What is the value and willingness to use Infragenie?

Thus we expect that this tool leads to better and updated documentation, enhanced by the

simplicity of usage and reduced burden on the team members. We expect to find evidence that a

tool like the one proposed can be part of the development pipeline, seen as just any other step in

the product development cycles.

1.4 How to read this dissertation

The target audience for this work is software engineers, architects, developers, or anyone involved

in the definition and implementation of software architectures. We also target this work to re-

searchers.

The remaining of this document is organized into six chapters. These are:

• Chapter 2: Gives a quick background on software architectures, architectural models, and

software documentation practices. It can be skipped by experts in those subjects.

• Chapter 3: Presents an analysis of the current state of the art around automated tools,

methodologies and processes to automatically recover architecture artefacts like models,

diagrams and others. Focusing on leveraging the pros and cons of each method.

• Chapter 4: Describes the problem that this work tries to solve and formulate the thesis

hypothesis. Concludes with the methodology to prove the hypothesis and the estimated

work plan.

4 Introduction

• Chapter 5: Presents the proposed tool, the development approach, its architecture and prin-

cipal features.

• Chapter 6: Describes the empirical study conducted to evaluate the proposed tool and vali-

date the thesis hypotheses by finding answers to the research questions formulated in Chap-

ter 4.

• Chapter 7: Gives a quick overview of this work and proposes improvements to the tool and

additional enhancements to add to future replications of the study.

Chapter 2

Background

This chapter introduces Software architectures and Software architecture models. It also intro-

duces the concept of Living documentation, showing why it is one of the motivations for the usage

of architecture recovery tools and describes the role of DocOps in automating documentation cre-

ation. The chapter can be skipped by experts in these subjects.

2.1 Software architectures

Finding a good and succinct definition for software architectures is difficult because the scope is

large [15]. The book Building Evolutionary architectures uses the following quote:

“the important stuff (whatever that is)”

This quote clearly shows how broad the definition is. But, at the same time addresses the

relevance of architectures in software products and the role of architects in describing all the

components of a software product.

Many definitions can be found in the literature or even with simple web searches. Len Bass et

al. in [5] proposed the following:

“Software architectures must live within the system and enterprise, and increasingly

it is the focus for achieving the organization’s business goals.They are concerned with

major elements taken as abstractions, the relationships among the elements, and how

the elements together meet the behavioral and quality goals of the thing being built.”

This definition provides a structural aspect of software architectures, showing that architec-

tures are not only a model of the system but also the principles that guide its design decisions.

Another worth mentioning definition is the one used by Banani Roy et al. in [47]:

5

6 Background

“A software architecture is an abstraction of the runtime elements of a software system

during some phase of its operation. A system may be composed of many levels of

abstraction and many phases of operation, each with its own software architecture.”

Showing that architectures are abstractions of the system, hiding some details to identify its

properties better. Complex systems will contain many levels of abstraction, described by archi-

tectures, guiding the implementation of the different interfaces of each element. This level of

abstraction can lead to different architectures for the same problem, each bound to subjectivity

and interpretation. There is no such thing as inherently good or bad architecture. Architectures

are either more or less fit for some purpose [5].

2.2 Software architectural models

A model is a representation that shows information about a system. In the same way, an archi-

tectural model can be seen as a visualization of a software architecture viewpoint, expressing its

structure and design [5].

An important distinction to be made is between diagram and model. While a model can be

represented using a diagram, a diagram alone is not a model [5]. A model is aimed to provide

complete and detailed information to describe the modelled viewpoint. The information cannot be

vague or subject to interpretation. It should be rigorous in a way that two different people will have

the same understanding. Here, the usage of standards plays an important role, in the sense that

they allow communication with everyone that knows the standard [33]. Some accepted modelling

languages in use are UML and the C4Model.

A model should avoid aggregating too much information despite rigour and completeness be-

ing essential in an architectural model. For that reason, it is often better to break a model into

different components, which can be diagrams, instead of modelling everything together. This is

another crucial aspect of a model that sets it apart from a diagram. A model can use different ele-

ments aggregated, not necessarily similar, in a package to provide the full view of the architecture.

To sum up, an architectural model provides clear, rigorous information about an architecture,

usually fully describing the architecture. Views of single components and their interactions, while

possible to be represented by a model, are more representations of design decisions than of the

software architecture.

2.3 DocOps: Applying agile and automation to documentation

Time and quality affect all aspects of the software development ecosystem. Delivering new fea-

tures faster is considered a competitive advantage [58]. To tackle this challenge, a DevOps culture

aimed at automating repetitive tasks and defining processes is gaining popularity in the software

development ecosystem. In the same way, other "*Ops" cultures are being integrated, focusing on

different aspects, like technical writing, dealt with by DocOps.

2.4 Living documentation 7

DocOps promote collaboration and continuous improvement and integration of documenta-

tion. Jodie Putrino provides a good definition of a DocOps responsibility in its online article about

DocOps1.

“a set of practices that works to automate and integrate the process of developing

documentation across engineering, product, support, and, of course, technical writing

teams.”

Expanding on this definition is safe to say that DocOps promote agile technical writing best

practices, aligning technical writing with the business needs.

2.4 Living documentation

The term living documentation is presented by Cyrille Martraire in his book Living Documenta-

tion: Continuous Knowledge Sharing by Design [32] and can be resumed by one of the first quotes

of the book:

“Make very good documentation, without spending time outside of making a better

software.”

This remit to the usage of methodologies, tools and other mechanisms to enforce the practice

of having valuable, updated documentation that does not suffer the fate of becoming obsolete. The

documentation evolves in line with the project, constantly keeping track of changes and maintain-

ing its relevancy. Another important aspected of this concept is depicted in the following quote,

also from the book:

“ Living Documentation makes your code, its design and its architecture transparent

for everyone to see. If you don’t like what you see, then fix it in the source code.”

The documentation of a project should be aligned with the project and be retrieved automati-

cally so that the developers do not need to think about writing it. Moreover, achieving this Living

documentation status, the documentation can act as the source of truth for the project, so well

integrated that it could even allow for detecting problems and taking corrective measures.

Living documentation is an approach to producing documentation in an agile way, providing

accurate, rigorous, easy-to-understand and constantly updated information.

1DocOps article in Write the Doc blog: https://www.writethedocs.org/guide/doc-ops/

https://www.writethedocs.org/guide/doc-ops/

8 Background

Chapter 3

State of the art

To document a software architecture and keep it up-to-date is often complex and costly. Neverthe-

less, documentation is a fundamental artefact to understand the software and to improve how it is

communicated and maintained [28]. Techniques to automatically or semi-automatically generate

documentation are often of great value, especially for medium and high size projects. This chapter

will explore approaches and methods used to automate software architecture documentation. The

analysis will start with an overview of common problems and challenges in this space, then with

an analysis of some software architecture recovery techniques and continues with a more thorough

analysis of some tools and artefacts with the objective to answer the following questions:

• Q1: What approaches are there to recover software architectures from the contents of their

repositories?

– What type of files are used?

– What type of models and/or diagrams are generated?

– What are the models and/or diagrams used for?

• Q2: What approaches are there for automatically documenting the architecture of a soft-

ware system?

– Which aspects of the architecture are covered?

– Are they based on models?

• Q3: What tools are there to provide a visual representation of the architecture based on

orchestration artefacts?

– What artefacts have been used? And why?

9

10 State of the art

For that, a literature search was conducted on the following platforms: Google Scholar, Google

default search, Scopus, IEEE Xplore and Elsevier. Some of the search queries included: "self-

documenting architecture", "extract architectural information", "living documentation", and "soft-

ware architecture reconstruction". As for the analysed tools, the search was in GitHub, GitLab

and Google, and these tools were tested manually to check their functionality.

This chapter is the starting point to understand what is being done and how should we start our

approach to solve the challenge proposed by this thesis: automatically create a way to visualize the

architecture of a software using orquestration artefacts with the possibility of manually updating

those visualizations.

3.1 Software Documentation Challenges

Software documentation, when properly produced, is a valuable tool to provide knowledge about

the system and its related processes [1]. Documentation can be used to describe the system and

detail updates and changes, to perform maintenance activities, among others. Furthermore, good

documentation is proven to improve the performance of engineers and even documents that are

not up to date may still provide valuable information [49] .

Despite the value of documentation, producing it is surrounded by many issues that affect its

quality and usability. Statich et al. [49] conducted an empirical study to understand common

problems and solutions of software documentation, and they concluded that the most common

issues are:

• Documentation being out of date.

• Documentation not being traceable to the changes made in code.

• Lack of standards and effort needed to update documents.

• Lack of tools for documentation maintenance and change tracking.

Another interesting conclusion of this study is the factors determining software documentation

significance. The authors state that documentation significance is determined by the size of the

project, the experience of the persons who will use the documents, geographic distribution of

teams and the tools used to access, search and navigate the documentation. In sum, documentation

should be adapted for every project.

Addressing all the issues is no easy task, and it is where tools that automate the documen-

tation process are introduced. Tools created under the unbrella of concepts like Living Docu-

mentation [32] or, perhaps closer to the topic of this thesis, Self-documenting Architectures [59].

Applying these concepts means that the software documentation will be constantly updated to the

point that even simple changes to the project artefacts could generate updates without effort. Also,

these methodologies will help reduce the learning curve for development, expose bad decisions

and help to understand the impacts of changes.

3.2 Software Architecture Recovery 11

Build tooling to automate documentation is not trivial and can impose significant challenges on

the teams and organizations. The rest of this chapter will look into existing tools, methodologies

and frameworks to achieve a satisfactory level of documentation automation, with a particular

focus on the architectural and infrastructure spaces.

3.2 Software Architecture Recovery

Software maintenance represents a considerable effort in a product lifecycle. Moreover, this pro-

cess is challenged by architectural erosion and technical debt [50, 6]. Development iterations will

increase this problem if not adequately planned and documented, which is often the case, and

sooner or later, developers are forced to employ architecture recovery techniques [20].

Architecture reconstruction is a reverse engineering activity used to recover lost or unknown

aspects of software architecture, and indirectly a means to document the architecture [24].

Software architecture recovery helps to reconstruct documentation from system available arte-

facts, such as source code and, especially for legacy systems, are the only way to produce knowl-

edge about the software [62].

Some techniques have been proposed to recover software architecture, [3, 20, 28, 37]. They

can be classified as automatic, manual or semi-automatic. Of course, manual recovery techniques

are not of great interest for this work and such, they will be left out of this analysis.

One way to recover architectures is using clustering methods, which simplistically are nothing

more than group together pieces of related information in the so-called clusters [60]. There are

two common ways to identify clusters in software systems:

• Knowledge-based: This approach tries to group functionalities in the source code, for ex-

ample, modules, complementary functionalities, libraries and others.

• Structured-based: In this approach the software is decomposed based on the flow of data,

looking into interactions between entities.

Although both approaches are valid and can lead to good results, for large systems, the Knowledge-

based approaches do not perform well, and such structure-based techniques are more popular [60].

Clustering is a documented and structured approach followed by some authors. However, most

of the time, due to the singularities of the project and recovery objectives, the best approach is to

develop tailored methodologies. In general, these methods return better results than clustering.

After all, they have been put together to respond to a specific need.

Most of the tools and frameworks to recover or reverse engineering architectures are born

from the need to have models or diagrams of the software to help understand the impact of fu-

ture changes, to plan evolutions of the product, to keep documentation updated at low costs, or

to acquire more knowledge about the system. These were the motivations behind the approach

proposed by Claudio Riva [46]. His work is a good starting point for the analysis carried out in

this chapter. Instead of a tool, Claudio proposes a flow with tasks to accomplish his recovery ob-

jectives and chooses some tools to help with those tasks. This methodology shows the diversity of

12 State of the art

ways in which it is possible to extract architecture models from software systems. The approach

taken is depicted in the diagram in Figure 3.1.

Figure 3.1: Reverse architecting process flow chart proposed by Claudio Riva [46].

The flow is divided into six different phases. The first phase is probably the most important

one because architectural concepts are defined. Meaning, in this phase, the author defines what

the architecture is and its expectations and expected results from the recovery process, guiding

the following steps and the tools to use. The second phase consists of extracting the source code

model, which can be done using automatic tools. Then, phases three and four are assisted by

manual intervention and consist in identifying abstractions taken during development that the au-

tomated tools are not capable of modelling, resulting in a refined model that can be used to update

the documentation. The last two phases exist to evaluate the results and reorganize the model and

the source code. Although this flow relies heavily on human interaction can be seen as a good

set of stages that a fully automated tool needs to do and will be the base to analyze the tools on

Table 3.1. The analyzes will be divided into the following subjects, type of analysis, the object of

the analysis, level of automation, inputs and outputs.

3.2.1 Type of analysis

Software architecture recovery can be applied using static, dynamic or a mix of both analyses.

Most of the tools in Table 3.1 use static methods or a mix of both.

Usually, static analysis is faster and requires less effort. The projects files are usually enough [36].

On the other hand, dynamic analysis is more precise [4] but requires a running environment which

can sometimes be difficult to set up.

Each type of analysis is employed with different goals in mind. The tool MicroArt [21] for

example, uses static analysis to recover a model of the physical architecture, where the components

3.2 Software Architecture Recovery 13

Table 3.1: Software architecture recovery tools and frameworks.

Tool Analysis Technologies Inputs Outputs Allow
changes

Manual
steps

Limitations

MicroArt [21] S & D Java, Docker
files, Logs

Source code Component model No No Running env.,
Technology-bound

X-Trace [17] D Java, C/C++,
Ruby

Metadata Network model No No Running env., Needs
metadata

Moose [14] S Pharo Metadata Queriable model No No Learning curve,
Need extra tools,
Needs metadata

QAR [12] S & D - Documentation,
Source code

Class model, Com-
ponent model

Yes Yes

Focus [13] S - Source code,
Arch. model

Class model, Com-
ponent model, Se-
quence model

Yes Yes Needs Arch. model

Armin [36] S - Documentation,
Source code

Class model, Com-
ponent model

Yes Yes Needs extra tools

Analysis types: S - Static, D - Dynamic.

are identified, then with dynamic analysis, the tool makes a service discovery identification to map

services, understand their interactions and IP addresses enriching the model created during the

static analysis. QUE-es Architecture Recovery (QAR) [12] also joins both approaches, using the

static analysis for a similar purpose, creating a preliminary view of the architecture, but on the

dynamic analysis tries to extract information about the call sequence of the participating classes

and the sequence of operations performed in the application. In Table 3.1 there is only one tool

that uses exclusively dynamic analysis, X-Trace. This tool tries to recreate the system’s physical

network, understanding which services are in the network, the flow of data among the services,

and it goes one step further, detecting anomalies and failures in the network. This tool can live

along with the services being analysed, providing a representation of the network architecture and

live monitoring of the services.

It is worth noting that static analysis can be employed using clustering techniques like the ones

mentioned at the beginning of this section. Even though they are challenging to use, they can be

helpful for systems with a considerable degree of abstraction and legacy source codes [20, 30].

The primary purpose of clustering is to form groups of entities that are similar to one another

and then relate those groups based on interactions [60]. The analysis of the clusters can then

be combined with machine learning and searching algorithms like the Bunch tool, proposed by

Mitchell et al. [35] to improve the final representation of the system. Despite its utility in legacy

systems, looking into the comparison put together in [20] methods based on clustering show poor

performances, with accuracies under 60%. Another downside of these algorithms is the artefacts

used, which rely heavily on source code, which can be a problem for big-sized systems.

14 State of the art

3.2.2 Object of the analysis

Analyzing a system to recover its architecture can be done solely with the information present on

the project files or adding some extra information to specific files to help the tools understand the

meaning of the information. This extra information, or metadata, is applied for different purposes

and can help with static and dynamic analysis.

From all the tools on Table 3.1, Moose [14] is probably the one that uses metadata in the

most peculiar way. Moose, more than a tool to recover architecture, is a tool to create a queryable

environment of the system under analysis. At the end of the analysis, Moose creates a model that

can be queried to get all kinds of information about the system using the Smalltalk language, such

as getting all the methods that access a particular attribute or getting classes that have more than

an arbitrary number of descendants. This powerful analysis is possible through specific metadata

that needs to be applied to the source code. With such a powerful model of the system is possible

to use other tools to create visual representations of the architecture, as some of the plugins and

tools shown on the official moose website1.

X-Trace [17] uses metadata to trace the information flowing in the network. For this to happen,

all network protocols need to be modified to propagate the specific X-Trace metadata, which

may require expert developers to do that. Also, adding this metadata to the communications can

carry extra latency, a problem in some systems. Despite that, metadata usage brings much more

knowledge to X-Trace, such as information about nodes, their parents, descendants and types.

The tools can be technology agnostic with the cost of polluting the source files with external

entities by using metadata. Also, adding metadata can be a very complex task. To avoid changing

the source files, the tools require a better knowledge of the system. As is often the case, one tool

that analyzes systems built with technology A is not suited for technology B. To overcome this

limitation, tools like QAR [12] and ARMIN [36] use other tools to perform a static analysis of the

source code and then use that data as the starting point for the recovery. Without this trick, the

tools usually are explicitly tailored to a set of technologies. They do not work with others, like

MicroArt [21] which is described as an architecture recovery tool for Microservice-based systems,

but the system must be containerized with Docker.

3.2.3 Level of automation

Software architecture recovery can be an entirely manual process, but that would be very tedious

and time-consuming, especially for legacy systems with big code bases [28]. Automated or semi-

automated tools can alleviate this task. However, there is a big concern when automating the

software recovery architecture, the accuracy [28, 20]. This is due to the lack of ground truths and

the difficulty in generating them. Thibaud Lutellier et al. in [28] conducted a comparative study

on some architecture recovery techniques where the ground truth used took almost two years of

collaboration between the application developers.

1Moose official website: http://moosetechnology.org

http://moosetechnology.org

3.2 Software Architecture Recovery 15

Semi-automated tools like QAR [12], Focus [13] or Armin [36] reduce the need for ground

truths with manual operations that can happen in different stages of the recovery process. They

are usually applied when the result of the automated step is very abstract or to generate inputs to

conduct the operation of future steps. Focus, for example, uses as the starting point of the recovery

a high-level model of the architecture, usually built by developers and experts of the application.

This tool is highly iterative, starting with the high-level model, applying tools to analyse source

code and files and then using that information to refine the first model. This approach gives some

freedom to what should be recovered and to what degree since the automated steps can be applied

to specific parts of the architecture.

Similarly, Armin has a starting point for its analysis, generated by automated tools but then

manipulated manually so that errors are not propagated to the end models. Also, QAR combines

manual steps to improve accuracy. It is a workflow with three activities, documentation analysis,

static analysis and dynamic analysis. Each of the activities involves human intervention. For

starters, documentation analysis is a purely manual activity to extract information. At the end of

each analysis, static and dynamic, again, human intervention is used to extract the views, validate

them with expert and developers information and finally generate the final model.

Looking at the fully automated tools on Table 3.1 it is possible to see that X-Trace [17] and

Moose [14] have only achieved this level of automation using metadata, which acts as a co-pilot

for all the analysis. MicroArt [21] despite not having metadata, is limited by the technology. In

other words, this tool is fully automated because it was built specifically to analyse a specific type

of project that follows some standards.

Achieving fully automated software architecture recovery is not an easy task, and most of the

time, the accuracy is not high [27] but satisfactory enough to develop methodologies and tools,

especially for extensive systems with thousands of lines of code.

3.2.4 Inputs and Outputs

The inputs and outputs of a software architecture recovery tool or methodology depend on the

objective of said recovery. Also, the inputs and outputs will determine the tool or methodology to

follow.

Analyzing the tools on Table 3.1 its possible to see that the source code files are the most com-

mon input used. After all, the application code is spread among these files. However, other than

that, different information can be used and with different goals. QAR [12] uses documentation

to extract a conceptual model of the system whereas Armin [36] uses documentation to refine the

reconstructed views. MicroArt [21] analyzes docker files to understand the services involved in

the application and extract information from log files of the communication among each service

to track communications and enrich the generated model, with things like IP Addresses.

Metadata is a particular input type, consisting of blocks of information, keywords or even

functions, spread across the files under analysis. It annotates the information to be easily iden-

tified or provides special features like improving the logged information while the application is

16 State of the art

running or including tokens in the system calls to facilitate the dynamic analysis. X-Trace [17]

and Moose [14] are using metadata with these objectives.

In the same way, different tools will output their results in different forms and may use external

tools to extend their final models. One such tool is Moose, which generates a queryable model of

the system that can be used as information for several other tools to create visualizations, parsers,

scripts, and many others. X-Trace generates a model of the network that allows maintenance ac-

tivities since it represents malfunctioning nodes and communication problems, and MicroArt [21]

generates a component model with proper notation. The other tools on the table, QAR, Focus

and Armin, allow different models since some of the recovery steps are performed manually. This

gives liberty to generate different models and to choose to follow standards in the representation,

like UML2 or the C4Model3.

One interesting aspect of the outputs is its freedom to introduce changes, annotations or cor-

rections that can then be used in future analysis. From the tools studied in Table 3.1 only the tools

that produce its final model manually are classified with allowing changes, precisely by the fact

that the final representation is manual. The other tools are just producing a final model. The inputs

should change to generate new models, and a new analysis should be executed.

3.3 Tools for infrastructure visualization

In this section, we will explore some available tools to visualize the infrastructure of a system. We

have focused this analysis on docker and terraform infrastructures. To properly evaluate docker

projects, a fictitious e-commerce application4 was used. The application uses a microservices

architecture with different technologies like MongoDb, Redis, Spring Cloud and more. For ter-

raform, the tools page provide enough examples to understand how the tool works and which

outputs it provides.

We started this analysis with a tool called docker-compose-viz, available for free on github5.

Running this tool on the evaluation project generates the diagram from Figure 3.2.

The tool correctly identified the services and their interactions in a few milliseconds. The dia-

gram does not follow any standard, and as such, it is not easy to understand without going through

the documentation. In this diagram, rectangles represent services or containers and circles the

ports used to communicate with the service. Dotted arrows are used for dependencies and point to

the service that declares the dependency. The representation directly translates the information in

the docker-compose file, fetching no extra information. Also, this visualization cannot be changed

or annotated to make it easier to read and enrich its content.

Docker-visualizer6, is another tool that also tries to generate visualizations of the docker in-

frastructure, although with a very different notation like shown in Figure 3.3.

2More info about UML in https://www.uml.org
3More info about C4Model in https://c4model.com
4Evaluation project: https://github.com/venkataravuri/e-commerce-microservices-sample
5Project page of docker-compose-viz: https://github.com/docker-compose-viz
6Project page of Docker-visualizer: https://www.npmjs.com/package/docker-visualizer

https://www.uml.org
https://c4model.com
https://github.com/venkataravuri/e-commerce-microservices-sample
https://github.com/docker-compose-viz
https://www.npmjs.com/package/docker-visualizer

3.3 Tools for infrastructure visualization 17

Figure 3.2: Docker visualization generated by docker-compose-viz.

The visualization provided by docker-visualizer is a bit more clumsy and straightforward.

This visualization is just grabbing the information on the docker-compose file and creating boxes

without precise representations of interactions and dependencies. It also always add the Root,

Network and services boxes even if the docker configuration does not explicitly define them, like

the case in the evaluation project, where the Network is not defined. Again there is no possibility

of changes or additions to the generated diagram.

The previous tools are performing static analysis, and such, only the information available on

the source files of the projects can potentially appear on the generated diagrams. DockerViz7 is a

tool that does a dynamic analysis of the docker infrastructure to try to get more information and

help to understand what is happening in the system. Figure 3.4 shows the result of the analysis

made by dockerviz in the sample project used. The tool correctly identified the services and marked

the service that is not running in grey. Nevertheless, since the infrastructure was not all up, the

tool could not represent how each service was interacting, generating a poor diagram.

However, it is interesting to note that if we combine static analysis tools with dynamic anal-

ysis, we get a richer model, with information on interactions, identification of the services in the

network, and other pieces of information.

Another popular way to describe the infrastructure is with Terraform. Also, for Terraform is

possible to find visualizers. For this comparison we have analyzed three terraform visualizers:

7Project page of DockerViz: https://github.com/justone/dockviz

https://github.com/justone/dockviz

18 State of the art

Figure 3.3: Docker visualization generated by docker-visualizer.

Figure 3.4: Docker visualization generated by dockerviz.

Terraform Graph8, Inframap9 and Terraform Visual10. Despite being different tools, they work

similarly, doing static analysis of the JSON terraform files and generating simple graphs, showing

8Project page of terraform Graph: https://www.terraform.io/docs/cli/commands/graph.html
9Project page of Inframap: https://github.com/cycloidio/inframap

10Project page of Terraform Visual: https://github.com/hieven/terraform-visual

https://www.terraform.io/docs/cli/commands/graph.html
https://github.com/cycloidio/inframap
https://github.com/hieven/terraform-visual

3.4 Discussion 19

the services in the network and arrows to represent their connections. One such diagram can be

seen in Figure 3.5.

Figure 3.5: Graph representation of an infrastructure described with Terraform.

The diagram is elementary and has only basic information about the infrastructure, services,

and connections. Also, the diagram does not follow any standard notation and does not allow any

change or annotation. Once generated, the diagram is final.

Tools such as Argon [48] and Docker Composer [39, 40] also support a graphical representa-

tion of infrastructure specifications, but they do so with the goal of providing visual editors. As

they are not concerned with helping to document an architecture, or an infrastructure, we have not

covered in our analysis.

3.4 Discussion

We started this study with three questions that guided the rest of the analysis.

The first question (Q1) What approaches are there to recover software architectures from

the contents of their repositories? To answer this we looked into Software architecture recovery

methods, cf. Section 3.2, more specifically on the files used, the generated models and how they

are used. For starters, the specificities of the project and the type of model required will guide the

approach to follow. Table 3.1 is a summary of some of the methods studied and where it is possible

to identify static and dynamic approaches with very different results. Also, the inputs used can

vary profoundly, from raw source code to adding metadata to enrich the information extracted

or using other more human-readable information like documentation or log files. The generated

models can serve many purposes, documentation, planning future changes or even maintenance.

With question (Q2), we tried to find an answer for What approaches are there for automat-

ically documenting software systems architecture? None of the analysed works was focused on

20 State of the art

documentation but rather on automating the recovery of architecture diagrams and models that

could later be used in documentation. The level of automation is determined by the inputs and the

level of detail needed in the generated model. Extracting information from files that follow a pre-

defined structure is generally easy, and as such, the extraction process can be fully automated, like

the approach followed by MicroArt [21] where the infrastructure information is extracted from

docker files. Inputs with free structures can be challenging to automate, and in those cases, human

intervention is needed to identify and describe some of the abstractions extracted by the automated

processes, like in the Focus method [13]. Even though full automation can be accomplished for

almost all projects, the effort needed may not be worthy, or the tool developed can be only used

with one type of file and project, imposing challenges to put together a method that automatically

generates documentation.

The last question was (Q3) What approaches are there to providing a visual representation of

the architecture based on orchestration artefacts?. The approaches used in software architecture

recovery gives us a good overview of what is needed to extract information from a project. Fur-

thermore, we have observed that using structured inputs will ease the analysis and lead to higher

levels of automation. In general, orchestration artefacts are structured files, the ones used to de-

fine, for example, docker, terraform, ansible, chef cookbooks or others. Tools to visualize the

infrastructure are available, and some are free to use, cf. Section 3.3. Most of the tools perform

static analysis since the orchestration files already have a good definition of the infrastructure.

However, with dynamic analysis is possible to go even deeper and get a richer visualization in the

end. Dynamic analysis, however, imposes a bigger setup effort, and if the setup is not properly

executed, the analysis tends to be incomplete and sometimes even useless.

From all the frameworks and tools analyzed in this study, it is important to refer that the models

and visualizations generated rarely followed any notation standard, limiting their direct usage in

the documentation since custom notations need extra documentation to describe them. Also, the

models and diagrams are final, meaning that no extra information can be added or changed after

the extraction and generation. This aspect limits the usage of these methods and tools to constantly

evolving projects since the whole process needs to run from scratch every time, and the extraction

will always output the same abstractions. Furthermore, if the methodology or tool cannot extract

part of the information, that means that the information will be lost between each run. So, the

direct usage of the models and diagrams in documentation should be taken with care.

Chapter 4

Problem statement

The previous chapter presents methodologies and tools to recover architecture from project repos-

itories. Most of the tools generate accurate representations of the parts of the system that were

identified, following the expectations of their authors, like, for example, class diagrams or in-

frastructure models. Although all the models generated are final. They do not allow changes or

annotations and cannot be used as feedback to improve the quality of future models. This chapter

elaborates on how this research contributes to a) an approach to automatically generate docu-
mentation that can be extended with user annotations and modifications, which are not lost
between analysis and b) a tool to recover architectures following what was specified on a).
This tool, which we called Infragenie and is described in detail in Chapter 5, allows the users to

annotate the final model and modify it to describe abstractions that were not captured, transform-

ing it into a valuable documentation artefact. This chapter also describes, on a higher level, the

methodology followed.

4.1 Scope

Software architecture models are descriptions of the software architecture. They can represent

the whole or parts of the software, following proper or standard notation. They provide a way

to quickly understand the architecture through abstractions and visual representations, helping to

design new features and undergo maintenance activities.

Software architecture models like other artefacts that are manually updated will eventually get

obsolete [32] or become a burden to keep it updated as the software evolves. Many reasons exist

for this, from different software teams working on the same project, new developers joining the

team, different backgrounds and habits or even lack of knowledge to do the necessary updates [1].

However, the primary reason to put aside documentation is that it is boring and a great source of

frustration. A quote from Gerald M. Weinberg in Psychology of Computer Programming describes

this perfectly:

21

22 Problem statement

“Documentation is the castor oil of programming. Managers think it is good for

programmers, and programmers hate it!” [63]

This inertia to keep documentation and models updated results in documentation missing, most

likely the needed documentation. If the documentation exists most of the time, it cannot be trusted

because it is misleading and obsolete.

Better ways to deal with the documentation exist, in the form of automated tools like the ones

analysed in Chapter 3. However, most of the tools available work on a run once, produce once

paradigm, meaning that the tool will analyse the project repository producing a final model, which

cannot be easily changed and used as feedback for subsequent runs. Although this small detail

seems of low importance in the presence of a tool that produces a tiresome artefact automatically,

the truth is that if the tool is generating models with errors, those models cannot be directly in-

tegrated into the documentation. Every run will continue to generate the same errors which need

to be solved every time. Also, they are not fitted for every project and sometimes are difficult to

run. Some of the tools needed complex setups and preparation of the repository to run, making it

impractical to use on every development phase. It can be an even more significant burden to the

development team. Most likely, the tool will be abandoned.

4.2 Thesis statement

We know there are better ways to deal with documentation, specifically with architecture models,

which allow us to stop regarding it as a chore, wrapped in frustration and a feeling of useless

work. This is where the concept of living documentation coined by Cyrille Martraire in his book

Living Documentation: Continuous Knowledge Sharing by Design [32] steps in and from where

we combine some of the concepts to put together our hypothesis, for which we set ourselves to

provide evidence that:

“Recovering the software architecture from the code repository can reduce the burden

of creating and updating documentation while bringing more knowledge and feed-

back about the changes introduced. Furthermore, having models living alongside the

software and allowing to add manual changes and annotations will render the docu-

mentation more consistent and usable.”

Consequently, creating and using documentation can become a consistent practice of the de-

velopment process, indirectly helping and motivating architectural changes.

This hypothesis mentions models living alongside the software, which can be ambiguous ter-

minology. Nevertheless, this is simply a way of talking about models that can be easily updated
to reflect the changes introduced in the product, like referred to in the book Living documen-

tation [32]. This means that software changes will promote changes in the architecture models

if needed and preferably in an automated way, giving an immediate feedback of what has been

changed. This practice will keep consistency between software and models.

4.3 Research questions 23

4.3 Research questions

Software architecture recovery is usually applied to specific moments of a project lifetime, most of

the time in legacy systems where the knowledge about the system has been lost. This research aims

to contribute with a slightly different approach, applying architecture recovery whenever relevant

during the development cycle. To enable our contribution, we identify the following research

questions (RQ):

RQ1 “To what extent does the adoption of Infragenie lead to better and updated
documentation?”

We aim to understand if using the tool developed in this work to generate models

of the system architecture on each development iteration contributes to updated docu-

mentation and how valuable that model is for the overal documentation of the product.

Have we reduced information redundancy between code and textual documentation?

Have we create a systematic action to update documentation, like any other steps from

a pipeline?

RQ2 “To what extent does the adoption of Infragenie improve the knowledge
about the system architecture?”

Developers often add changes to the software without a full comprehension of its ar-

chitecture. Having a model of the architecture can improve the confidence and plan-

ning better future changes? Can the model guide developers to make better decisions

and develop faster?

RQ3 “What is the value and willingness to use Infragenie?”

Finally, understanding the acceptance of the tool is crucial. Using models like the

Technology acceptance criteria [22] we will try to find out if the tool is adding real

value to the project and if the developers are considering the tool for other projects.

We will also try to get feedback on what works best and what should be improved

with a special focus on the feature that distinguish our tool, the ability to preserve

user changes between recoveries.

4.4 Methodology

To provide evidence on this thesis hypothesis, we have designed the methodology in Figure 4.1

We start with a review of the existing state-of-the-art approaches for recovering software

architectures to understand their relevance and purpose. In this analysis, we focus on tools and

methodologies and how they recovered models that can be used as documentation artefacts for the

project. The revision compares some of the tools used to produce software models, highlighting

advantages and problems so we can formulate a hypothesis and design an approach to prove it.

24 Problem statement

Figure 4.1: Steps of the methodology.

Following, we started our case study(cf. Chapter 6). The first step was to develop a prototype
(cf. Chapter 5) with the knowledge acquired during the state-of-the-art revision. We then validated

the tool with publicly available projects and started our first evaluation cycle. Were we inquire a

group of practitioners to understand their willingness to use the tool, what features they value the

most and which ones they would like to have. This step provided feedback to improve the tool and

shed some light on finding an answer to the research questions, although still incomplete answers

at this stage.

With the tool in a more mature state, we submitted pull requests on open-source projects and

sent structured questionaires to the code owners. These questionnaires complemented the infor-

mation obtained in the previous inquiry, providing answers to the research questions formulated.

At the same time, we are trying to understand why the pull requests have been approved or disap-

proved. At this stage, the comments on the pull request were also used as feedback sources.

In the end, we had enough information to suggest new features to improve the tool and validate
the hypothesis.

Chapter 5

Infrastructure recovery tool: Infragenie

As stated in the previous chapter, this thesis tries to address the problem of recovering software

architectures using existent project artefacts. The recovery should be such that the architecture

knowledge recovered can evolve with the development and provide the ability to add user changes.

This last feature differentiates our approach from others already available, analysed in Chapter 3.

The manual changes added should also be persistent so that if the architecture evolves, the manual

additions are not lost. That means that the recoverer should understand which manual changes

are relevant throughout the evolution of the project and decide if they should be kept or not.

Another differentiator is the usage of the UML specification since using standards to describe the

infrastructure is not common among the tools available for automatic recovery.

Our approach resulted in the development of a tool which we name Infragenie. This chapter

will describe the tool, its architecture and how it addresses the problem. We describe some of

the technologies used and why they were chosen. Ease of use was in mind through the entire

process. In such a way, we end up developing an API that other tools can use. On top of this API,

was developed a web application which allows a user to analyse projects and provides editing

capabilities. All these elements are described in this chapter.

5.1 Approach

Our aim is to develop a prototype tool that can generate architectural diagrams that will evolve
with the project and are easier to generate, update, and annotate with extra information. We

believe such a tool will encourage project managers to keep their models updated and ensure their

documentation is usable and a source of truth for the project.

On a high level, our approach to solving the problem under analysis is to generate the diagram

only with one workflow, which could stop after generating the diagram or continue to provide

editing capabilities. This workflow has the following steps:

25

26 Infrastructure recovery tool: Infragenie

1. Finding and extracting infrastructure artefacts: Using the fact that popular infrastructure

frameworks use naming conventions (such as docker-compose), it is possible to search for

specific files in the project and read their content. Also, this content obeys a structure, which

defines services, ports, interactions and others.

2. Apply manual changes: This step is skipped without manual changes. If manual changes

are found, the changes are applied in order. The recovery works like a version control system

mixed with an event sourcing methodology where all the changes are applied until the latest.

3. Provide a visual representation of the infrastructure: With the infrastructure content, a

set of PlantUML instructions is generated to provide the representation. Only the infras-

tructure in its latest state (with all the manual changes) is represented. Since we are using

PlantUML, the UML specification is almost guaranteed out of the box.

4. Persist manual changes: If manual changes are introduced by a user and saved, the tool

takes a snapshot of the current state of the diagram and saves it in the source code in a format

compliant with Step 2.

This four-step workflow, represent the principals that we propose to develop the mentioned

prototype. Also, this approach allowed a high level of abstraction, making it easy and fast to

extend functionality and add new elements.

Following this workflow, we designed a tool that solves the requirements leveraged in Sec-

tion 5.2 and is presented in more detail in the following sections.

5.2 Desiderata

At this point, it is essential to define the desired requirements for the tool under analysis. These re-

quirements can be classified as primary and secondary. The primary requirements, the mandatory

ones, are:

• Finding infrastructure artefacts: Given a project, finding the files where the infrastructure

is defined should be possible. Usually, these files follow a naming and location convention,

depending on the type of tools used.

• Extract infrastructure information: Ability to read infrastructure files and extract the pieces

of information that define the infrastructure.

• Provide a visual representation of the infrastructure: Create graphical diagrams from ex-

tracted infrastructure information.

• Allow manual editions: The generated model should allow the user to include annotations

and change and add elements.

5.3 Architecture 27

• Persist manual changes: The changes included by users should have priority and be included

in new versions of the generated model. For example, if a user manually changes the service

name while that service exists on the infrastructure specification, the model will always

show the said service with the name specified by the user.

• Follow UML specifications: The models should be generated and modified following the

unified model language, specifically the deployment and component specification.

The secondary requirements, the ones that would bring an extra value to the final solution but

can be removed without significant impacts, are:

• Fast recovery: Although fast is a very broad metric, since every person may have a different

concept, the solution should provide a model and editing capabilities in a few seconds.

Using this concept of fast is intentional since throughput and performance tests are not

planned. Fast here only means having a usable solution.

• Provide the model in different formats: The ability to provide the graphical representation in

different formats will bring more willingness to use, especially providing formats like svg,

which can be used on various mediums without quality losses.

• Automatically detect changes: Once plugged into a project, the generated diagram can be

automatically updated by detecting changes in the code.

• Ability to represent using different standards: Besides the UML specification, the user can

choose different standards, like the C4Model, so that the diagram can be better integrated

with the actual documentation of the project.

The following sections will elaborate on these requirements and how they have been integrated

into the developed tool.

It is also important to refer that, the prototype was developed as a web API written in Python.

On top of this API, we build a web application client that provides simple analysis features to

generate an infrastructure diagram and editing capabilities in the form of a custom PlantUML

editor.

We expect the workflow presented in the previous section and combination of tools to be easy

to understand and appealing enough to be used and considered to improve the documentation.

Moreover, we expect new clients built on this API to unlock new features and usages, as we

suggest in the chapter on future work and improvements.

5.3 Architecture

Our prototype’s conceptual architecture is depicted in Figure 5.1. The main components are the

Application, where all the logic is implemented, the Kafka and Zookeeper services to orchestrate

requests and allow scalability, the PlantUML server to render the images, the GitHub API used to

28 Infrastructure recovery tool: Infragenie

gather project information and the Web App to facilitate the interaction. It is important to note that

this architecture does not need any storage; everything happens in memory and is then saved on the

project folder, making everything needed to generate and recover the diagrams always available

on the source code.

Figure 5.1: Prototype’s conceptual architecture.

Starting by describing the components outside the application. Kafka is used to implement

a queue of requests to analyse projects and edit diagrams. Using Kafka allows a high degree

of concurrency since the application can deal with these requests asynchronously when it has

free resources. Kafka depends on Zookeeper to get its configuration data. In this prototype, we

are not taking full advantage of multiple brokers and partitions, which Zookeeper would also

manage. The system only uses one broker. Nevertheless, this architecture is ready to scale if

needed. The GitHub API helps to retrieve project files and their content to generate the diagrams.

After analysing a project, GitHub API is again used to create requests on the projects with the

diagram file. In the case of editions, the requests will be enriched with extra files to track the

changes. The content of these files will be analysed later in this chapter. The component running

a PlantUML server is used to generate graphical representations of the models. This component

can receive requests with PlantUML text and responds with an image. We opted to host the server

to avoid delays in the image generation that could occur if we used the public API of PlantUML.

This decision improves the user experience, especially during the edition of the diagrams. To

interact with the application, we have built a Web App client that uses the API provided by the

application. This Web App will be reviewed more in-depth in Section 5.6. On a high level, the Web

App allows creating diagrams, opening an editor, changing the diagram and saving the changes. It

5.3 Architecture 29

is also possible to use this client to preview and test changes directly on the editor screen without

saving them.

Now for the components inside the application, the ones responsible for all the logic. The

Producer and Consumer components serve as an interface between the application and Kafka.

The Producer sends requests to the correct topic, and the Consumer retrieves those messages and

routes them to the component that can understand them. The Producer immediately sends the

messages when the API block receives a request, while the Consumer only gets new messages

when resources are available to process them. This mechanism ensures that no message is lost.

Messages in the analyse_topic will be routed to the Analyser component. This component is

responsible for gathering the source code’s infrastructure files and reading their content, accom-

plished by using the Project connector that abstracts the calls to the GitHub API. The abstraction

created by the Project connector allows new services to be added to expand the application com-

patibility. With the information retrieved, the Analyser creates a series of objects that form an

internal diagram model. This model can then provide different representations formats of the in-

frastructure, like JSON used to answer API requests or plain text, PlantUML format in this case,

to be used in the interaction with the PlantUML server to get an image visualisation. The Repre-

senter component manages these representations from which the Analyser depends. The Analyser

also uses the Image connector to interact with the PlantUML server to get the images. The Image

connector abstracts the interactions, allowing it to connect with other image engines.

The Editor component consumes messages from the edit_topic. The messages on this topic

have information about the model elements that have been changed, created and deleted. Option-

ally, the edit message can have information on the latest state of the diagram. If that is the case,

the Editor component, which depends on the Analyser, requests an image representation and then,

using the Project connector, creates a new pull request on GitHub with the latest image and infor-

mation on what was edited. In the cases where the diagram state is not sent on the edit message,

the Analyser must construct the internal model and apply the changes to get the image of the in-

frastructure model. The content of the files added to the pull requests after an edit is described in

the next section about design decisions.

To improve the interaction with the application, a preview functionality is provided to view

the state of the infrastructure diagram in real-time. This feature is handy while editing the diagram

to check the changes without submitting them. Previewing is accomplished with the Preview

component. This component accepts a request with a textual representation of the infrastructure

diagram and uses the Image connector to retrieve an image representation of the model.

Finally, the API component provides an interface to make requests and get applications’ re-

sponses. This component can send messages to the Producer to start analysis and create edit

requests. It interacts directly with the Preview component to get previews of the model and with

the Analyser to receive different representations of the infrastructure, which can then be used to

build clients to facilitate the interaction. The API calls will be described in Section 5.5.

30 Infrastructure recovery tool: Infragenie

5.4 Design decisions

The prototype uses the domain model represented in Figure 5.2 to describe the recovered infras-

tructure. This model uses an interface that creates a common contract for all the elements of the

final diagram. The diagram components are then added to a Graph object responsible for manag-

ing the relations between each component and invoking their representation method to generate

the final representation. With this model, we applied a set of known design patterns and strategies

to develop the needed features. Those patterns and strategies will be reviewed in the following

subsections.

Figure 5.2: Class diagram of the Domain Model.

5.4.1 Creating different UML elements

Our application needs to support different types of UML elements while including the ability to

add more elements if needed in the future. This needed behaviour was achieved with the design

pattern Factory Method.

With our concrete example, and looking into the class diagram from Figure 5.2, all the el-

ements, the products of our factory, implement a common interface, UMLEntity. The interface

defines a unique identifier, the id, and a parent_id to identify if an element exists inside another.

For example, all the UML elements will exist inside a Graph object, and a Node object can have

5.4 Design decisions 31

Ports and Packages inside. So in this simple example, the Node would have the Graph as a parent,

and for the Ports and Packages, the Node will be the parent. The UMLEntity interface also defines

the method representation() responsible for generating a representation of objects understandable

by other application parts.

Besides the common interface, this strategy also relies on classes to help create each element,

as shown in Figure 5.3. For the sake of simplicity, not all the creator classes are represented, but

every UMLEntity class has its creator class.

Figure 5.3: Class diagram for the Factory and Builder design patterns implemented.

5.4.2 Building UML elements step by step

Since the information on each element of the diagram we are trying to build is scattered through

the infrastructure files, the UML elements need to be built iteratively. Moreover, the same element

may have different attributes. This problem can be solved using a Builder design pattern, where

it is possible to build the elements step by step. Using this strategy is possible to create different

elements using the same construction process.

The builder design pattern follows a structure where an interface defines the build methods,

and then concrete builders are used to creating the final objects. In our implementation, since

we already have factories for each UML element, we decided to apply a simpler version of this

structure. Each factory has the necessary methods to add attributes to the objects, dropping the

need for an interface. So, in our model, and taking the case of the PortCreator from Figure 5.3, the

creator instance starts by instantiating an empty PortBuilder object and then this object is enriched

with the information found in the infrastructure artefacts. In the end, the create method is called

to return the final Port object.

32 Infrastructure recovery tool: Infragenie

5.4.3 Accepting manual changes and persisting them

A version control system was used to provide the ability to edit the diagram and save those

changes. Based on the mechanisms used by Git 1, we have created a lightweight version con-

trol system powered by the unique ids of each element, as mentioned previously.

During the first analysis of the project, each element of the infrastructure is translated to an

UMLEntity object with a unique ID, calculated using the md5 hashing algorithm. The hash is

calculated using information like the name of the service, its properties and information being

inferred during the analysis, like the parent element id. This combination is needed to avoid

duplicated ids since we need a deterministic hashing mechanism. That is, the output is always the

same for the same input. To better understand this, let us follow the example diagram generated

by the application in Figure 5.4.

Figure 5.4: Infrastructure diagram with generated ids.

In this example, all the services use port "9090" to map to an external port, also on the address

"9090". Using a simple hashing by the address of the ports would result in three identical ports.

Including context information in the hashing function, the application can generate unique ids for

each port, as shown in the figure. The context information includes information like the service

that the port belongs to and IN and OUT connections. With this information, and while the port

exists in the infrastructure definition, it will always be associated with the same id and parent id.

It is essential to uniquely identify the port even if we run the application multiple times. Using

this approach, the objects of the diagram are always identifiable even if the version of the diagram

changes by manual changes or changes in the infrastructure definition. This is the basis to keep

manual changes and evolve the diagram as described in the following subsection.

1Official GIT website: https://git-scm.com/

5.4 Design decisions 33

5.4.4 Updating the diagram and keeping manual changes

Following the example from Figure 5.4, let us suppose we want to manually change the port on

service_a to the address "9091". Being confident that this port will always have the same ID

and combining this with Event sourcing [16] made it possible to create a memoryless system

that can keep track of the changes and combines them with updates on the infrastructure. We

say that the application is memoryless because nothing is saved on the application side. The

repositories under analysis are used to capture all the changes. Event sourcing plays a critical role

in keeping the manual changes between analyses. This is the mechanism used to understand what

was changed by the user and to understand if the changes still make sense compared to the most

recent developments of the project. By using event sourcing, the tool can apply a semantic diff to

the changes, which means understanding the purpose of the change. Since every manual change

originates a new state of the diagram and given that with event sourcing, the tool applies all the

states every time an analysis occurs, it is possible to understand, for example, if an added port

is still needed in the case that the infrastructure documents have been changed and the services

associated with the port have been removed, or even if the port was added to the infrastructure

docs and so, the manual change can be skipped.

Back to our example, the application starts by looking into the infrastructure artefacts and

generates the first state of the diagram, the one in Figure 5.4. Nothing is saved on the project

repository if the user does not apply any change, and only the diagram is provided. The repository

analysis can always retrieve this first state, and all the objects will be identified in the same way.

When the user edits the first version, this action is seen as an event that changes the diagram state.

That event is saved on the repository by the addition of two files. One is responsible for keeping

track of the order of the events. The other defines what happened in the event. If a new change is

added, one new file with the changes is saved, and the order file is updated with a new reference.

The file responsible for keeping track of events order is saved under the name generated by the

hashing over the project name and has references for the files with the event changes that are saved

with a hashing formed by the repository name and the date and time that the event happened. With

this naming convention, the application only needs the project’s name to find the edition files

without needing pointers or references. In our example, the event file will have the structure in

Table 5.1.

In this structure, the model can verify what was added, deleted or changed, and in the snapshots

block, theres the last state of the relevant objects. Each edit event originates a file similar to this one

allowing the application to capture all the changes as a sequence of events that must occur to reach

the final state. In this structure, the parent_id is pivotal since it creates a hierarchy. Continuing

with our example and assuming that service_a is removed from the infrastructure artefacts, the

first analysis will generate a diagram only with service_b. When looking into the edition files, the

application understands that this change is unnecessary and skips it.

Figure 5.5 shows a simplified flow chart of the operations described.

34 Infrastructure recovery tool: Infragenie

Table 5.1: Object saved in the event files after edit.

Changes object
{
"add":[],
"delete":[],
"changes":[

"883376bc4d636adb25c40df2ce2be936",
],
"snapshots":{

"883376bc4d636adb25c40df2ce2be936":{
"id":"883376bc4d636adb25c40df2ce2be936",
"parent_id":"45470795bd9fb416f00bd445c813991a",
"label":"9091",

}
}

}

5.4.5 Providing different representations of the diagram

The ability to provide different representation formats was also a concern and a necessity while

developing the application. The diagram should not be restricted to only one format to allow the

evolution of the tool and, thus, the usage of different engines to generate the images. In addition

to this, and to support the API, the diagram also needed to be represented in JSON format. A

decorator design pattern was used to achieve this.

The decorator is combined with the Graph object, which wraps the diagram objects acting as

an orchestrator for the operations on these objects. The class diagram for this pattern can be seen

in Figure 5.6.

This pattern defines an interface for all the representation classes that will aggregate the Graph

class so they can use its default representation and then apply transformations to achieve the de-

sired representation.

5.5 API definition

The developed tool was built with evolution in mind, and we thought that having an API where

different clients can be used is the best way to adapt the tool to more projects, i.e., developers

can build clients on top of this API to use its recovery and editing capabilities and add extra

functionalities inline with the project requirements. Although we do not consider this API to

be one of our main contributions, it opens a door that we surely intent to explore in subsequent

iterations of this work. Notwithstanding, this API is used by the client that was built and described

in the next section, so it is essential to describe it briefly.

The API defines the endpoints in Table 5.2.

5.5 API definition 35

Figure 5.5: Infragenie simplified flow chart.

Figure 5.6: Class diagram for the Decorator design pattern implemented.

The first endpoint starts the analysis of a project. The response of this endpoint is just a

message stating that the analysis will start soon in the project. Since the analysis does not occur

36 Infrastructure recovery tool: Infragenie

Table 5.2: API endpoints.

Endpoints

1 POST \analyse

2 POST \edit

3 POST \previewgraph

4 GET \graph

in real-time, it is scheduled with a Kafka message, as explained previously. The analysis will add

a diagram of the infrastructure at the project’s root. This endpoint expects the object in Table 5.3.

Table 5.3: Object used in the \analyse enpoint.

Analyse object
{

"repository": "project location",
"branch": "branch definition" (Optional),
"add_readme": "TRUE or FALSE" (Optional)

}

The object receives the repository location. A branch can be provided if the project works

with Git, so the analysis occurs on that branch. The add_readme parameter is used to include the

diagram in the readme file. If a readme file does not exist on the project’s root and this parameter

is TRUE, a new readme file will be created with the needed diagram information. Regarding the

branch, if it is not provided, the analysis occurs on the project files that are returned by the location

provided, usually the main or master branches.

The \edit endpoint also interacts directly with the project code by updating the diagram with

the changes that resulted from the edit operation and adding new files to recover the edit operation

in the future, as explained in the previous section. This endpoint expects the object in Table 5.4.

The first three parameters are the same used in the \analyse endpoint. In addition, this endpoint

receives an object that describes what was changed, deleted and added during the edit event. It also

receives a representation of the diagram after the edition. The representation of the diagram is used

solely to make this operation faster. With this information, the analysis operation is unnecessary,

and the application can invoke the image generation for the diagram during the edit operation.

Given that the diagram information should be available at the end of an edit operation, this optional

parameter can be provided without resourcing to other sources. If this parameter is not provided,

the application needs to run an analysis on the project and apply the changes to update the diagram.

5.5 API definition 37

Table 5.4: Object used in the \edit enpoint.

Edit object
{

"repository":"project location",
"branch": "branch definition" (Optional),
"add_readme": "TRUE or FALSE" (Optional),
"changes": "similar to the object in Table 5.1",
"graph_text": "representation of the diagram" (Optional)

}

Using the \preview endpoint is possible to obtain an image of the diagram in base64 format.

The endpoint expects an object like the one in Table 5.5.

Table 5.5: Object used in the \preview enpoint.

Preview object
{

"graph_text": "representation of the diagram"
}

The graph_text parameter expects a PlantUML representation since it is the only image engine

used, but in future versions, this endpoint should be more general and maybe work together with

another endpoint that provides representations in different formats.

The last endpoint, \graph, can be used to get a JSON representation of the diagram. This

enpoint expects information about the project location and the branch to be analysed in a call

similar to the following:

...\graph?repo=repo-location&branch=branch-name

When this endpoint is used, an analysis is started immediatly and the response is a JSON

representation of the Graph object representated in the domain model from Figure 5.2. A sample

of this JSON object can be seen on Table 5.6.

When this endpoint is used, an analysis is started immediately, and the response is a JSON

representation of the Graph object represented in the domain model from Figure 5.2. A sample of

the response can be seen in Table 5.6.

The \graph endpoint can be used to get a complete representation of the diagram, with the ids

generated as well as the relations between each object.

38 Infrastructure recovery tool: Infragenie

Table 5.6: Graph object used in the response of \graph endpoint.

Graph object in JSON format
{

"object": "Graph"
"id": "73047605a30e73c1116eafd242d3262b",
"nodes": [

{
"object": "Node",
"id": "ba9f11ecc3497d9993b933fdc2bd61e5",
"parent_id: "73047605a30e73c1116eafd242d3262b",
"name": "Git",
"components": [

{
"object": "Component",
"id": "2ccd832ffb54029d6c5715cbd9928c6e",
"parent_id": "ba9f11ecc3497d9993b933fdc2bd61e5",
"name": "git",
"properties": [...]

}
],

},
{...},

],
"connectors": [

{
"object": "Connector",
"id": "7b548ffbb150d9301ecc0a699cabda5b",
"parent_id": "73047605a30e73c1116eafd242d3262b",
"from_id": "ae7a460a21e18a1bb1312f616b1487ac",
"to_id": "01711216126be07766ef27ce7e0393dc",
"connector_type": "..d..>",
"label": "use",

},
{...},

],
...,

}

5.6 User interface and experience (UI/UX) 39

5.6 User interface and experience (UI/UX)

As mentioned throughout this chapter, we developed a web application to provide a more friendly

user experience with the tool. In this section, we will review the screens and functionalities of

this web application. It is important to note that this web application was also used to showcase

the tool and its functionalities. So, the web application is more than just a client. It is also an

onboarding instrument.

The web application is available at the address https:\www.infragenie.eu. Some

screenshots of the homepage can be seen in Figure 5.7.

Figure 5.7: Infragenie: Homepage.

https:\www.infragenie.eu

40 Infrastructure recovery tool: Infragenie

The homepage is comprised of three main areas, marked with numbers 1 to 3 in the Figure.

The first one is a banner promoting the product and a call to action to analyse projects. The second

area shows a small guide on generating diagrams and editing them if needed. Finally, the third

area, the most relevant, is the one that allows the tool’s usage. Here, the user needs to add the name

of the GitHub repository to be analysed. The application will pre-populate a dropdown menu with

all the branches available on the project. After choosing the branch, the user can select if he wants

to add the diagram to the readme file or not. This information is needed by both the \analyse

and \edit endpoints, which are used here. With all the information, the user can follow two

different paths on the application by pressing either of the buttons, Analyse or Preview & edit.

Pressing Analyse creates a request to analyse the project, which will end with creating a pull

request in the user repository. The pull request adds a diagram image and changes the Readme file

if that was selected. Besides that, the pull request is accompanied by a description of the project,

the project’s URL, a direct URL to start the editor and a request to fill in the survey used in the

study presented in the next chapter. An example of one pull request can be seen in Figure 5.8,

where it is possible to check that the application adds two commits to the project, one to include

the diagram and another to update the readme file.

Figure 5.8: Infragenie: Pull request.

Using the button Preview & edit, the editor page opens, and the user can check the diagram

and edit it before sending it to the project. The editor page has three areas, the previewer with

a preview of the current state of the diagram, the editor where it is possible to interact with the

PlantUML code that generates the diagram and the third one with a form similar to the one on the

5.6 User interface and experience (UI/UX) 41

home page to save what was edited and update the preview image. This page uses the \edit,

\preview and \graph endpoints, and the three main areas can be seen in Figure 5.9.

Figure 5.9: Infragenie: Edit page.

Although based on PlantUML, the editor does not allow inserting PlantUML text freely. In-

stead, each line has a context menu where the allowed changes for that zone of the diagram can be

selected. This decision was made to guide the users to insert valid elements and enforce them to

maintain the specifications of the component and deployment UML diagrams. Also, at this stage

not all the specification is supported, has can be seen in the domain model from Figure 5.2.

One of the context menus can be seen in Figure 5.10, showing that it is possible to delete

or add new elements to the diagram. Changing names, labels, or descriptions is as simple as

double-clicking and changing the text.

Figure 5.10: Infragenie: Context menus to edit the diagram.

42 Infrastructure recovery tool: Infragenie

Every change on the diagram will reveal a revert icon to facilitate the rollback of the changes.

Also, to make it visually more understandable, all the new additions to the editor appear with a

different background. These aspects can be seen in Figure 5.11.

Figure 5.11: Infragenie: Editor with changes.

To facilitate the edition and help the user, the form on the third zone of the edit page has a

Preview button that updates the diagram on the first zone. These changes can be highlighted by

selecting the Highlight Changes radio button. An updated diagram with highlighted changes can

be seen in Figure 5.12. This example reflects the changes from Figure 5.11, where a new network

was added and the service name changed.

Figure 5.12: Infragenie: Diagram with changes highlighted.

In combination with the preview feature, the editor allows not only corrections to the diagram

but also experimenting with changes to the infrastructure and plan and understanding of the impact

of future changes on the architecture.

5.7 Limitations 43

When the user is done with the changes, the form on the third zone of the page can be used

to submit the changes, which will generate a new pull request on the project with the edit event

details. The result of the flow presented in the previous sections.

5.7 Limitations

Some concessions have been made to constrain the application’s scope and allow the development

of a minimum viable product in the available time frame.

The first one was to limit the infrastructure analysis to docker-compose. Docker is one of the

most popular containerization technologies, with 83% of the market [23]. As such, many applica-

tions use docker-compose to orchestrate multiple containers. Our study will focus on open source

projects, and a simple search on Github returns more than 20k projects using docker-compose.

This simplification will keep the scope small and not compromise the evaluation study.

Another simplification was the restriction for projects hosted on Github. Compared to other

tools, there is a broader knowledge of the GitHub API, leading to a faster development process.

The API provided by GitHub also has the advantage of allowing searching and reading content of

files without downloading them, reducing the storage needs during the deployment of the applica-

tion. This has the advantage of reducing not only deployment costs but also complexity.

The graphical engine behind the application uses PlantUML2. PlantUML is easy to integrate

and already complies with almost all the UML standards, which does not happen with other tools,

especially the ones that are more graphical-oriented. Although, it has the disadvantage of requiring

a learning curve since it is a textual modelling language. On the other side, text-based is the

prefered way to generate models among the software development community [38], which is our

target for the evaluation.

5.8 Deployment

Infragenie was deployed using the Google cloud platform, containerized with Docker containers

managed by docker-compose. All the containers have then been deployed to Google cloud virtual

machines. Since the application does not keep states and memory, there is no need for databases,

and the disk requirements are also minimal, reducing the deployment costs. A general scheme of

the technologies being used and how each container interacts is depicted in Figure 5.13.

Infragenie backend and the web client have been built using the Django framework, deployed

on its own container. This container also hosts the Gunicorn server, a lightweight HTTP server

fully compatible with the Django framework. To increase the fault tolerance and security, thus

making the deployment more "production ready", we decided to combine Nginx with Gunicorn.

Nginx works as a proxy between external requests and the application and as a load balancer

for better traffic handling. Nginx is also used to manage and apply the certificates generated by

2Official PlantUML webpage and documentation: https://plantuml.com/

44 Infrastructure recovery tool: Infragenie

Figure 5.13: Technologies used in the deployment of the application.

Certbot, which acts as a client for Let’s Encrypt. This way, the application is served over a secure

and certified connection.

The way Kafka, Zookeeper and PlantUML server are being used have already been described

in previous sections.

In Figure 5.14, there’s a representation of the infrastructure generated by Infragenie. The

image shows all the services described so far and also reveals an extra service, the Cron. This

service is used to run a daily cron job to renew the certificates and reload the Nginx configuration.

It is also easy to identify how the services interact and which ports are being exposed.

5.8 Deployment 45

Figure 5.14: Infragenie: Deployed infrastructure.

46 Infrastructure recovery tool: Infragenie

Chapter 6

Empirical Study

This chapter describes the study carried out to answer the research question formulated in Chap-

ter 4. The study can be framed as Engineering Research (i.e. Design Science) [42] that leans on

the development of Infragenie (cf. Chapter 5) and uses a Questionnaire Survey [42] to evaluate our

prototype. Given our research questions (cf. Section 4), the survey was built around the Technol-
ogy Acceptance Model (TAM) [22]. The research questions try to prove evidence that adopting a

tool with similar features to the ones of Infragenie (cf. Section 5.2) would lead to better documen-

tation and overall willingness to use it to produce and keep documentation updated. Following

the guidelines of TAM, the answers to the survey can provide evidence of responders’ intention

to use Infragenie, how they perceive its usefulness and how easy it is to use the tool. The survey

incorporates questions using the Likert scale [57] and open questions to allow open feedback

from the respondents. The chapter starts with a review of the study’s goals, following a definition

of the method used to select the participants and collect data. It continues with a brief description

of how the study was designed and which instruments were used. Then, with the analysis of the

collected data, with which we provide answers to the research questions and highlight evidence to

prove this thesis hypothesis (cf. Section 4.2). To conclude the chapter, there is a discussion about

the threats to the study’s validity and a discussion summarising the main findings.

All the documents, resources and other artefacts mentioned in this chapter are available in

a replication package, hosted in a public repository on GitHub1. This package can be used to

recreate this study. More details about the replication package and its content can be found in

Section B.1

6.1 Study Goals

This study aims to evaluate how fitted is the developed tool to solve the problem of automatically

recovering project infrastructures, making it available as an up-to-date artefact that evolves with

1Replication package repository: https://github.com/ricardojaferreira/infragenie-replication-package

47

48 Empirical Study

the project and can be used to improve documentation. Furthermore, we seek evidence to prove

this thesis hypothesis, as stated in Section 4.2, where we hypothesise that having infrastructure

models that evolve with the source code will promote the creation, updating and usage of the

documentation and motivate architectural changes. All of these aspects can be leveraged by a tool

like Infragenie. To produce insights into the hypothesis, this study answers the research questions

from Chapter 4, transcribed here for the reader’s commodity:

RQ1 “To what extent does the adoption of Infragenie lead to better and updated
documentation?”

We aim to understand if using the tool developed in this work to generate models of

the system architecture on each development iteration contributes to updated docu-

mentation and how valuable that model is for the overall documentation of the prod-

uct. Have we reduced information redundancy between code and textual documen-

tation? Have we create a systematic action to update documentation, like any other

steps from a pipeline?

RQ2 “To what extent does the adoption of Infragenie improve the knowledge
about the system architecture?”

Developers often add changes to the software without a full comprehension of its ar-

chitecture. Having a model of the architecture can improve the confidence and plan-

ning better future changes? Can the model guide developers to make better decisions

and develop faster?

RQ3 “What is the value and willingness to use Infragenie?”

Finally, understanding the acceptance of the tool is crucial. Using models like the

Technology acceptance criteria [22] we will try to find out if the tool is adding real

value to the project and if the developers are considering the tool for other projects.

We will also try to get feedback on what works best and what should be improved

with a special focus on the feature that distinguish our tool, the ability to preserve

user changes between recoveries.

6.2 Study design

We have designed this study as a benchmarking mechanism to evaluate the developed tool and pro-

vide insights into the research questions. For that, an online survey questionnaire 2, comprised of

mostly close-ended questions to evaluate the tool, was used to conduct an Engineering research
as defined by the empirical standards 3:

2ACM page for Questionnaire surveys: https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=QuestionnaireSurveys
3ACM page for Engineering Reasearch: https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=EngineeringResearch

6.2 Study design 49

This standard applies to manuscripts that propose and evaluate technological arti-

facts, including algorithms, models, languages, methods, systems, tools, and other

computer-based technologies.

We have chosen this approach for our study because, as the definition says, it is a suitable

methodology to evaluate tools and computer-based technologies, a category where we can include

Infragenie. Moreover, part of our research focus is to understand how easy to use and adopt the

tool is, so a benchmarking study with reduced interference in the process of knowing and using

the tool was essential.

The methodology followed in conducting this study and the sections that describe the various

steps are summarized in Figure 6.1. The following sections cover in more detail some aspects of

the study.

To provide insights about the tool and allow users to give more informed answers, we have

prepared a series of instruments to onboard and help use the tool. Those instruments are described

in Section 6.2.2.

Figure 6.1: Study methodology steps and results.

6.2.1 Sampling

GitHub has a large community of contributors and open source projects, so we chose this platform

to introduce the tool and invite contributors to respond to the online survey. This was achieved by

creating pull requests contributing with infrastructure diagrams generated by the developed tool.

50 Empirical Study

These pull requests were accompanied by a description of the project and a link to the survey. To

improve the changes of review of the pull requests and to guarantee a good fit between the project

and the developed tool, we used the advanced search functionality of GitHub with the following

parameters:

• Created after 2018-01-01: To filter out older projects that could be using deprecated docker

compose specifications. Version 1.6.0 of docker compose 4 introduces a new format for

the docker-compose.yaml file, the one supported by Infragenie. This new version was in-

troduced in 2016 and we are selecting projects that have been created two years later to

increase the changes that they are using the supported specification.

• With more than 200 stars: The number of stars shows how popular a project is and is

also an indicator that it is an overall good project with good acceptance by the community.

From the various filters combinations we tried, the number 200 for the stars, was the one

that returned better results. Lower numbers were returning projects with low activity and

bigger numbers were returning too many educational and reference projects, like exercise

books, courses and templates to produce docker-compose files.

• With code changes after 2021-11-01: This parameter was used to try to select only active

projects. We are using a relatively large window of time not to restrict the search, since most

recent dates returned very few results. We must remember that the results are a combination

of all the filters, for example, the number of stars also has an influence on active projects

returned.

• Including the filename docker-compose: Here, we are restricting the search to projects

that use the supported infrastructure framework, docker-compose.

• With the file extension yml or yaml: The main docker-compose file is written in YAML,

which usually has one of these two extensions.

The values for each parameter were found by experimenting, and manual verification of the

results returned. The combination of these filters in the search query produced 22447 results.

From these, we randomly chose 378 projects for our study. With this number we tried to sample a

relevant portion of our population size, because it was impractical to disseminate the survey for all

the 22447 projects. To find this sample of projects we have calculated the sample size selecting a

margin of error of 5% so that the results can, mostly, reflect the views of the entiry population and

a confidence level of 95% so that we can be certain that a big percentage of the population would

give similar answers. Following this we used a popular sample size calculator5 to get the needed

sample size.

The first 100 projects were used to test the tool. With this first run, we were able to find and

fix some processing errors and apply improvements. The most notable changes were made in the

4Docker compose release notes: https://docs.docker.com/compose/release-notes/
5Sample size calculator tool: https://www.surveymonkey.com/mp/sample-size-calculator/

6.2 Study design 51

way the tool searches for the infrastructure files, increased compatibility with different versions

and styles of the docker-compose file and better fault tolerance. The first run was also essential

to validate our study design and instruments which are described in the following section. At this

stage, we corrected commit messages and typos in the pull request description and reached out to

some users to understand if the available resources were helpful.

For the rest of the sample, we monitored the interactions with the pull requests, answering the

reviewers’ questions and trying to persuade their participation in the survey.

This sample of projects provided a good variety of diagrams, from complete ones to others not

so complete, where edits were needed. This variation is excellent to provide insights for RQ2 and

a feeling about the perception of users about the diagrams’ completeness to help answer RQ1.

6.2.2 Instruments design

The questionnaire was designed and made available as an online form. The questions were de-

signed to keep the response time small. They were written to be as precise and targeted as possible,

combining close-ended and open-ended questions. However, the use of open-ended questions was

limited to only capturing respondents’ comments that were not anticipated by the other ques-

tions. Open questions were used to let users provide more information about their experience

with the tool, which helped complement the answers to all three research questions. All the open-

ended questions were optional. The close-ended questions have been created as a five-point Likert

scale [57, 26] or single choice, and were mandatory.

The questions are organized around five main groups. The last four are directly aligned with

the technology acceptance model [22] used to validate the developed tool: a) participants charac-

terization, b) Infragenie ease of use, c) Infragenie usefulness, d) intention to use Infragenie and e)

improvements and open comments.

To provide insights about the developed tool and to allow the respondents to give more in-

formed answers to the questionnaire, the survey starts with a 2min video highlighting the purpose,

functionalities and how to use Infragenie. The questionnaire is available in the study replica-

tion package6 and Appendix B. The video can be found in the replication package and also on

Youtube 7.

The potential respondents were invited to answer the survey in the description of the pull

requests mentioned in the previous section. The description of the pull requests was thought to de-

scribe the purpose of the pull request, to introduce Infragenie, highlighting its edition capabilities

with a direct link to edit the generated diagram and a direct link to the survey.

The web client developed (cf. Section 5.6), which is part of Infragenie and is used to request

project analyses and edit diagrams was also designed as an instrument to help with the study by

onboarding users in using the tool and providing valuable guidelines. As described in Section 5.6,

the web client pages have different spaces and banners with the tool functionalities and descrip-

tions of how to use them.
6Study replication package: https://github.com/ricardojaferreira/infragenie-replication-package
7Infragenie presentation video: https://youtu.be/XF5n-kkLiAw

52 Empirical Study

6.2.3 Research variables

The demographic questions were used to characterize the respondents and help interpret the re-

sponses. Our study used academic background, years of professional experience, UML knowledge,

and experience with plain text or code to generate diagrams as independent variables to segment

results and gain insights into how the background and experience vary the perception of the devel-

oped tool. We have also used the country information as an independent variable to measure the

diversity of respondents. These variables help us better interpret how the developed tool improved

the comprehension of the architecture and the value given to it by users, which is essential to re-

spond to RQ2 and RQ3. We can even relate how users’ experience affected their perceived ease

of use, usefulness and intention to use, in line with the technology acceptance model (TAM).

As for the dependent variables, we have used metrics like ratings of the diagram generated.

Where we asked users to rate the diagram in terms of its completeness, precision and under-

standability to understand better the value given by users to the diagrams generated and with that

answer RQ3, this variable also helped to get a better insight on how easy it was to interpret the

diagrams provided by Infragenie, which shed some insights to answer RQ2. Another dependent

variable used was editor’s usefulness. Here we tried to capture the editor value and ease of use as

an instrument to add value to the generated diagram and experiment or plan new changes in the

architecture, which gave insights to answer RQ2 and RQ3. To better respond to RQ1, we have

also added metrics to measure how users compare other diagrams with the ones generated by the

tool, the number of projects that are using the diagrams produced by the tool and the willingness

of users to continue to use Infragenie. The willingness to use measures not only the usage in new

projects to generate diagrams but also the continued usage to keep those diagrams updated. This

also provides useful information for RQ3. The number of projects using Infragenie was not a

direct question on the survey but rather an analysis of the outcome of the Pull requests generated.

6.2.4 Data analysis design

To create a narrative around the data collected and to understand it we have created different

visualizations of the data, which can be seen on Section 6.3.

Participants background and diversity of the respondents is analysed with the help of distri-

bution graphs and pie charts, showing occurrence percentages for each group. We have also used

some aggregations in the form of stacked bar graphs to understand the experience with UML and

related tools of the participant population.

Stacked bar graphs, are useful to quickly interpret the information provided by Likert scale

questions, cleary showing the distribution of the five point scale used (Strongly disagree, Disagree,

Neutral, Agree and Strongly agree). These type of visualizations have been used in all Likert scale

questions, like for example to understand how useful was Infragenie.

An also important classification was the correlation between experience and perceived useful-

ness, to infer if the participants experience and background increases their willingness to use tools

that can improve and keep the documentation updated. This verification was accomplished with

6.2 Study design 53

Table 6.1: Engineering research standard: Essential attributes followed.

Attribute Where it is applied
describes the proposed artefact
in adequate detail

cf. Sections 5.3, 5.4,
5.5, 5.6

justifies the need for, usefulness of,
or relevance of the proposed artefact cf. Sections 4.1, 4.2

conceptually evaluates the proposed artefact;
discusses its strengths, weaknesses and limitations

cf. Sections 5.3, 5.6,
5.7

empirically evaluates the proposed artifact using a
method for which a clear and convincing rationale
is provided

cf. Sections 6.2, 6.3

discusses state-of-art alternatives cf. Sections 3.3, 3.4

empirically compares the artefact to one or more
state of the art alternatives cf. Section 6.5

the usage of annotated heatmaps, were it is possible to see how the variables relate and the trend

of the relation.

6.2.5 Framing in the ACM SIGSOFT Empirical Standards

This study was designed to provide insights about the developed tool, Infragenie, as a means to

promote evolving architecture diagrams that are automatically generated to be used in the doc-

umentation. This objective falls into the description of Engineering research methods as de-

scribed in the Empirical standards [42], which documents the expectations for empirical research

in software engineering. Engineering research is characterized as "Research that invents and eval-

uates technological artefacts". A characterization that can be easily applied to this work since

we are proposing a tool or a technological artefact, and we wish to evaluate it to understand if it

solves the problem statement of this thesis, defined in Chapter 4. The evaluation method used for

this engineering research is a Questionnaire survey8 used with mostly closed-ended questions (cf.

Section 6.2.2) to analyze participants answers which were sampled using the strategy depicted in

Section 6.2.1.

Engineering research must show a set of essential attributes that are captured in Table 6.1,

together with the place where this work applies them.

There is also a set of desirable attributes to follow by such a study. The desirable attributes

followed by this work are depicted in Table 6.2

8ACM page for Questionnaire surveys:
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=QuestionnaireSurveys

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=QuestionnaireSurveys

54 Empirical Study

Table 6.2: Engeneering research standard: Desirable attributes followed.

Attribute Where it is applied
provides supplementary materials,
including source code and datasets cf. Appendix B

justifies any items missing from
replication package NA*

discusses the theoretical basis of the artefact cf. Section 5.1, 5.4

includes one or more running examples
to elucidate the artefact cf. Appendix A

evaluates the artefact in an industry-relevant context
(e.g. widely used open-source projects) cf. Section 6.2.1

*All the necessary items to replicate the study are on the replication (cf. Section B.1).

In the list of desirable attributes, we have not included the attribute justifies any items missing

from replication package based on practical or ethical grounds because our universe of answers

is not big, so there was no necessity to apply complex data analytical strategies.

6.3 Data Analysis

From our sample of 378 pull requests (cf. Section 6.2.1) we have obtained 36 responses to the

questionnaire. Which represents 9,5% of conversion rate. Considering that online surveys have

on average 30% of conversion rate [64], the number achieved is relatively small compared to that

standard. Although, several factors contribute to the reduction of conversion rates, among them the

delivery method of the survey, size of the population and number of days the survey was left open

could lead to a variation of more than 60%. Examining our example, the delivery method used

was not ideal, despite being the needed method to validate and introduce the tool to an unbiased

audience. And it was not ideal because, we observed that some pull requests did not had any

interaction, most possible because the project was not active (we have used projects with code

changes after 2021-11-01 cf. Section 6.2.1) or the contributors did not have the necessary time to

look into it. Also, some GitHub users received the contribution as an advertising to a commercial

tool and decided to close the pull request. To add to that, some projects use automated tools to run

validation steps on the pull requests and require SLA agreements to accept contributions, whithout

these validations the pull requests are marked as invalid and did not receive any review until they

are valid. We could not account for all these variables. Having this in mind the attained conversion

rate can be explained and even considered good.

6.3 Data Analysis 55

Looking only quantitatively to the number of 36 responses we believe that they can provide the

necessary information to respond to the research queries. In the follwing sections we will analyze

these 36 responses, exploring different ways of grouping the data.

6.3.1 Participants characterization

One of the concerns of this study was to reach a broad and diverse audience from the devel-

oper community, to get the viewpoint from different contexts and different levels of knowledge.

To evaluate this heterogeneity, we have included in the questionnaire questions to evaluate the

respondents’ profiles.

The answers revealed that we had participations from 24 different countries, almost equally

distributed among them, with China, Germany and USA with a few more representations, as

revealed in Figure 6.2.

11% 8% 8% 6% 6% 6% 6% 6% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%

China
Germany
USA
Portugal

Greece
Canada
UK
India

Estonia
United Arab Emirates
Dubai
Nicaragua

Brasil
Switzerland
France
Austria

Hong Kong
Italy
United Kingdom
Iran

Japan
Belgium
Taiwan
Russia

Figure 6.2: Distribution of respondents by country.

Regarding academic background and professional experience, almost every participant had

a university degree (95%) and three quarters of the respondants have a background in computer

science, as can be seen in Figures 6.3 and 6.4. Furthermore, a high percentage has more than 5

years of professional experience (78%), which reveals a very proficient group, most likely with a

formed idea on the importance of documentation. The professional experience data is represented

in Figure 6.5.

Regarding academic background and professional experience, almost every participant had

a university degree (95%), and three-quarters of the respondents have a computer science back-

ground, as seen in Figures 6.3 and 6.4. Furthermore, a high percentage has more than five years of

professional experience (78%), which reveals a very proficient group, most likely with a formed

idea on the importance of documentation. The professional experience details are represented in

Figure 6.5.

These demographic details show that we have reached an audience of computer science related

individuals with different backgrounds, showing that we have chosen the distribution platform

correctly.

Besides the demographic data, we also tried understanding the knowledge level around UML

diagrams and textual tools to generate diagrams. Those are important metrics to understand how

comfortable the respondents are with the diagrams produced by the tool and the editor. To evaluate

56 Empirical Study

56% 39% 6%

Bachelor's degree Master's degree University study without degree

Figure 6.3: Respondents educational attainment.

75% 25%

Computer Science Other

Figure 6.4: Respondents area of study.

22% 33% 14% 31%

1 to 4 years 5 to 9 years 10 to 14 years 15 or more

Figure 6.5: Respondents professional experience in years.

this knowledge, we have asked four questions using a Likert scale with five points. The questions

asked were:

Q1 “I have experience with tools that allow the creation of diagrams from plain text

or code (e.g. PlantUML, Mermaid.JS, others)”

Q2 “I am familiar with the Unified Modeling Language (UML).”

Q3 “I am familiar with UML component diagrams.”

Q4 “I am familiar with UML deployment diagrams.”

The answers to these four questions are in Figure 6.6.

Overall, the respondents are comfortable with UML and creating diagrams with text-based

tools. The lower point in our Likert scale is Strongly disagree, which no respondent answered

in any of the questions, showing that even those less comfortable with these topics have some

knowledge about them.

6.3.2 Acceptance

To measure acceptance, we based our analysis on the pull requests’ state. In Figure 6.7, it is

possible to see the percentage for each state among the 378 pull requests created.

6.3 Data Analysis 57

0 20 40 60 80 100

Q1

Q2

Q3

Q4

3%

3%

8%

8%

17%

19%

39%

39%

39%

39%

33%

36%

42%

39%

19%

17%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.6: Respondents knowledge level.

Due to decimal rounding some bars are not reaching 100% or are exceeding it.

open 52.0%

closed

31.0%

merged

17.0%

Figure 6.7: Distribution of pull requests states at the end of the study.

52% of the pull requests remained in the open state, which helps explain the low conversion

rate of the questionnaire, as discussed at the beginning of this chapter. Nevertheless, this alone

does not imply that the tool had low acceptance. Several reasons exist to explain why the pull re-

58 Empirical Study

Table 6.3: Users reasons to close pull-requests.

Although this is a cute little diagram, it doesn’t provide any value to the project
and so I won’t be adding it. This would be a great addition to a larger project.

Thank you for this PR but at the moment we don’t feel we need such a document,
as the architecture is quite simple.

I took a look at your picture. I think your idea is great, but the current generated
graphs are not beautiful enough. I wish you can improve it better.

Sorry, seems like an ad to me.

Thank you for the contribution. However we don’t need this at the moment.

very nice app, it’s displayed very clearly, but I think maybe this pic not Suitable
for my repo. So I will close this pr. thx!

We are not giving free advertising.

This repo serves as a tutorial for other projects. We have several docker-compose
files and theres a diagram just for one.

quests remained in the open state at the end of the study. Some projects run verification pipelines

on the pull requests, which require a specific structure in the pull request. Others require CLA li-

cence agreements. Our tool was not complying with any of these aspects, so the pull requests were

not reviewed. Unfortunately, the GitHub search feature does not allow filtering projects with these

characteristics. Another reason may be related to the fact that the project has few contributors,

and so, being a project with high activity may slow down the process of reviewing pull requests.

Filter projects by the number of contributors could be done, but that would significantly impact

the results returned, so we decided not to apply that filter parameter.

Looking at projects in the closed state, they represent 31%, which is a relatively high percent-

age. We have contacted the project owners to understand better the reasons for closing the requests.

Some of the answers are aggregated in Table 6.3. The answers reveal that some users mistakenly

took the contribution as an advertisement for commercial software and did not give a change to

the tool. Due to having small infrastructures, others found the diagram not very helpful or were

hoping for a neater representation. The answers also revealed that some projects were tutorials

or courses about Docker, meaning that a tool like Infranie does not provide valuable information.

Tutorials or similar projects could not be filtered off from the search.

For all the reasons discussed, we regard 17% of merged pull as very positive. Many users

found the diagrams helpful and decided to add them to their documentation.

6.3 Data Analysis 59

This analysis of the state of the pull requests shows evidence of what we are trying to answer

on RQ3. We can say there is a willingness to use Infragenie, although the tool needs some im-

provements to increase its acceptance rate, as noted by some of the comments in Table 6.3. Some

of those improvements include better quality diagrams. Also, such a tool may not be suited for all

projects or not be given enough importance, especially for projects with simple and small architec-

tures, which is expected. From the number of users that merged the pull requests, we can conclude

that those users agreed that the diagrams produced led to better and updated documentation on the

project, which gives a positive answer to RQ1.

6.3.3 Ease of use

In the section for evaluating ease of use in the questionnaire, we have asked the following six

questions:

I think that with Infragenie, it is easy to...

Q1 “create architectural diagrams.”

Q2 “keep architectural diagrams updated.”

Q3 “keep architectural diagrams consistent with the source-code.”

Q4 “add new information (not inferred from the source-code) to the diagrams.”

Q5 “change the generated architectural diagrams.”

Q6 “verify how changes may impact the architecture.”

The answers to these questions are aggregated in Figure 6.8.

Looking at the graph, the positive side, represented by the green portion of the bars, is more

prominent, being more than 50% in all six questions. Creating diagrams with the developed tool

was appointed as the easiest thing to do in the application, while verifying impacts by changes

in the architecture was the most challenging but not significantly difficult. To get a better insight

into the data, we have looked at the individual answers to understand if the users’ knowledge of

UML and text-code editors, like plantUML, evaluated in the previous section, could influence the

ease of use perception. All the relations can be seen in Section C.1. The ease of creating and

changing diagrams were the most significant correlations, and can be seen in Figures 6.9 and 6.10,

respectively.

Creating diagrams is not affected by user knowledge. Even users with lower knowledge of

UML or text-based tools have agreed on how easy it is to create diagrams. On the other hand, hav-

ing more knowledge makes changing diagrams easier. This reveals that the editor may need some

improvements, like for example being more graphical oriented to not depend on the plantUML

knowledge. Overall, users were comfortable using the tool, revealed by the bigger saturation in

the top left corner of the heat maps analysed, which can be a good indicator of willingness to use

helping to provide evidence for RQ3.

60 Empirical Study

0 20 40 60 80 100

Q1

Q2

Q3

Q4

Q5

Q6

3%

3%

3%

3%

11%

6%

6%

11%

6%

22%

17%

11%

14%

31%

31%

47%

50%

44%

42%

47%

64%

28%

22%

36%

36%

8%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.8: Infragenie ease of use evaluation.

Due to decimal rounding some bars are not reaching 100% or are exceeding it.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

re
at

e
di

ag
ra

m
s

0 0 4 10 9

0 1 2 2 6

0 0 0 2 0

0 0 0 0 0

0 0 0 0 0

Text-based tools familiarity vs ease to create diagrams

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

ha
ng

e
di

ag
ra

m
s

0 0 2 6 5

0 0 2 5 8

0 0 2 1 2

0 1 0 1 0

0 0 0 1 0

Text-based tools familiarity vs ease to change diagrams

Figure 6.9: Relation between text-based tools (like plantUML) knowledge and creating and chang-
ing diagrams with Infragenie.

6.3.4 Usefulness

Four groups of questions measured usefulness. The first one was targetting the usefulness of the

documentation. The second was the usefulness of using the tool to plan changes in the architecture,

the third group the usefulness of the diagrams produced and the fourth group targetting the edition

capabilities of Infragenie.

In the first group, we asked the following: I think that Infragenie is useful to help ensure that

architectural documentation is...

Q1 “complete.”

6.3 Data Analysis 61

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

re
at

e
di

ag
ra

m
s

0 0 3 12 8

0 1 2 2 6

0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

UML knowledge vs ease to create diagrams

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

ha
ng

e
di

ag
ra

m
s

0 0 1 6 6

0 0 2 7 6

0 0 2 1 2

0 1 1 0 0

0 0 1 0 0

UML knowledge vs ease to change diagrams

Figure 6.10: Relation between UML knowledge and creating and changing diagrams with Infra-
genie.

Q2 “consistent.”

Q3 “precise.”

Q4 “easier to consult.”

Q5 “easier to understand.”

Q6 “easier to maintain.”

Q7 “easier to update.”

The results for this group of questions are in Figure 6.11.

In the second group, the question asked was: I think that Infragenie is useful to help to...

Q1 “plan future changes on the architecture.”

Q2 “understand the impact of changes in the architecture.”

Q3 “be more confident while introducing architectural changes.”

Q4 “implement architectural changes faster.”

Figure 6.12 shows the answers from the second group.

To check on the usefulness of the diagram, the question was: I think that the diagram provided

by Infragenie shows...

Q1 “a complete view of the architecture”

62 Empirical Study

0 20 40 60 80 100

Q1

Q2

Q3

Q4

Q5

Q6

Q7

8%

8%

8%

6%

6%

6%

6%

19%

14%

19%

11%

19%

39%

33%

42%

44%

39%

56%

50%

47%

53%

31%

33%

33%

28%

25%

8%

8%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.11: Infragenie usefulness for project documentation.

Due to decimal rounding some bars are not reaching 100% or are exceeding it.

0 20 40 60 80 100

Q1

Q2

Q3

Q4

3%

3%

6%

6%

8%

8%

11%

14%

25%

39%

53%

61%

61%

42%

31%

19%

3%

8%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.12: Infragenie usefulness for verifying future changes.

Due to decimal rounding some bars are not reaching 100% or are exceeding it.

Q2 “the most relevant elements of the architecture.”

The results for the third group are in Figure 6.13.

To get more insights on the edit capabilities, we used the question: The edit capabilities of

Infragenie allow to...

Q1 “increase the diagram value.”

Q2 “make the diagram more consistent.”

6.3 Data Analysis 63

0 20 40 60 80 100

Q1

Q2

6% 33%

8%

42%

47%

19%

44%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.13: Infragenie usefulness of the diagram produced.

Due to decimal rounding some bars are not reaching 100% or are exceeding it.

Q3 “representing details that were not automatically captured.”

The obtained answers are grouped in Figure 6.14

0 20 40 60 80 100

Q1

Q2

Q3

6% 11%

11%

11%

14%

22%

22%

69%

67%

67%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.14: Infragenie usefulness of the edit capabilities.

Due to decimal rounding some bars are not reaching 100% or are exceeding it.

The usefulness of the developed tool for documentation (cf. Figure 6.13) was very positive,

without any strong disagreement and with most answers between agreeing and strongly agreeing.

This is especially useful to corroborate that a tool like Infragenie can lead to better and updated

documentation, answering in that way to RQ1. The usefulness to understanding the impact and

plan for future changes on the architecture (cf. Figure 6.12) was not consensual, but was mostly

64 Empirical Study

Table 6.4: Users answers to what was not being represented by Infragenie.

Other parts of the architecture are not being managed by docker compose and it would
be nice to have a view of those pieces also.

It should be possible to choose the docker-compose file to analyze. For example dev
and prod docker files generate different diagrams.

It lacks the analysis of other infrastructure files, rendering the diagram very incomplete.

Some connections between services are missing.

Overall the information was there.

All the essential was there.

positive. Despite this, they did not see the same usefulness of being faster and more confident

while introducing changes in the architecture. This analysis can be further complemented with the

open-question about what was not being represented by infragenie. The answers to this question

are grouped in Table 6.4.

These answers revealed that a tool like Infragenie should look into more artefacts than just the

infrastructure ones. This information helps us answer RQ2 with the following statement, having a

diagram can improve the knowledge and help to plan future changes, but for implementing these

changes, the infrastructure diagram alone is not enough, since the architecture can be defined

in many more places. Furthermore, the developed tool probably needs other mechanisms like

generating and updating the infrastructure artefacts.

The responses on the diagrams’ usefulness provide even more evidence of the diagram value,

showing that the vast majority of the users found the diagrams complete and showed the most

relevant elements of the architecture.

Regarding the edition capabilities (cf. Figure 6.14), more than 60% of the users strongly

agreed that this feature is useful and increases the diagram’s value. This shows that adding the

possibility to add changes in automatic recovery tools is a much-appreciated feature, to allow

representing not captured details or making the diagram more consistent.

As in the previous section, we have crossed the results from the usefulness questions with the

user’s knowledge. All the relations can be seen in Section C.2. From the first group of ques-

tions, we can highlight the relation between knowledge and how useful it is a tool for maintaining

documentation, as depicted in Figure 6.15.

The relation shows that knowing UML and related tools can help but is not mandatory. Some

6.3 Data Analysis 65

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagreeU
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 m
ai

nt
ai

n 0 0 0 1 2

0 0 2 6 9

0 1 3 6 4

0 0 1 1 0

0 0 0 0 0

Text-based familiarity vs maintain documentation

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagreeU
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 m
ai

nt
ai

n 0 0 0 1 2

0 0 2 6 9

0 1 3 7 3

0 0 2 0 0

0 0 0 0 0

UML knowledge vs maintain documentation

Figure 6.15: Relation between user knowledge and maintaining documentation.

users, despite having lower knowledge still find the tool usefull enough for maintaining the docu-

mentation.

As for the usefulness of Infragenie for planning, understanding and implementing changes,

depicted in Figure 6.16, we have found the relation between user knowledge and planning future

changes more scattered. In this relation, it is easy to see that users with knowledge find the tool

usefull to plan changes, while, for users with less knowledge its difficult to make assumptions,

since there isn’t a noticible tendency.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
pl

an
 fu

tu
re

 c
ha

ng
es

0 0 1 0 0

0 0 1 10 11

0 0 3 2 4

0 1 1 1 0

0 0 0 1 0

Text-based familiarity vs plan future changes

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
pl

an
 fu

tu
re

 c
ha

ng
es

0 0 1 0 0

0 0 1 9 12

0 0 2 5 2

0 1 2 0 0

0 0 1 0 0

UML knowledge vs plan future changes

Figure 6.16: Relation between user knowledge and planning future changes.

One last relation worth noticing is the relation between user knowledge and the added value of

the diagram brought by the edit capabilities. This relation is depicted in Figure 6.17 and shows that

the users tend to agree that the edit capabilities increase the diagram value, despite the knowledge.

66 Empirical Study

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ed
ito

r i
nc

re
as

es
 d

ia
gr

am
 v

al
ue

0 0 2 9 14

0 0 2 2 1

0 1 1 2 0

0 0 1 1 0

0 0 0 0 0

Text-based familiarity vs editor value

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ed
ito

r i
nc

re
as

es
 d

ia
gr

am
 v

al
ue

0 0 2 10 13

0 0 0 4 1

0 1 3 0 0

0 0 2 0 0

0 0 0 0 0

UML knowledge vs editor value

Figure 6.17: Relation between user knowledge and edit capabilities allowing to increase diagram
value.

We can now answer partially to RQ3 and RQ2 by saying that the tool was perceived has having

a good value, especially its diagrams, increased by the fact that it is possible to edit them, which

can be used to get more knowledge on the architecture and plan future architectural changes. This

perception of the diagram value can also indirectly lead to conclude on the usefulness of Infragenie

for the documentation, providing insights of what we are trying to evaluate on RQ1. Furthermore,

the editor plays a pivotal role in the application, leading to increased adoption, especially if built

with the low assumption of the user’s knowledge and good usability. The editor allows more

consistency and completeness of the diagrams render them more suitable to be a source of truth

and reference.

6.3.5 Intention to use

To evaluate intention to use, we started to try to understand if the evaluated projects had an ar-

chitectural diagram before and, if so, how that diagram compares with the one generated by the

developed tool. The answers to this question can be seen in Figure 6.18.

This part of the questionnaire was also accompanied by a text box for users to leave their

comments. The most relevant ones are in Table 6.5.

In the universe of projects with older diagrams, Infragenie generated a better diagram in more

than 75% of the cases, showing more details, being UML compliant and even detecting errors in

the infrastructure artefacts. In the other cases, Infragenie was not adding anything new (14% neu-

tral) or unable to detect everything (7% worst). As detected during the analysis of the acceptance

of the tool, some projects have simple infrastructures, and a tool like Infragenie is not valued in

such contexts.

Still to evaluate the intention to use we have asked: I am considering to...

Q1 “add diagrams generated by Infragenie to my projects.”

6.3 Data Analysis 67

Yes33.0%No 67.0%

21%

57%

14%

7%

Compare with old diagram

Much better
Better
Neutral
Worst

Figure 6.18: Percentage of projects that have architectural diagrams before Infragenie’s analysis
(YES) and how they compare.

Q2 “use infragenie to visualize and plan changes in the architecture.”

Q3 “use infragenie in new projects.”

The answers can be seen in Figure 6.19

0 20 40 60 80 100

Q1

Q2

Q3

3%

3%

3%

8%

19%

11%

31%

69%

28%

50%

8%

53%

8%

6%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.19: Intention to use Infragenie.

There is a high intention to use Infragenie in current and new projects, but not so high an inten-

tion to use Infragenie to plan future changes. These results prove what we have been observing so

far: The tool is helpful, and the users are giving value to the diagrams generated. The edit capabil-

ities, despite needing some improvements, for example, to move away from PlantUML syntax and

68 Empirical Study

Table 6.5: Users comments while comparing old diagrams with the one generated by Infragenie.

The actual documentation is not comprehensive and is old.

It shows some more details like properties of services and the ports are easier to follow.

Not better, not worst, but different. It has the advantage of being auto generated.

Some connections were missing.

It’s more formal.

The previous diagram was really simple and not UML compliant.

The infrastructure was very small, no new addition was made.

It detected a typo on one of the components.

to be more helpful at planning changes, are good enough to increase the diagram completeness,

which was the main objective of the feature.

6.3.6 Improvements and comments

To conclude our analysis, we tried to understand if the users were valuing the fact that the diagrams

produced were UML compliant and if automatic detection of architectural changes was something

that could increase the adoption. For that, we had one last question that goes like this: Infragenie

would be better if ...

Q1 “more UML elements were available to use.”

Q2 “it wasn’t restricted to UML elements.”

Q3 ‘it automatically detected architectural changes (keeping the diagram always up-

dated without manual intervention).”

In the end, the users were also invited to leave comments so that we could get a better vision

of what was on user’s minds about the tool. Figure 6.20 shows the results for the question, and

Table 6.6 aggregates the most useful comments.

A significant percentage of users agree that having the diagrams compliant with UML is better,

hoping to see more UML elements available and discouraging the usage of non-UML compliant

elements. Also, having automatic detection features is seen as a good improvement for the tool.

6.3 Data Analysis 69

Table 6.6: General users comments about Infragenie.

Some sort of pipeline plugin to suggest changes. Also, opening a pull request
is a bit invasive, although understandable why it works like that. Having the tool
integrated into CI tools would be better.

It seems a cool application but needs some improvements.

Nice tool. Hope to see compatibility with more technologies (ansible, chef, others)

It needs to look into all the architecture files on the project and not only
to docker-compose. Other than that the tool is nice and can be very useful.

Having to go to the webpage is not very practical. Auto-generating documentation
should be more straightforward.

The application is still immature, the way it interacts with the code by creating
pull requests is not ideal, and the editor needs some improvements.

The editor needs a massive improvement. Other than that the tool is nice.

The editor should allow more freedom.

70 Empirical Study

0 20 40 60 80 100

Q1

Q2

Q3

11% 14%

3%

8%

47%

8%

17%

17%

75%

28%

72%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.20: UML compliance and automatic detection valorization.

The comments strengthen the conclusions and observations made in previous sections. We

have users unpleasant with the fact that the application opens a pull request, which was observed

during the acceptance analysis as one of the reasons to not give a change to the tool. The users also

expect a better editor, a more straightforward flow to generate the diagrams and a broader analysis

of the architecture artefacts, not only docker-compose.

6.4 Threats to validity

To design this research, we have also thought about conditions that could cause deviations in the

results and compromise the study’s validity. Knowing those conditions helped us to trying to

mitigate them and provided important context to our interpretation of the results. The remainder

of this section lists the threats to the validity of the conclusions in this chapter.

Participant’s lack of knowledge: The developed tool addresses problems related to

the generation of software architecture diagrams. While software architecture is a

broader concept that a bigger audience can know, the different types of notations to

create the diagrams are not so generalised. Since our tool was creating UML dia-

grams, we were hoping to find a group of individuals familiar with the notation to be

able to understand the generated diagrams and, so, be able to evaluate them. Also,

how a user evaluates the tool, especially the editor, could be significantly influenced

by its knowledge of UML and its familiarity with PlantUML, making it harder to un-

derstand how to use the tool. We were looking for a group with different levels of

experience to get different views of the usability and value of the editor. To identify

possible biased answers due to lack of knowledge, we tried to assess the respondent’s

level of familiarity with these topics. To reduce bias changes, we also tried to find

a group of individuals with a computer science background, targeting projects on

6.4 Threats to validity 71

GitHub. We had 75% of the respondents from an area of study related to computer

science and professional experiences between 1 and more than 15 years. Even though

the respondents claimed to have high knowledge of UML and plantUML, the universe

of respondents was diverse enough to validate the study’s conclusions.

Sample size: The sample size for this study was relatively small. A bigger group of

respondents would give more strength to the conclusions. Allowing grouping of the

results by respondent profile to verify trends in those groups, for example. That said,

this treat cannot be disregarded but we believe that the insights provided are useful

and can be usefull to plan future iterations of this study.

Oversampling: The diversity of the participants can also have a significant impact

on the results. As mentioned in previous sections, having a big group of individuals

without knowledge of topics like UML can negatively impact how the tool is eval-

uated and vice versa. To mitigate this threat, we have used open source projects on

Github, which resulted in a very diverse group of respondents, as evidenced in Sec-

tion 6.3.1. With this heterogeneity among the respondents, we are not expecting to see

a significant difference in the results analyzed if a more extensive set of participants

responded to the questionnaire.

Duration of the study: One of the characteristics of a tool like Infragenie is its

ability to follow the project evolution, i.e., updating the architectural diagram every

time changes are introduced to keep the diagram updated. Given that architecture and

infrastructure changes do not happen very often, evaluating this evolution properly

was not possible during the duration of the study. Also, since the study depends on

the availability and willingness of the participants to provide feedback, it would be

challenging to guarantee responses after a certain trial period. To overcome this, we

have prepared a set of instruments to highlight the tool’s features in a short time and

allow informed answers.

Suitability of the analysed project: One concern for this study’s validity was find-

ing projects with relevant architectures that could be analysed by the developed tool.

Using the tool in projects where the analysis would result in irrelevant diagrams or,

even worst, where the application would not be able to generate a diagram could in-

fluence the results very negatively. For this reason, we tried to filter those projects

using the advanced search features from GitHub. Given that the filter is not very ac-

curate, we found some respondents questioning the validity of the diagrams for their

projects, as we could confirm by the comments they have left. Nonetheless, this threat

was reduced with the instruments prepared, allowing even participants that received

less relevant diagrams to understand the tool. We believe their experience did not

influence the answers.

72 Empirical Study

Lack of guidance and interference: The study was designed to happen without

manual intervention by researchers. The potential respondents received a diagram

generated by Infragenie and were asked to answer a survey about it. This approach

relies a lot on the tool’s simplicity and the effectiveness of the materials we make

available to participants to explain what it does and how it works. This could lead

to participants responding to the survey without a good understanding of the tool

and what problems it tries to solve. To reduce this threat, we sought feedback from

participants by sending them messages to better understand some decisions and tried

to answer all the comments left on the pull requests. However, looking at the overall

positive evaluation of the tool, we can assume that a good portion of the respondents

tried the tool and analysed the resources created to onboard the tool, reducing the

effects of this possible threat.

6.5 Discussion

During this chapter, we presented the conducted study used to prove evidence of this thesis hy-

pothesis by answering the research questions formulated in Chapter 4. The study, which follows

the principles of an Engineering research, was designed to evaluate the developed tool, Infrage-

nie, following the Technology Acceptance Model by accessing: 1) acceptance, 2) ease of use, 3)

usefulness and 4) intention to use.

The study was realized using an online questionnaire shared in the scope of repository contri-

bution made by the application. The contribution happened as a pull request in selected projects

from GitHub. GitHub was used to reach a diverse set of people working with software develop-

ment. From the demographic and background analysis, it was possible to verify that the respon-

dents indeed showed diverse backgrounds, coming from 24 different countries, with professional

experiences between 1 and more than 15 years of experience and coming from different areas of

study and with different academic degrees.

We have also evaluated the UML knowledge of the participants as well as their experience

with tools like plantUML to detect biased answers. Given the fact that our tool follows the UML

standard, it is important to be evaluated by people with good knowledge of UML. Our evaluation

showed that most of the users were highly familiar with the standard, given informed answers

especially when evaluating the validity and understandability of the diagrams. The analysis of the

experience in text-based tools was helpful to show evidence that a high proficiency in those tools

was not necessary to use Infragenie.

Having assessed the participant’s knowledge and collected information on the mentioned met-

rics, we can try to answer this dissertation’s research questions:

RQ1 “To what extent does the adoption of the developed tool lead to better and up-

dated documentation?” - To find an answer to this question, we have measured how

users evaluate the diagrams provided by the tool and how these compare with other

6.5 Discussion 73

diagrams. More specifically, we asked questions to assess how users evaluated the

completeness and ease of understanding the diagrams to get insights on whether the

diagrams provided better documentation. We have also asked how easy it was to

maintain and update the diagrams with Infragenie to conclude if the tool could lead to

updated documentation. The results from these questions can be seen in Figure 6.11

and show that more than 60% of the respondents agreed or strongly agreed that In-

fragenie produced complete and easier to understand diagrams, which were easier to

maintain and update. The question about ease of use, which answers are represented

in Figure 6.8, also revealed how easy it is to generate diagrams and keep them up-

dated and consistent with the source code. In the open question about comparing

the diagrams generated by Infragenie and other diagrams (cf. Table 6.5) there were

users clearly saying that Infragenie’s diagram was better, showing more details, being

UML compliant, and even detecting problems in the infrastructure definition. Further-

more, almost 80% of the total respondents that had diagrams before using Infragenie

found that Infragenie’s diagram was better or much better (cf. Figure 6.18). The

comments about Infragenie at the end of the questionnaire (cf. Table 6.6) were also

valuable in revealing interest in a systematic action to update the documentation. In

sum, we have observed that a tool like Infragenie can recover Infrastructure diagrams

with good consistency and precision without much effort, which are UML compliant,

rendering these diagrams useful and most likely better than others created manually.

Also, adopting Infragenie can help keep the diagrams updated, and this action can

become a common practice during project development.

RQ2 “To what extend does the adoption of Infragenie improve the knowledge about

the system architecture?” - Looking at the results aggregated in Figure 6.13, which

represent the answers to the usefulness of the diagram, it is possible to see that this

figure is mostly green, showing that overall the users of Infragenie consider that the

diagram generated shows a complete view of the architecture and the most relevant el-

ements. Furthermore, possible inconsistencies or missing information could be added

to the diagram using the edit capabilities, a process found easy to accomplish by more

than 70% of the respondents as depicted by question Q4 and Q5 from Figure 6.8 and

in Figure 6.14 where it is accessed the usefullness of the edit capabilities. Having

such a diagram, we can say that it is a valuable reference to describe the architecture

of a project, consequently providing good knowledge about it.

RQ3 “What is the value and willingness to use Infragenie?” - For this question, we

have looked into the acceptance of the tool by quantifying how many projects were

effectively using the diagrams. The percentage of projects using the tool was 17%

which seems low, but we cannot disregard the fact that 52% of the contributions in-

troduced by Infragenie remained unreviewed. Several reasons could have happened

74 Empirical Study

for that, but one that we were able to verify was due to restrictions, like licence agree-

ments, imposed by certain projects, to which Infragenie did not comply. We believe

that the number of accepted contributions could be higher if those restrictions were

followed, although they were out of the tool’s scope. Looking at the 31% of rejected

contributions, we should also analyze the reasons for that. As seen in Section 6.3.2,

some projects were very simple, and participants found that a diagram such as this

was unnecessary. This shows that a tool like Infragenie has more value if used in

projects with rather complex architectures, where the automatic recovery can indeed

save developers time and errors. Also, some project owners found the pull-requests

created by Infragenie invasive and not the best way to showcase a new tool and did

not even try to understand the tool. Neverthless, Figure 6.19 reveals that about 60%

of the users intend to add the generated diagrams to their projects and even to future

projects, which shows a positive acceptance of the tool. So, we can conclude that

there is a willingness to use an application with the attributes of Infragenie.

Although all the questions had positive answers, we should not disregard the fact that many

users pointed out that the tool needs improvements. This was expected because Infragenie was

built as a minimum viable product to evaluate the hypothesis that auto-generated documentation

could help motivate its creation and usage, as stated in Section 4.2. Even though it was possible to

verify this hypothesis throughout the analysis. We were able to observe that there is a willingness

to use Infragenie to generate diagrams, both in old and new projects. The diagrams generated

produce valuable information about the project, increasing the project knowledge and fomenting

the usage of the application to keep the diagrams updated.

As a final note, we can say that future iterations of this work could reveal a higher adoption if

the editor and the flow of generating diagrams are improved.

Chapter 7

Conclusions and Future Work

This chapter summarizes what was discussed and found in this thesis and reflects on its contribu-

tions. In the end we, explore possible changes to the tool and study to propose future iterations of

this work.

7.1 Summary

This work started with a literature review (Chapter 3) conducted to answer three questions:

1. Q1: What approaches are there to generate a model of a software system from the contents

of its repository?

2. Q2: What approaches are there for automatically documenting the architecture of a soft-

ware system?

3. Q3: What tools are there to provide a visual representation of the architecture based on

orchestration artefacts?

This review overviews common problems and challenges of software architecture documenta-

tion. Analyses software and techniques for architecture recovery and evaluates available tools to

visualise infrastructures. As a result, we were able to identify problems in the analysed method-

ologies to propose then a tool that could overcome those weaknesses and led to the formulation of

a hypothesis (Chapter 4):

“Having architecture models living alongside the software can reduce the documen-

tation burden while bringing more feedback about the changes introduced. Creating

and using documentation can become a consistent practice of the development pro-

cess, indirectly helping and motivating architectural changes.”

75

76 Conclusions and Future Work

Manual documentation creation is often seen as a burden for the development teams and is

often disregarded, becoming outdated and obsolete. Better ways to deal with documentation exist

in the form of automated tools. However, the existing tools are not fitted for most projects and,

most of the time, are challenging to use.

This motivates us to propose a tool (Chapter 5), focused on the generation of architectural

diagrams, named Infragenie, that puts together a set of features that we found essential to increase

its adoption and lead to living documentation. Besides ease of use and compatibility with a large

set of projects, the most differentiator features are the possibility of adding manual changes and

annotations that are not lost in between analysis. The tool is also UML compliant, something that

is not easy to find in the available tools since they usually propose a proper notation.

Our tool was developed to target all the projects using docker-compose as the main infras-

tructure framework. Using a selection of open source projects defining their infrastructure with

docker-compose, we conducted a study (Chapter 6) following the Engineering research method-

ology to evaluate the proposed tool. We have analysed the users’ perception and adoption of the

tool from four different perspectives: 1) acceptance, 2) ease of use, 3) usefulness and 4) intention
to use. This analysis allowed us to answer the research questions formulated in Section 4.3.

RQ1 “To what extent does the adoption of the developed tool lead to better and
updated documentation?” - Having auto-generated diagrams with complete infor-

mation about the system increases its adoption, consequently driving its introduction

in the project’s documentation. The users also point out that in most of the projects,

the developed tool was easy to use to generate and maintain updated diagrams.

RQ2 “To what extent does the adoption of the developed tool improve the knowl-
edge about the system architecture?” - Most users agreed that the diagrams had

an overall complete and precise representation of the infrastructure, showing the most

relevant elements. Such a diagram was easy to consult and thus contributed to a better

knowledge of the architecture.

RQ3 “What is the value and willing to use the application developed?” - Despite

showing a good acceptance of the tool and its diagrams, the study also revealed that

tools that auto-generate documentation are expected to have the minimum human

intervention possible. The analysis showed some needed improvements to increase

the adoption of the proposed tool. Applying those improvements, we believe that the

willingness to use would significantly increase.

7.2 Main contributions

The main contributions of this thesis are:

• State-of-the-art review: We explored and evaluated techniques and tools for auto-generating

documentation artefacts, highlighting their strengths and weaknesses.

7.3 Future Work 77

• Approach - We proposed a set of features that can increase the adoption of tools to auto-

generate documentation, thus leading to better and updated documentation. We have also

proposed a methodology to develop a tool with those characteristics and how to evaluate it.

• Infrastructure recovery tool: Infragenie - The prototype developed, following the pro-

posed approach, to solve the problems of integrating tools to generate documentation in the

development practice.

• Engineering research - A study conducted with a diverse set of individuals, without any

human intervention, to avoid biasing the results and to evaluate the developed tool and its

utility. This study helped confirm that the right set of features, precision and low effort for

using would increase the willingness to adopt tools to generate documentation artefacts and

thus keep the documentation updated.

7.3 Future Work

To expand this work with the objective to find a tool that can be largely accepted and help on the

adoption of documentation practices, some aspects that can be reviewed and improved regarding

the tool and the empirical study are proposed next.

Tool improvements

• Increased compatibility - A tool that generates documentation artefacts in an automated

way is expected to run with minimal manual intervention while producing complete, precise

and consistent elements. In the concrete case of this work, the tool is expected to provide

the best possible visualization of the infrastructure. As stated throughout this document, the

infrastructure of a project can be defined by multiple artefacts included in the source code.

Furthermore, those artefacts can be associated with different frameworks or templates. The

developed tool was only looking at docker-compose artefacts, although we believe that hav-

ing a tool with higher compatibility would allow the generation of richer diagrams, showing

more details and reducing the need for manual changes. Leading to a more straightforward

adoption of the tool.

• Auto detect changes - The improvement section of the questionnaire used in the study

showed that the users agreed on the benefits of having a tool that can automatically under-

stand the changes and update the diagrams. Furthermore, this functionality would greatly

expand on the concept of having a tool that assists in the creation of updated documentation,

leading to projects with living documentation. Also, achieving this functionality does not

represent a considerable effort since the developed tool already exposes a public API, as de-

scribed in Section 5.5. So, detecting changes can be as easy as adding some more endpoints

to integrate with CI/CD tools like Jenkins, CircleCI or even GitHub automations, to name a

few. This functionality would allow a more thorough investigation of the benefits of having

auto-generated documentation artefacts that can evolve with the project. This addition could

78 Conclusions and Future Work

shed some light on the question: How willing are users to keep their documentation updated

if the process to generate it is just an initial configuration of the project?

• Improved editor - The editor of Infragenie was somehow limited, built as a proof of the

concepts leveraged to address the problems stated in Chapter 4. The editor was too tied with

the elements defined in a docker-compose specification. Also, the editor was built around

plantUML, and despite not being necessary experience with plantUML, some knowledge of

this text-based tool would facilitate its usage. A tool that can be used in various projects,

independent of the developers’ experience or technologies used, would allow a more diverse

study, potentially bringing more knowledge on the users’ expectations around documenta-

tion. Can a tool assist in creating documentation even if used by users without experience?

Could we improve the adoption of the tool to plan future changes and experiment with the

architecture?

• Visual editor - Following on the previous point, a visual editor could provide more freedom

to users to edit and expand the representation while also facilitating its usage. Most likely,

the editor’s acceptance would increase, although a visual editor imposes some challenges if

the UML standard continues to be a desired feature. In a free visual editor, it is not easy to

drive and ensure users follow the specification.

Empirical study

• Improved selection of projects - The selection of the projects to run the study was one

of the factors that influenced the results. Both quantitatively and qualitatively. For exam-

ple, the number of respondents could be higher if we excluded projects expecting specific

procedures that Infragenie was not following. Also, in very simple projects is not easy to

understand the benefits of a tool like Infragenie, which can negatively impact the assessment

of the tool’s value. In future replications of this study, we cannot rely only on the GitHub

filters but rather apply external filters.

• Increased duration - To further investigate the benefits of the proposed tool, the study

should occur across several development cycles. Allowing to obverse how the tool is keep-

ing track of the infrastructure changes. This observance would provide reinforced evidence

around the concept of living documentation. Also, a more extended period would increase

the users’ familiarity with the tool, leading to more informed answers and such, more fun-

damented conclusions.

• Different diffusion methodology - Creating contributions in the form of pull requests with-

out any prior contact with the project owners, and sharing a questionnaire inside that pull

request, was not received well by some users. For that reason, those users did not even try

the tool and completely disregarded the questionnaire. In that way, having those contribu-

tions in the collected data generates noise in the results, especially while analysing the tool’s

acceptance. To increase the quality of the data to be analysed, the next iteration of this study

7.3 Future Work 79

should find a different diffusion method, for example, using software development forums

to invite users to try the tool.

• Controlled experiment with human guidance - Our study was designed to target the most

diverse set of developers and let them experiment with the tool on their own without any

human intervention. It could be interesting to run a controlled experience with guidance

and proper onboarding of the tool. Users with more information would give more value to

the tool?

80 Conclusions and Future Work

Appendix A

File samples generated by Infragenie

This appendix shows some examples of the diagrams produced by Infragenie.

A.1 Infragenie diagrams examples

81

82 File samples generated by Infragenie

A.1 Infragenie diagrams examples 83

84 File samples generated by Infragenie

Appendix B

Experimental Guide

This appendix presents the survey used to conduct the study in Chapter 6 as well as some instruc-

tions about the replication package that can be used to replicate the study.

B.1 Replication package

The replication package that allows the replication of the study can be found in following reposi-

tory: https://github.com/ricardojaferreira/infragenie-replication-package.

The content of the repository has the following structure:

• /data_analysis: This folder contains jupyter notebooks to analyse the collected data. Namely,

participants_characterization.ipynb used to analyse demographics and background of the

respondents. pull_requests_analysis.ipnb to check the final state of the requests cerated

during the study. tool_analysis.ipnb used to analyse the data collected to evaluate the tool

• /collected_data: This folder contains the raw data collected in csv format (raw_results.csv)

and the list of pull requests created (pull_requests.csv), also in csv format.

• In the root of the project can be found a pdf version of the questionnaire (infragenie_survey.pdf)

and the presentation video used to onboard the tool (infragenie-onboarding.mov).

B.2 Questionaire

85

https://github.com/ricardojaferreira/infragenie-replication-package

86 Experimental Guide

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 1/9

Please see this short demo of how Infragenie works.

http://youtube.com/watch?v=XF5n-
kkLiAw

Profile

The questions in this section provide us context that may help us better
understand your answers in general. No personally identi�able
information is collected.

1.

Marcar apenas uma oval.

Primary/elementary school

Secondary school (e.g. American high school, German Realschule or Gymnasium,
etc.)

Some college/university study without earning a degree

Bachelor’s degree (B.A., B.S., B.Eng., etc.)

Master’s degree (M.A., M.S., M.Eng., MBA, etc.)

Doctoral degree (Ph.D., Ed.D., etc.)

Something else

Infragenie survey
Thank you for agreeing to answer this survey. All answers are anonymous and will be
used to help us evolve and make the tool better. The results will be published only in
aggregate form.

If you have questions, feel free to contact: infrastructuregenie@gmail.com.

*Obrigatório

Educational attainment *

B.2 Questionaire 87

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 2/9

2.

3.

Marcar apenas uma oval.

Less than 1 year

1 to 4 years

5 to 9 years

10 to 14 years

15 or more

4.

5.

Area of study (e.g. Computer Science, Civil engineering)

Professional Experience in Software development *

Current role *

Country *

88 Experimental Guide

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 3/9

6.

Marcar apenas uma oval por linha.

Infragenie ease of
use

Rate your level of agreement with the following
statements.

Rate your level of agreement with the following statements. *

Strongly
disagree

Disagree Neutral Agree
Strongly

agree

I have experience
with tools that allow
the creation of
diagrams from plain
text or code (e.g.
PlantUML,
Mermaid.JS,
others).

I am familiar with
the Uni�ed
Modeling Language
(UML).

I am familiar with
UML component
diagrams.

I am familiar with
UML deployment
diagrams.

I have experience
with tools that allow
the creation of
diagrams from plain
text or code (e.g.
PlantUML,
Mermaid.JS,
others).

I am familiar with
the Uni�ed
Modeling Language
(UML).

I am familiar with
UML component
diagrams.

I am familiar with
UML deployment
diagrams.

B.2 Questionaire 89

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 4/9

7.

Marcar apenas uma oval por linha.

Infragenie
usefulness

Rate your level of agreement with the following
statements.

I think that with Infragenie, it is easy to... *

Strongly
disagree

Disagree Neutral Agree
Strongly

agree

create architectural
diagrams.

keep architectural
diagrams updated.

keep architectural
diagrams consistent
with the source-
code.

add new
information (not
inferred from the
source-code) to the
diagrams.

change the
generated
architectural
diagrams.

verify how changes
may impact the
architecture (e.g.
adding new
services, changing
network ports, etc.).

create architectural
diagrams.

keep architectural
diagrams updated.

keep architectural
diagrams consistent
with the source-
code.

add new
information (not
inferred from the
source-code) to the
diagrams.

change the
generated
architectural
diagrams.

verify how changes
may impact the
architecture (e.g.
adding new
services, changing
network ports, etc.).

90 Experimental Guide

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 5/9

8.

Marcar apenas uma oval por linha.

9.

Marcar apenas uma oval por linha.

I think that Infragenie is useful to help ensure that architectural documentation
is...

*

Strongly
disagree

Disagree Neutral Agree
Strongly

agree

complete.

consistent.

precise.

easier to consult.

easier to
understand.

easier to maintain.

easier to update.

complete.

consistent.

precise.

easier to consult.

easier to
understand.

easier to maintain.

easier to update.

I think that Infragenie is useful to help to... *

Strongly
disagree

Disagree Neutral Agree
Strongly

Agree

plan future changes
on the architecture.

understand the
impact of changes
in the architecture.

be more con�dent
while introducing
architectural
changes.

implement
architectural
changes faster.

plan future changes
on the architecture.

understand the
impact of changes
in the architecture.

be more con�dent
while introducing
architectural
changes.

implement
architectural
changes faster.

B.2 Questionaire 91

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 6/9

10.

Marcar apenas uma oval por linha.

11.

12.

Marcar apenas uma oval por linha.

I think that the diagram provided by Infragenie shows *

Strongly
disagree

Disagree Neutral Agree
Strongly

agree

a complete view of
the architecture.

the most relevant
elements of the
architecture.

a complete view of
the architecture.

the most relevant
elements of the
architecture.

If you think that something is not being represented by infragenie, could you
please let us know what it is?

The edit capabilities of Infragenie allow to... *

Strongly
disagree

Disagree Neutral Agree
Strongly

Agree

increase the
diagram value.

make the diagram
more consistent.

representing details
that were not
automatically
captured.

increase the
diagram value.

make the diagram
more consistent.

representing details
that were not
automatically
captured.

92 Experimental Guide

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 7/9

13.

Intention to use infragenie

14.

Marcar apenas uma oval.

Yes

No

I am not sure.

15.

Marcar apenas uma oval.

Much worst

Worst

Neutral

Better

Much better

16.

Rate your level of agreement with the following statements.

About the edit capabilities of Infragenie, are they useful to increase the diagram
value or even to test out changes in the architecture? Let us know what do you
think about this feature and how we can improve it.

Did the documentation of your projects include an architectural diagram(s)
before using infragenie?

*

If yes, how do you compare it with the one generated by Infragenie?

Why?

B.2 Questionaire 93

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 8/9

17.

Marcar apenas uma oval por linha.

Improvements and
Comments

Rate your level of agreement with the following
statements.

18.

Marcar apenas uma oval por linha.

I am considering to ... *

Strongly
disagree

Disagree Neutral Agree
Strongly

Agree

add diagrams
generated by
Infragenie to my
projects.

use infragenie to
visualize and plan
changes in the
architecture.

use infragenie in
new projects.

add diagrams
generated by
Infragenie to my
projects.

use infragenie to
visualize and plan
changes in the
architecture.

use infragenie in
new projects.

Infragenie would be better if ... *

Strongly
disagree

Disagree Neutral Agree
Strongly

agree

more UML
elements were
available to use.

it wasn't restricted
to UML elements.

it automatically
detected
architectural
changes (keeping
the diagram always
updated without
manual
intervention).

more UML
elements were
available to use.

it wasn't restricted
to UML elements.

it automatically
detected
architectural
changes (keeping
the diagram always
updated without
manual
intervention).

94 Experimental Guide

19/09/2022, 19:10 Infragenie survey

https://docs.google.com/forms/d/1GWlqbMl8iquM--e4oHsBHe4_YdWDSE11Ow2M4wiQMhs/edit 9/9

19.

Este conteúdo não foi criado nem aprovado pela Google.

Leave us your comments. What did you think of the application, what
improvements would you suggest and what new features would you like to have?

 Formulários

Appendix C

Data crossing

This appendix aggregates all the graphs that represent relations between the data collected to

evaluate the tool and the user knowledge about UML and plantUML.

C.1 Knowledge vs Ease of use

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

re
at

e
di

ag
ra

m
s

0 0 4 10 9

0 1 2 2 6

0 0 0 2 0

0 0 0 0 0

0 0 0 0 0

Text-based tools familiarity vs ease to create diagrams

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

re
at

e
di

ag
ra

m
s

0 0 3 12 8

0 1 2 2 6

0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

UML knowledge vs ease to create diagrams

Figure C.1: Relation between user knowledge and ease to create diagrams.

C.2 Knowledge vs Usefullness

95

96 Data crossing

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 k

ee
p

di
ag

ra
m

s
up

da
te

d

0 0 2 4 4

0 0 1 8 8

0 0 3 2 3

0 1 0 0 0

0 0 0 0 0

Text-based tools familiarity vs ease to keep diagrams updated

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 k

ee
p

di
ag

ra
m

s
up

da
te

d

0 0 1 5 4

0 0 2 7 8

0 0 4 2 2

0 1 0 0 0

0 0 0 0 0

UML knowledge vs keep diagrams updated

Figure C.2: Relation between user knowledge and ease to keep diagrams updated.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 k

ee
p

di
ag

ra
m

s
co

ns
is

te
nt

0 0 0 4 4

0 0 3 8 7

0 0 2 1 3

0 1 1 1 1

0 0 0 0 0

Text-based tools familiarity vs ease to keep diagrams consistent

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 k

ee
p

di
ag

ra
m

s
co

ns
is

te
nt

0 0 0 4 4

0 0 3 8 7

0 0 3 1 2

0 1 1 1 1

0 0 0 0 0

UML knowledge vs keep diagrams consistent

Figure C.3: Relation between user knowledge and ease to keep diagrams consistent.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 a

dd
 n

ew
 in

fo
rm

at
io

n

0 0 1 6 6

0 0 3 6 7

0 0 2 1 1

0 1 0 0 1

0 0 0 1 0

Text-based tools familiarity vs ease to add new information

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 a

dd
 in

fo
rm

at
io

n

0 0 1 6 6

0 0 2 8 6

0 0 3 0 1

0 1 0 0 1

0 0 1 0 0

UML knowledge vs add information

Figure C.4: Relation between user knowledge and ease to add information.

C.2 Knowledge vs Usefullness 97

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

ha
ng

e
di

ag
ra

m
s

0 0 2 6 5

0 0 2 5 8

0 0 2 1 2

0 1 0 1 0

0 0 0 1 0

Text-based tools familiarity vs ease to change diagrams

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 c

ha
ng

e
di

ag
ra

m
s

0 0 1 6 6

0 0 2 7 6

0 0 2 1 2

0 1 1 0 0

0 0 1 0 0

UML knowledge vs ease to change diagrams

Figure C.5: Relation between user knowledge and ease to change diagrams.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 v

er
ify

 im
pa

ct
 o

f c
ha

ng
es

0 0 0 1 2

0 0 4 7 6

0 0 2 4 5

0 1 0 1 2

0 0 0 1 0

Text-based tools familiarity vs ease to verify impact of changes

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tools familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ea
se

 to
 v

er
ify

 im
pa

ct
 o

f c
ha

ng
es

0 0 0 1 2

0 0 4 7 6

0 0 2 4 5

0 1 0 1 2

0 0 0 1 0

Text-based tools familiarity vs ease to verify impact of changes

Figure C.6: Relation between user knowledge and ease to verify impact of changes.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 c

om
pl

et
e

do
cu

m
en

ta
tio

n

0 0 0 6 5

0 1 3 4 7

0 0 2 3 2

0 0 1 1 1

0 0 0 0 0

Text-based tool familiarity vs useful to have complete documentation

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 c

om
pl

et
e

do
cu

m
en

ta
tio

n

0 0 0 6 5

0 1 3 4 7

0 0 2 4 1

0 0 2 0 1

0 0 0 0 0

UML knowledge vs useful to have complete documentation

Figure C.7: Relation between user knowledge and usefullness to ensure complete documentation.

98 Data crossing

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 c

on
si

st
en

t d
oc

um
en

ta
tio

n

0 0 0 7 5

0 1 4 3 8

0 0 1 3 1

0 0 1 1 1

0 0 0 0 0

Text-based tool familiarity vs useful to have consistent documentation

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 c

on
si

st
en

t d
oc

um
en

ta
tio

n

0 0 0 7 5

0 1 3 5 7

0 0 2 2 1

0 0 2 0 1

0 0 0 0 0

UML knowledge vs useful to have consistent documentation

Figure C.8: Relation between user knowledge and usefullness to ensure consistent documentation.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiarity

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 p

re
ci

se
 d

oc
um

en
ta

tio
n

0 0 0 7 5

0 1 3 3 7

0 0 2 3 2

0 0 1 1 1

0 0 0 0 0

Text-based tool familiarity vs useful to have precise documentation

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 p

re
ci

se
 d

oc
um

en
ta

tio
n

0 0 0 7 5

0 1 3 4 6

0 0 2 3 2

0 0 2 0 1

0 0 0 0 0

UML knowledge vs useful to have precise documentation

Figure C.9: Relation between user knowledge and usefullness to ensure precise documentation.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 c
on

su
lt

0 0 1 5 4

0 0 3 7 10

0 1 1 1 1

0 0 1 1 0

0 0 0 0 0

Text-based tool familiarity vs useful to have documentation easier to consult

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 c
on

su
lt

0 0 1 4 5

0 0 3 8 9

0 1 1 2 0

0 0 2 0 0

0 0 0 0 0

UML knowledge vs useful to have documentation easier to consult

Figure C.10: Relation between user knowledge and usefullness to ensure documentation is easier
to consult.

C.2 Knowledge vs Usefullness 99

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 u
nd

er
st

an
d

0 0 0 5 4

0 1 3 6 8

0 0 2 2 3

0 0 1 1 0

0 0 0 0 0

Text-based tool familiarity vs useful to have documentation easier to understand

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 u
nd

er
st

an
d

0 0 0 5 4

0 1 3 6 8

0 0 2 3 2

0 0 2 0 0

0 0 0 0 0

UML knowledge vs useful to have documentation easier to understand

Figure C.11: Relation between user knowledge and usefullness to ensure documentation is easier
to understand.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 m
ai

nt
ai

n

0 0 0 1 2

0 0 2 6 9

0 1 3 6 4

0 0 1 1 0

0 0 0 0 0

Text-based tool familiarity vs useful to have documentation easier to maintain

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
ha

ve
 d

oc
um

en
ta

tio
n

ea
si

er
 to

 m
ai

nt
ai

n
0 0 0 1 2

0 0 2 6 9

0 1 3 7 3

0 0 2 0 0

0 0 0 0 0

UML knowledge vs useful to have documentation easier to maintain

Figure C.12: Relation between user knowledge and usefullness to ensure documentation is easier
to maintain.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
pl

an
 fu

tu
re

 c
ha

ng
es

0 0 1 0 0

0 0 1 10 11

0 0 3 2 4

0 1 1 1 0

0 0 0 1 0

Text-based tool familiarity vs useful to plan future changes

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
pl

an
 fu

tu
re

 c
ha

ng
es

0 0 1 0 0

0 0 1 9 12

0 0 2 5 2

0 1 2 0 0

0 0 1 0 0

UML knowledge vs useful to plan future changes

Figure C.13: Relation between user knowledge and usefullness to plan future changes.

100 Data crossing

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
un

de
rs

ta
nd

 im
pa

ct
 o

f c
ha

ng
es

0 0 2 0 1

0 0 0 6 9

0 0 3 6 5

0 1 1 1 0

0 0 0 1 0

Text-based tool familiarity vs useful understand impact of changes

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
un

de
rs

ta
nd

 im
pa

ct
 o

f c
ha

ng
es

0 0 1 1 1

0 0 0 5 10

0 0 3 8 3

0 1 2 0 0

0 0 1 0 0

UML knowledge vs useful understand impact of changes

Figure C.14: Relation between user knowledge and usefullness to understand impact of changes.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
be

 m
or

e
co

nf
id

en
t w

ith
 c

ha
ng

es

0 0 0 0 0

0 0 2 3 6

0 0 2 9 8

0 0 2 1 1

0 1 0 1 0

Text-based tool familiarity vs useful to be more confident with changes

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
be

 m
or

e
co

nf
id

en
t w

ith
 c

ha
ng

es

0 0 0 0 0

0 0 1 3 7

0 0 2 11 6

0 0 3 0 1

0 1 1 0 0

UML knowledge vs useful to be more confident with changes

Figure C.15: Relation between user knowledge and usefullness to introduce changes with confi-
dence.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
im

pl
em

en
t c

ha
ng

es
 fa

st
er

0 0 0 0 0

0 0 0 3 4

0 0 3 9 10

0 0 3 1 1

0 1 0 1 0

Text-based tool familiarity vs useful implement changes faster

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

U
se

fu
l t

o
im

pl
em

en
t c

ha
ng

es
 fa

st
er

0 0 0 0 0

0 0 0 2 5

0 0 3 11 8

0 0 3 1 1

0 1 1 0 0

UML knowledge vs useful implement changes faster

Figure C.16: Relation between user knowledge and usefullness to introduce changes faster.

C.2 Knowledge vs Usefullness 101

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

C
om

pl
et

e
vi

ew
 d

ia
gr

am

0 0 0 4 3

0 1 4 6 4

0 0 1 4 7

0 0 1 0 1

0 0 0 0 0

Text-based tool familiarity vs complete view diagram

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

C
om

pl
et

e
vi

ew
 d

ia
gr

am

0 0 0 5 2

0 1 3 6 5

0 0 4 2 6

0 0 0 1 1

0 0 0 0 0

UML knowledge vs complete view diagram

Figure C.17: Relation between user knowledge and showing a complete diagram.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

D
ia

gr
am

 w
ith

 m
os

t r
el

ev
an

t e
le

m
en

ts

0 0 0 4 3

0 1 4 6 4

0 0 1 4 7

0 0 1 0 1

0 0 0 0 0

Text-based tool familiarity vs diagram with most relevant elements

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

D
ia

gr
am

 w
ith

 m
os

t r
el

ev
an

t e
le

m
en

ts
0 0 0 5 2

0 1 3 6 5

0 0 4 2 6

0 0 0 1 1

0 0 0 0 0

UML knowledge vs diagram with most relevant elements

Figure C.18: Relation between user knowledge and showing a diagram with most relevant ele-
ments.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ed
ito

r i
nc

re
as

es
 d

ia
gr

am
 v

al
ue

0 0 2 9 14

0 0 2 2 1

0 1 1 2 0

0 0 1 1 0

0 0 0 0 0

Text-based tool familiarity vs editor increases diagram value

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ed
ito

r i
nc

re
as

es
 d

ia
gr

am
 v

al
ue

0 0 2 10 13

0 0 0 4 1

0 1 3 0 0

0 0 2 0 0

0 0 0 0 0

UML knowledge vs editor increases diagram value

Figure C.19: Relation between user knowledge and editor increases diagram value.

102 Data crossing

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ed
ito

r m
ak

in
g

th
e

di
ag

ra
m

 m
or

e
co

ns
is

te
nt

0 0 2 8 14

0 0 2 5 1

0 1 2 1 0

0 0 0 0 0

0 0 0 0 0

Text-based tool familiarity vs editor making the diagram more consistent

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Ed
ito

r m
ak

in
g

th
e

di
ag

ra
m

 m
or

e
co

ns
is

te
nt

0 0 2 9 13

0 0 2 5 1

0 1 3 0 0

0 0 0 0 0

0 0 0 0 0

UML knowledge vs editor making the diagram more consistent

Figure C.20: Relation between user knowledge and editor making the diagram more consistent.

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

Text-based tool familiairy

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

R
ep

re
se

nt
in

g
no

t c
ap

tu
re

d
de

ta
ils

 w
ith

 th
e

ed
ito

r

0 0 2 8 14

0 0 2 5 1

0 1 2 1 0

0 0 0 0 0

0 0 0 0 0

Text-based tool familiarity vs representing not captured details with the editor

Stro
ng

ly
dis

ag
ree

Disa
gre

e

Neu
tra

l

Agre
e

Stro
ng

ly
ag

ree

UML knowledge

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

R
ep

re
se

nt
in

g
no

t c
ap

tu
re

d
de

ta
ils

 w
ith

 th
e

ed
ito

r

0 0 2 9 13

0 0 2 5 1

0 1 3 0 0

0 0 0 0 0

0 0 0 0 0

UML knowledge vs representing not captured details with the editor

Figure C.21: Relation between user knowledge and editor ability to represent not captured ele-
ments.

References

[1] E. Aghajani, C. Nagy, O. Lucero, V. Márquez, M. Vásquez, L. Moreno, G. Bavota, and
M. Lanza. Software documentation issues unveiled. 41st International Conference on Soft-
ware Engineering (ICSE), 2019.

[2] Carlos Albuquerque, Kadu Barral, Filipe Correia, and Kyle Brown. Proactive monitoring
design patterns for cloud applications. In Proceedings of the 27th European Conference on
Pattern Languages of Programs, EuroPLoP ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[3] Periklis Andritsos and Vassilos Tzerpos. Information-theoretic software clustering. IEEE
Transactions on software engineering, 2005.

[4] Cyrille Artho and Armin Biere. Combined static amd dynamic analysis. Electronic Notes in
Theorectical Computer Science, 2005.

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison
Wesley, Boston USA, Third edition, 2002.

[6] Terese Besker, Antonio Martini, and Jan Bosh. Managing architectural technical debt: A uni-
fied model and systematic literature review. The Journal of Systems and Software, September
2018.

[7] Binx.io. The Cloud Survey 2019. Technical report, Binx.io, Netherlands, 2019.

[8] Kyle Brown, Bobby Woolf, Cees De Groot, Chris Hay, and Joseph Yoder. Patterns for
developers and architects building for the cloud, 2021.

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture: A System of Patterns, Volume 1, volume 1. John
wiley & sons, 2008.

[10] Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of software devel-
opment problem factors on software maintainability. The Journal of Systems and Software,
2009.

[11] Filipe Figueiredo Correia, Ademar Aguiar, Hugo Sereno Ferreira, and Nuno Flores. Patterns
for consistent software documentation. In Proceedings of the 16th Conference on Pattern
Languages of Programs, pages 1–7, 2009.

[12] Félix Cuadrado, Boni García, Juan C. Dueñas, and Hugo A. Parada. A case study on software
evolution towards service-oriented architecture. 22nd International Conference on Advanced
Information Networking and Applications, 2008.

103

104 REFERENCES

[13] Lei Ding and Nenad Medvidovic. Focus: A light-weight, incremental approach to software
architecture recovery and evolution. Proceedings Working IEEE/IFIP Conference on Soft-
ware Architecture, 2001.

[14] Stéphane Ducasse, Michele Lanza, and Sander Tichelar. Moose: an extensible language-
independent environment for reengineering object-oriented systems. 2nd International Sym-
posium on Constructing Software Engineering Tools, 2000.

[15] Neal Ford, Rebecca Parsons, and Patrick Kua. Building Evolutionary Architectures: Support
Constant Change. O’Reilly, First edition, 2017.

[16] Martin Fowler. Event sourcing. Available at https://martinfowler.com/eaaDev/
EventSourcing.html, December 2005.

[17] Rodrigo Fronseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-trace: A
pervasive network tracing framework. 4th Usenix Symposium on Networked Systems Design
& Implementation, 2007.

[18] Matthias Galster, Armin Eberlein, and Mahmood Moussavi. Early assessment of software
architecture qualities. International Conference on Research Challenges in Information Sci-
ence, RCIS, 2018.

[19] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design Patterns. De-
sign patterns: Elements of reusable object-oriented software. Addison-Wesley Professional,
1995.

[20] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative analysis of software
architecture recovery techniques. ASE 2013, 2013.

[21] Giona Granchelli, Mario Cardarelli, and Paolo Di Francesco. Microart: A software architec-
ture recovery tool for maintaining service-based systems. IEEE Internation Conference on
Software Architecture Workshops, 2017.

[22] Andrina Granic and Nikola Marangunic. Technology acceptance model in educational con-
text: A systematic literature review. British Journal of Educational Technology, February
2019.

[23] Md Hasan Ibrahim, Mohammed Sayagh, and Ahmed E. Hassan. A study of how docker
compose is used to compose multi-component systems. Empirical Software Engineering,
2021.

[24] Sungwon Kang, Seonah Lee, and Danhyung Lee. A framework for tool-based software
architecture reconstruction. International Journal of Software Engineering and Knowledge
Engineering, 2014.

[25] Kong. 2020 Digital Innovation Benchmark. Technical report, Kong, USA, 2020.

[26] Rensis Likert. A technique for the measurement of attitudes. Archives of Psycology, No. 140,
vol 22, pp 5-55, 1932.

[27] Daniel Link, Ramin Moazeni, Pooyan Behnamghader, and Barry Boehm. The value of soft-
ware architecture recovery for maintenance. ISEC’19: Proceedings of the 12th Innovations
on Software Engineering Conference, 2019.

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html

REFERENCES 105

[28] Thibaud Lutellier, Devin Chollak, and Joshua Garcia. Software architecture recovery tech-
niques using accurate dependencies. ACM 37th IEEE International Conference on Software
Engineering, 2015.

[29] Tiago Maia and Filipe Correia. Service mesh patterns. In Proceedings of the 27th European
Conference on Pattern Languages of Programs, EuroPLoP ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

[30] Onaiza Maqbool and Haroon A. Babri. Hierarchical clustering for software architecture
recovery. Transactions on software engineering, vol.30 N.11, 2007.

[31] Robert C Martin. Clean architecture: a craftsman’s guide to software structure and design.
Pearson, 2017.

[32] Cyrille Martraire. Living Documentation by design, with Domain-Driven Design. Addison-
Wesley Professional, First edition, 2019.

[33] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins. Model-
ing software architectures in the unified modeling language. ACM Transactions on Software
Engineering and Methodology Volume 11 Issue 1, 2002.

[34] Dirk Merkel et al. Docker: lightweight linux containers for consistent development and
deployment. Linux j, 239(2):2, 2014.

[35] Brian S. Mitchell and Spiros Mancoridis. On the automatic modularization of software sys-
tems using the bunch tool. Transactions on software engineering, 2006.

[36] Liam O’Brien and Christoph Stoermer. Architecture reconstruction case study. Architecture
Tradeoff Analysis Initiative, 2003.

[37] Liam O’Brien, Christoph Stoermer, and Chris Verhoef. Software architecture reconstruction:
Practice needs and current approaches. Technical Report CMU/SEI 2002 TR 024, 2002.

[38] Brian Pando and Jose Castillo. Plantumlgen: A tool for teaching model driven development.
7th Iberian Conference on Information Systems and Technologies (CISTI), June 2022.

[39] Bruno Piedade, João Pedro Dias, and Filipe F. Correia. An empirical study on visual pro-
gramming docker compose configurations. In Proceedings of the 23rd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, MODELS ’20, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[40] Bruno Piedade, João Pedro Dias, and Filipe F Correia. Visual notations in container or-
chestrations: an empirical study with docker compose. Software and Systems Modeling,
21(5):1983–2005, 2022.

[41] Reinhold Plösch and Sun-Jen Huang. The value of software documentation quality. 14th
International Conference on Quality Software, 2014.

[42] Paul Ralph, Nauman Bin Ali, Michael Felderer, et al. Empirical standards for software
engineering research. March 2021.

[43] David Reis and Filipe F Correia. Dockerlive: A live development environment for dock-
erfiles. In 2022 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 1–4. IEEE, 2022.

106 REFERENCES

[44] David Reis, Bruno Piedade, Filipe F Correia, João Pedro Dias, and Ademar Aguiar. De-
veloping docker and docker-compose specifications: A developers’ survey. IEEE Access,
2021.

[45] RightScale. 2019 State of the Cloud Report, 2019.

[46] Claudio Riva. Reverse architecting: an industrial experience report. Proceedings Seventh
Working Conference on Reverse Engineering, 2000.

[47] Banani Roy and T.C. Nicholas Graham. Methods for evaluating software architecture: A
survey. Technical Report No. 2008-545, April 2008.

[48] Julio Sandobalin, Emilio Insfran, and Silvia Abrahao. ARGON: A Tool for Modeling Cloud
Resources. Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 10797 LNCS(November):393–397,
2017.

[49] C.J. Satish and M. Anand. Software documentation management issues and practices: a
survey. Indian Journal of Science and Technology, 2016.

[50] Sandra Schröder, Mohamed Soliman, and Matthias Riebish. Architecture enforcement con-
cerns and activities - an expert study. The Journal of Systems and Software, August 2018.

[51] Kirill Shirinkin. Getting Started with Terraform. Packt Publishing Ltd, 2017.

[52] T. Sousa, H. S. Ferreira, and F. F. Correia. A survey on the adoption of patterns for en-
gineering software for the cloud. IEEE Transactions on Software Engineering, page 1–1,
2021.

[53] Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. Patterns for soft-
ware orchestration on the cloud. In Proceedings of the 22nd Conference on Pattern Lan-
guages of Programs, pages 1–12, 2015.

[54] Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: Messaging systems and logging. In Proceedings of the
22nd European Conference on Pattern Languages of Programs, pages 1–14, 2017.

[55] Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: Automated recovery and scheduler. In Proceedings of
the 23rd European Conference on Pattern Languages of Programs, pages 1–8, 2018.

[56] Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: External monitoring and failure injection. In Proceed-
ings of the 23rd European Conference on Pattern Languages of Programs, pages 1–8, 2018.

[57] SusanJamieson. Likertscales:how to(ab)usethem. Med. Educ, December 2004.

[58] Mary Sánchez-Gordón and Ricardo Colomo-Palacios. Characterizing devops culture: A
systematic literature review. Communications in Computer and Information Science book
series (CCIS,volume 918), 2018.

[59] Nick Tune. Self-documenting architecture. Medium blogs. Avail-
able at https://medium.com/nick-tune-tech-strategy-blog/
self-documenting-architecture-80c8c2429cb8, September 2020.

https://medium.com/nick-tune-tech-strategy-blog/self-documenting-architecture-80c8c2429cb8
https://medium.com/nick-tune-tech-strategy-blog/self-documenting-architecture-80c8c2429cb8

REFERENCES 107

[60] Vassilios Tzerpos and R.C. Holt. Acdc : An algorithm for comprehension-driven clustering.
Proceedings Seventh Working Conference on Reverse Engineering, 2000.

[61] Guilherme Vale, Filipe Figueiredo Correia, Eduardo Martins Guerra, Thatiane
de Oliveira Rosa, Jonas Fritzsch, and Justus Bogner. Designing microservice systems us-
ing patterns: An empirical study on quality trade-offs. In 2022 IEEE 19th International
Conference on Software Architecture (ICSA), pages 69–79. IEEE, 2022.

[62] Aline Vasconcelos and Cláudia Werner. Evaluating reuse and program understanding in
archmine architecture recovery approach. Information Sciences, 2010.

[63] Gerald M. Weinberg. The Psychology of Computer Programming. Dorset House, annual,
subsequent edition edition, 1998.

[64] Meng-Jia Wu, Kelly Zhao, and Francisca Fils-Aime. Response rates of online surveys in
published research: A meta-analysis. Computers in Human Behaviour Reports 7 100206,
2022.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives and contributions
	1.4 How to read this dissertation

	2 Background
	2.1 Software architectures
	2.2 Software architectural models
	2.3 DocOps: Applying agile and automation to documentation
	2.4 Living documentation

	3 State of the art
	3.1 Software Documentation Challenges
	3.2 Software Architecture Recovery
	3.2.1 Type of analysis
	3.2.2 Object of the analysis
	3.2.3 Level of automation
	3.2.4 Inputs and Outputs

	3.3 Tools for infrastructure visualization
	3.4 Discussion

	4 Problem statement
	4.1 Scope
	4.2 Thesis statement
	4.3 Research questions
	4.4 Methodology

	5 Infrastructure recovery tool: Infragenie
	5.1 Approach
	5.2 Desiderata
	5.3 Architecture
	5.4 Design decisions
	5.4.1 Creating different UML elements
	5.4.2 Building UML elements step by step
	5.4.3 Accepting manual changes and persisting them
	5.4.4 Updating the diagram and keeping manual changes
	5.4.5 Providing different representations of the diagram

	5.5 API definition
	5.6 User interface and experience (UI/UX)
	5.7 Limitations
	5.8 Deployment

	6 Empirical Study
	6.1 Study Goals
	6.2 Study design
	6.2.1 Sampling
	6.2.2 Instruments design
	6.2.3 Research variables
	6.2.4 Data analysis design
	6.2.5 Framing in the ACM SIGSOFT Empirical Standards

	6.3 Data Analysis
	6.3.1 Participants characterization
	6.3.2 Acceptance
	6.3.3 Ease of use
	6.3.4 Usefulness
	6.3.5 Intention to use
	6.3.6 Improvements and comments

	6.4 Threats to validity
	6.5 Discussion

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Main contributions
	7.3 Future Work

	A File samples generated by Infragenie
	A.1 Infragenie diagrams examples

	B Experimental Guide
	B.1 Replication package
	B.2 Questionaire

	C Data crossing
	C.1 Knowledge vs Ease of use
	C.2 Knowledge vs Usefullness

	References

