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trabalho de investigação e contém contributos que não foram utilizados previamente

noutros trabalhos apresentados a esta ou outra instituição.

Mais declaro que todas as referências a outros autores respeitam escrupulosamente

as regras da atribuição, encontrando-se devidamente citadas no corpo do texto e identifi-
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Optical Extreme Learning Machines: a new trend in optical computing

by Duarte SILVA

As we begin to drift away from the Von Neuman computing paradigm, new disrup-

tive technologies are needed to accomodate the ever-increasing hunger for greater com-

puting capacity. Such need for innovation leaves an open playground for the ressurgence

of analog computing. Optics, particularly, has seen an opportunity for the rejuvenation of

the race for the long-sought optical computer.

An Extreme Learning Machine (ELM) is a single layer feed-forward neural network,

which consists of a non-linear projection of an input to a high dimensional output space,

where the training then takes place. Its simplicity makes it highly attractive for hardware

implementations. Our goal is to study and implement an ELM within the optical domain.

We start by developing a theoretical framework based on the transmission matrix for-

malism that allows us to model the information flow of our ELM. In particular, we aim to

examine the dimensionality of the output space and discuss its learning capabilities, with

respect to the input fields. We then perform numerical simulations which validate the

theoretical model, and benchmark the machine on standard machine learning (ML) tasks.

For its physical implementation, we artificially encode information on an input electric

field’s phase and amplitude profiles, in order to study our model. We have given experi-

mental proof that validate the theoretical framework, and we’ve benchmarked the system

as in the simulations, having achieved consistent results throughout the experiments. We

also discuss real-world applications of our machine and alternative platforms.

Finally, we have performed a first proof-of-principle experiment towards an analog

optoelectronic computer, based on the ELM architecture. We discuss current challenges

and propose a future experiment to overcome them.
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Extreme Learning Machines óticas: uma nova tendência em computação ótica

por Duarte SILVA

À medida que nos afastamos do paradigma de computação de Von Neuman, surge a

necessidade de novas tecnologias capazes de acomodar a nossa crescente sede por uma

maior capacidade de computação. Tal demanda por inovação abre portas para a res-

surgência de computação analógica. Ótica em particular, viu uma oportunidade para a

rejuvenescência da corrida para o tão aguardado computador ótico.

Uma máquina de Extreme Learning Machine (ELM) é uma rede neuronal feed-forward

com apenas uma camada interna, que consiste numa projeção não linear de uma entrada

para um espaço de saı́da de elevada dimensionalidade, onde o treino acontece. A sua

simplicidade torna-a altamente atrativa para aplicações em hardware. O nosso objetivo é

estudar e implementar uma ELM no domı́nio ótico.

Começamos por desenvolver um modelo teórico baseado no formalismo da matriz de

transmissão, que nos permite modelar o fluxo de informação da nossa implementação da

ELM. Em particular, pretendemos estudar a dimensionalidade do espaço de saı́da e discu-

tir as suas capacidades de aprendizagem. Realizamos simulações numéricas que validam

o modelo teórico, e avaliamos a sua performance em tarefas tradicionais de machine learning

(ML). Para a sua implementação fı́sica, codificamos artificialmente informação nos perfis

de fase e intensidade do campo elétrico de entrada, de forma a estudar o nosso modelo.

Com isto, recolhemos provas experimentais que validam o modelo teórico, e avaliamos

a performance do sistema tal como nas simulações, tendo obtido resultados consistentes.

Discutimos ainda aplicações e plataformas alternativas.

Finalmente, desenvolvemos uma experiência como prova de princı́pio para um com-

putador optoeletrónico analógico, baseado na arquitetura de uma ELM. Discutimos os

desafios atuais e propomos uma experiência futura que os permite ultrapassar.
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Chapter 1

Introduction

One of the most impressive characteristics of modern society is the ever increasing rate

by which it evolves. Such advance can be largely attributed to our ability and ambition

to process, store and transmit ever-increasing amounts of data. This has created a fertile

environment for every field of science and technology to grow, stimulating unforeseen

progress. Despite this, we are now at a point in history where our needs have largely sur-

passed our computing abilities. Indeed, the amount of data generated globally is (and has

been) increasing at an exponential pace. This is largely motivated by the easiness of col-

lecting such data volumes allied with the high efficiency upon transmission and storage.

Within this context, it was created a race for the next-generation computing platform, al-

lowing new technologies to emerge, namely, new computing architectures, new materials

and devices and even new computing paradigms altogether.

At the same time, machine learning (ML), which is the field that specializes in find-

ing actionable information hidden within some data, has seen an outstanding progress

over the years, and can now be found in numerous aspects of our lives. However, its

success and efficacy has been linked to the capability of processing large amounts of in-

formation, which has been unable to keep up with current demands. Nonetheless, the

specificity of the calculations required by ML algorithms has rekindled the interest in a

once-abandoned computing platform: analog computing.

This platform is based on the principle of ”letting nature do the computations for us”.

In short, a physical system is set-up such that the equations that govern its behaviour

are similar to the problem we want to solve. Under certain conditions, these systems

can offer staggering energy efficiency and speed, but historically they were largely aban-

doned in mid 20th century, mostly due to high development and maintenance costs, and

1
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calculation inaccuracies. Nowadays, however, due to our technological progress, costs

associated with such systems can be greatly reduced, and certain applications, particu-

larly ML algorithms, are able to withstand a higher degree of inaccuracy in calculations.

For these reasons, analog systems have become relevant once more. While there are var-

ious suitable physical platforms that can be used, optics stands as a natural candidate as

opposed to conventional electronics in terms of energy efficiency, speed and parallelism.

In this thesis, we will begin by looking at the history of the general purpose computer

to understand the computational plateau that we have reached and why we need novel

computing paradigms. We will draw special focus towards ML and how it relates to

specialized hardware. Our goal is to study and implement a particular ML architecture

analogically, with optics as its backbone. Ultimately, we wish to extend our system to a

purely optical domain.

1.1 An opportunity for specialized hardware: a series of fortu-

nate events

The first programmable general purpose computer was completed in 1945, the ENIAC

[1], and it was a massive engineering endeavour: it had over 17 000 vacuum tubes and

consumed over 150 kilowatts of power in operations*. However, reprogramming this de-

vice meant to physically change it by hand, retaining no memory of past programs, being

a rather slow and inefficient process. In that same year, John Von Neumann introduced

an innovative computer architecture [2] which allowed an efficient operation of a general-

purpose computer. Two years later, in 1947, John Bardeen, Walter Brattain, and William

Shockley managed to make the first working transistor [3], and two years after that, the

first patent was filed for a device that resembled that of an integrated circuit [4]. With

these inventions, the world now had not only a good computer architecture to rely on,

but also a compact, energy efficient and scalable technological platform, which allowed

the field of modern electronics to be established and grow. So much so that in 1965, Gor-

don Moore predicted that the number of components in an integrated chip would double

every two years [5], which served as a guide for long term planning for research centres

and companies. Finally, 9 years after that, in 1974, Robert Dennard, established what is

known as the Dennard scaling law [6]. To put it simply, this law states that for a given

*In comparison, today’s laptops consume only dozens of watts, with a hardware reliability within the
yearly range.
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area of silicon, if we make the transistors smaller, but put more of them in the same area,

the power we need to use for operation remains constant, thus being a major motiva-

tion for component miniaturization. With all of these innovations, it was created a fertile

environment for modern electronics.

While this revolution was taking place, other computing technologies tried to keep

up, namely analog and optical computing. Despite offering fundamental advantages in

terms of speed, capacity and energy efficiency, they were unable to follow suit. The rea-

son being that their electronics counterpart were providing computing capabilities that

were growing at an exponential rate. Fast forward a few decades, it was found that the

Dennard scaling law overlooked the leakage current and threshold voltage of the devices,

which created a power wall that establishes a fundamental limit on the energy required

to operate them. As we’ve gotten to build electronic components at the nanometer scale

[7, 8], we have hit this power wall, and further miniaturisation no longer translates in a

performance increase. For this reason, at around 2004 [9], the industry started looking

into multi-core processing rather than single core, as can be seen in figure 1.1. Alas, the

general purpose computing economic cycle has slowed down, and has led to researchers

and industry leaders to discuss possible paths towards the future of computing [10, 11].

After a long quiescence, an opportunity for optical and analog platforms is among us.
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Along with these alternate technologies, another field of research saw a period of dis-

interest and reduced funding amidst the electronics implosion: artificial intelligence. In

1958, the world witnessed what is recognized as the ”first ever neural network”: the

percetron, developed by Frank Rosenblat [13]. However, as the field grew, its algorithms

required computing resources that simply were not available, and it was not until the last

couple of decades that this field has truly flourished [14–17]. The year 2012 was particu-

larly interesting for the field of Deep Learning*, as a team of researchers introduced the

neural network called AlexNet [18] and decided to participate in an image classification

contest called ImageNet [19]. This team achieved record-breaking performance, and what

set them appart was the size and depth of the network, which had 8 layers and a total

of 500 000 thousand neurons, which leads to millions of parameters to optimise. To do

it, they pioneered the use of GPU’s for artificial intelligence, which made heavy use of

parallel computations. This feat revealed two things: i) the success of a neural network

is intimately linked to its scale, and ii) the use of specialized hardware for artificial intel-

ligence can be very rewarding. In the years that followed, there was a large appetite in

the industry for specialised hardware, particularly for Deep Learning: Google with it’s

Tensor Processing Unit (TPU) [20], Nervana’s AI architecture [21] and Meta’s Big Sur [22].

Thus, if specialised hardware allowed for Deep Learning to rise, now it is Deep Learning

driving the innovation within specialised hardware. From an economic and technologi-

cal point of view, we are at a golden age to explore new models of computation for ML

applications.

1.2 Machine Learning and Extreme Learning Machines

Machine Learning is the field that specializes in finding concrete information within un-

structured data. With today’s technology, it is very easy to collect, store and transmit

data. In fact, it is estimated that by 2025 the volume of data created, stored and trans-

mitted may surpass the 180 zettabytes [23]. The challenge is to process and infer on this

data, which is where ML algorithms truly shine. While these algorithms can be quite flex-

ible, the types of things they can actually do can be described in very broad terms. We

can classify information (for example, to know if an image contains a dog or not), we can

make predictions based on inputs and find trends (for example, to predict the weather

based on a set of meteorological data like yesterday’s temperature, humidity, wind, etc.),

*a sub-field of artificial intelligence, to be explored later.
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we can find where the effective information of some data is (for example, not all the pixels

in an image may contain relevant information), among others. These are some examples

of what they can do, although there are many more applications [24]. Within the avail-

able algorithms, artificial neural networks (ANNs) have been proven to achieve remarkable

performance [14–17]. These algorithms are inspired in the human brain, and constitute a

network of artificial neurons.

Algorithm
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FIGURE 1.2: Illustration of Machine Learning algorithms. In a) you can find an example
of a classification or clustering problem, a typical ML problem, while in b) is a depiction
of an artificial neural network. In c) is outlined how the different terms within artificial

intelligence relate between themselves. Image taken from [25]

As in the brain, each neuron receives and transmits information to other neurons. In

ANNs, they are arranged in layers, and the field of Deep Learning is founded on ANNs

with a great number of layers with each having a large number of neurons. As each neu-

ron has to be finely tuned, the optimisation problem to be solved can quickly achieve a

high number of dimensions, making it hard to solve. Luckily, we have at our disposal an

efficient algorithm to train these networks called backpropagation [26]. Despite its effective-

ness, the amount of data needed to train some networks can be quite overwhelming, for

example, DeepMinds’s AlphaGo [14], the first ever AI to overcome human performance,

used 38 million positions to train the algorithm, and more recently DALL-E 2 [17] relied

on a dataset of 250 million images. Using the backpropagation algorithm with such vol-

umes of data can consume a great amount of time and energy. For this reason, there has

been an effort in bypassing this algorithm to allow for a more efficient training. A recent
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approach lies within Extreme Learning Machines (ELMs), developed a decade ago by

Huang et al. [27–30]. Simply put, it is a neural network with a single hidden layer, called

a reservoir, whose neurons are not going to be optimised. The optimisation takes place

only at the output layer, which can be done via a linear regression, a very cheap and fast

training algorithm. Despite its simplicity, it can be shown that it can achieve remarkable

performance [28]. Furthermore, this same simplicity makes it highly attractive for hard-

ware implementations. For this reason, we are interested in studying and implementing

an ELM within the optical domain.

FIGURE 1.3: Illustration of an ELM architecture.

1.3 Optical neural networks

Due to the bosonic nature of photons, they do not mutually interact, and allying this

with the large bandwidth at our disposal, optical information processing can be massively

parallellizable and energy efficient. In addition, optical devices have much faster response

times in comparison with electronics, thus making such processing very fast. For these

reasons, realizing ANNs in optical platforms has gained much attention, particularly deep

networks.

The types of networks usually employed with optics are Hopfield Neural Networks

(HNNs) [32, 33], a type of NN where all the neurons are linked with each other, and

each neuron is both an input and output; Multilayered Perceptrons (MNNs) [26], where

informations flows only from left to right in multiple layers; Reservoir Computing (RC)
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FIGURE 1.4: Illustration of the relationship between ANNs and ONNs. Recreated from
[31].

[34, 35], which, similarly to ELMs, consists of a fixed and random reservoir of hidden neu-

rons, the only difference being that it allows temporal dynamics and can retain memory

of past inputs; and finally, ELMs, which we have already covered. In order to imple-

ment these machines, we first need to deconstruct the mathematical abstractions and be

able to implement each operation individually, as per figure 1.4. Out of the five math-

ematical operations mentioned, three stand-out: i) matrix multiplication, ii) non-linear

function implementation and iii) training algorithm. These challenges have been thor-

oughly studied over the last decades. For example, the matrix multiplication can be im-

plemented by making use of a number of physical mechanisms, such as light transmission

[36, 37], diffraction [38–40], interference [41] and even scattering [42]. These works focus

on guaranteeing reliable connections between the neurons. As for the non-linear acti-

vation functions, the common approaches have been to either use optical non-linearities

[43, 44], which is particularly attractive due to their ultrafast operation, or we resort to

optoelectronic approaches [45] through light intensity measurements. Finally, the back-

propagation algorithm still remains as the preferred training method [40, 46], as it is valid

as long as we have a nice mathematical model for information propagation along our

physical system.

Despite these advancements, real implementations of ONNs based on precise neuron

connections (HNN and MNN) are quite difficult, often limited by materials and devices

imperfections. Furthermore, they still rely on an intensive training algorithm, which can

be ineffective if the neurons connections are not properly done. For these reasons, optical

RC and ELMs have gained much attention.

The field of optical ELMs is still in its infancy, and the available literature is still quite

limited. However, one of the earliest implementations can be traced back to Saade et al.
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FIGURE 1.5: Common ANNs implemented within the optical domain. a) the Hopfield
NN, b) a Multilayered Perceptron NN (MNN), c) a Reservoir Computing (RC) architec-

ture and d) an Extreme Learning Machine (ELM) architecture.

[47], where they made use of an optical complex media as a reservoir, followed by inten-

sity measurements. Years later, some works have also been done exploring such machines

with a Kerr non-linearity as a reservoir [48, 49]. As for the platform used, it has been

demonstrated to perform well in free-space [47, 50, 51], fiber optics [52] and even in inte-

grated optical chips [53]. Nonetheless, the success of these approaches have been largely

empirical, thereby lacking a fundamental description of the inner workings of these ma-

chines. To that end, we will take inspiration in the work of Saade et al. [47], and perform

a thorough study on the learning abilities of a particular optical ELM implementation.

1.4 Outline of this thesis

The goal of this thesis is to study and implement an optical set-up of a particular version

of an extreme learning machine, towards the goal of building a fully analog optoelectronic

computer. This thesis is divided as follows: in the current chapter we have looked at the

historical events that reveal the technological relevance of our work; briefly introduced

key ML aspects and reviewed the current state of the art on ONNs, with particular em-

phasis on optical ELMs. The outputs achieved over the course of this thesis are also given

at the end of this chapter.

In chapter 2, we introduce the reader to the machine learning landscape, and follow to

the mathematical foundations of ELMs. After, we focus on optical ELMs and discuss the
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current understanding within the literature of the learning capabilities of ELMs. Then,

we develop a mathematical framework based on the transmission matrix formalism to

model the information flow in an optical set-up based on optical complex media. This

model encompasses phase, amplitude and phase and their combined information encod-

ing, and permits us to directly infer on the output space dimensionality of the ELM input

projection.

In chapter 3, we present a set of numerical simulations that have allowed us to val-

idate our theoretical model in the different encoding regimes. We have also used these

simulations to benchmark the ELM, and analysed its performance with the presence of a

strong physical non-linearity.

In chapter 4, we outline the different experimental methods and equipments used

throughout the various experiments. Particularly, we introduce the spatial light modula-

tor we’ve used, a digital micromirror device, and give some experimental tips and tricks

to help in a set-up which may come in handy for future works. We then introduce our

phase and amplitude wavefront modulation techniques. Finally, we describe the detector

array, and outline the main software used.

In chapter 5, we present our experimental results of an optical extreme learning ma-

chine as modeled in chapter 2. We discuss the validity of our theoretical framework upon

different scenarios. Simultaneously, we also benchmark the system in standard machine

learning tasks, having achieved remarkable performance in some cases. We also discuss

the implementation of our technology in real-world applications, and make a quick tech-

nological assessment for such implementations.

In chapter 6, we propose to extend the results from chapter 5 further into the ana-

log domain, and allow for calculations previously done in the digital domain, to now be

performed analogically. We present our experimental results and outline current chal-

lenges to overcome. Finally, we propose a future experiment which should surpass such

difficulties and provide a higher performance, while assessing compatibility with other

hardware platforms for a potential commercial deployment.

In chapter 7 we present our conclusions, and future work perspectives.

Finally, along the development of this thesis, there were opportunities to explore other

topics that, despite not being directly related to this thesis’ main research, have con-

tributed to our working group research directions, and also constitute an important step
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towards our work. The work developed within them is included here for completeness.

Such topics include:

1. A real-time phase retrieval software based on off-axis digital holography technique

(see Appendix C);

2. A study of liquid crystal on silicon (LCoS) spatial light modulators and calibration

procedures (see Appendix B);

3. A study on the theory of optical complex media, as well as a study on the theory of

the transmission matrix formalism and experimental procedures measuring it (see

Appendix D and Appendix E);

4. A study on wavefront optimisation algorithms applied to focusing through optical

complex media (see Appendix F).

1.5 Thesis outputs

In the development of this thesis, the author has contributed with 1 conference paper and

4 oral presentations as first author, one of which has been distinguished for Best student

oral presentation at an international conference. As co-author, it has resulted in 1 scientific

paper (in submission), 1 conference paper, 2 oral presentations and 1 poster presentation.

As first author:

Articles and conference proceedings

1. ”Unravelling an optical extreme learning machine” - Duarte Silva, Nuno A. Silva, Tiago

D. Ferreira, Carla C. Rosa, Ariel Guerreiro. Preceedings of EOSAM - European Op-

tical Society Annual Meeting. [54] (2022)

Oral presentations

1. ”Unravelling an optical extreme learning machine” - Duarte Silva, Nuno A. Silva, Tiago

D. Ferreira, Carla C. Rosa, Ariel Guerreiro. EOSAM - European Optical Society

Annual Meeting (2022). Distinguished for Best Student Oral Presentation.
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2. “Taming light for novel computing machines” - Duarte Silva, Nuno A. Silva, Tiago D.

Ferreira, Carla C. Rosa, Ariel Guerreiro. FÍSICA 2022 - 23ª Conferência Nacional de

Fı́sica e 32º Encontro Ibérico para o Ensino da Fı́sica. (2022)

3. “Shedding light on the inner workings of an optical extreme learning machine” - Duarte

Silva, Nuno A. Silva, Tiago D. Ferreira, Carla C. Rosa, Ariel Guerreiro. IMOS2022 –

Iberian Meeting of Optics Students [55]. (2022)

4. “Harnessing speckle patterns for an optical extreme learning machine” - Duarte Silva,

Nuno A. Silva, Tiago D. Ferreira, Carla C. Rosa, Ariel Guerreiro. IJUP2022 – 15th

Young Researcher Meeting of University of Porto. (2022)

As co-author:

Articles and conference proceedings

1. ”Towards the experimental observation of turbulent regimes and the associated energy cas-

cades with paraxial fluids of light” - Tiago D. Ferreira, Vicente Rocha, Duarte Silva,

Ariel Guerreiro, Nuno A. Silva. Article submitted to the New Journal of Physics.

2. “Reservoir computing with nonlinear optical media” - Tiago D. Ferreira, Nuno A. Silva,

Duarte Silva, Carla C. Rosa, and Ariel Guerreiro. Proceedings of the V International

Conference on Applications of Optics and Photonics (2022). To be published.

Oral presentations

1. “Using fluids of light in photorefractive media to create turbulent states” - Tiago D. Fer-

reira, Nuno A. Silva, Duarte Silva, Vicente Rocha, Carla C. Rosa, and Ariel Guer-

reiro. FÍSICA 2022 – 23ª Conferência Nacional de Fı́sica e 32º Encontro Ibérico para

o Ensino da Fı́sica. (2022)

2. “Experimental turbulent states with paraxial fluids of light in photorefractive media” -

Tiago D. Ferreira, Nuno A. Silva, Duarte Silva, Vicente Rocha, Carla C. Rosa, and

Ariel Guerreiro. V International Conference on Applications of Optics and Photon-

ics. (2022)
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Poster presentations

1. “Reservoir computing with nonlinear optical media” - Tiago D. Ferreira, Nuno A. Silva,

Duarte Silva, Carla C. Rosa, and Ariel Guerreiro. V International Conference on

Applications of Optics and Photonics. (2022)



Chapter 2

Optical Extreme Learning Machines

As mentioned, the success of neural networks currently lies in its scale, be it in width or

depth, but large scale networks are accompanied by an overwhelming number of param-

eters, thus the training of such network not only carries a large energy cost but can also

be time-consuming, which can be counterproductive. In recent years there has been a ris-

ing interest in finding ways to tackle this problem and one solution lies in removing the

training of the inner layers altogether. Such techniques are within the domain of reservoir

computing and extreme learning machines. Both approaches consist of a network of hid-

den neurons with random fixed weights and biases, thus generating numerous possible

complex behaviours in response to a certain input. The output data is then read by a sin-

gle output layer that is optimised (i.e. trained) to solve a particular computational task.

By doing so, the energetic cost and time spent during training are largely reduced, with-

out compromising computing capabilities since such networks have been demonstrated

to achieve comparable performances to standard AI methods [34].

The difference between reservoir computing and extreme learning machines is simple:

the former is inspired in recurrent neural networks where information is allowed to flow

backwards between the nodes, thus allowing to retain some memory of past inputs, while

the latter consists on projecting an input into an output space of high-dimensionality.

Contrary to reservoir computing, ELMs don’t have any recurrence between neurons nor

dynamical memory. Both are particularly attractive for hardware implementations due to

the richness of non-linear dynamics and high number of degrees of freedom present in

physical systems. At the same time, optics stands as a particularly attractive choice for

such machines and there has been experimental realisations across several platforms, be

13



14 OPTICAL EXTREME LEARNING MACHINES: A NEW TREND IN OPTICAL COMPUTING

it at chip scale [53], simple free space propagation [50] or through speckle patterns either

in free space or multi-mode fibers [47, 51, 52].

In this chapter we aim to introduce the reader to the world of machine learning by

giving a birds-eye view of the field. Then, we move on to the mathematical aspects of an

extreme learning machine, as outlined by Huang et al. [29] and review the state of the art

regarding optical implementations of this framework. Finally, we propose a theoretical

model that will shed some light on the mathematical intricacies and learning capabilities

of a particular optical implementation.

2.1 Machine learning landscape

Machine learning (ML) can be defined as [56]

[The] field of study that gives computers the ability to learn without being explicitly

programmed.

ARTHUR SAMUEL, 1959

The missing definition here is what we mean by ”learning”. Though it can be open

to debate, we will take it to mean the ability to make predictions on a set of data, having

previously been given a part of it. Indeed, that is what we as humans do: as children, we

have been able to identify what a dog is, purely by having seen many and being told they

were dogs, and when we saw a new living creature, we were able to draw conclusions on

whether it was a dog or not, or even if it merely resembled one or not. Nonetheless, this

is just an illustrative example, and it doesn’t say much about why should we use ML in

the first place. Géron [24] has beautifully summarized the highpoints of ML:

• In problems for which existing solutions require a lot of fine-tuning or long lists

of rules, a Machine Learning algorithm can often simplify code and perform better

than the traditional approach.

• In complex problems for which using a traditional approach yields no good solu-

tion, the best Machine Learning techniques can perhaps find a solution.

• A Machine Learning system can adapt to new data, making it useful in fluctuating

environments.
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• Machine learning algorithms can get insights about complex problems and large

amounts of data that would otherwise be overlooked.

Most applications that we see nowadays of this field often relate to one or more of the

previous points. Examples include the detection of tumours in brain, detecting credit

card fraud, recommending a product that a client may be interested in, based on past

purchases, and many others.

While there are many different types of machine learning algorithms, they can be clas-

sified according to three broad criteria:

• If they are trained with or without human supervision (supervised, unsupervised,

semisupervised, and Reinforcement Learning);

• If they can learn incrementally as new data comes in (online versus batch learning);

• If they work by simply comparing new data points to known data points, or by

detecting patterns in the training data and building a predictive model (instance-

based versus model-based learning).

Any algorithm may fulfil one or many of these criteria.

Another aspect to consider is what kind of things can an ML algorithm do. This is

very general point, and a thorough answer is far too lengthy for this thesis, but we will

give a general overview of its capabilities. Nonetheless, we invite the reader to read on

Ref.[24] for a more careful review. As mentioned, a major characteristic that dictates the

purpose of an ML algorithm is its human supervision. In supervised learning you feed the

algorithm with a training set that includes inputs with respective labels. The goal with

this is to train an algorithm to recognize an input and automatically infer on its label.

For this learning method there are typically two intimately linked tasks: regression and

classification. They largely differ on their output: in regression, we aim to predict a value

given an input feature, whereas in classification we want to infer on the class an input

belongs to. For example, we may want to classify if a new email is spam or not (classi-

fication), or may we want to know the next day’s maximum temperature given a set of

meteorological input values (regression). In unsupervised learning, however, the training

data has no labels. The algorithms used often want to find hidden patterns in the data

that will enable us to better analyse it. Take clustering as an example: in such algorithm

we want to group bits of data together as if they belong to the same class. Other than that
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you can also have anomaly detection and novelty detection, visualization and dimen-

sionality reduction and association rule learning*. Though we have looked at supervised

and unsupervised learning, there are other regimes worth looking at, including semisu-

pervised learning, reinforcement learning and even batch and online learning. These are

mentioned here for completion, and are only cited without further explanation. In figure

2.1 we provide a list of the most relevant ML algorithms for supervised and unsupervised

learning.

FIGURE 2.1: List of most of the most important supervised and unsupervised machine
learning algorithms. List generated based on Ref.[24].

As for the training, ML problems are inherently optimization problems. Simply put,

we usually have some model with a set of parameters, θ, that will generate an output

to an input xi, f (θ, xi), and our goal is minimise or maximise a certain function (usually

called cost function), g. In the case of supervised learning, g is defined in relation to the

data labels. A popular example is the mean squared error (MSE) defined as

MSE(θ) =
1
m

m

∑
i=1

( f (θ, xi)− yi)
2 (2.1)

for the input xi with label yi. Their solutions can be found in two ways: either the problem

is so nicely put that we have analytical solutions, whose prime example is the Linear Re-

gression, or we resort to iterative algorithms with hopes to achieve a global solution, with

*These algorithms are well illustrated in Ref.[24], but we won’t be diving deeper in them.



2. OPTICAL EXTREME LEARNING MACHINES 17

Gradient Descent and its variants being the most common choice in supervised learn-

ing tasks. Simply put, the Gradient Descent evaluates the derivative of the cost function

locally and leads the algorithm through the path that has the biggest change towards a

minimum.

FIGURE 2.2: Illustration of the Gradient Descent algorithm on a 2D cost function. The
arrows path illustrates the parameters of the model over the various iterations. Notice
how the algorithm follows the steepest curve possible towards the minimum. Plot taken

from Ref.[57].

Despite the wide plethora of ML algorithms available, there is one that has flourished

far more than any other: Artificial Neural Networks (ANNs). Like many other technolo-

gies, ANNs take inspiration in nature, particularly in the brain’s network of biological

neurons. Referring to figure 2.3a), biological neurons produce short electrical impulses

called action potentials, which travel along the axons to the telodendria, whose tips hold

miniscule structures called synaptic terminals (or synapses), which are connected to the

other neurons dendrites. Upon this potential, the synapses release chemical signals called

neurotransmitters. When the next neuron receives enough of these neurotransmitters, it

fires its own electrical signal, and the process continues along the neural network*. In

essence, a single biological neuron is capable of collecting information from many other

neurons (through the dendrites) and decide for itself if it sends a signal forward to the

network or not. This is the inspiration to an artificial neuron. As per figure 2.3b), an artifi-

cial neuron takes in a vector of inputs x = [x1, x2, . . . , xN ], and combines this information

through a simple linear combination of the inputs, with respective weights {wi}N
i=1. Then

it generates an output through a non-linear function, often called an activation function, as

*The real process is far more complex than what we describe, but such level of detail is unnecessary for
our purposes.
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y = h
(

∑N
i=1 wixi

)
. The goal is to connect many of these neurons together in an artificial

neural network with many layers, as per figure 2.3c), so as to mimic a human brain.

FIGURE 2.3: A comparison of a biological neuron to an ANN. a) human neuron, b) a
single artificial neuron and c) an artificial neural network. Figure a) has been adapted

from [58].

The model presented illustrates information flowing only forward, these are called

feed-forward artificial neural networks (FFANN). However, over the years many architec-

tures have been proposed, some of which allow information to flow backwards within

the network, or even retain information from previous inputs. Nonetheless, we will re-

strict ourselves to the FFANNs. Regarding training, one can already see that even fairly

simple networks can result in a very high dimensional optimization problem, as each neu-

ron has a weight, wi, that needs to be optimised. Furthermore, the non-linear activation

functions make the problem even harder. Luckily, we have a training algorithm called

backpropagation algorithm (BP) [26], introduced in 1986, which allows an efficient training.

In short, it is a variant of the Gradient Descent which uses a clever technique for com-

puting the gradients automatically, due to the differentiability of the activation functions.

Despite its efficacy, we have come to a point where the scale of a standard neural network

has become very large, and allied with the fact that we often need massive amounts of

data to train our network, makes the use of the BP algorithm a a highly inneficient task.
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In this section we have given a general overview of the field of ML: we have seen why

we should use it and when; what kind of algorithms are there; what kind of things ML

algorithms can do for us; how we can train them, and we’ve introduced the basic concepts

of ANNs. In the next section we will introduce the mathematical formalism and essence

of an ELM, and we will see how it fits within the ML landscape.

2.2 ELM in a nutshell

As we’ve seen, an ELM consists on projecting an input space into an output space of high

dimensionality through a hidden layer, and performing the intended computational task

on this new data. Consider an input x. The output function of an ELM can be written as

fELM(x) =
L

∑
i=1

βihi(x) = h(x) · β (2.2)

where β = [β1, . . . , βL]
T is the output weight vector between the hidden layer of L nodes

to the m ≥ 1 output nodes and h(x) = [h1(x), . . . , hL(x)]T is the ELM’s nonlinear feature

mapping. The output functions of the hidden nodes don’t need to be unique, that is,

different neurons may have different functions. This leads us to generalise hi(x) for a

d-dimensional input,x, as

hi(x) = G(ai, bi, x), ai ∈ Rd, bi ∈ R (2.3)

where G(a, b, x) is a nonlinear piecewise continuous function satisfying ELM universal

approximation capability theorems [27, 59, 60]. As can be seen from figure 2.4, an ELM

can be seen as a training of a single layer feedforward neural network in two stages: i)

random feature mapping and ii) linear parameters solving. In the first step, we see that

a d-dimensional input, xi, is mapped onto an L-dimensional space, h(xi), while in the

second step we must find the adequate weight values β that will better approximate some

target function.

In more detail, the values of β are found via a least squares minimisation problem

min
β∈RL×m

||Hβ − T||2 (2.4)
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FIGURE 2.4: Illustration of an ELM architecture.

where H is the hidden layer output matrix

H =


h(x1)

...

h(xN)

 =


h1(x1) . . . hL(x1)

...
...

h1(xN) . . . hL(xN)

 (2.5)

T is the training data target matrix

T =


t1
...

tN

 =


t11 . . . t1N
...

...

tN1 . . . tNm

 (2.6)

β is the output weight matrix

β =


β1
...

βN

 =


β11 . . . β1N

...
...

βN1 . . . βNm

 (2.7)

and || · || denotes the Frobenious norm. This problem has an analytical solution given

by β = H+T where H+ denotes the Moore-Penrose pseudo-inverse of H. A particularly

interesting aspect of the ELM architecture is that, unlike traditional learning algorithms, it

aims to satisfy several targets simultaneously, as pointed out in Ref.[28], which we repli-

cate here:
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1. Generalization performance: Most algorithms proposed for feedforward neural

networks do not consider the generalization performance when they are proposed

for the first time. ELM aims to reach better generalization performance by reaching

both the smallest training error and the smallest norm of output weights:

min
β

||β||σ1
p + C||Hβ − T||σ2

q (2.8)

where σ1 > 0, σ2 > 0, p, q = 0, 1 2 , 1, 2, . . . ,+∞. The first term in the objec-

tive function is a regularization term which controls the complexity of the learned

model.

2. Universal approximation capability: Although feedforward neural network archi-

tectures themselves satisfy universal approximation capability, most popular learn-

ing algorithms designed to train feedforward neural networks do not satisfy the

universal approximation capability. In most cases, network architectures and their

corresponding learning algorithms are inconsistent in universal approximation ca-

pability. However, ELM learning algorithms satisfy universal approximation capa-

bility.

3. Learning without ”iteratively tuning” hidden nodes: ELM theories believe that

hidden nodes are important and critical to learning, however, hidden nodes need

not be tuned and can be independent of training data. Learning can be done without

iteratively tuning hidden nodes.

4. Unified learning theory: There should exist a unified learning algorithm for ”gen-

eralised” networks [28], that is, it should be compatible with many kinds of neurons

and its connections, hidden layers, as well as with different activation functions.

In this section we have introduced the formalism that allows us to understand an ELM

and have given an intuitive picture as to why this should work. However, we haven’t

given any formal justification for it. To that end, we follow on to the next section.

2.3 Why should an ELM work?

A reasonable question to ask is: why should an ELM work? In all fairness, at first sight

it seems that we let randomness take over and hope for the best! Which, coincidentally,
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fits perfectly with some phenomena observed in nature, thus implying that nature could

be a promising computing machine. Extreme learning machines have a strong theoretical

support, based essentially on four theorems (see Ref.[28] and references therein):

Theorem 2.1. Given any small positive value ϵ > 0, any activation function which is infinitely

differentiable in any interval, and N arbitrary distinct samples (xi, ti) ∈ Rd × Rm, there exists

L < N such that for any {ai, bi}L
i=1 randomly generated from any interval of Rd × R, according

to any continuous probability distribution, with probability one, ||Hβ − T|| < ϵ. Furthermore, if

L = N, then with probability one, ||Hβ − T|| = 0.

Theorem 2.2. Given any nonconstant piecewise continuous function G:Rd → R, if span{G(a, b, x) :

(a, b) ∈ Rd × R} is dense in L2, for any continuous target function f and any function se-

quence {G(ai, bi, xi)}L
i=1 randomly generated according to any continuous sampling distribution,

limL→∞ || f − fELM|| = 0 holds with probability one if the output weights βi are determined by

ordinary least square to minimize || f (x)− ∑L
i=1 βiG(ai, bi, x)||

Theorem 2.3. Given any feature mapping h(x), if h(x) is dense in C(Rd) or in C(Ω), where

Ω is a compact set of Rd, then a generalized single layer feedforward network with such a random

hidden layer mapping h(x) can separate arbitary disjoint regions of any shapes in Rd or Ω.

Theorem 2.4. The VC dimension* of ELM with L hidden nodes which are infinitely differentiable

in any interval is equal to L with probability one.

These theorems can be condensed in the following conclusions:

1. Theorem 2.1 tackles the interpolation capability of an ELM and tells us that an ELM

can fit perfectly to any training set provided the number of hidden neurons is large

enough;

2. Theorems 2.2 and 2.3 concern the universal aproximation capability of the model,

and together tell us the necessary properties that the activation function G should

have, and that ELM can approximate any complex decision boundary in classifica-

tion provided the number of hidden nodes is large enough;

3. Finally, theorem 2.4 together with theorem 2.1 lead to the conclusion that ELM is an

ideal classification model under the SRM (structure risk minimization) framework.

*The VC dimension is a measure of the capacity of a statistical classification algorithm, defined as the
cardinality of the largest set of points that the algorithm can shatter [28]. Informally, the capacity of a model
is related to how complicated it can be.
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The theorems above give us proof that an ELM can be quite powerful. Admittedly, it

requires some restrictions, particularly regarding the number of neurons and non-linearity,

however, those turn out to not be limitations as they can be easily met either with digi-

tal or analog systems. However, a clever training is important, especially with respect to

overfitting issues. Luckily, as the training is done via a linear regression, we can make use

of regularization to overcome this problem.

2.4 Regularized ELM

A version of an extreme learning machine of particular interest is a constrained version of

the problem statement in 2.4

min
β∈RL×m

||Hβ − T||2 + λ||β||2 (2.9)

which is known as Ridge regression and the resultant solution is known to be stabler and

tends to have better generalisation performance [29]. Depending on your training set [49],

you may have more training samples than hidden nodes (N > L), which yields the closed

form solution for β as

β =
(

HTH + λI
)−1

HTT (2.10)

where I is the identity matrix of size L. Conversely, for the case where you have more

output channels than training samples (N < L), the solution reads

β = HT
(

HHT + λI
)−1

T (2.11)

The precise derivations can be found in Appendix A.

Here we have framed the optimisation problem as a regularized linear regression,

with a closed-form solution. Nonetheless, the ELM framework is general enough to allow

compatibility with classification tasks.

2.5 ELM for classification

An extreme learning machine can also be applied to binary or multiclass classification.

In our case we are interested in studying the binary classification task. To this end, we’ll

make use of the well-known logistic regression. As opposed to a linear regression where
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we fit data to a hyperplane, in this model we fit the data to a logistic function given by:

f (x) =
1

1 + exp (−x)
(2.12)

This function squeezes the output of a linear equation between 0 and 1, which is suitable

for interpreting its output as a probability. In our case the input is to be regarded as the

non-linear projection xi → h(xi). Thus, for a target yi ∈ {0, 1}, we predict the probability

of an input h(xi) belonging to class 1 as

P(yi = 1|h(xi)) =
1

1 + exp (−h(xi)β)
(2.13)

Then, we assume a threshold of 0.5 to attribute a prediction of the class. As an optimisa-

tion problem we aim to minimise the following [61]

min
β

C
N

∑
i=1

(
−yi log

(
P(yi = 1|h(xi))

)
− (1 − yi) log

(
1 − P(yi = 1|h(xi))

))
+

1
2

βT β

(2.14)

In equation 2.14 we introduce an l2 regularisation parameter, similar to the ridge model,

and we allow for a tunable hyperparameter C to avoid overfitting phenomena.

Up to this point we have introduced the ELM framework as a two step learning pro-

cess: i) non-linear feature mapping to a high dimensional output space, and ii) a linear

regression training algorithm for the output layer. The first step, however, is not a partic-

ularly new idea. There are ML algorithms that already implement this concept in a rather

ingenious way (the so-called kernel trick). This begs the question: how does ELM fare with

those algorithms?

2.6 ELM vs digital kernel methods

So far, we’ve mentioned that an extreme learning machine can be seen as a two-step

learning process including a random non-linear projection of the input data onto a high-

dimensional output. This idea of projecting an input was first implemented in machine

learning through kernel machines. Simply put, we apply a non-linear function to our in-

put data, k(xi, xj), called a kernel function defined as k : X → X , and then we perform the

computation on this new transformed data. In the case of linear regression with N > L,

whose solution lies in equation 2.10, we simply need to replace H by the Gram matrix,
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K ∈ Rn×n, whose entries are Kij = k(xi, xj). The solution then reads

β =
(

KTK + λI
)−1

KTT (2.15)

The reason why this may work in many datasets is best seen when we write the kernel

function as an inner product in a high dimensional space V with a defined inner product,

through a feature map ϕ(x) : X → V

k(xi, xj) =
〈

ϕ(xi), ϕ(xj)
〉
V

(2.16)

Thus we see that the action of a kernel function k is to project the data onto a high dimen-

sional space through ϕ(x) and compute a ”similarity measure” between different samples

through an inner product. Notice that this projection is implicit, meaning that we needn’t

to specify the feature map as long as the inner product is explicit. In fact, for a given

function k(xi, xj), there isn’t a unique feature map ϕ(x) satisfying the same inner product.

The main motivation behind this kernel trick is that while a dataset may not be linearly

separable in X , it may be so in V , information which is revealed through an inner product

in V . The same principle is applied in an ELM through the hidden layer but with a key

difference on the feature mapping which is now done explicitly onto the output channels.

Looking at the solution 2.15, we note that with a kernel trick we’d be tasked with invert-

ing a matrix of N × N while in an ELM we only need to invert an L × L matrix. If N < L,

the scenario is reversed and computationally we’d be better off with a kernel method,

however, in most real-world applications, this is hardly the case [50].

Thus far, we have looked into the general theory of ELMs. We have seen how it fits

within the ML landscape, we have introduced the mathematical formalism and discussed

the theorems that support this architecture. We have already highlighted the attractive-

ness of this framework for hardware implementations, but we haven’t discussed it any

further. In the next section, we review the state of the art on ELM implementations in

an optical platform, and we will focus on a particular set-up based on optical complex

media.
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2.7 Optical Extreme Learning Machines

As stated in chapter 1, one of the earliest physical implementations of an ELM based

on an optical set-up goes back to Saade et al. [47]. In their experiment, they make use

of complex optical media to generate speckle patterns upon incidence of a modulated

wavefront which carries encoded information. Such patterns are known to have gaussian

circular statistics* in the complex field [62], which ensures the randomness needed for the

hidden layer of an ELM. This output is converted to an intensity pattern by electronic

measurement on a digital camera, whose pixels act as output channels. As for the non-

linearity, it was guaranteed upon detection with intensity measurements, and electronic

saturation. In their work, they introduce the set-up as a kernel machine and compare

experimental data with an ansatz kernel inspired by infinite neural networks theories.

This approach, while accurate, did not provide a deeper understanding of the architecture

so as to infer on the nature of the explicit projection and the learning capability. Fast

forward a few years, Marcucci et al. [49] explored the theory of neuromorphic computing

using the non-linear Schrodinger equation as an effective reservoir

i
∂ψ

∂ζ
+

∂2ψ

∂ξ2 + χ|ψ|2ψ = 0 (2.17)

In their work, they were able to find quantitative parameters that would allow to infer on

the learning capability of the machine. It’s important to note that, even though this was

done in the context of reservoir computing, the conclusions are transferable to an ELM

architecture. More specifically, they observed a learning transition, i.e. the machine would

have the conditions for near-zero error, when rank (H) = N and N = L, with N being

the number of training samples, L being the number of output channels and H being an

N × L matrix containing all the outputs. In order to observe such behaviour, they were

able to conclude that the rank (H) would increase with increasing χ, that is, with increas-

ing strength of the physical non-linearity, as per equation 2.17. The rank of a matrix can

be regarded as measure of the ”amount of information” of the matrix, that is, it is the

greatest dimension of the vector space spanned by it’s columns or rows. Therefore, when

looking into the rank (H) we are analysing the dimension of the output space. With this

in mind, stating that having rank (H) = N = L gives rise to a learning transition, may

be evidence of overfitting. This idea was explored by Silva et al. [48]. Indeed, within a

*A more detailed study of speckle statistics can be found in appendix D.
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similar framework as Marcucci et al. [49], they were able to replicate the observed learn-

ing transition, but explored further the machine by testing its performance on noisy data.

By doing so, they have observed a decrease in performance as N approaches L, which is

explained by overfitting phenomena, commonly associated with the pseudo-inverse tech-

nique. Besides these works, there have been other implementations of optics-based ELM’s

[50–52] with remarkable success, however we are still lacking a deeper understanding of

the inner workings of such a machine, as well as tools that would enable us to better infer

on the learning capabilities of the machine.

Having said this, we take inspiration on the work carried out by Saade et al. [47] and,

through an ab initio approach, we develop a theoretical framework based on the trans-

mission matrix formalism [63]. This will allow us to better understand the mathematical

structure of the input projection, and infer on the type of problems best suited for the ma-

chine. Furthermore, we establish metrics that will allow us to experimentally verify our

model, and we’ll also draw conclusions on the effects of strong physical non-linearities.

2.7.1 Mathematical model

Following figure 2.5, we will let an input optical field Ein evolve across some linear media.

Since it is linear, we can borrow the transmission matrix formalism to write Eout = MEin,

with M being the so-called transmission matrix*, and finally study the intensity† pattern

defined as I = |Eout|2. Let us define a set of K orthonormal vectors {ein
j }K

i=1, such that

FIGURE 2.5: Diagram of the physical blocks of a set-up for an optical implementation of
an ELM.

ein
j = [ 0, . . .︸︷︷︸

j-1 times

, 1, . . . , 0]T, and each ein
j represents an independent input electric field. In

order to encode the information in our input field, we’ll allow for phase and amplitude

*The transmission matrix formalism is explored in detail in Appendix E.
†Not to be confused with the magnitude of the Poynting vector |S| = 1

µ0
|E × B|, though our quantity is

proportional to the latter.
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modulation through f (xi) = a(xi)eib(xi), where ai ∈ [0, 1] and bi ∈ [−π, π], then Ein reads

Ein(xi) =
K

∑
j=1

f j(xi)ein
j (2.18)

The transmission matrix formalism is defined for a spatially sampled field, thus we will

assume that our output field is sampled on an array of pixels. So as to represent the field

in a single dimension, assume a row-wise ordering of a 2D display. With this in mind, we

can make use of the transmission matrix M to write the output field, Eout, at the pixel l

El
out(xi) =

K

∑
j=1

K

∑
k=1

f j(xi)Mlk(ein
j )k (2.19)

In the following, we will omit the functions arguments (xi), and replace it by a superscript

i. After some algebra*, the intensity can be written as

Iil
out =

K

∑
j=p=1

|ai
j|2|Ml j|2

+
K

∑
j=1

K

∑
p>j

Cl jpai
ja

i
p

 ξe
ljp

[
cos(bi

j) cos(bi
p) + sin(bi

j) sin(bi
p)
]

−ξo
ljp

[
sin(bi

j) cos(bi
p)− cos(bi

j) cos(bi
p)
]
 (2.20)

where Cl jp, ξe
ljp and ξo

ljp are real constants. Examining equation 2.20, we see that upon

intensity measurements with amplitude and phase modulation, the output channels con-

sist of polynomial and trigonometric functions of the encoding variables ai and bi, which

is equivalent to applying an activation function of polynomial and/or trigonometric na-

ture to our input data. Furthermore, intensity measurements alone clearly allow for a

non-linear transformation of our data, which may be sufficient to solve some classes of

problems.

At this point one should note that the matrix Iout is the equivalent H matrix defined

in 2.5. Having said this, it is worthwhile to study this matrix, particularly in terms of

its rank. Indeed, the rank of a matrix will essentially tell us the dimensionality of the

output space, which is of prime importance when evaluating the learning capabilities

of an ELM, as it allows us to understand the data projection better. To this end, in the

following subsections we will try to answer the question What is the rank of the matrix

Iout for a certain input encoding?. We will answer this question quite pedagogically and

start with a particular encoding scheme for phase modulation, then prove the general

case for an arbitrary encoding with phase modulation. After, we prove the general case

*The full derivation can be seen in Appendix A.
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for amplitude modulation, and finally analyse the rank of Iout for phase and amplitude

simultaneously.

2.7.2 Phase modulation

We start by rewriting equation 2.20 with |ai
j| = 1 ∀j, i

Iil
out =

K

∑
j=1

|Ml j|2 +
K

∑
j=1

K

∑
p>j

Cl jp

 ξe
ljp

[
cos(bi

j) cos(bi
p) + sin(bi

j) sin(bi
p)
]

−ξo
ljp

[
sin(bi

j) cos(bi
p)− cos(bi

j) cos(bi
p)
]


A particular case

Let Eil
in = (ein

1 )l + eibi
2(ein

2 )l + eibi
3(ein

3 )l . The field ein
1 is intentionally not modulated, in

order for a more intense interferometry within the complex media to take place. In that

case, equation 2.21 unfolds to

Iil
out =|Ml1|2 + |Ml2|2 + |Ml3|2

+ Cl12ξe
l12 cos(bi

2) + Cl12ξo
l12 sin(bi

2)

+ Cl13ξe
l13 cos(bi

3) + Cl13ξo
l13 sin(bi

3)

+ Cl23ξe
l23

[
cos(bi

2) cos(bi
3) + sin(bi

2) sin(bi
3)
]

− Cl23ξo
l23

[
sin(bi

2) cos(bi
3)− cos(bi

2) sin(bi
3)
]

(2.21)

We now define the following quantities

zl
0 = |Ml1|2 + |Ml2|2 + |Ml3|2 f i

0 = 1

zl
1 = Cl12ξe

l12 f i
1 = cos(bi

2)

zl
2 = Cl12ξo

l12 f i
2 = sin(bi

2)

zl
3 = Cl13ξe

l13 f i
3 = cos(bi

3)

zl
4 = Cl13ξo

l13 f i
4 = sin(bi

3)

zl
5 = Cl23ξe

l23 f i
5 =

cos(bi
2) cos(bi

3)

+ sin(bi
2) sin(bi

3)

zl
6 = −Cl23ξo

l23 f i
6 =

sin(bi
2) cos(bi

3)

− cos(bi
2) sin(bi

3)
(2.22)
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With these definitions we can now write equation 2.21 as

Iil
out = zl

0 f i
0 + zl

1 f i
1 + zl

2 f i
2 + zl

3 f i
3 + zl

4 f i
4 + zl

5 f i
5 + zl

6 f i
6 (2.23)

Consider the vectors zi ∈ RL×1 and fi ∈ RN×1. In that case, the matrix Iout ∈ RN×L can

be written as

Iout =
6

∑
n=0

fnzT
n (2.24)

where fnzT
n denotes the dyadic product between the two vectors. By writing Iout as in

equation 2.24 we have expressed the matrix as a sum of matrices. By doing so, we can

make use of the rank-sum inequality to affirm that [64]

rank (Iout) ≤
6

∑
n=0

rank
(

fnzT
n

)
(2.25)

Nonetheless, we can say more than this since our matrices within the summation are

dyadic products. Let us look closely at the line and column structures

fnzT
n =


. . . . . .

z0
nfn . . . zi

nfn . . . zL
nfn

. . . . . .

 =



f 0
n zT

n
...

...
...

f i
nzT

n
...

...
...

f N
n zT

n


(2.26)

Note that when examining the lines, each line is the same vector zT
n multiplied by a scalar.

Likewise, in the columns, each column is fn multiplied by a scalar. Thus, in either case

there is only a line and column linearly independents. By definition, the rank of a matrix,

A, is the dimension of the vector space generated by its columns, C(A). Coincidently, it

can be shown that it is also the same dimension as the vector space generated by its rows,

R(A). For a dyadic tensor, we can write

C(fnzT
n ) =

{
vi ∈ RN×1 : vi = cfn∀c ∈ R

}
(2.27)

R(fnaT
n ) =

{
vi ∈ RL×1 : vi = czn∀c ∈ R

}
(2.28)

Which implies that dim(C(fnzT
n )) = dim(R(fnzT

n )) = rank(C(fnzT
n )) = 1. Looking at

2.27 and 2.28, if zn ̸= zm ∀n ̸= m and fn ̸= fm ∀n ̸= m, then C(fnzT
n ) ∩ C(fmzT

m) = {0}

and R(fnzT
n ) ∩ R(fmzT

m) = {0} ∀n ̸= m. These conditions may seem highly restrictive

at first glance, but it turns out to not be quite true. When examining the elements of the
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vector zn, we see that they stem from the transmission matrix whose elements follow the

statistics of a fully developed speckle, as studied in Appendix D. Thus the probability of

zn = zm is extremely small. As for fn = fm, it may be more easily met, but it can be over-

come through clever encoding so as to not induce redundancy within the trigonometric

functions. Assuming these conditions are met, equality on equation 2.25 holds* and we

can write

rank(Iout) =
6

∑
n=0

rank(fnzT
n ) =

6

∑
n=0

1 = 7 (2.29)

With these tools, we are now ready to generalize to an arbitrary phase encoding scheme.

General case

For an easier reading, we rewrite equation 2.21

Iil
out =

K

∑
j=1

|Ml j|2 +
K

∑
j=1

K

∑
p>j

Cl jp

 ξe
ljp

[
cos(bi

j) cos(bi
p) + sin(bi

j) sin(bi
p)
]

−ξo
ljp

[
sin(bi

j) cos(bi
p)− cos(bi

j) cos(bi
p)
]


Let us now write

γl
0 =

K

∑
j=1

|Ml j|2 (2.30)

βl
jp = Cl jpξe

ljp (2.31)

αl
jp = Cl jpξo

ljp (2.32)

f i
0 = 1 (2.33)

gi
jp = cos(bi

j) cos(bi
p) + sin(bi

j) sin(bi
p) (2.34)

hi
jp = sin(bi

j) cos(bi
p)− cos(bi

j) cos(bi
p) (2.35)

Then, equation 2.21 reduces to

Iil
out = γl

0 f i
0 +

K

∑
j=1

K

∑
p>j

βl
jpgi

jp +
K

∑
j=1

K

∑
p>j

αl
jphi

jp (2.36)

Consider the index contraction outlined in table 2.1. With this new index, we can write:

Iil
out = γl

0 f i
0 +

K(K−1)
2

∑
k=1

βl
kgi

k +

K(K−1)
2

∑
k=1

αl
khi

k (2.37)

*See Appendix A for the mathematical proof of the equality on the rank-sum inequality
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j p k
1 2 1
1 3 2
...

...
...

1 K K-1
2 3 K
...

...
...

2 K K-1+K-2
...

...
...

K-1 K ∑K−1
i=1 K − i = K(K−1)

2

TABLE 2.1: Index contraction

In matrix form, it reads

Iout = f0γT
0 +

K(K−1)
2

∑
k=1

gkβT
k +

K(K−1)
2

∑
k=1

hkαT
k (2.38)

The rank then is given by

rank(Iout) = rank(f0γT
0 ) + rank

 K(K−1)
2

∑
k=1

gkβT
k

+ rank

 K(K−1)
2

∑
k=1

hkαT
k


= 1 +

K(K − 1)
2

+
K(K − 1)

2

= K2 − K + 1 (2.39)

We have thus arrived at an expression which tells us the effective dimensionality of the

output space of the data projection as a function of the number of input encoding fields

(note that for K input fields, only K − 1 were considered to carry information).

2.7.3 Amplitude modulation

We now carry on for the case of amplitude modulation and consider f j(xi) = ai(xi) alone,

and a1(xi) = 1. In that case, equation 2.20 reduces to

Iil
out =

K

∑
j=1

|ai
j|2|Ml j|2 +

K

∑
j=1

K

∑
p>j

ai
ja

i
pCl jpξe

ljp (2.40)



2. OPTICAL EXTREME LEARNING MACHINES 33

Using the same kind of simplifications as before, we can write

Iil
out = |Ml1|2︸ ︷︷ ︸

Γl

+
K

∑
j=2

|ai
j|2︸︷︷︸

Fi
j

|Ml j|2︸ ︷︷ ︸
λl

j

+
K

∑
p=2

ai
p︸︷︷︸

Hi
p

Cl1pξe
l1p︸ ︷︷ ︸

θl
p

+
K

∑
j=2

K

∑
p>j

ai
ja

i
p︸︷︷︸

Gi
jp

Cl jpξe
ljp︸ ︷︷ ︸

τl
jp

⇒ Iout = 1ΓT +
K

∑
j=2

Fjλ
T
j +

K

∑
p=2

HpθT
p +

K(K−1)
2 −K+1

∑
k=1

GkτT
k (2.41)

Within this notation, the rank can then be found as

rank(Iout) = rank(1ΓT) +
K

∑
j=2

rank(Fjλ
T
j ) +

K

∑
p=2

rank(HpθT
p ) +

K(K−1)
2 −K+1

∑
k=1

rank(GkτT
k )

= 1 + K − 1 + K − 1 +
K(K − 1)

2
− K + 1

which can be simplified to

rank(Iout) =
K2

2
+

K
2

(2.42)

2.7.4 Phase and amplitude modulation

For the sake of completeness, we’ll go over the case where we allow for both amplitude

and phase modulation simultaneously. We start again at equation 2.20

Iil
out =

K

∑
j=p=1

|ai
j|2|Ml j|2

+
K

∑
j=1

K

∑
p>j



γl
jp︷ ︸︸ ︷

Cl jpξe
ljp

gi
jp︷ ︸︸ ︷

ai
ja

i
p

[
cos(bi

j) cos(bi
p) + sin(bi

j) sin(bi
p)
]

−Cl jpξo
ljp︸ ︷︷ ︸

βl
jp

ai
ja

i
p

[
sin(bi

j) cos(bi
p)− cos(bi

j) cos(bi
p)
]

︸ ︷︷ ︸
hi

jp


= |Ml1|2︸ ︷︷ ︸

Γl

+
K

∑
j=2

|aj|2︸︷︷︸
hi

j

|Ml j|2︸ ︷︷ ︸
Cl

j

+
K

∑
j=1

K

∑
p>j

gi
jpγl

jp +
K

∑
j=1

K

∑
p>j

hi
jpβl

jp

= Γl +
K

∑
j=2

f i
j C

l
j +

K(K−1)
2

∑
k=1

gi
kγl

k +

K(K−1)
2

∑
k=1

hi
kβl

k (2.43)

In matrix form, we have

Iout = 1ΓT +
K

∑
j=2

fjCT
j +

K(K−1)
2

∑
k=1

gkγT
k +

K(K−1)
2

∑
k=1

hkβT
k (2.44)
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From which we can now write

rank(Iout) = 1 + K − 1 +
K(K − 1)

2
+

K(K − 1)
2

which simplifies to

rank(Iout) = K2 (2.45)

We can now compare the different encoding mechanism, as in figure 2.6. We can see that

the dimension of the output space scales quadratically with the number of encoding input

fields. However, the fastest growing is when we allow for phase and amplitude modu-

lation. Note also that the difference between phase and amplitude encodings combined

and phase-only modulation is not as significant as the difference between phase-only and

amplitude-only.

FIGURE 2.6: rank(Iout) as a function of the number of input encoding fields for the dif-
ferent encoding regimes.

In this chapter we have started by a general overview of the ML realm, and moved on
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to the mathematical foundations of ELMs. We have seen that, despite their simplicity, they

are anchored in strong theorems which guarantee their effectiveness. We have reviewed

the state of the art regarding optical ELMs and we’ve seen that we are missing a more

fundamental understanding of such machines. To that end, we have developed a theoret-

ical model which allows us not only to understand the polynomial and sinusoidal nature

of input projection, but we have also deduced simple laws which express how the output

space dimensionality scales with the number of input encoding fields, demonstrating a

quadratic dependence in each of the encoding schemes. In the next chapter, we are going

to go over a set of numerical simulations which will allow us to corroborate our model,

and after we will move on to an experimental implementation.





Chapter 3

A numerical simulation of an optical

extreme learning machine

In this chapter, we aim to introduce some numerical simulations that will enable us to

prove our theoretical framework in chapter 2. Particularly we wish to prove the rank

scaling laws in equations 2.39, 2.42 and 2.45. We will study a method to simulate speckle

patterns based on the works of Duncan and Kirkpatrick [65]. Then, we will extend this

method to allow for phase and amplitude modulation of incoming light. Finally, we will

study the output matrices for regression and classification tasks upon different encoding

schemes, examine the machine’s performance, and finally prove the rank scaling laws, as

per equations 2.39, 2.42 and 2.45.

3.1 Speckle simulation

The approach follows closely the one employed by Goodman [62] when studying statis-

tical properties of speckle patterns, as outlined in Appendix D. We start by assuming that

the speckle pattern arises from a wavefront incident on a reflective rough surface. Due

to the complex geometry of the surface, we can assume that the wavefront right after re-

flection, contains a fully randomised phase profile, as different parts of the wavefront will

have travelled different lenghts. For this reason, let us assume that the field right after the

reflection is given by

Ein = E(x, y)eiφ(x,y) (3.1)

where we will assume E(x, y) = 1 for simplicity and φ(x, y) follows a uniform probability

distribution in [−π, π]. Assume further that the incoming light is tightly constrained to

37
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a circular aperture of diameter D, given by D(x, y). The input field is then given by

Ein = D(x, y)eiφ(x,y). We now calculate its fourier transform, Eout, and this output field is

our speckle field. Performing a fourier tansform is equivalent to either placing the input

field at the back focal plane of a convex lens and examine the front focal plane image, or

letting the field propagate to very large distances and let diffraction take over (Fraunhofer

regime). Numerically, we start with an M × M matrix, with a circular aperture at the

center of diameter D, and within this aperture we include a uniformly sampled phase

distribution. Then we let the Fast Fourier Transform algorithm perform the mapping. A

typical result is shown in figure 3.1. The ratio M/D controls the speckle size, and for

M/D = 2 the Nyquist criterion is met and the smallest speckle is two pixels.

FIGURE 3.1: Typical relation between Ein and Eout, for M = 200 and D = 25.

This algorithm is capable of producing fully developed speckle patterns that follow

the statistical properties outlined by Goodman [62], as can be seen in figure 3.2. Indeed,

the electric field amplitude probability distribution function (PDF), P(|Eout|), follows a

Rayleigh distribution, whereas the phase PDF, P(∠Eout), is essentially uniform and the

intensity PDF, P(I), is a decaying exponential. Furthermore, the circular gaussian statis-

tics of the joint PDF of the imaginary and real parts of Eout also hold.
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FIGURE 3.2: Speckle statistics for a speckle pattern with M = 200 and D = 25.

With this new tool, we aim now to extend this simulation to include information en-

coding within the input field. To this end, we introduce the functions A(x, y) and ϕ(x, y)

which are amplitude and phase masks, respectively, which will be responsible for the

encoding. There is no alteration to the algorithm other than the fact that the input field

is now given by Ein(x, y) = A(x, y)D(x, y) exp
{

i
[
φ(x, y)− ϕ(x, y)

]}
. This change does

not alter the statistics of the speckle pattern, but does produce different speckle patterns

upon changes on either A(x, y) or ϕ(x, y). As can be seen in figure 3.3, we have chosen

rectangular segments within the aperture to act as encoding regions.
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FIGURE 3.3: Encoding amplitude and phase masks. The green circle represents the aper-
ture limits.

3.2 Rank of the outputs and learning capability

In this section, we aim to study the learning capability of our ELM with respect to the

rank(Iout). To do so, we will resort to the single value decomposition [66], and we will

count the number of singular values above the noise threshold. We start with phase mod-

ulation, and employ the encoding scheme described previously, with detailed values in

table 3.1. We test the machine in a regression and classification tasks. For the regression

we use a Ridge model for training, while for classification we resort to a Logistic Regres-

sion model with an l2 penalty.

K − 1 Saturation ϕ1 ϕ2 ϕ3 ϕ4

1 No x−xmin
xmax−xmin

2π 0 0 0
4 No x−xmin

xmax−xmin
2π ϕ2

1 ϕ0.5
1 ϕ0.25

1Regression
1 Yes x−xmin

xmax−xmin
2π 0 0 0

2 No x−xmin
xmax−xmin

2π
y−ymin

ymax−ymin
2π 0 0

4 No x−xmin
xmax−xmin

2π
y−ymin

ymax−ymin
2π ϕ2

1 ϕ2
2Classification

2 Yes x−xmin
xmax−xmin

2π
y−ymin

ymax−ymin
2π 0 0

TABLE 3.1: Encoding schemes for phase modulation. The nomenclature K − 1 follows
the theoretical model developed in chapter 2, and it represents the number of encoding

input fields.

The results are shown in figure 3.4. It is clear from the figure that the results improve as

we examine the figure from top to bottom. We can, therefore, conclude that a higher rank

of the outputs may indicate a greater performance, and vice-versa. This is intuitive due

to the fact that the dimensionality of the output space is greater thus making the linear

separability in higher dimensions more likely. Furthermore, the effect of the physical

non-linearity is very noticeable as the machine correctly learned the spiral patterns in the
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classification task, as well as the non-linear behaviour of the squared sinc function within

the regression task.

FIGURE 3.4: Numerical results of our proposed ELM in regression and classification
tasks, with phase modulation. The columns a) and b) refer to the regression task on a
nonlinear function, while columns c) and d) refer to the classification one on a spiral
dataset. The lines correspond the different encoding schemes in regression and classi-
fication tasks, respectively, as outlined in table 3.1. In column c) it is represented the
classification performance in the test dataset, overlaid with a 50x50 grid to demonstrate

the decision boundary.

We then follow for the amplitude modulation, and repeat the same study. The encod-

ing schemes and results are shown in table 3.2 and figure 3.5. Our conclusions are the

same, with the only relevant remark being the fact that the physical non-linearity has not

produced such a significant improvement on the machine performance as we had seen

with phase modulation.
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K − 1 Saturation ϕ1 ϕ2 ϕ3 ϕ4

1 No x−xmin
xmax−xmin

1 1 1
4 No x−xmin

xmax−xmin
ϕ2.17

1 ϕ0.52
1 ϕ0.27

1Regression
1 Yes x−xmin

xmax−xmin
1 1 1

2 No x−xmin
xmax−xmin

y−ymin
ymax−ymin

1 1
4 No x−xmin

xmax−xmin

y−ymin
ymax−ymin

ϕ2.27
1 ϕ2.27

2Classification
2 Yes x−xmin

xmax−xmin

y−ymin
ymax−ymin

1 1

TABLE 3.2: Encoding schemes for amplitude modulation.

FIGURE 3.5: Numerical results of our proposed ELM in regression and classification
tasks, with amplitude modulation. The columns a) and b) refer to the regression task
on a nonlinear function, while columns c) and d) refer to the classification one on a spiral
dataset. The lines correspond the different encoding schemes in regression and classi-
fication tasks, respectively, as outlined in table 3.2. In column c) it is represented the
classification performance in the test dataset, overlaid with a 50x50 grid to demonstrate

the decision boundary.
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3.3 Rank scaling

We now wish to prove the rank scaling laws defined in equations 2.39, 2.42 and 2.45. To

this end, we define rectangular regions in the aperture area, as outlined in the simulation

algorithm above, and in each area we will:

1. allow phase modulation where each region will be modulated as ϕn
1 where n will

take the values from the K − 1 possible values evenly sampled from -1 to +1, and

ϕ1 = x−xmin
xmax−xmin

2π;

2. allow amplitude modulation where each region will be modulated as ϕn
1 where n

will take the values from the K − 1 possible values evenly sampled from -1 to +1,

and ϕ1 = x−xmin
xmax−xmin

;

3. allow phase and amplitude modulation simultaneously where each region will be

modulated as in the previous points.

The results are shown in figure 3.6, and we can see that the scaling laws hold for the three

different scenarios. The last point seems to deviate from the theoretical curve, however,

that is due to the difficulty in evaluating the rank from the singular value decomposition,

as the distinction from the noise associated values is very difficult.

In this chapter we have developed a set of numerical simulations based on speckle

generation, which allows us to emulate an experimental implementation of our ELM.

We have analysed the performance of the machine upon different scenarios and we’ve

concluded that it can perform quite well. Furthermore, we have given evidence of the

rank scaling laws. The next step is to provide experimental proof of the same concept.
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FIGURE 3.6: Numerical results on the rank scaling laws. The lines a,b and c correspond to
the cases outlined in the main text of phase, amplitude and simultaneous phase and am-
plitude modulation schemes. In column a), the black dashed line represents the threshold

value upon which the rank of the matrix was evaluated.



Chapter 4

Experimental methods and

equipment

In this chapter, we aim to outline the experimental methods and equipment that were

used throughout our work. We start by introducing the spatial light modulator used

for the optical encoding. Then, we outline some experimental details for setting up the

device, and finally we introduce techniques to achieve phase and amplitude modulation.

Afterwards, we introduce our detector array as well as the major software tools used in

our work.

4.1 Spatial light modulator: Digital micromirror device (DMD)

In our experiments we use a digital micromirror device (DMD) to encode information on

the incident wavefront. A DMD screen consists of an array of micromirrors where each

pixel can be either on the ”on” state or the ”off” state. Each state is characterised by the tilt

angle of each individual pixel of +12º or -12º along the axis of rotation, typically set to a 45º

angle with respect to the horizontal and vertical dimensions of the pixel. The model we’ve

used is a Vialux V-7000 Hi-Speed module, featuring a Discovery 4100 DLP chipset [67].

The device is controlled via USB 2.0 through the proprietary ALP-4.2 firmware and soft-

ware. Through the combination of FPGA logic and on-board RAM, the device can achieve

up to 22 727 Hz array switching rates for binary images, while enabling storage of up to

43 690 binary images. This combination is ideal for our purposes as it can be necessary

numerous training samples. The DLP chip also features an input and output connector

used for external device synchronisation, including input triggering and 4 controllable

45
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output channels for dynamic synchronisation. As for the display, it has a resolution of

1024x768 pixels, with a micromirror pitch of 13.7µm, and a large spectral range covering

wavelengths from 363nm (UV) up to 2500nm (NIR).

FIGURE 4.1: DMD Vialux V-7000 Hi-Speed module, and experimental set-up.

4.1.1 Setting up the DMD

When setting up a DMD one has to consider a few experimental details to achieve optimal

wavefront control. The most obvious effect that will come up is diffraction. Due to the

periodicity of the micromirrors, the device will act as a diffraction grating and numerous

orders will crop up. Furthermore, the pixels have a tilt angle, thus the screen acts as a

blazed grating at 12º. In order to minimise the diffraction losses, one should make use of

the zeroth order of diffraction. For this reason, the input beam should either be normal

to the DMD screen, as in figure 4.2, and the remainder of the optical set-up should follow

the ±12º direction, or the incident beam can make a ±12º angle with the screen and the

output can be collected normally to the screen. It’s important to note that many diffraction

orders will appear, and to avoid unwanted interference along the optical path, a spatial

filtering stage should be employed after the DMD.

Another practical aspect is the orientation of the axis of rotation, as illustrated in fig-

ure 4.1. As the axis is at a 45º angle, the entire screen should be aligned such that the

axis of rotation stays perpendicular to the optical table. Furthermore, if the device is to be

used in precise wavefront shaping experiments, one should be careful with aberrations

introduced by the micromirrors that may arise from fabrication defects. It is possible to

compensate such effects through phase modulation, as outlined in section 4.1.2, and the

use of zernike polynomials, however, in our case that proved itself an unnecessary effort
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FIGURE 4.2: Alignment of a DMD.

and was not explored. Finally, it was verified experimentally that reflection on the DMD

exhibited some effects commonly associated with birrefringence, that is, input linear po-

larisation resulted in elliptically polarised output light. The mirrors themselves should

not exhibit such effect, to which we attribute the nature of such phenomena to the plastic

encasing of the screen since unbalanced mechanical stress may induce birrefringence.

4.1.2 Phase modulation: Lee holography

A DMD is a binary spatial light modulator. Each pixel is a small mirror which can be in

the ”on” or ”off” state, which is controlled by a tilt angle of ±12º. While this device is an

amplitude modulator, we can make use of light diffraction to achieve phase modulation.

Let us suppose that we want to modulate an incoming beam travelling in the z direction

with a transverse phase mask ϕ(x, y). Consider then the function f (x, y)

f (x, y) =
1
2
(
1 + cos(r · ν − ϕ(x, y))

)
(4.1)

where ν = (νx, νy, 0)T. Now, let a plane wave be modulated by equation 4.1

Eout = E0 f (x, y)ei(k·r−ωt)

= E0
1
4

(
2 + ei(r·ν−ϕ(x,y)) + e−i(r·ν−ϕ(x,y))

)
ei(k·r−ωt)

=
E0

4

2ei(k·r−ωt)︸ ︷︷ ︸
Order 0

+ ei((k+ν)·r−ωt−ϕ(x,y))︸ ︷︷ ︸
Order +1

+ ei((k−ν)·r−ωt+ϕ(x,y))︸ ︷︷ ︸
Order -1

 (4.2)

From equation 4.2 we can see that modulation by f (x, y) gives rise to two new waves that

are modulated in phase by a certain mask ϕ(x, y). Now, all that is left to do is make this
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suitable for a DMD through a binary quantisation process such as

g(x, y) =


1 , f (x, y) ≥ 1

2

0 , f (x, y) < 1
2

(4.3)

This technique is called Lee holography [68]. It is important to note that the quanti-

zation process in equation 4.3 may give rise to ambiguities, thus there’s a need to care-

fully choose νx and νy. We’ve found that by choosing νx ̸= νy and each a non-integer

value, highly reduces the ambiguity for different phase values. Particularly, we’ve chosen

νx = 2π × 1
5.5 and νy = 2π × 1

5.125 .

FIGURE 4.3: Example of spatial filtering stage within a 4f imaging system to achieve
phase modulation through Lee holography in the zeroth order of diffraction.

4.1.3 Amplitude modulation

The DMD is a binary amplitude modulation device, therefore, to achieve more levels of

amplitude modulation, one has to employ clever techniques. Our device has a built-in

option of displaying 8-bit images through Pulse Width Modulation. This method achieves

a grayscale pattern by modulating the duration of a sequence of impulses. However,

for device synchronisation purposes, this was not suitable, and needed a way to achieve

discrete amplitude modulation within a single frame. Our approach is depicted in figure

4.4. A single macropixel of the modulation area has several sub-macropixel which can

either be on or off. These in turn may consist of agglomerates of individual DMD pixels.

The sub-macropixels that are turned on are randomly chosen so as to avoid grating effects.
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FIGURE 4.4: Illustration of the amplitude modulation.

4.2 Detector array: XIMEA MQ013MG

Our digital camera is a XIMEA MQ013MG-ON [69]. The device has a screen resolution of

1280x1024 pixels, with a pixel pitch of 4.8µm, and is capable of global shuttering, which

is ideal in our case. It’s capable of frame rates up to 500fps with a resolution of 640x512

pixels, with an 8 bit pixel depth. Nonetheless, it also supports 10 bit pixel depth. The ma-

chine interfaces with a computer via USB 3.0 which allows for high capacity data transfer,

thus allowing for higher frame rates. It also features an I/O interface compatible with ex-

ternal triggering. The achievable frame rate is highly dependent on many factors, namely

the API, data transfer time, USB connection, data processing time in the API, region of

interest in the physical sensor and exposure time. Notice also that a high intensity in the

laser may allow for a higher frame rate, as the camera needs a smaller integration time,

however, the image is more susceptible to random noise.

FIGURE 4.5: XIMEA XiQ MQ013MG-ON. Image taken from [69]
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4.3 Software

Throughout our work, we’ve made heavy use of the Python programming language [70]

for various computational tasks. While there are several reasons to have chosen this tool,

the main one lies with the extensive previous know-how within our research group which

allied with Python’s versatility for data manipulation and visualisation, as well as it’s

speed of computation, make it an obvious choice. Furthermore, for our experiments there

were two hardware devices to be controlled: the detector array and the DMD. The first

one has an official Python API offered by XIMEA [69]. For the former we’ve made use

of an open-source python package developed by Popoff et al. [71]. On top of this, we

intend to dive in machine learning algorithms, for which Python is highly popular, hav-

ing many third-party libraries which allow the implementation of such algorithms to be

done seamlessly. Finally, we make use of Jupyter Lab [72]: a web-based interactive de-

velopment environment for notebooks, code, and data. With all these tools, we are able

to create an ideal prototyping environment with the necessary tools for hardware control,

data manipulation, analysis and visualisation.



Chapter 5

Experimental implementation of an

optical ELM

In this chapter we demonstrate our implementation of an optical extreme learning ma-

chine. We give experimental proof of our theoretical framework developed in chapter 2,

and benchmark our system in standard regression and classification tasks. We employ

both phase and amplitude modulation schemes, as outlined in chapter 4. We also eval-

uate the machines’ learning capability with respect to the effective dimensionality of the

output space, as well as to the effect of a strong physical non-linearity (electronic satu-

ration). We arrive at the same conclusions as our numerical simulations, thus validating

our approach. We show that a higher rank may lead to greater performance, though it is

highly dependent on the nature of the data projection functions, as well as the experimen-

tal noise.

5.1 Phase modulation

For our experimental implementation of an optical ELM with phase encoding, we’ve as-

sembled the set-up illustrated in figure 5.1. It features a 50mW laser at 532nm, expanded

by a simple converging lens. The beam then reflects off the DMD and follows to a spatial

filtering stage, specifically mounted for the Lee holography technique (see chapter 4 for

details). Together, they allow to encode information within the phase profile of the inci-

dent wavefront. Notice that the beam has not been collimated nor has it passed through

a spatial filter (be it a pinhole or a single mode fibre) to achieve a gaussian mode. We’ve

chosen to do so since for our purposes it is irrelevant the spatial ”quality” of the beam,

51
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since any irregularity within it can be captured by the transmission matrix formalism due

to the linear dynamics of the set-up. Light is then coupled to a multimode fibre and, at

its output, we’ve placed a 10x objective to do the imaging and finally use a cMOS cam-

era for the detection. The fibre used features a 50µm core, which for a silica step-index

fibre amounts to a V number of 50.4, with numerical aperture of 0.171 for a 532nm wave-

length*. For such V number and for a step-index fibre, this amounts to a total number of

modes of M = 4
π2 V2 ≈ 2540. The output is a speckle pattern which is imaged through a

10x objective onto a cMOS camera.

cMOS

XIMEA 
MQ013MG10x Objective

Multimode 
Fibre

SUWTECH Laser 
@532nm

Linear 
polarizer

-1

+1

0

Array of micromirrors

1

d

1

m

. . . 

. . . 𝒙𝒊
𝒇𝑬𝑳𝑴(𝒙𝒊)

1

i

L

. . . 
. . . 

Optical
encoding

𝑓1 𝑓2

𝐿1 𝐿2

FIGURE 5.1: Illustration of the experimental set-up used for phase modulation with Lee
holography.

Through holographic methods, we can imprint any phase mask ϕ(x, y). In order to test

the theoretical analysis developed in chapter 2 we’ve chosen a one dimensional dataset

as the non-linear function f (x) =
(

sin(x)
x

)2
for a regression task, and the spiral dataset in

figure 5.2b) for a classification task. In figure 5.2 we have inside the dashed red box the

different phase masks ϕ(x, y) used for each task and respective encoding schemes. The

different values of ϕ are expressed in tables 5.1 and 5.2.

According to our framework in chapter 2 we expect that the rank of the matrix H, as

in equation 2.9, to follow table 5.3†.

*Numbers obtained at www.rp-photonics.com/v number.html . The fibre used has the inscription ”op-
tical cable 200807 50/125 LSZH 3660M ϕ3.0”.

†Note that in encoding scheme a2), despite the fact that we have two input encoding fields, they generate
redundancy within the trigonometric functions. However, after some algebra it can be shown that we predict
rank 5 as in table 5.3

www.rp-photonics.com/v_number.html


5. EXPERIMENTAL IMPLEMENTATION OF AN OPTICAL ELM 53

0

0 𝜙

0

𝜙1𝜙2

0

𝜙1 𝜙2

𝜙3 𝜙4

0

𝜙1𝜙2

0

𝜙1 𝜙2

𝜙3 𝜙4

𝜙(𝑥, 𝑦)

a)

b)

a1) a2) a3)

b1) b2)

Region coupled to 
the fiber

FIGURE 5.2: Illustration of the employed encoding schemes for phase modulation.

a1) a2) a3)

ϕ = 2π x−xmin
xmax−xmin

ϕ1 = 2π x−xmin
xmax−xmin

ϕ1 = 2π x−xmin
xmax−xmin

ϕ2 =
(

2π x−xmin
xmax−xmin

)2

ϕ2 = 2π − 2π x−xmin
xmax−xmin

ϕ3 =
(

2π x−xmin
xmax−xmin

)0.5
ϕ4 =

(
2π x−xmin

xmax−xmin

)4

TABLE 5.1: Phase modulation encodings for the regression task according to figure 5.2.

b1) b2)

ϕ1 = 2π x−xmin
xmax−xmin

ϕ1 = 2π x−xmin
xmax−xmin

ϕ3 = 2π
(

x−xmin
xmax−xmin

)2

ϕ2 = 2π
y−ymin

ymax−ymin
ϕ2 = 2π

y−ymin
ymax−ymin

ϕ2 = 2π
(

y−ymin
ymax−ymin

)2

TABLE 5.2: Phase modulation encodings for the classification task according to figure 5.2.

ϕ(x, y)
a1) a2) a3) b1) b2)

rank(H) 3 5 21 7 21

TABLE 5.3: Prediction of the rank of the matrix H according to our model for phase
modulation.

5.1.1 Results and discussion

In our experiment, we’ve used a region of 300x300 pixels on the DMD for modulation,

and chose νx = 2π × 1
5.5 and νy = 2π × 1

5.125 for equation 4.1. For the regression task,

we’ve used a total dataset of 64 samples in order to demonstrate both the rank of H as for

the regression performance. For the classification task, we’ve used 32 samples per class to

demonstrate the rank of H, and a dataset of 128 samples per class for training. In either
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case, the training-test split followed a ratio 80%-20%. For the training we’ve used the pop-

ular python package scikit-learn [61], both for classification and regression. For regression

tasks we’ve used a Ridge Regression model, as per equation 2.9, while for classification

we’ve used a Logistic Regression model, as per equation 2.14. The reason for the choice

of a small training set when demonstrating the predictions of rank(H), is experimental

noise. Indeed, we noticed that when acquiring consecutive datasets, with the same sam-

ples, there was an average relative deviation to the first dataset of 5% +/- 4%. This noise

is suspected to have origin in some or all of the following: the stability of the laser source,

the DMD itself through thermal effects, stray light, shot noise in the digital camera and

mechanical vibrations in the DMD and multimode fibre. If the number of samples were

too high, the effect of two neighbouring samples on the output would be indistinguish-

able from random noise. Finally, each image collected on the camera has been downscaled

through a local mean function such that the resolution went from 640x512 to 80x64. By

doing so, we’ll save time on the digital computations and the downscale method is com-

patible with a hardware implementation through large area photodetectors. For each

encoding scheme, we’ve collected 10 datasets
{

Hexp
i

}M=10

i=1
. Finally, to avoid overfitting

issues and better evaluate the generalisation capability of the model, all the benchmarks

that follow have been tested on all 10 datasets.

To better evaluate the rank of the matrix H, let us model each experimental Hexp
i as

Hexp
i = H + Ni (5.1)

Where Ni is some random matrix. Our best approximation of H is

⟨Hexp⟩ = 1
M

M=10

∑
i=1

Hexp
i (5.2)

In that case, we can approximate the experimental noise as

Nexp
i = |Hexp

i − ⟨Hexp⟩ | (5.3)

Since the rank of a matrix is reflected on the number of non-zero singular values, we can

then approximate rank(H) ≈ rank(⟨Hexp⟩). However, ⟨Hexp⟩ is a mere approximation,

thus we need a better criterion to count the number of relevant singular values. To do so,

we resort to Weyl’s inequality for singular values [73]

|σk(H + Ni)− σk(H)| ≤ σ1(Ni) (5.4)
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where σk(M) is the singular value k of a matrix M, and σ1(Ni) is the highest singular value

of the noise matrix. Looking at equation 5.4 we see that if rank(H) = r then there will be

r singular values above the highest singular value of the noise matrix.

FIGURE 5.3: Singular value decomposition for the different encoding schemes within
phase modulation. The dashed lines represent the highest singular value from the noise
matrix for each encoding scheme. The solid and dashed lines are colour matched, as well

as with figure 5.4

The results and performance benchmarks are shown in figure 5.3 and 5.4, and are

summarised in table 5.4. From figure 5.3 we see that for encoding schemes a1) and a2) the

prediction on the number of singular values above the noise level (i.e. the highest singu-

lar value of the noise matrix) matches exactly our prediction in table 5.3. The non-linear

encoding, a3), on the other hand, does not. Here, we predict that the reason as to why this

happens is that the corresponding modulation on equation 2.20 to such singular values is

much smaller than the others, making the corresponding contributions indistinguishable

from noise. In fact, this scheme is the one that shows the smallest contrast with the sin-

gular values regarded as noise. As predicted, the effect of the saturation is to increase the

amount of information that is carried out to H. It is interesting to note that even though

the encoding scheme a3) and the a2) with saturation present a similar number of singu-

lar values above the noise threshold, their respective performance are the worst and best.

However, there is a performance increase when going from scheme a1) to a2), which is

also an increase in the rank of the matrix H.
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FIGURE 5.4: Regression performance of the machine on the training set (semi-transparent
circles) and test set (solid triangles), for the different encoding schemes. The colours are

matched with figure 5.3.

Encoding scheme
rank(H)

(Prediction)
rank(H)

(Experimental)
Number of

input features
RMSE (%)

a1) 3 3 {b1} 1.712
a2) 5 5 {b1, 2π − b1} 0.697
a3) 21 8 {b1, b0.5

1 , b2
1, b4

1} 2.510
a2) + saturation - 9 {b1, 2π − b1} 0.002

TABLE 5.4: Experimental results on the regression task.

Thus, we conclude that a higher rank(H) may indicate a better performance, how-

ever, it is not an ideal metric. The reason for that lies in the nature of the projection as

evidenced by equation 2.20. Making a more complex encoding does in fact increase the

complexity of the projection, however it will always have a sinusoidal and polynomial

nature. Admittedly, such basis of functions can be quite powerful, but the outcome from

a physical non-linearity, as is the case of saturation, will fundamentally modify the basis

of the projection. With this in mind, the reason why the saturation has worked so well

may lie in the alteration of the basis functions to perform the mapping from the input

electric field to the intensity of the speckle pattern, in a way that such functions make the

regression of f (x) more tractable, all the while keeping the rank of the outputs the same.

Nonetheless, within the saturation regime, the detection is also less prone to noise, which
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has aided the performance further.

Having benchmarked the machine on a regression task we go on to a classification

task. As a first challenge we choose the task of distinguishing between the classes rep-

resented by the blue and red dots in figure 5.5. We have chosen this dataset because it’s

circular symmetry should allow for an easy task for our machine due to the sinusoidal

nature of the projection. Alas, our set-up has been able to solve this problem quite re-

markably as can be seen from figure 5.7. In this case, even though the effect of saturation

and a non-linear encoding have increased the rank of H, the performance remains unal-

tered, which is explained by the symmetry of the dataset.

FIGURE 5.5: Circular dataset.

FIGURE 5.6: Singular value decomposition for the different encoding schemes within
phase modulation. The dashed lines represent the highest singular value from the noise

matrix for each encoding scheme. The solid and dashed lines are colour matched.
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FIGURE 5.7: Classification performance of the machine on the test set overlaid on a rect-
angular grid of 40x40 points sampled across the respective domain, for the different en-

coding schemes.

Encoding scheme
rank(H)

(Prediction)
rank(H)

(Experimental)
Number of

input features
Accuracy (%)

b1) 7 7 {b1, b2} 98.08
b2) 21 9 {b1, b2

1, b2, b2
2} 94.23

b1) + saturation - 12
{b1, b2}

+ saturation
94.23

TABLE 5.5: Experimental results on the classification task for the circular dataset.

To further benchmark the capabilities of our system, we have repeated the above on a

more complicated dataset, as shown in figure 5.8. In this case, we can see that the effect

of a non-linear encoding has diminished the accuracy (see table 5.6), and the effect of

saturation is unnoticeable. Nonetheless, the machine exhibits great performance, offering

an accuracy above 90%.

FIGURE 5.8: Spiral dataset.
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FIGURE 5.9: Singular value decomposition for the different encoding schemes within
phase modulation. The dashed lines represent the highest singular value from the noise

matrix for each encoding scheme. The solid and dashed lines are colour matched.

FIGURE 5.10: Classification performance of the machine on the test set overlaid on a
rectangular grid of 40x40 points sampled across the respective domain, for the different

encoding schemes.

Encoding scheme
rank(H)

(Prediction)
rank(H)

(Experimental)
Number of

input features
Accuracy (%)

b1) 7 7 {b1, b2} 92.31
b2) 21 9 {b1, b2

1, b2, b2
2} 86.54

b1) + saturation - 12
{b1, b2}

+ saturation
92.31

TABLE 5.6: Experimental results on the classification task for the spiral dataset.
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5.2 Amplitude modulation

For the amplitude modulation study, the experimental set-up is in every way similar to

the one in figure 5.1, the only difference being the optical encoding and the spatial filtering

section where now we only need to filter out the first order of diffraction of the blazed

grating.
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FIGURE 5.11: Illustration of the experimental set-up used for amplitude modulation.

The amplitude encoding schemes follow very closely the ones used for phase mod-

ulation as can be seen in figure 5.12, we only have to replace ϕ(x, y) → A(x, y) and the

background plane is now always on the ”On” state. The amplitude modulation follows

the procedure outlined in chapter 4. In tables 5.8 and 5.7 are outlined the encodings in

detail and in table 5.9 are the predicted ranks of the outputs for the different encoding

schemes.

a1) a2) a3)

ϕ = Amax
x−xmin

xmax−xmin

ϕ1 = Amax
x−xmin

xmax−xmin

ϕ1 = Amax
x−xmin

xmax−xmin

ϕ2 = Amax − Amax
x−xmin

xmax−xmin

ϕ2 = Amax

(
x−xmin

xmax−xmin

)1.2

ϕ3 = Amax

(
x−xmin

xmax−xmin

)0.65

ϕ4 = Amax

(
x−xmin

xmax−xmin

)3

TABLE 5.7: Amplitude modulation encodings for the regression task according to figure
5.12.
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FIGURE 5.12: Illustration of the employed encoding schemes for amplitude modulation.

b1) b2)

ϕ1 = Amax
x−xmin

xmax−xmin
ϕ1 = Amax

x−xmin
xmax−xmin

ϕ3 = 2Amax

(
x−xmin

xmax−xmin

)3

ϕ2 = Amax
y−ymin

ymax−ymin
ϕ2 = Amax

y−ymin
ymax−ymin

ϕ2 = Amax

(
y−ymin

ymax−ymin

)3

TABLE 5.8: Amplitude modulation encodings for the classification task according to fig-
ure 5.12.

A(x, y)
a1) a2) a3) b1) b2)

rank(H) 3 3 15 6 15

TABLE 5.9: Prediction of the rank of the matrix H according to our model for amplitude
modulation.

5.2.1 Results and discussion

For this part of the experiment, we’ve again used a region of 300x300 pixels of the DMD

screen, however, it was noted that the amplitude modulation effect on the rank of H

was far less pronounced regardless of the number of samples, either for regression or

classification tasks. Thus, Weyl’s inequality was no longer a useful metric since the noise

didn’t present itself as a perturbation to our system. In order to still be able to validate

table 5.9, we measured 100 datasets of 300 samples each for regression and 120 datasets

and 300 samples for classification. As we calculate ⟨Hexp⟩ with an increasing number

M of datasets, one should see a suppression of the noise contribution to the singular
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value spectrum of H, while the ones from that effectively arise from information encoding

should either be stable from the beginning or stabilise after an adequate averaging.

The results are shown in figure 5.13 and 5.14. Looking at panels a2) and b2) of each fig-

ure we see that the number of constant singular values matches exactly as those predicted

in table 5.9. It is also interesting to note that in panels a1) and a2) the ELM prediction is

very close to an inverted parabola, which makes sense given the quadratic polynomial

nature of the effective activation function (Iil
out, in equation 2.20). As for the non-linear en-

codings (panels c) in each figure), we’re only able to see 6 constant values, however, there

seems to be some stabilization of the higher index singular values when 100 datasets were

used, indicating that there is further information after full noise supression, however, to

achieve such effect many more datasets would have to be taken. Furthermore, we see a

performance increase with the use of a non-linear encoding, and is accompanied by the

rank increase, which is in contrast with the behaviour in phase modulation. Also note

that the same stabilization appears in some cases where it wasn’t predicted. The reason

for such effect is that while the modulation is mainly on the wave amplitude, there may be

some unintentional phase modulation, whether by diffraction effects on the DMD or from

wavefront aberrations, thus enabling a higher rank of H at the output than predicted, al-

beit being a much weaker effect. In both tasks, there’s a clear improvement of the overall

performance of the machine when including camera saturation.

Bearing in mind the previous results, we also benchmark the machine on the well-

known MNIST dataset [74]. To do so we’ve used a total dataset of 1790 images of 28x28

pixels with 16 amplitude levels, with a train-test split of 80%-20%. For greater perfor-

mance we’ve made use of the non-linear detection on the camera. The results are as

shown in figure 5.15, where we were able to achieve an accuracy over 90%.
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FIGURE 5.13: Experimental results with amplitude modulation on a regression task. Pan-
els a), b), c),d) and e) correspond to the encoding schemes a1), a2), a3) and a1) and a2)
with camera saturation, respectively. The first column in each panel demonstrates the
performance of the model on the training set (semi-transparent red circles) and test set
(blue triangles). In the second column it’s a representation of the evolution of the first 9
singular values of ⟨Hexp⟩ as a function of M, the number of datasets for averaging. In the
third column, it’s plotted the singular value spectrum of ⟨Hexp⟩ and it’s evolution for an

increasing M.
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FIGURE 5.14: Experimental results with amplitude modulation on a classification task.
Panels a), b), c) and d) correspond to the encoding schemes b1), b2) and b1) and b2)
with camera saturation, respectively. The first column in each panel demonstrates the
binary classification performance on the test set and on a rectangular grid of 40x40 points
sampled across the respective domain. In the second column it’s a representation of the
evolution of the first 9 singular values of ⟨Hexp⟩ as a function of M, the number of datasets
for averaging. In the third column, it’s plotted the singular value spectrum of ⟨Hexp⟩ and

it’s evolution for an increasing M.
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FIGURE 5.15: Confusion matrix with amplitude modulation on the MNIST dataset.

5.3 Final remarks and future work

In this chapter we have been able to experimentally validate our theoretical framework

developed in chapter 2, thus proving that our set-up constitutes an optical implemen-

tation of an extreme learning machine. We have verified the rank scaling laws, as per

equations 2.39 and 2.42, for small numbers of input encoding fields. Furthermore, we’ve

benchmarked our machine on standard machine learning tasks having achieved remark-

able performance. With our results we were able to draw conclusions on the learning

capabilities of an ELM from a more fundamental point of view, greatly complementing

the current literature on extreme learning machines, particularly its optical implementa-

tions.

From a technological standpoint, our results, allied with the simplicity of our set-up

can be quite stimulating. On accounts of energy costs, our set-up is highly efficient since it

does not dissipate significant amounts of energy anywhere besides the transduction pro-

cess, and since there aren’t any optical non-linearities, the system supports wavelength

multiplexing, allowing a much higher capacity computation to take place, given that we

have the necessary detection system. Note as well that the rank of the outputs in any ex-

periment never got near the full dimensionality of the output space. This indicates that the

detection could be greatly simplified, allowing for, not only a much simpler detector, but

also faster and cheaper to be employed. Furthermore, all of the remarks thus far indicate

that the system is compatible with a chip-scale implementation, which would allow for a

more deployable and compact technology to reach the market. As an example, a simple
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MMI (multi mode interferometer) could harness the same fundamental principles as our

set-up. Finally, it’s important to recognise that we have studied the computing capabilities

of our machine with an artificial encoding of the information on the wavefront. Indeed, as

it stands, the information goes from the electronic domain, to optical and then electrical

again. This forces the transduction process to take place twice, and induces a great energy

cost. At the same time, numerous technologies nowadays rely on the detection of optical

signals for further processing, usually being fed to a machine learning algorithm. Two

particularly interesting examples include: cell classification through backscattered light

on optical tweezers and LIBS (Laser Induced Breakdown Spectroscopy) spectrum, both

of which are active fields of research within our group. With our set-up, we can skip a

transduction step and allow for most of the computation to take place within the analog

domain, thus saving a significant amount of energy, as well as time due to the decreased

latency associated with the optical to electrical conversion.

As we’ve seen, employing our set-up to an optical signal for analog processing can

be quite advantageous. However, at the moment, our machine still needs to convert an

optical signal to an electrical signal and perform some calculations in the digital domain.

This induces a limiting latency and avoidable energy consumption, whose culprit are the

advanced electronics. However, the mathematical operation performed for prediction,

Hiβ, is a simple dot product which can be performed in the analog domain. By bypassing

the digital computations, we will be able to employ much cheaper, energy-efficient and

faster components that will allow to perform computations at a high speed. This will be

the topic of discussion in the next chapter.



Chapter 6

Experimental implementation of an

analog ELM

From previous work, we were able to show that it is possible to construct an extreme

learning machine within an optical platform by leveraging the complex dynamics of a

multimode fibre, however, such a machine still required the use of advanced electron-

ics to perform the final digital computations for either a classification or regression task.

Our first approach to achieve a fully analog computation has been inspired in the recent

success of diffractive neural networks [40], however this has proven to be ineffective.

Nonetheless, the results of this attempt can be seen in Appendix F where we explore

wavefront optimisation algorithms, and in Appendix G where we apply such algorithms

to train our network. In this chapter, we demonstrate our second approach, where we

intend to simplify the computation further and build an analog computer, based on an

ELM architecture, whose inner workings rely on a harmonious interplay between optics

and electronics.

6.1 Problem statement

As can be seen in chapter 5 we had remarkable performance when testing the machine

on a regression task with a non-linear function, namely f (x) =
∣∣∣ sin(x)

x

∣∣∣2. For that case, the

problem at hand was the following

min
β∈RL×m

||Hβ − T||2 + λ||β||2 (6.1)

67
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where Hi is the intensity pattern recorded on the camera for the sample xi with respective

target value Ti such that m = 1. Notice that having found the best solution for β, the

operation that allows computing the desired target function is yi = ∑j Hijβ j which is

a simple weighted sum of the intensity pattern. Analogically, the sum of an intensity

pattern can be done through an integral within a photodetector, the only thing left is a

clever amplitude modulation, which we have already explored with the DMD in chapter

4, to apply the respective weights β j to the output channels.

FIGURE 6.1: Illustration of the information flow through our new set-up for a fully analog
ELM. The elements within the red dashed box consist of the set-up studied in chapter 5.

6.2 Experimental set-up

The experimental set-up is shown in figure 6.2. We use a 50mW laser with central wave-

length at 532nm. The λ/4 plate along with the linear polarizer are used to control the light

intensity throughout the optical set-up. The beam is expanded and collimated through a

telescope system, and goes into a 50:50 beamsplitter, where the perpendicular reflection

goes to a beam dump (not shown) and the parallel goes into the DMD screen, where it

illuminates only half of the screen as shown. Notice that the mirrors of the DMD can be

only be in an ”on” or ”off” state, thus there will be two possible paths, each at 12º with

respect to the incident beam. We shall call henceforth the bottom path the ”on” path, and

the top path the ”off” path (green and blue illustrations, respectively). For the incident

beam, we will generate a Lee hologram on the corresponding side of the DMD in order to

modulate the phase of the input field. Furthermore, we employ a 4f imaging system on
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the ”on” path which allows for the appropriate spatial filtering needed for phase modu-

lation and allows for a seamless modification of the modulation principle from phase to

amplitude of the input light at the multimode fiber since the 3 spots will coincide at the

focal spot of the last lens. From an experimental point of view, it’s also worth pointing out

that some light of the input beam will go into the ”off” path due to the pixels in the ”off”

state, which will contaminate the measurements on the digital camera. In order to pre-

vent this, we place a linear polarizer perpendicular to the one at the input. The output of

the MMF is then collimated with a 10x objective. Such output is a speckle pattern, whose

optical path is represented in blue in the schematics, and is directed to the unused part

of the DMD screen as shown. The output of the DMD is then imaged with a 4f system,

allowing for a spatial filtering and beam reduction to take place.
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FIGURE 6.2: Experimental set-up for the implementation of analog extreme learning ma-
chine.

When performing the experiment, there were two major challenges that we faced, and

to better understand them we’ll go through each individually.
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6.2.1 Output downsampling

The first challenge we need to tackle is to choose the number of output channels we want

to consider. In chapter 5, this was done by downscaling an image detected on the full

screen of our digital camera. As stated, we wish that on light’s second pass through the

DMD, an element-by-element matrix multiplication to take place, but first we must find

such matrix β. To this end, a one to one correspondence must be established between

macropixel region on the DMD and output channel on the camera. While there are differ-

ent ways one can achieve this, we have opted for an approach that best emulates an array

of large photodiodes. The method is illustrated in figure 6.3. Prior to the data acquisi-

tion, we run Nc binary amplitude masks on the DMD, one per each output channel. For

each frame, we collect a high exposure image on the camera, and then apply a threshold

operation on the image. Such threshold is chosen to be above the shot noise level on the

camera. By doing so, we end up with Nc digital images that select the region of space cor-

responding to the output channel. Then, to generate a downsampled image, we collect

an image from the DMD and then multiply this image by the respective phase masks and

the integral over all the array is the value to consider for the output channel, as illustrated

on the bottom part of figure 6.3.

. . . . . .

DMD Macropixel masks
Region selection

Threshold 
operation

Binary mask

𝑁𝑐 binary masks

∑

Region selection

Repeat for 
every 𝑁𝑐

FIGURE 6.3: Illustration of the downsampling method. In the upper part are exemplified
the methods for generation of digital binary masks and on the bottom is represented the

digital downsampling method.
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While this method is, in principle, quite accurate, it has some drawbacks. First of, the

threshold function isn’t accurate enough to select the correct region, due to poor align-

ment of the optical elements which results in unwanted diffraction to take place. Secondly,

it was observed a correlation between neighbouring pixels, which allied with unwanted

diffraction creates a big deviation from the ideal scenario. Thus, a trade-off situation

emerges: if we choose many output channels, we get more resolution and may get more

performance, but we get greater diffraction, thus reducing the quality of each channel.

6.2.2 Calculation of the weight matrix

As we’ve said previously, the problem at hand is to find the solution to equation 6.1, but

oftentimes that solution has negative weights, which we’re not able to implement in the

DMD. There are two solutions for this. On the one hand we can define β′ such that

β′ =
β − βmin

βmax − βmin
nlevels (6.2)

The new targets are

Hβ′ = H

(
β − βmin

βmax − βmin
nlevels

)

= Hβ
nlevels

βmax − βmin
− H

βmin

βmax − βmin
nlevels

= T
nlevels

βmax − βmin
− H

βmin

βmax − βmin
nlevels (6.3)

from equation 6.3 we can see that the new predictions are simply a scaled version of

the original ones, T, plus a constant bias. Thus, in principle, it would be possible to

compensate for the negative weights while applying a purely positive β. However, this

attempt has not been successful experimentally. The other solution is to apply constraints

to the optimisation algorithms and find the best solution within the positive domain. As

for the discrimination, we’ve employed the following

β′ = int

(
β − βmin

βmax − βmin
nlevels + 0.5

)
(6.4)

where the int(·) operation returns the lowest integer value a decimal value may encom-

pass. It’s worth noting that we’ve found this discrimination to be the least limiting step,

whereas the constraints on the optimisation were quite significant, often resulting in an

order of magnitude of difference in the mean squared error when benchmarking the ma-

chine.
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6.3 Results

Having considered the previous remarks, we have chosen the number of output channels

as 400 (20 in each direction) and 9 modulation levels. To test for generalisation capability

against noise, we’ve evaluated the solutions not only on train and test datasets, but on

four extra datasets. The mean squared error as a function of the regularisation parameter,

α, as can be seen in figure 6.4, where it’s highlighted the selected α value for the model

with the vertical dashed black line, and its respective performance is depicted in figure

6.6.

FIGURE 6.4: Mean squared error as a function of the regularisation parameter α for ridge
regression, for several datasets. The dashed black line represents the value chosen for the

model.

FIGURE 6.5: Calculated matrix β, as well as β′ as per equation 6.4 and resulting speckle
pattern with β′ matrix applied on the DMD, following the amplitude modulation dis-

cussed in chapter 4.
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FIGURE 6.6: Regression performance on all datasets.

Finally, we test the machine in the analog domain, and the results can be seen in figure

6.7. As can be seen from the figure, it is clear that we were able to replicate the matrix

multiplication operation in the analog domain, as the curves share a highly similar profile.

The discrete version of β resulted in a small vertical shift, but the curve shape was kept.

Do note that in this plot, we applied the compensation described in equation 6.3 so as to

get both curves (β and β′) on the same scale.

FIGURE 6.7: Analog performance of the machine. In the red lines we have the predictions
resultant from digital calculation, whereas the blue curve stems from a simple sum across

the camera’s pixels.
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6.4 Final remarks and future work

In this chapter we have sought to further extend our optical implementation of an ex-

treme learning machine into the analog domain by implementing a matrix multiplication

operation with physical devices. Our implementation allows the theoretical framework

developed in chapter 2 to retain validity, thus proving that this is in fact a fully analog

computing machine. Nonetheless, we have seen that we were not able to achieve the

same levels of performance regarding the regression task as we did in chapter 5. This can

be attributed to the limitation to only positive weights in β, and not the implementation

itself. In fact, on that regard, we have been remarkably successful as the analog curve

profile follows closely the best achievable curve with digital calculation, given the current

constraints. For this reason we propose an experiment for a future implementation in fig-

ure 6.8 that should be able to surpass these limitations. The operating principle is in every

way similar to the previous work, but with a key difference present in DMD2. Our major

limitation thus far has remained at a fundamental level, by restricting βi ≥ 0. To solve

this, we simply note that for any βi ∈ R it is always possible to write β = β+ − β−, such

that β+
i ≥ 0 and β−

i ≥ 0. Allied with our previous results, we can now implement the

two matrix multiplications (β+ and β−) independently on DMD2 and the resulting sums

can be subtracted by simple electronics to recover Xiβ.

FIGURE 6.8: Proposed future experiment.
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A question remains: have we built an all optical analog computer? In both of our

implementations we have relied on two non linear physical operations to guarantee the

non linear activation functions on the output channels required by the ELM framework.

Such operations have been the non linear response curve of photodetectors, and the in-

tensity measurement in itself. Relying on them have allowed us to envision and build

an analog computer. Generally, an optical computer is characterised by light controlling

light for the various tasks underlying a computer: data processing, routing, transmission

and storage. Despite this, at the end of any computation there is an output, which will be

turned into a signal that must be interpreted. When using optics, such output generally

takes the form of an intensity measurement, as the electric field is a far too expensive mea-

surement to make. Thus, even the most advanced optical computer will need a detection

stage in order to interpret the outcome. Nonetheless, such detection takes no active part

in the computation, thus, in that perspective, we have not built an all optical computer.

Instead, our machine relies on an harmonious interplay between optics and electronics

for the computation. Consequently, from an etymological point of view, we can affirm

that we have built a fully analog optoelectronic extreme learning machine.

Finally, it is interesting to note that our system can be transformed into a fully op-

tical computer by the insertion of an optical non-linearity, such as a χ(3) non linearity.

Admittedly, our theoretical framework in chapter 2 would no longer be valid. Instead,

the non-linear transformations would be guaranteed by the evolution of the speckle pat-

tern through a non linear shrodinger equation, as per equation 2.17. Plus, due to the

fast response of Kerr mediums (typically on the pico- or sub-pico-second response times

[75]) our machine could still be operated within the ELM regime. Another plausible ap-

proach would be to add a saturable absorber such as grafene. The output weights could

still be implemented in DMD2, as per figure 6.8, but now the photodetectors would act

merely as intensity detectors. They would inadvertently contribute a further source of

non-linearities, but the crucial computation would be largely taken cared of by the non-

linear medium. An all-optical ELM also constitutes a goal within our research and work is

being done in such directions. We have already developed some necessary tools for such

set-ups (see Appendix B and C), and we aim to develop further towards that objective.





Chapter 7

Conclusions

Deep neural networks have become a ubiquitous tool across many scientific domains and

areas of knowledge. Yet, the performance of neural networks is intimately tied to its

scalability, and with the impending plateau of Moore’s law, emerges a need to continue

performance scaling in the absence of electronics miniaturization. A promising route lies

within hardware specialization, especially for machine learning applications. Leveraging

optics for such implementations can bring significant performance gains due to the high

energy efficiency, intrinsic parallelism, high bandwidth and speed of operation. Among

the various neural network architectures, ELMs are particularly attractive for hardware

implementations due to its simplicity. Thus, the first part of this thesis was dedicated

to understanding the mathematical foundations of these networks, with emphasis on a

particular optical ELM set-up. The second part consists of a set of numerical simulations

that allowed us to confirm our previously studied theoretical model. In the third part,

we present the experimental results for our physical implementation of an optical ELM.

Finally, in the last part, we extend our machine further into the analog domain, and show

our experimental results that demonstrate the realization of a primitive optoelectronic

computer based on a non-Von Neumann architecture. In detail, the conclusions of each

chapter are outlined as follows.

In chapter 2 we review the mathematical foundations of ELMs and how it fits within

the ML landscape. We also review the state of the art on accounts of optical ELMs and

conclude that there is a lack of a more fundamental understanding of the inner workings

of such machines. To that end, we develop a theoretical framework for an optical ELM

based on optical complex media, which allows us to not only identify the effective activa-

tion functions of the output channels, but also infer on the dimensionality of the output

77
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space, a key parameter for the learning capabilities of an ELM. Alas, we come to the con-

clusion that the number of dimensions of the output space (rank(H)) scales quadratically

with respect to the number of input encoding features on the wavefront, be it in ampli-

tude, phase or their combined encoding mechanisms.

In chapter 3 we present a set of numerical simulations based on speckle generation,

which allowed us to corroborate the theoretical framework by demonstrating the rank

scaling laws for the various encoding mechanisms. At the same time, we have also

benchmarked the system in standard machine learning tasks, and were able to identify

the rank(H) as an important performance metric. Finally, we also evaluated the effect

of a strong physical non-linearity and concluded that it leads to a significant increase in

overall performance of the ELM.

In chapter 4 we simply introduce the experimental equipment transversal to every

experiment and outline the amplitude and phase modulation techniques employed.

In chapter 5 we have given experimental evidence of the rank scaling laws in phase

and amplitude modulation, in the low dimensionality cases. The observed discrepancies

can be attributed to noise in the system. Through our benchmarks, we have concluded

that the rank(H) is an important performance metric, but the nature of the non-linear

projection of the inputs cannot be overlooked. Thus, rank(H) is not ideal in predicting

the performance of an ELM, but can be helpful.

In chapter 6 we demonstrate a fully analog optoelectronic ELM. We tested our set-up

in a regression task, and we were able to faithfully reproduce a curve that closely resem-

bled that of the best achievable curve in the digital domain, thus proving the computing

capabilities of our machine. We outline the main challenges faced, and we propose a

future experiment that should be able to surpass them.

To put it simply, this thesis explores, from an experimental and theoretical point of

view, the physical implementation of an emerging neural network architecture, ELM, in

an optical platform. Nature has inspired us in many technologies: from velcro to aircrafts,

modern wind turbines, and even paint. It was only a matter of time until we started to

do the same for computing. It is within this perspective that physical implementations of

ELMs have become particularly relevant. They are able to harness the complex dynamics,

energy efficiency and speed of operation that only nature provides, and then combines

these feats with the digital domain in a harmonious way to provide a computing plat-

form. Doing so with optics brings natural advantages, and the widespread use of it as
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information carrier nowadays, makes optical ELMs particularly relevant for end-of-line

applications. Despite this, the field of optical ELMs is still its infancy, and we hope that

our work has contributed to a deeper understanding of these kinds of machines, allowing

for a better design and task selection, paving the way to the future of computing.





Appendix A

Mathematical derivations

Linear regression solutions

In this section we wish to derive the analytical expression for the solution of the linear

system of equations given by

Hβ = y (A.1)

where H ∈ RN×L, β ∈ RL×1 and y ∈ RN×1. There are two scenarios here: i) N ≥ L,

where the system os overdetermined, and ii) N < L, where the system is underdetermined.

In the first case, the solution to equation A.1 can be found via minimising ||y − Hβ||, but

in the latter, doing so does not provide a unique solution [76]. We will examine both cases

carefully, and arrive at closed form solutions to both.

Overdertermined system: N ≥ L

The goal is to solve

min
β∈RL×1

||y − Hβ||2 (A.2)

We’ll define J(β) = ||y − Hβ||2, and let β∗ be the solution to A.2. In that case, we know

that ∂J
∂β |β=β∗ = 0:

∂J
∂β

= (Hβ − y)T(Hβ − y)

=
∂

∂β

[
(Hβ)THβ − (Hβ)y − yTHβ + yTy

]
=

∂

∂β

[
(Hβ)THβ − 2(Hβ)y + yTy

]
= 2HTHβ − 2HTy

81



82 OPTICAL EXTREME LEARNING MACHINES: A NEW TREND IN OPTICAL COMPUTING

Setting this derivative to 0 we have

∂J
∂β

= 0 (A.3)

HTHβ∗ = HTy (A.4)

Note that equation A.4 only has a unique solution for β if HTH is invertible. As it happens,

HTH is a Gram matrix [77] and it is invertible. The solution then follows

β∗ =
(

HTH
)−1

HTy (A.5)

Underdetermined system: N < L

For the case when N < L the system of equations A.1 is underdetermined, and there are

infinite solution β∗ for which J(β) is minimized. Nonetheless, it would still be useful to

find a closed form solution. Do note that equation A.5 is no longer valid here since the

matrix HTH is no longer invertible as it is not full rank, having a non-trivial null space.

While there may be plenty of formal ways to tackle this problem, we will do it in a rather

ingenious way. We start by looking into the null space of H, N (H), defined as

N (H) =
{

v ∈ RL×1 : Hv = 0
}

(A.6)

Let us also define the column space of H, C(H) as

C(H) =
{

v ∈ RN×1 : v = Hw, w ∈ RL×1
}

(A.7)

By the fundamental theorem of linear algebra [78], it can be shown that:

RL×1 = N (H)
⊕

C(HT) (A.8)

RN×1 = N (HT)
⊕

C(H) (A.9)

By definition, we have y ̸= 0, thus β cannot belong to N (H). Since β ∈ RL×1, this implies

that β ∈ C(HT), which allows us to write β = HTw, where w ∈ RN×1. In that case, we

can write

Hβ = y

HHTw = y (A.10)
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Note that HHT is full-rank, and is invertible, in which case

w =
(

HHT
)−1

y (A.11)

from which we can write β as

β = HT
(

HHT
)−1

y (A.12)

We have started by saying that for N < L there were infinite solution to the linear

system A.1. Then, how come we have arrived at a single solution as in A.12? It can

be shown [76] that what we have done was to find a particular solution of A.2 which

simultaneously minimises ||β||. Despite this nice formulae, oftentimes we recur to the

regularized version of A.2. Let us see how to arrive at the solutions.

Regularized least squares

Again, we have the case for N ≥ L and N > L.

Overdetermined systems, N ≥ L

We redefine J(β) = ||Hβ − y||2 + λ||β||2, for λ ∈ R. In matrix form, it reads

J(β) = (Hβ)THβ − 2(Hβ)y + yTy + λβT β (A.13)

Taking the derivative and setting it to 0 we get

2HTHβ − 2HTy + 2λβ = 0

β
(

HTH + 1λ
)
= HTy

β =
(

HTH + 1λ
)−1

HTy (A.14)

Underdetermined systems, N < L

For the case when N < L, the only restriction we have placed was that β remained in the

column space of HT, β = HTw. We can then rewrite J(β) = J(HTw) = J(w)

J(w) = (HHTw)THHTw − 2(HHTw)y + yTy + λ
(

HTw
)T

HTw (A.15)

Again taking the derivative with respect to w and setting it to 0, we have

HHTHHTw − HHTy + λHHTw = 0 (A.16)
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since HHT is invertible, we can multiply both sides by
(

HHT
)−1

. After some algebra we

get

w =
(

HHT + 1λ
)−1

y (A.17)

from which we can now find β as

β = HT
(

HHT + 1λ
)−1

y (A.18)

Mathematical model of an optical extreme learning machine

In this section we present the mathematical derivation of equation 2.20 in greater detail.

Our starting point will be 2.19, which we replicate here:

El
out(xi) =

K

∑
j=1

K

∑
k=1

f j(xi)Mlk(ein
j )k (A.19)

In the following, we will omit the functions arguments (xi), and replace it by a superscript

i. The intensity can now be written as:

Iil
out =

K

∑
j=1

K

∑
k=1

K

∑
p=1

K

∑
q=1

f i
j ( f i

p) ∗ Mlk Mlq

(
ein

j

)
k︸ ︷︷ ︸

δjk

(
ein

p

)
q︸ ︷︷ ︸

δpq

=
K

∑
j=1

K

∑
p=1

f i
j ( f i

p)
∗Ml j M∗

lp

If we now let Mlk = |Mlk|eiϕlk we can write:

Iil
out =

K

∑
j=p=1

| f i
j |2|Ml j|2 +

K

∑
j=1

K

∑
p ̸=j

f i
j ( f i

p)
∗Ml j Mlp

=
K

∑
j=p=1

|ai
j|2|Ml j|2 +

K

∑
j=1

K

∑
p ̸=j

ai
ja

i
pei(bi

j−bi
p)|Ml j||Mlp|ei(ϕl j−ϕlp)

=
K

∑
j=p=1

|ai
j|2|Ml j|2 +

K

∑
j=1

K

∑
p>j

ai
ja

i
p 2|Ml j||Mlp|︸ ︷︷ ︸

Cl jp

cos
(

bi
j − bi

p + ϕl j − ϕlp

)

=
K

∑
j=p=1

|ai
j|2|Ml j|2 +

K

∑
j=1

K

∑
p>j

Cl jpai
ja

i
p


cos(bi

j − bi
p) cos(ϕl j − ϕlp)︸ ︷︷ ︸

ξe
ljp

− sin(bi
j − bi

p) sin(ϕl j − ϕlp)︸ ︷︷ ︸
ξo

ljp
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Finally, we can write:

Iil
out =

K

∑
j=p=1

|ai
j|2|Ml j|2

+
K

∑
j=1

K

∑
p>j

Cl jpai
ja

i
p

 ξe
ljp

[
cos(bi

j) cos(bi
p) + sin(bi

j) sin(bi
p)
]

−ξo
ljp

[
sin(bi

j) cos(bi
p)− cos(bi

j) cos(bi
p)
]
 (A.20)

On the equality of the rank-sum inequality

The rank-sum inequality states that

rank(A + B) ≤ rank(A) + rank(B) (A.21)

We wish to study the case for equality. The proof for what follows is most likely contained

in an advanced linear algebra book, however, we have been unable to find a source. In-

stead, we have found a proof on a public website [79] which we have adapted for our

purposes and replicate below.

Let us assume that equality holds. Let m, n ∈ N, and define Mmn(R) as a set of

all m × n matrices. Let A, B ∈ Mmn such that rank(A) = k and rank(B) = l. Let

{Av1, . . . , Avk} be a basis of C(A), and {Bw1, . . . , Bwl} be a basis of C(B). By definition,

the set {Av1, . . . , Avk, Bw1, . . . , Bwl} spans C(A + B). Since we have assumed equality on

the rank-sum inequality, then rank(A+ B) = k+ l, then the set (Av1, . . . , Avk, Bw1, . . . , Bwl)

is a basis of C(A + B). Consequently we can state that C(A) ∩ C(B) = {0}. Since

rank(A) = rank(AT), then R(A) ∩R(B) = {0}. For this reason we can conclude:

If C(A) ∩ C(B) = {0} and R(A) ∩R(B) = {0}, then

rank(A + B) = rank(A) + rank(B).





Appendix B

Phase-only SLM LCoS calibration

Introduction

A spatial light modulator is an electrically programmable device that modulates an op-

tical wavefront according to a fixed and discrete spatial pattern. This modulation can

be either in amplitude, phase or a combination of both through a careful combination

of optical elements. There are essentially two types of SLM’s that differ in the way they

are addressed: Optically Addressed Spatial Light Modulator (OASLM) and Electrically

Addressed Spatial Light Modulator (EASLM). In an EASLM, as the name suggests, the

spatial modulation is assured by an electronic signal, as in most current electronic dis-

plays. These devices usually receive an input via VGA or DVI ports, that drive the optical

cells so as to control either their absorption or phase shift. While there may be many dif-

ferent technology platforms to develop such devices, we are interested in liquid crystal

on silicon displays.

LCoS technology

Liquid crystal over silicon (LCoS) technology combines the unique light-modulating prop-

erties of liquid crystal (LC) materials and the advantages of high performance and large

scale capabilities of silicon complementary metal oxide semiconductor (CMOS) technol-

ogy through a dedicated LCOS assembly processes. The typical architecture of an LCOS

device is shown in figure B.1. The silicon CMOS back plane acts as one of the substrates

and consists of the electronic circuitry that is buried underneath pixel arrays to provide

a high ”fill factor”. The pixels themselves are aluminium mirrors deposited on the sur-

face of the silicon back plane [80]. The incident light travels through a glass substrate
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that is protecting the overall optical cell, then through an indium tin oxide layer which

is a transparent electrode, followed by the LC layer and it’s finally reflected on the alu-

minium layer.

FIGURE B.1: Structure of phase-only LCOS devices, consisting of transparent top sub-
strate with transparent ITO electrodes, alignment layers, LC material, glue seal, spacers
(a gap supported by a single layer of spacers to control the thickness of the LC layer),
aluminium reflective electrodes (pixel arrays) and a functional CMOS silicon back plane.
CMOS, complementary metal oxide semiconductor; ITO, indium tin oxide; LC, liquid

crystal; LCOS, liquid crystal on silicon. Diagram adapted from Ref.[80].

Liquid crystals (LC’s) are phases of matter with unique properties that can be charac-

terised as an intermediate between a liquid and a solid, that is, they possess some degree

of spatial symmetry, typical of a crystal, but also allow themselves to realign upon exter-

nal stimuli. The most important property of LC’s for phase manipulation is the birrefrin-

gence, defined as ∆n = ne − no, with ne as the extraordinary refractive index, which is

parallel to the director of the LC molecules and no as the ordinary refractive index. Most

LC’s have a positive birrefringence (∆n > 0) ranging from 0.05 to 0.45. Among the various

phases of LC’s the most widely used in many devices is the Nematic because the effective

birrefringence of the LC materials can be manipulated easily and continuously with an

electric field, which makes it a good candidate for phase-only modulation.[80]

FIGURE B.2: a) Alignment in a nematic phase. Adapted from [81]; b) A schematic of a
uniaxial optical indicatrix of refractive index. Adapted from [80].
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SLM working principle

We now know that the most widely used phases of LC’s are nematic and that their main

characteristic that allows for a good wavefront shaping is their birrefringence. However,

there are several structures that can be employed to allow light modulation, namely:

Twisted nematic configuration, hybrid field effect in nematic LC, electrically controlled

birrefringence, surface stabilised ferroelectric LC (SSFLC) and vertically aligned nematic

(VAN), optical compensated birrefringence (OCB). These devices have mostly been de-

signed for light modulators by rotating the linear polarisation of light passing through

polarisers. However, in this work we are interested in the ECB mode.

Electrically controlled birrefringence

As can be seen in figure B.3, when the cell has an applied voltage the director vector

changes from almost planar to vertical. As this change is continuous, we can access al-

most the complete range of refractive indices between ne and no as the analog voltage is

increased. The drawback of this mode for phase-only LCOS devices is the unwanted back-

flow of LC molecules during switching, which can slow down the electro-optic switching.

FIGURE B.3: A schematic of the initial Von and Voff states of the ECB electro-optic effect
with small tilt angle. This representation is of the zero-twisted configuration in ECB.

Adapted from [80].

Holoeye Pluto 2 VIS-016 SLM

The Pluto family consists of a number of phase-only spatial light modulator with a driver

unit which has a standard digital video interface (DVI or HDMI). It features a phase-only

LCOS micro-display with full HD resolution (1920x1080 pixel), and 8µm pixel pitch. The

device can be addressed with 2D phase profiles via standard graphics cards as an ex-

tended monitor device. The green colour channel of the video signal is used for address-

ing 8 bit gray level patterns (the SLM’s native resolution need to be addressed). Moreover,
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the display operates in the ECB mode, with a digital driving scheme (pulse code modu-

lation), and is limited to an input frame rate of 60Hz. Do note that the input frame rate

relates merely to the addressing speed of the input signal, typically via DVI/HDMI ca-

bles. Nonetheless, we must be aware of the time response of the liquid crystals, which

is characterised by the rise and fall times when stimulated by a signal equivalent to 2π

phase change. The response time is defined as the switching time from 10% to 90% and

from 90% to 10 % (rise and fall time). These time constants are determined by the proper-

ties of the liquid crystal material, the thickness of the LC layer, the used drive sequence /

calibration (the actual voltages applied to a pixel) and temperature. For phase SLMs the

response time typically is below the input frame rate*. In our case, the documented rise

and fall times are 50ms and 65ms, measured for phase shift to 2π with a 633nm beam. This

allows us to estimate the bandwidth as BW[Hz] = 0.35
RT[ms] × 103 as ≈ 7.0Hz or ≈ 5.4Hz

(using rise and fall times respectively). We’ve found that with standard GUI python li-

brary PyQt5, there needs to be a wait time of 300 to 400ms between frames so as to ensure

an effective frame update. This brings the effective refresh rate to 2.5Hz, which, when

adding latency from the addressing signal, python interface and the fact that we’re using

a 532nm laser, is well within expected. Another important note to take into account is

that these displays are not designed for high power laser light. This model specifically is

limited to 2 W/cm2 of incident irradiance, for incident light in the 420nm-650nm range

[82].

FIGURE B.4: SLM Pluto 2 phase-only spatial light modulator. Adapted from [82].

*Information taken from email exchange with Holoeye support service.
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Characterization and calibration

As we’ve seen in previous section, liquid crystals allow for very good phase manipula-

tions assuming the correct incident polarisation. For the Pluto 2 VIS-016, this polarisation

is recommended to be parallel to the longer side of the display, however, in the absence

of a reference polariser, this proved itself to be a challenging task on its own.

Moreover, due to the digital nature of the driving scheme, the different phase lev-

els are created by pulse code modulation, which enables a reliable small sized and cost-

effective driver unit since only two voltages need to be generated. However, this effi-

ciency comes at the cost of phase instabilities (the so called ”phase flickering”) introduced

due to the pulse code. These instabilities arise from the limited viscosity of the liquid crys-

tal molecules which doesn’t allow for the molecules to follow the pulses instantaneously.

This means that the LC molecules flicker around the average value of the pulse code per

addressed phase level. Fortunately, Holoeye provides a few configuration files (in the

following called “Sequence”) that mainly differ in their total bit-depth. For the present

device the recommended sequence is the ”5-6” sequence which was reported to have a

phase flicker of less than 0.15rad for a 2π modulation for incident light at 633nm [82], as

can be seen in figure B.5.

Finally, it’s worth mentioning that, due to manufacturing processes on wafer scale,

single LCOS cells may show a residual bending of their backplane as a result of the dicing

process. The deformation has been reduced to less than 1µm, however, it’s not perfect. It is

recommended to do a first study on this deformation to find a phase mask that will correct

the wavefront. A standard practice is to mount the device on an interferometric set-up

and find the correct aberration correction phase masks by fringe inspection. However,

this was not explored in the present work.

FIGURE B.5: Typical flicker of the 5-6 sequence measured at 633 nm for default voltages
and voltages for 2π modulation at 633 nm. Adapted from [82].



92 OPTICAL EXTREME LEARNING MACHINES: A NEW TREND IN OPTICAL COMPUTING

Phase calibration

Ideally, the phase calibration would be set up to:

Grayscale level(ϕ) =
ϕ

2π
× 255 (B.1)

However, the relationship voltage-phase (and consequently grayscale-phase) is non-linear,

and so a calibration curve must be used. Luckily, Holoeye also provides some calibration

curves (called ”gamma-curves”) that are specific to the wavelength, device and sequence

used that allow for various ranges of modulation. However, even though these gamma

curves provide good linear modulations as per visual inspection, it was noted some dis-

crepancies that were not compatible with a 0 to 2π modulation, hence, an experimental

verification was called for.

Experimental set-up

The experimental set-up follows work done in reference [83], which is largely based on

Young’s fringes, and can be seen in figure B.6. For the experiment we’ve used a 532 nm

laser of 50mW, however, both for safety and light control, it is immediately followed by

a linear polariser which also controls the power across the optical path due to the laser’s

native polarisation. The beam then passes through a rotatable half-wave plate, which

permits dynamic control of the polarisation, and is followed by a 40x objective and a

15µm pinhole at the Fourier plane, to act as a spatial filter, and it’s finally colimated by

a simple lens. The core of the experiment lies in the amplitude mask with two pinholes,

which have to be as similar as possible to allow for a good contrast at the interference

plane. The light emerging from said pinholes will be modulated by an Airy function, but

the central lobe of the propagating light has an almost constant phase and can be regarded

as a flat top beam. The SLM is separated into two distinct regions, and each is multiplied

by a single pinhole. One of the regions is addressed to a uniform grayscale value and is

used to modulate the reference beam, while the other is applied a variable grayscale value.

These signals are then filtered by a linear polariser which intends to select the portion of

light aligned with the extraordinary axis of the LC cells which will be the portion that is

phase modulated. Afterwards, the beams are focused by a lens on a digital camera which

is used to record the interference pattern at the Fourier plane.
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FIGURE B.6: Experimental set-up used for phase calibration procedure.

As is demonstrated in Ref.[83] the interference pattern recorded should follow:

|F(νx, νy)|2 =

(
a
r

)
|J1(2πνra)|2 ×

[
(δA)2 + (4A2 + 4AδA) cos2

(
πνx∆x +

ϕ

2

)]
(B.2)

where 2a is the pinhole diameter, r = (x2 + y2)1/2 is the radial coordinate defined in the

object space at the output of the pinholes, ∆x is the distance between the pinholes, δA

accounts for the difference in amplitude between the pinholes, A is the amplitude of one

of the beams, J1 is the Bessel function of the first kind of order 1, νr = (ν2
x + ν2

y)
1/2 is the

radial frequency in the Fourier plane, and finally ϕ is the phase difference between the

two beams. In practice, we’ll be looking at a small portion of the beams, so δA ≈ 0, and

due to its symmetry we can also just look at a slice of the interference pattern, thus the fit

can be done computationally to the function:

f (x, α, A, B, C, D) = B
|J1(Ax)|2

x2 cos2(Cx − α

2
) + D (B.3)

as is demonstrated in the figure B.7.

Experimental results

Using the set-up above we measure a calibration curve for 3 different gamma curves pro-

vided by Holoeye as can be seen in figure B.8. All the curves display a remarkable lin-

earity, albeit with some fluctuations which can have many origins ranging from physical
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FIGURE B.7: Example of the least squares fit to the fringe interference pattern.

vibrations of the optical table, noise in the digital camera, SLM flickering, stray light, laser

source fluctuations, among others. Only the green curve is able to achieve a 2π modula-

tion, which is achieved at a gray level of 231.

FIGURE B.8: Phase calibration results.

Having this in mind it is sufficient to merely cap the modulation range to 231, thus the

calibration curve should be

Grayscale level(ϕ) = integer
(

ϕ

2π
× 231

)
(B.4)

With the same set-up we’ve also retrieved results on amplitude modulation, where

we’ve observed a maximum of 6% variation of the intensity for the different grayscale

levels, which is deemed acceptable for our experimental purposes.



Appendix C

Off-axis digital holography for

wavefront phase retrieval, and a real

time phase retrieval python sofware

Introduction

The word Hologram has been greatly popularized by Sci-Fi movies, and it turns out that

one of the earliest references to such a technology can be traced back to Isaac Asimov

sci-fi novel series ”The foundation Trilogy” in 1951 [84]. In fact, the invention of the field

of holography is often credited to Dennis Garbor in 1948 [85], and in 1949 he publishes

a 33-page paper entitled ”Microscopy by reconstructed wave-fronts” where he’s able to sum

up the working principle of the technique in the abstract:

”The subject of this paper is a new two-step method of optical imagery. In a first step the object

is illuminated with a coherent monochromatic wave, and the diffraction pattern resulting from

the interference of the coherent secondary wave issuing from the object with the strong, coherent

background is recorded on a photographic plate. If the photographic plate, suitably processed, is

replaced in the original position and illuminated with the coherent background alone, an image of

the object will appear behind it, in the original position” - Retrieved from Ref. [86]

It’s interesting to note that this work was brought forth before the advent of the laser

in 1960, which proved itself to be a remarkable propeller of holography that saw its first

work with a laser light source in 1962 [87].
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How does holography work?

A conventional photograph is a two-dimensional projection of a three-dimensional scene,

and as a result we lose information that enables us to perceive depth and parallax with

which we experience the real world. Looking at how an image is recorded, be it in a pho-

tographic film or in a modern CCD camera array, we see that the pattern that is imprinted

in them is the average intensity of the light that reaches it, and there’s no information

about the phase of the wavefront that was focused. In contrast, a hologram aims to keep

all this information through interference effects, and upon reconstruction allow us to view

”the whole image” (as the etymology of ”hologram” suggests).

Let us do a quick quantitative analysis of an off-axis technique (an on-axis technique

would differ in the orientation of the diffused beam from the object relative to the refer-

ence beam, which would be colinear).

FIGURE C.1: a) Off-Axis holographic system. b) Orientation of film with reference beam.
Diagrams taken from Ref.[87]

Suppose that the reference beam at the film can be represented by

ER(t) = r(x, y)ei(ωt+ϕ) (C.1)

where ϕ = kx sin α. Likewise, the beam that bounces back from our subject can be written

as

ES(t) = s(x, y)ei(ωt+θ) (C.2)

where θ is some complicated function that arises from the reflection on the subject’s sur-

face. The total electric field then is simply EF = ER + ES. The irradiance pattern that is
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imprinted on the film is proportion to |EF|2

IF ∝ |EF|2 = (ER + ES)(E∗
R + E∗

S) (C.3)

= ERE∗
R + ESE∗

S + ERE∗
S + E∗

RES (C.4)

= r2 + s2 + rsei(θ−ϕ) + rse−i(θ−ϕ) (C.5)

We see that the imprinted pattern preserves some phase information. With IF imprinted

on some photosensitive surface, we can use it now as a transmission mask for a certain

reconstruction reference beam, which we choose it to be the same reference beam used for

the making of the hologram. Therefore, the transmitted beam will take the form

EH ∝ IFER = (r2 + s2)ER + r2seiωt+θ + r2eiϕsei(ωt−θ) = EH1 + EH2 + EH3 (C.6)

The first term, EH1, is the reference beam modulated in amplitude but not in phase, which

is also sometimes called zeroth-order diffraction. The second term, EH2 is a beam that travels

with an angle α relative to the reference, and as it is nothing more that an amplitude mod-

ulated subject beam, it appears to come from the subject itself giving us the perception

of depth due to the virtual image. Finally, the third term, EH3, is the same subject beam,

but with an added phase of 2ϕ that translates to an added wavevector component to the

transmitted wave, and the phase of the subject now comes reversed. This phase reversal

forces diverging rays to become convergent and thus forms a real image. This process is

schematically demonstrated in Fig.C.3

FIGURE C.2: Reconstruction of the hologram formed in Fig.C.1. Diagrams taken from
Ref.[87]
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Digital holography

As we’ve seen on the last subsection, holography is a two step-process: creating the holo-

gram and reconstruction. It is unquestionable that the invention of the laser has made this

process easily accessible. However, along the years several new technologies were devel-

oped, and amongst those are the electronic displays such as a CRT display, which consti-

tutes the basis of the earliest work on digital photography by replacing the photographic

film with such display, followed by an optical reconstruction of the image [88, 89]. Fur-

thermore, in 1965, Cooley and Tukey published the well known Fast Fourier Transform

algorithm, which allowed an unprecedented speed of computation of the Fourier trans-

form, opening many possibilities within digital holography by employing novel methods

of digital image processing. However, at the time they were still limited to low resolution

detectors, but nowadays, due to the advancements of the semiconductor industry, we can

use high resolution CCD and CMOS detectors with arrays of thousands of pixels. Nowa-

days, a typical approach consists of performing the hologram acquisition with a digital

camera, and to reconstruct the image, we numerically solve the diffraction integral up to a

certain distance. This method of reconstruction has the advantage of being cheaper, more

accessible and allows for more control of the whole process since all the image process can

be done digitally. The major downside is the speed of computation since it will always

be slower than the analog computation. In our case we are not interested in image recon-

struction and, therefore, refer to Ref.[90] for a comparative study on digital holographic

and reconstruction techniques, and to Ref. [91] for a ”General theoretical formulation of image

formation in digital Fresnel holography”.

Nonetheless, it is of practical importance to recall that this is a digital process, and as

such is subject to sampling. In fact the sampled signal at the camera would correctly be

described as

IFs =
Nx−1

∑
k=0

Ny−1

∑
l=0

IF(k∆x, l∆y)δ(x − k∆x)δ(y − l∆y) (C.7)

where it was assumed that I(x, y) does not vary significantly within a pixel. Since our

goal is to correctly measure the interference fringes, we must define our maximum spatial

frequency for them. The fringes will have a spatial angular frequency k = 2π
λ sin α, and
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according to the sampling theorem we must have

k <
ks

2
(C.8)

2π

λ
sin α <

2π

2∆x
(C.9)

α < sin−1 λ

2∆x
(C.10)

Note that if we were to use a He-Ne laser at at 632nm with a standard digital camera with

a pixel size of about 5 micrometers, we would be left with α < 3.62º. Of course, the same

principle applies to any transverse spatial frequency that the wavefront may carry, that is,

as k⊥ = ∇⊥φ, where φ = k · r − ωt, we must have (k⊥)i <
2π
2∆i with i = x, y.

Digital holography for wavefront phase retrieval - experimental

results

In this section we explain the working principle of digital off-axis Fresnel holography

to retrieve the phase profile of the wavefront as it reaches the camera. The following

treatment follows closely the works done by Cuche et al. [92].

Working principle

Let us assume a plane wave treatment and write our reference wave as R =
√

IReik sin αx.

The hologram intensity then becomes

IH(x, y) = Ir + Io +
√

IReik sin αxO +
√

IRe−ik sin αxO∗ (C.11)

Where O is the field from the object beam. Taking the Fourier transform of IH we have

˜IH(kx, ky) = ĨR + Ĩ0(kx, ky)

+
√

IRF{eik sin αx} ∗ Õ(kx, ky)

+
√

IRF{e−ik sin αx} ∗ Õ∗(kx, ky) (C.12)
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Since F{eik sin αx} = 2πδ(k − k sin α) and from the properties of the dirac-delta function

X̃(k) ∗ δ(k − k0) = X̃(k − k0) we get:

˜IH(kx, ky) = ĨR + Ĩ0(kx, ky)

+ 2π
√

IR

(
Õ(kx − k sin α, ky)

+ Õ∗(−kx + k sin α, ky)
)

(C.13)

FIGURE C.3: Experimental setup: BE, beam expander;NF, neutral density filter; M, mir-
ror; O, object wave;R, reference wave. Inset, detail of the off-axis geometry. Diagram

taken from [92]

Looking at eq.C.13 we see that if we apply a 2-dimensional bandpass filter centered

at kx = k sin α and ky = 0, with a width large enough to admit all the bandwidth of the

signal O, we are able to isolate Õ(kx − k sin α, ky). Since all of the signal processing is done

computationally, all we have to do next is translate our signal to the center of the fourier

plane and perfom an inverse FFT, and we recover O(x, y).

Preliminary results

FIGURE C.4: Experimental setup used for early measurements.
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With the setup shown in figure C.4 we were able to perform some measurements to

prove the validity of this technique. We use a He-Ne laser at 632nm, which passes through

a confocal lens system where it is placed a spatial filter so as to guarantee a gaussian wave-

front. At the same time, the lens system also works as a beam expander, thus making use

of the maximum number of pixels of the SLM as possible. The SLM used is a LC-R 2500

by Holoeye with a resolution of 1024×768 pixels which is controlled by a custom soft-

ware that allows for arbitrary control of the phase mask. Finally, the digital camera is a

BOSCH Dinion Fx LTC0495/50, with an effective resolution of 616×474 pixels. The two

interfering beams are expanded by a diverging lens before the acquisition by the camera

to guarantee that the reference beam resembles as closely as possible a plane wavefront.

However, it should be noted that this method, even though valid, also expands the beam

coming from the SLM and plenty of information is lost by the recording. A better ap-

proach would be to add a beam reduction stage to the object beam, hence guaranteeing

that the radius of curvature of the reference is much greater than the object beam.

We test our set-up and algorithms with four different phase masks: i) single vortice

with positive circulation, ii) single vortice with negative circulatio, iii) sea of vortices of

1x1 and iv) sea of vortices 2x2. The phase masks ”sea of vortices nxm” are obtained

by superimposing n single vortice masks with positive circulation and m single vortice

masks with negative circulation. The results shown below do not account for a calibration

of the SLM.

Single vortice mask with positive circulation

The phase mask given to the SLM is obtained by

θ = + arctan

(
x − x0

y − y0

)
(C.14)

where (x0, y0) is the phase singularity location. As can be seen in figure C.5, we can

identify the presence of the phase singularity by direct inspection of the branching of the

interference fringes.
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FIGURE C.5: Left: phase mask passed to the SLM screen. Right: image recorded on the
digital camera.

After performing the FFT of IH we can clearly see from figure C.6 the three peaks as

predicted by equation C.13. We now have to isolate one of the offset peaks, translate it to

the center of the spectrum, and perform an inverse FFT to it. This process is illustrated in

Fig.C.6

FIGURE C.6: a)Fourier transform of the measured intensity pattern. This image is
zoomed in for the region of interest. b)Filtered and translated signal of the object beam.

FIGURE C.7: Wavefront reconstruction of the object beam.
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From figure C.7 we can clearly see the presence of the phase singularity, characteristic

of the vortice phase mask.

In the following subsection we only show the recovered wavefronts, without reference

to the data analysis.

Single vortice with negative circulation

The phase mask given to the SLM is obtained by

θ = − arctan

(
x − x0

y − y0

)
(C.15)

The effect of the circulation is visible on the direction of the splitting of the fringes. As can

be seen in figure C.8, the splitting occurs in the opposite direction as in figure C.5.

FIGURE C.8: Wavefront reconstruction of the object beam for a single vortice mask with
negative circulation. Top: raw data (right) and mask given to the SLM (left). Bottom:

wavefront reconstruction.

Sea of vortices 1x1

In this case the phase mask passed to the SLM is given by:

θ =

N+−1

∑
i=0

arctan

(
x − xi

y − yi

)
−

N−−1

∑
i=0

arctan

(
x − xi

y − yi

) mod (2π) (C.16)

Where the positions (xi, yi) are randomly generated within a predetermined area. From

figure C.9 we see that we were able to correctly reconstruct the two phase singularities.
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FIGURE C.9: Wavefront reconstruction of the object beam for a sea of vortices with N+ =
N− = 1. Top: raw data. Bottom: wavefront reconstruction.

Sea of vortices 2x2

This test aims to evaluate the resolution of our camera. From figure C.10 we note that it

becomes difficult to pinpoint the locations of the 4 singularities. This result needs more

study.

FIGURE C.10: Wavefront reconstruction of the object beam for a sea of vortices with
N+ = N− = 2. Top: raw data. Bottom: wavefront reconstruction.
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A real-time phase retrieval Python GUI based on off-axis digital

holography

As we’ve seen, phase retrieval through off-axis digital holography can be quite powerful.

In experiments where it is necessary to have full control and knowledge of the complex

electric field, it be quite handy. Within our research group, this technique has been of

extensively studied and used in a free space optics experiment on quantum fluids of light

in photorefractive media. In such an experiment, being aware of the complex wavefront

during optical alignment can greatly ease the task and lead better results. To this end,

we’ve decided to create a Python GUI that would implement the algorithm in real time.

For the user interface we’ve decided to use the PyQt5 python package [93]. PyQt5

is a set of python bindings for Qt5, which is a set of cross-platform C++ libraries that

implement high-level APIs for accessing many aspects of modern desktop and mobile

systems. As for the plotting engine, we’ve used PyQtGraph [94], an open-source, pure

Python graphics library for PyQt5. It has been developed with scientific, engineering and

mathematics uses in mind, and despite being written in Python, it is capable of offering

outstanding performance for real-time data analysis. In this section we’ll outline the most

crucial design aspects of the software, and we’ll leave the detailed inner workings of the

script for the curious reader, as the source code can be made available.

The front-end of the user interface is shown in figure C.11. It is composed of five main

panels: a) it contains a monochromatic view of the image retrieved by the camera. It is

assumed the camera module returns a monochromatic image, and in the cases it doesn’t,

it can always be converted; b) contains the amplitude of the logarithm scale of the fourier

transform of the intensity measurement; c) and d) contain the amplitude and phase pro-

files, respectively, of the reconstruction of the filtered fourier spectrum; e) contains a menu

that allows to start the live feed, as well as 4 line plots that allow us to analyse line profiles

of each plot. Panels a), b), c) and d) feature a line ROI (Region Of Interest) which allows

retrieve the data that lies beneath such line. The respective plots in panel e) are updated

in real time. Panel b) has an extra ROI geometry: an ellipse. This ellipse allows us to

extract a region of the Fourier spectrum, as in figure C.3, and carry out the phase retrieval

algorithm. All the 2D plots are interactive as the images can be zoomed in and out and

moved without freezing the application, and also feature an interactive colorbar.
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a) b)

c) d)

e)

FIGURE C.11: User interface for real-time phase retrieval.

As for the software structure, it was a requirement that the interface remained respon-

sive. To this end, we’ve decided to make use of concurrent programming by making use

of PyQt’s threading feature. It is important to recognise the distinction between concur-

rent and parallel programming. In parallel programming there are several instructions

or processes that are carried out simultaneously. In Python, due to its GIL (Global Inter-

preter Lock), this is not possible*, as it forces a single thread to hold Python’s interpreter at

a time. Nonetheless, software engineers have been quite smart and came up with concur-

rent programming which allows instructions from different threads to be cleverly sched-

uled to increase the overall performance of the interpreter. This way, we can delegate long

running tasks for separate threads and free the interpreter for other small workloads to

keep a GUI responsive. Having this in mind we have opted for the architecture illustrated

in figure C.12. In the main thread, we keep all the widgets necessary for visualisation and

respective signals and slots properly connected. Within the main thread, we start a sec-

ondary thread which will be responsible for sending new images to update on panels a),

b), c) and d). Within this thread, the computer will submit a request to the camera for a

new frame, and upon receiving it, the image follows for a data processing module which

is runs the phase retrieval algorithm. When all is done, the thread emits a signal† which

is captured by the main thread, and then proceeds to update the plots.

*Python does offer a multiprocessing module in which each process is attributed its own GIL. However,
such approach was not carried out.

†Here we refer to the native signals and slots mechanism of PyQt5.
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FIGURE C.12: Thread architecture and information flow during a cycle of the application.

Although this software has been built for the specialised task of phase-retrieval, its

underlying mechanisms can be applied to any task which requires real time data analysis,

and it is compatible with various camera modules as well as data processing routines.





Appendix D

Optical complex media

What is a speckle pattern?

Whenever propagating light encounters a boundary to a medium there will be an in-

teraction between radiation and matter, and we will see some reflected and transmitted

light. This interaction is commonly described by simple laws such as Snell’s law and the

Fresnel’s equations. However, these assume homogeneity and isotropy within the media,

which greatly simplifies the mathematics and allows us to easily describe the dynamics

of the radiation. However, things get more complicated when we look at the interaction

of light and small particles. This problem was first studied by Gustav Mie in 1908 [95].

After his discovery, much more effort was put forth by the scientific community in order

to understand this effect, and today it is a well established theory, and can be used to ex-

plain certain daily phenomena, such as the blue sky during the day and the characteristic

red sky during sunsets, as well as the existence of white and dark clouds.

FIGURE D.1: Illustration of light scattering from homogeneous spheres according to Mie
solution. For small particles, whose radius is smaller than the incident wavelength, the
scattering is well described by the Rayleigh approximation, whereas for particles with a
radius larger than the wavelength Mie scattering is predominant. Image taken from Ref.

[96].

109
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The takeaway point is: whenever light hits a particle of size comparable or smaller

than it’s wavelength it emits radiation in many directions with an anisotropy that is de-

pendent of the particle’s size.

Now, Let us suppose that we let many of such particles to be close together. When a

light wave hits this group of particles, the first ones interacting with light will radiate light

in many directions, that in turn will interact with other particles, and so on and so forth.

This is the problem of multiple scattering and is present whenever there’s a high optical

inhomogeneity in the medium. In figure D.2 we can see an illustration of a particular light

ray bouncing from scattering particles.

FIGURE D.2: a) Illustration of multiple scattering of a single light ray within a medium;
b) Propagation of a coherent beam into a random optical medium. Speckle is intrinsically
three dimensional while 2D speckle is the cross section of the light filaments (Image taken

from Ref.[97]).

This phenomenon is particularly interesting when we let the incident light have a

high coherence such as that of laser light. In fact, in the early 1960s, when continuous-

wave lasers first became commercially available, researchers noted that when the light

was reflected from a surface such as paper, or the wall of the laboratory, a fine-scale,

granular and high contrast pattern would appear to the observer looking at the scattering

spot. This pattern became known as ”speckle”. The origin of these intensity fluctuations

was soon recognised to be the random roughness of the surfaces from which light was

reflected [98]. Various macroscopic facets of the rough scattering surface contribute ran-

domly phased elementary contributions to the total observed field, and those contribu-

tions interfere with one another, thus creating high and low intensity regions. Although

this concerns surfaces, the same thing happens for a volumetric scattering regime, such

as the one illustrated in figure D.2. The reason being that each exiting light ray has gone

through a random path inside the material and thus gives rise to a similar speckle pattern.

It is important to note that the speckle pattern is mere consequence of the wave nature of
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light and it only visible to us if the incident light is coherent, since it relies on the interfer-

ence of light. If we were to illuminate an object with incoherent and coherent light, and

observe it from a diffusive medium, we would have a very hard time discerning informa-

tion of such object as can be seen from figure D.3, although this is not the same as saying

that the image recovered with laser light has ”less information”, we merely can’t process

it with our eyes.

FIGURE D.3: Images of a rough object: (a) image taken with incoherent light; (b) image
taken with coherent light; and (c) a magnified portion of the image shown in (b). Image

taken from Ref.[62].

Properties of a speckle pattern

We’ve come to the conclusion that the speckle pattern is a result of interference effects of

waves that carry randomly distributed phases and amplitudes. Therefore, if we look at

single point in an observation plane, the electric field there is described by a very large

sum of random complex phasors as

A =
N

∑
n=0

aneiϕn (D.1)

This is the well-known problem of a random walk, as is illustrated in figure D.4, and we

already foresee that the way to characterise a speckle is through its statistical properties.

However, it is important to stress as of now that, even though the speckle pattern is inher-

ently a statistical problem, the pattern itself is deterministic, and the physics that we’re

considering so far are linear.

The mathematical details behind the probability distributions that we’ll look at are

beyond the scope of this document, but for the curious reader we refer to Ref.[62].
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FIGURE D.4: Random walks showing (a) largely constructive addition and (b) largely
destructive addition. Image taken from Ref.[62].

Random phasor sum

We’ll start looking at the results for a simple random phasor sum. This regime may seem

odd because there can be no speckle without an incident laser beam which is in itself a

complex wave*, therefore we should consider a sum with a known phasor. However, if

light propagates inside a medium for long enough there will be no ballistic photons left

and any information of the incident beam is essentially lost, and the solution approaches

the results below. For mathematical simplicity let us assume that:

1. an and ϕn are statistically independent of am and ϕm;

2. an and ϕn are statistically independent;

3. ϕm follows a uniform distribution from (−π, π);

4. The number of scattering steps approaches infinity. This ensures the validity of the

central limit theorem.

With these assumptions it can be shown that the real and imaginary parts of the resul-

tant complex phasor follows a joint probability distribution as:

pR,I (R, I) = 1
2πσ2 exp

(
−R2 + I2

2σ2

)
(D.2)

*The electric field is in fact a real quantity, but we’re working with the complex exponential formalism as
is employed in Ref.[62].
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Because of the circular symmetry we say that the resultant complex phasor A is a ”circu-

lar” complex Gaussian variate. With this result, it is just a matter of change of variables to

show that:

pA(A) =
A
σ2 exp

(
− A2

2σ2

)
Field amplitude PDF (D.3)

pθ(θ) =
1

2π
Phase PDF (D.4)

pI(I) =
1

2σ2 exp
(
− I

2σ2

)
Intensity PDF (D.5)

We can see that the field amplitude distribution is Rayleigh distributed, whereas the in-

tensity follows a negative exponential, which are all characteristics of a so-called ”fully

developed speckle”. One should notice at this point that if a speckle pattern does not have

these properties, then it is proof that the initial assumptions are not met. This implies that

there are unknown correlations between the phases and amplitudes of individual contri-

butions.

Sums of speckles and polarisation

Another important aspect to highlight is that the intensity distribution of two indepen-

dent fully developed speckle patterns can be written as:

ps(Is) =
1

Ī1 − Ī2

[
exp

(
− Is

Ī1

)
− exp

(
− Is

Ī2

)]
, Ī1 > Ī2 (D.6)

ps(Is) =
Is

Ī2 exp
(
− Is

Ī

)
, Ī1 = Ī2 = Ī (D.7)

Furthermore, the scattering process greatly influences the polarisation properties of the

outgoing speckle pattern as can be seen in figure D.5. Thus, the image that we’re in fact

capturing at the output of a scattering medium is the sum of two speckles.

Speckle size and imaging a speckle pattern

A common way to quantify the average size of a speckle is through the equivalent area of

the normalised covariance function of speckle intensity, which is called the “correlation

area” or the “coherence area” represented by A⌋ [62]:

A⌋ =
∫

cI(∆x, ∆y)d∆xd∆y (D.8)
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FIGURE D.5: Example of polarisation speckle. Image taken from Ref.[99].

where cI is the normalised covariance function of speckle intensity, which can be written

as:

cI(x, y) =
⟨I(x1, y1)I(0, 0)⟩ − ⟨I(x, y)⟩2

⟨I(x, y)2⟩ − ⟨I(x, y)⟩2 (D.9)

where we’ve written ∆x = x − 0 and ∆y = y − 0 , so as to take the centre as reference,

and ⟨·⟩ is the spatial average. Of experimental interest is noting that ⟨I(x1, y1)I(0, 0)⟩ is

the auto-correlation function and as implied by the Wiener-Khintchine theorem, the auto-

correlation function of the intensity is given by the Inverse Fourier Transform (F−1) of the

Power Spectral Density (PSD) of the intensity:

⟨I(x1, y1)I(0, 0)⟩ = F−1
{
|F
{

I(x, y)
}
|2
}

(D.10)

For a region that is illuminated by a circular and constant beam of light, the speckle size

can be simplified to:

L =
λz
A

(D.11)

where λ is the incident radiation wavelength, z is the distance to the observation plane

and A is the area illuminated. It can be shown that in an imaging configuration equation

D.11 still holds if we substitute z → zi (see figure D.6).

Now, in many experimental set-ups we will see an imaging set-up, so it is worthwhile

to spend a bit of time understanding what implications can this have. The first question to

answer is: what are we imaging? When we place an imaging lens there is always an object

plane and an observation plane. However, in an experimental set-up we want to fix the
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FIGURE D.6: Speckle imaging configurations: free space configuration (top) and imaging
configuration (bottom)

observation plane by fixing a recording camera, typically an electronic digital camera, and

then we adjust the imaging lens. Let us suppose that we are in fact in an focused exactly in

the scattering spot. In that case it can be shown that the speckle pattern recorded will no

longer, in general, have the circular gaussian statistics, however these new correlations

stem only from the set-up and do not imply the presence of e.g. ballistic photons or

undesired non-linearities. In an out-of-focus situation as those shown in figure D.7, the

circularity of the statistics is recovered. This fact then allows us to distinguish between

correlations originating from the scattering media or from the set-up.
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FIGURE D.7: Speckle imaging configurations out of focus.



Appendix E

Transmission matrix measurement

Introduction

The transmission matrix approach was first proposed as a tool for the study of complex

optical media by Popoff et. al in 2010 [63, 100]. It as an approach that relies on the linearity

of light propagation, and thus can connect input modes to output modes through a linear

transformation. Let us suppose that we sample our input space into N modes, En
in, and

sample the output space with M modes, Em
out. In that case, we can write:

Em
out =

N−1

∑
n=0

kmnEn
in (E.1)

How to sample the transmission matrix?

An important question to address here is what we mean by ”sampling the input(output)

space”. Let’s focus on free space propagation. There, the propagation eigenmodes are

plane waves characterised by a vector k as Ek(r) = E0 exp
(
−jk · r

)
, where Ek · Ek′ ∝

δ(k − k′), therefore, in order to measure a complete transmission matrix in free space

we’d have to give every possible value of k as input to our media. In addition to this, we’d

have to factor in both polarisations of the incoming light and measure both responses. All

of this makes the task of measuring the full transmission matrix in free space propagation

a highly difficult task, even though there have been some attempts to achieve such feat

[101]. The situation gets more friendly when we deal with guided light, such as multi-

mode fibres. There, the high number of allowed propagation modes makes the propaga-

tion of light seemingly chaotic due to the coupling between different modes, however, the

number of modes is finite and discrete [102, 103].

117



118 OPTICAL EXTREME LEARNING MACHINES: A NEW TREND IN OPTICAL COMPUTING

How many modes are present in the outgoing light of a scatterer?

Despite this, it is worth spending some time trying to answer the question ”How many

modes should there be on outgoing light from a scatterer?”. This is a question of fun-

damental and practical relevance. The first one tells us more about the process of light

scattering, while the second one is less obvious, but considering the advances of wave-

front shaping technologies, specifically in spatial light modulators (SLM), we can have a

particular static configuration of the scatterer and the beam, and control only the input

light. Thus, if we know how many outgoing modes are present for a particular beam and

scatterer, we have a better chance of estimating the efforts needed to build a (near-) com-

plete transmission matrix. For example, let us say that we have some way of knowing that

a particular set-up allows M outgoing modes. Then, due to it’s linearity, if we insert M

orthogonal input modes, the scatterer is reduced to a simple change of basis with a square

transmission matrix. Surely, the matter of actually being able to measure the whole out-

put field is another challenge on it’s own, but at least we’ve reduced the error. With this in

mind, at the best of our knowledge, the usual way in literature to estimate such number

is [104–106]:

N = 2π
A
λ2 (E.2)

Where A is the area of the scatterer being illuminated and λ the wavelength of the

incident light. However, this expression is presented without any explanation as to why

it should be like this other than the fact that the number of outgoing modes is the same as

that of a waveguide with an equivalent area. Such explanation lacks physical intuition,

and can be complemented by the work done by Winkler et al. in 1994 [107] where he

explains the scattering process as a coupling process to higher spatial degree modes. The

orthonormal modes of an optical cavity can be found in many textbooks [108], and in one

dimension, when normalised appropriately, can be written as:

ψn(u) = exp(−u2/2)
Hn(u)√
n!2n

√
pi

(E.3)

The beam radius is called w, the transverse coordinate u is normalised to w/
√

2 and is

dimensionless, and Hn are the hermitian polynomials. The fundamental mode is given

by:

ψ0(u) =
exp(−u2/2)

π
1
4

(E.4)
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FIGURE E.1: Illustration of the scattering process.

The goal here is to look at the refractive index inhomogeneities, δn(r) as mediators

to optical mode coupling. To do so, we assume that the scatterer induces a wavefront

deformation given by a complex phase as:

ψ(u) =
exp(−u2/2)

π
1
4

exp(−iϕ(u)) (E.5)

however, ϕ(u) can be looked at in the fourier domain, and due to the linearity of the whole

process, the end result is just an integral over all possible contributions of the irregular-

ities. Thus, in order to gain some fundamental insight, it is sufficient to look at a single

harmonic of the form ϕ(u) = ϕ0 cos(Ωu + φ). Here, ϕ0 = 2kh0, where k is the wavenum-

ber, h0 is the maximum height of the deformation and the factor of 2 is an homage to the

original work looking at reflection of scatterer instead of transmission; Ω =
√
(2)πw0/Λ

where Λ is the spatial frequency of the scatterer harmonic under consideration; φ is meant

to account for even and odd harmonic by setting it to 0 or π/2, respectively. By doing

this, we can now calculate the overlap of ψ(u) with any harmonic, ψn(u) and estimate the

power transferred to any mode. By doing so we arrive at:

Pn =
1 − (−1)n cos(2φ)

2
ϕ0

n!

(
Ω2

2

)n

exp

(
−Ω2

2

)
(E.6)

In order to better discuss what consequences equation E.6 can have, let us do a small

numerical simulation, which can be seen in figure E.2. We can clearly see that since the

distortion is even, only even modes are stimulated. Furthermore, we see that the larger the

spot size, the higher the mode indexes that receive energy. By noting that Ω ∝ w0
Λ we see

that if we consider the whole range of contributions of Λ from the fourier decomposition

of ϕ(u), then, due to the steep curvature seen in the figure, we see that high values of

w0 will result in the stimulation of a very high number of modes, whereas a smaller are
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guarantees smaller number of modes. This is in accordance to the predictions of equation

E.2. Sadly, the number of modes predicted by such equation, even for w0 = 10µm and

λ = 532nm is 7000 modes, which still makes it quite a difficult task. Furthermore, it

is interesting to relate this result with equationD.11 which gives the speckle size as L =

λz/A. Therefore, we see that the larger the average speckle size, the fewer modes are

present on the scattered light.

FIGURE E.2: Numerical simulation of equation E.6 for λ = 532nm, h0 = 5λ, n ∈ [2, 100],
w0 ∈ [1, 200]µm, phi = 0 and Λ = 100λ. The values are normalized to the highest power

transfered to a single mode.

Yet another way to see this area dependence is by mere fourier analysis:

E(x, y) =
1√
2π

∫
E(kx, ky)eik·rdr (E.7)

With this it’s clear that in order to have tightly confined light you need to have a large

amount of plane waves.

Measuring the transmission matrix

Returning to the problem of sampling the transmission matrix (TM), we now see that we

have a good ”freedom” as to which incident modes to give to our media because not only

we’ll deal with an incomplete TM most of the times, but also because we only need to give

a number of independent modes and not necessarily orthogonal. Originally, the TM has

been sampled on a square basis (the hadamard basis) by means of a phase-only spatial

light modulator [100]*, but in principle any set of modes could be used as long as they’re

mutually independent. Such examples include binary amplitude modulation [109] and

*Note that in this work the input modes are not orthogonal. However, since the basis modulating the
phase of the light wave is orthogonal, makes the input modes independent of each other.
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phase modulation via a hexagonal lattice [104]. However, this apparent ”freedom” of

choice of the input modes naturally leads to the question of ”How to choose the basis?”.

This question is an active area of research and to answer it is out of the scope of this

document. However, an interesting point to note is that a non-orthogonal input set of

modes will lead to a severe distortion of the statistics of the TM, resulting in the occurrence

of spurious correlation that manifests itself with notorious high (as well as low) singular

values. One approach to solve this issue is a re-sampling of the transmission matrix to an

orthogonal set of states [106].

Experimental set-up and acquisition method

The experimental set-up for the transmission matrix measurement is composed of only

three particular stages: a wavefront modulation stage, a complex media and a detector

array. For this reason, the set-up in chapter 6 was used, but it should be noted that for

this specific application it could have been greatly simplified. For the input basis set

we’ve chosen the so-called Hadamard basis functions*. The hadamard matrix of order m

is generated by:

H1 =
1√
2

1 1

1 −1

 (E.8)

Hm≥1 = H1 ⊗ Hm−1 (E.9)

For m = 3 we can write:

H3 =
1

23/2



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1



(E.10)

*This set of basis can also be found with the name ”Walsh-Hadamard basis”. The distinction between
them is in the order of the basis vectors, which may be crucial in signal processing applications [110]. How-
ever, for our purposes, either is fine.
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Now, let hm and hn be the mth column vector and the nth line vector from Hm. The

hadamard basis element H(m, n) is generated by:

H(m, n) = hm · hn (E.11)

FIGURE E.3: 64 Hadamard matrices. The set stems from an unordered 8x8 hadamard
basis, with each mode generated according to equation E.11

It’s important to note that the resolution of spatial light modulators usually extend far

beyond the typical basis sizes used. As an example, the screen size of the DMD described

in chapter 4 and a basis sizes above 64x64 elements are typically not used. For this rea-

son, it is natural to expand a basis element to bigger matrices, so as to achieve a better

wavefront modulation on the SLM. To do so, we recur to the Kronecker product as:

H(m, n)expanded = Hm ⊗

1 1

1 1

 (E.12)

The set of pixels that represent a single entry (H(m, n))ij we’ll call ”macro-pixel”. Finally,

we remark that this basis set, due to its binary nature fits quite well both for phase-only

modulation, by mapping -1 to 0 rad and +1 to π rad.

The TM can have complex values, which makes it a difficult task to measure, partic-

ularly in optics, since we only have access to time averaged intensity patterns through

standard photodetectors. We thus need to use interferometric methods. Some examples

include off-axis digital holography [92] which is capable of giving remarkably accurate
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results, although it relies on a Mach-Zehner set-up, which involves a more complex set-

up. A solution to this would be to perform self-reference interference by dividing the

SLM screen into several parts and making use of diffraction gratings phase masks for

beam steering [111]. If interferometric methods aren’t an option, it is still possible to infer

the phase of a wavefront through phase retrieval algorithms [112–114] that rely either on

multiple or single shot intensity measurements. In this work, we’ll use a slightly more

subtle technique as was done in Ref.[100], yet, it can still be classified as a self-referenced

interferometric method. First, let us define Iα
m as:

Iα
m = |Eout

m |2 =

∣∣∣∣∣sm +
N−1

∑
n=0

eiαkmnEin
n

∣∣∣∣∣
2

= |sm|2 +
∣∣∣∣∣N−1

∑
n=0

eiαkmnEin
n

∣∣∣∣∣
2

+ 2R
(

eiαs∗m
N−1

∑
n=0

kmnEin
n

)
(E.13)

Where sm is a reference wavefront, and the m subscript denotes the mth output node, in

our case, the mth pixel on the digital camera. If we now consider a single input mode, we

can show after some algebra that:

I0
m − Iπ

m
4

+ i
I3π/2
m − Iπ/2

m
4

= s∗mkmn (E.14)

Thus, we see that if we perform 4 intensity measurements with different phase shifts on

the encoded light we’re able to recover the complex nature of the TM. Also note that the

observed transmission matrix is not the real one:

Kobs = KSre f (E.15)

where Sre f is a diagonal matrix of elements, where (Sre f )mm = s∗m represents the static

reference wavefront in amplitude and in phase. In order to achieve this, we will use the

background of the SLM display as the reference, as illustrated in figure E.4. Why does

this work? After all, following the SLM, the wavefront is Eout = Eineiϕ(x,y), where ϕ(x, y)

is a function representing the phase modulation from the SLM, which is certainly not of

the form Eout = sm + Eineiϕ(x,y). Even though this is true, by allowing some unmodulated

light into the diffuser, because it scatters in many directions, then the light that does in fact

reach the detector screen will have some constant contribution that is never modulated

and always interferes with the portion of the light that actually gets modulated, hence we

recover the self-reference interferometry.

To verify this theory, we’ve performed the measurement of a transmission matrix of
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FIGURE E.4: Illustration of the wavefront modulation for acquisition of the complex
transmission matrix Kobs. The green circle represents the light that is captured by the

first objective and focused on the diffuser.

a multi mode fibre. We’ve used a 16x16 hadamard basis, as outlined above, and we’ve

recovered images of 300x320 pixels on the camera. In figure E.5 it is shown a measurement

of an element of the transmission matrix. It’s important to note that the values of the

electric field* are rather small, as they barely stand out from random shot noise. This

is indication of poor phase modulation of the output which can be explained by poor

coupling of the input wave to the multi mode fibre.

FIGURE E.5: Experimental measurement of the output of a single input basis element,
according to equation E.14.

After getting the TM, we can perform some tests to verify our experiments. One way

to do it is through the statistical properties of the transmission matrix. It is known that

a transmission matrix of shape N by M of a system dominated by multiple scattering

amounts to a random matrix of independent identically distributed entries of Gaussian

statistics [100]. Thus, it is possible to resort to random matrix theory (RMT) and study the

distribution of the singular values, which is predicted to follow the Marcenko-Pastur law

*For simplicity we’ll refer to the element of the transmission matrix as ”electric field”, though it must be
stressed that this method does not measure the complex electric field, but rather an output field influenced
by the reference wave as per equation E.14.
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[115]. For γ = M/N:

ρ(λ̃) =
γ

2πλ̃

√
(λ̃2 − λ̃2

min)(λ̃
2
max − λ̃2), ∀λ̃ ∈ [λ̃min, λ̃max] (E.16)

where λ̃ = λ√
1/N ∑i λ2

i
, λ̃min = (1 −

√
1/γ) and λ̃max = (1 +

√
1/γ). For the case of γ = 1

we recover the well-known ”quarter-circle law”:

ρ(λ̃) =
1
π

√
4 − λ̃2 (E.17)

However, equations E.16 and E.17 are valid for a TM without any correlations between

its elements. This is generally not the case experimentally, since correlations can appear

from many places such as digital camera pixel crosstalk, non-orthogonality of input basis

set, presence of ballistic photons and the influence of the reference field. In any case, we

can get remarkably close to the Marcenko-Pastur law in two filtering steps:

1. As detailed in Ref.[100] we can define:

k f ilt
mn =

kobs
mn√

⟨|kobs
mn|2⟩n − ⟨|kobs

mn|⟩2
n

(E.18)

Where ⟨·⟩n denotes the average over all the input modes. Under certain assump-

tions, it can be shown that the distribution of SVD’s of K f ilt is the same as that of K

alone. This step removes the effect of the reference;

2. In order to remove inter-element correlations, we can take a sub-matrix of the TM

by choosing only one element out of two.

In our case, the images recovered were 300x320 pixels, thus we were not able to reach

γ = 1, however, we’ve come fairly close with a 20x downsampling, achieved via local av-

eraging, which resulted in γ = 1.06(6). The singular value spectrum of the downsampled

transmission matrix as well as its filtered version as just described, are shown in figure

E.6. As can be seen, our results deviate quite significantly from the expected curve from

RMT. Nonetheless, it’s interesting to note that since our set-up was likely poorly aligned,

as evidenced by the low values of the electric field from figure E.5, the singular value

spectrum is likely to deviate from what random matrix theory predicts. In spite of this

disparity, we follow our study on the transmission matrix
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FIGURE E.6: Probability distribution of the singular values from an experimental TM. In
red we have the results from a singular value decomposition on raw data; in blue, we
repeat the analysis for a filtered TM as per equation E.18; in yellow, we have removed the
inter-element correlations; and finally in green we have the expected tendency given by

Marcenko-Pastur law, in equation E.16.

Time-reversal

In optics, time-reversal is achieved by phase-conjugation, and before the advances in spa-

tial light modulation it was done analogically through the use of third order non-linear

crystals via a four-wave mixing process. It is possible to show that if there is an optical

element that can generate a backward-going wave whose amplitude is the complex con-

jugate of that of the forward-going wave at any one plane, then the field amplitude of the

backward-going wave will be the complex conjugate of that of the forward-going wave at

all points in front of the mirror. In particular, if the forward-going wave is a plane wave

before entering some aberrating medium, then the backward-going (i.e., conjugate) wave

emerging from the aberrating medium will also be a plane wave [75].

FIGURE E.7: Conjugate waves propagating through an inhomogeneous optical medium.
Image taken from Ref.[116].
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Having this in mind, we can define a target electric field Etarget
out , defined in terms of the

detector pixel basis*, and write:

Ein = K†Etarget
out (E.19)

Following this approach, we can try to focus light onto a single pixel. The results are

shown in figure E.8.

FIGURE E.8: Experimental results for single spot focusing through a multi mode fibre. a)
Measured intensity patter; b) Intensity cross sections as per a), and c) phase mask applied

to the input field.

Finally, we outline a method which can, in principle, give a better performance when

controlling light through complex media. he previous approach, while effective, has a

clear performance problem, which can be readily seen:

Eout = KEin

= KK†Etarget
out (E.20)

Generally, KK† ̸= I, thus distorting the output field. A more robust and ideal approach

would be to treat this as an inverse problem, thus defining:

Ein = K−1Etarget
out (E.21)

Where the inverse operator here also extends to the Penrose pseudo-inverse, to include

the case when M ̸= N. However, in the presence of noise the inverse matrix can become

very unstable. Thus, an intermediate approach to this would be to include the Tikhonov

regularisation and define:

Ein = [K†
obsKobs + αI]−1Etarget

out (E.22)

*Here we explicitly say the pixel basis to highlight that if we re-sampled our TM to some other basis, for
example the Bessel mode basis, then the target field would have to written in terms of Bessel modes.
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This operation stabilises inversion through the addition of a constraint depending on the

noise level. This method has not been explored in this work, and is left as future work.



Appendix F

Wavefront optimisation algorithms

Throughout our work we’ve had the chance to study different wavefront shaping tech-

niques. One of the most popular methods, the transmission matrix method, is described

in appendix E and can be used to control light through any linear material, and is of

particular interest when considering strongly scattering media. Nonetheless, historically,

there were other methods that came before the transmission matrix, which treat the prob-

lem as an optimisation task, and are capable of finding an optimal phase mask through

iterative processes. In this appendix, we’ll look over three different wavefront optimisa-

tion algorithms, of which we’ll present experimental results of two of them, and perform

a comparative analysis between those and the transmission matrix approach. In order

to benchmark the methods we’ll try to focus light onto a single spot at the centre of the

digital camera. As for the experimental set-up, we will use the one described in figure 6.2

of the main text.

CSA - Continuous Sequential Algorithm

In 2007 Vellekoop and Mosk [117] introduced an iterative algorithm that allowed to find

the optimal wavefront which would focus light through a rutile (TiO2) pigment sample,

onto a target area of the size of a single speckle. For this algorithm, they determine the

optimal phase for a single macro-pixel at a time by cycling its phase from 0 to 2π, and

store the optimal phase. Then, due to the linear dynamics, the final phase mask can

be found by joining all the optimal phase values for each macro-pixel. A year later the

same researchers have introduced a summary and comparative analysis of 3 different,

yet similar, algorithms: i)Stepwise sequential algorithm (SSA); ii)Continuous sequential

129
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algorithm (CSA) and iii) Partitioning algorithm (PA) [118]. Based on their reported re-

sults, we’ve decided to explore only the CSA since it exhibited the most consistent and

robust convergence performance in noisy and noiseless environments. The algorithm is

depicted in figure F.1. We start with an initial phase mask, which can either be random

or zero everywhere, we select a macro-pixel and cycle its value from 0 to 2π and store all

the speckle patterns generated by them. With these patterns we calculate the value of a

function f (ϕ) which we aim to maximise and select the optimum phase value, ϕbest, and

replace the macropixel’s value with ϕbest, and then repeat the process for every element

of the phase mask. In our case, the target function f (ϕ) is defined as f (ϕ) = ∑N
i=1 Ii(ϕ)Ti,

where I(ϕ) is the speckle pattern corresponding to the phase value ϕ and T is the target

intensity pattern. In our case, T is merely a circle centred in the image with the size of a

single speckle, where it takes the value of 1 inside this circle and 0 everywhere else. In a

real experiment there will be various sources of noise, thus the behaviour of f (ϕ) won’t

be smooth, but rather erratic. There are various approaches to circumvent this problem,

but we’ve found that a simple running mean filter can be quite effective.

FIGURE F.1: Continuous sequential algorithm diagram.

The difference with respect to the SSA is that the last step would not take place, that is,

the optimum phase value for each macropixel would be found without any information

of the previous optimised macropixels. It’s important to note that, while the CSA may

converge faster in terms of iterations, the SSA could enable a more parallel computation

due to the DMD large memory, thus compensating the Lee hologram computation time

overhead. In the PA, the key difference relative to the CSA is that instead of choosing only

one macropixel, we would choose many at random, and then you’d repeat the process

until convergence.
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COAT - Coherent Optical Adaptive Technique

In 2011 Cui [119] introduced a wavefront optimisation method towards focusing through

highly scattering media, which can be highly parallelisable. It is inspired by the mul-

tidither coherent optical adaptive technique (COAT) [120], a method developed at the

Hughes Research Laboratories in the 1970s for focusing a laser beam through air turbu-

lence. To understand the algorithm, let us first look at the case of free space propagation

as in figure F.2. In this scenario we have two beams, a reference beam and a phase mod-

ulated beam, and we let them interfere at a screen where we will see the typical fringe

pattern where the beams overlap. If we now control the intensity of a spot much smaller

than the fringe spacing, Iω(t), and allow for the phase ϕ(t) = ωt, we can write:

Iω(t) = A + B cos(ωt + ϕ0) (F.1)

where ϕ0 is the phase difference between the reference and modulation beams, and A

and B are real constants. Suppose now that we wanted that, at the monitored spot, the

intensity was minimum. In that case, one should have Iω = A − B, which can only be

accomplished if ϕ(t) + ϕ0 = π. Thus we see that the goal is to use the phase modulation

to compensate for ϕ0. Looking at the fourier transform of equation F.1 we have:

F{Iω(t)} = A f δ( f ) + B f δ( f − ω)e−iϕ0 + B f δ( f + ω)eiϕ0 (F.2)

where A f and B f are real constants. If we isolate the +ω component of equation F.2,

I+ω( f ) = B f δ( f − ω)e−iϕ0 , it’s straightforward to see that ϕ0 = arctan
(

I{I+ω( f )}
R{I+ω( f )}

)
. Look-

ing back to the problem of static strongly scattering media, the output pattern would not

be a clean fringe pattern, but rather a speckle pattern, however, each spot at the target

screen is the nothing more than the result of a complex interference pattern, thus a mod-

ulation as ϕ(t) = ωt on the modulation beam would still result in a sinusoidal intensity

variation when monitoring a spot much smaller than the average speckle size, thus vali-

dating the technique. Furthermore, due to the linearity of the light propagation, we can

analyse various frequency components on different input channels, which will allow for

a completely parallel computation of the optimal wavefront towards focusing.

To apply this technique to strongly scattering media, we should look into figure F.3.

The input field is modulated with a phase mask where each macropixel is assigned to a

specific modulation frequency. From an experimental point of view, one should choose
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FIGURE F.2: Coherent optical adaptive technique diagram in free space.

these frequencies so as to match to the ones that the FFT (Fast Fourier Transform) algo-

rithm uses to sample the DFT (Discrete Fourier Transform). Then, we retrieve the intensity

at a specific spot as a function of time (note that this time, does not need to be measured

in seconds, but rather just some arbitrary unit), and then we perform a fourier transform

of Iω(t) and finally retrieve the phase of each of the modulation components (in red in

the figure). After replacement of these phase values in the phase mask in the respective

channels, the output should be maximised for total intensity at the monitored pixel.

FIGURE F.3: Coherent optical adaptive technique diagram in strongly scattering media.

This method has not been properly explored experimentally in our work, and we

haven’t made further progress, as our interest laid with iterative methods. Nonetheless,

the elegance of the method has been captivating and we decided to include it in this thesis

as both from a pedagogical point of view, as well as a suggestion for future work to be

carried out in wavefront optimisation techniques.
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GA - Genetic Algorithm

In 2012 Conkey et al. [121] introduced a genetic algorithm optimisation for focusing through

turbid media, and was able to demonstrate a remarkable performance compared with

existing methods. Genetic algorithms are based on the principle of evolution through

natural selection, coined by Charles Darwin in 1859 in his magnum opus, The Origin

of Species [122]. This principle has been generally accepted among scientists, and some

general remarks are of particular relevance:

1. Each individual tends to pass on its traits to its offspring;

2. Nevertheless, nature produces individuals with differing traits;

3. The fittest individuals - those with the most favourable traits - tend to have more

offspring than do those with unfavourable traits, thus driving the population as a

whole toward favourable traits;

4. Over long periods, the variation can accumulate, producing entirely new species

whose traits make them especially suited to particular ecological niches.*

When designing a computational algorithm based on this evolutionary principle, one

must identify the key operations that take place in the algorithm, namely the crossover,

mutation and generational survival. The original work has been devised for binary am-

plitude masks, but here we will formulate the algorithm for continuous phase masks,

however minimal alterations have to be made go back to binary mask optimisation. Let

us go step-by-step through the algorithm:

Initial population

For this algorithm we need an initial population, which in our case is a set of phase masks.

The most usual way is to generate this set at random, that is, where each macropixel

is sampled from a probability distribution, in our case we chose uniform from 0 to 2π.

However, one can argue that there could be better initial guesses that could potentially

lead to faster convergence and better avoid local minima.

*This enumeration has been transcribed from Ref.[122].
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Fitness rank

A crucial part in any GA is the fitness rank, which is used to give a quantitative value

to the question ”How good is this individual to our specific goal?”. It’s important to

note that the fitness function will dictate the solution landscape and consequently greatly

affect the influence of mutation and crossover operations. In our case, we are interested

in focusing light in specific regions of space, thus, let T be the target intensity pattern

where it takes the value 1 where we want focused light and 0 everywhere else, Y the

pattern recorded on camera, and A be the phase mask that gave rise to Y. We propose

two methods:

1. Integral: Here we integrate all the light in the target regions and normalise to the

maximum value it can take, which in the case of an 8 bit resolution is:

f (A) =
∑N

i=1 YiTi

∑N
i=1 255 × Ti

(F.3)

2. SNR (Signal to Noise Ratio): The goal of this fitness function is to prioritise the

contrast rather than intensity only. Objectively they should converge to the same

solution, but the solution landscape will be different.

f (A) =
∑N

i=1 YiTi

∑N
i=1 Yi(1 − Ti)

(F.4)

As we’ll see next, it’s useful to define the ranks with the criteria ”the higher the better”.

Choosing crossover individuals

As we’ve seen, in nature the fittest individuals tend to have more offspring than those

with unfavourable traits. In order to replicate this behaviour in our algorithm, we’ve

followed three approaches: i) fitness-aware sampling, ii) fitness-unaware sampling and

iii) fitness and diversity-aware sampling. In the first, we have sampled Q individuals

from the population with respective probabilities:

Pi =
fi

∑M
i fi

(F.5)

After choosing the first Q elements, we remove them from the population to avoid

crossover of the elements with themselves, and repeat the process with the remaining

individuals. The second approach does not take in consideration the value of the fitness

of an individual, but rather it’s relative ordered rank. If we let the P1 be the probability
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of choosing the most fit individual and PM be the probability of choosing the least fit

individual, we can write:

P1 = Pc

P2 = Pc(1 − Pc)

...

PM−1 = Pc(1 − Pc)
M−2

PM = 1 −
M−1

∑
i=1

Pi (F.6)

Where Pc is a real number between 0 and 1. Finally, one can also include a form of di-

versity ranking which will allow to choose crossover pairs that will generate an offspring

that will have the best balance between fitness and diversity thus allowing to keep the

population well scattered across the solution space and not stagnate in a local minimum/-

maximum. In order to do this, we first choose the first Q elements based on fitness. Then,

we rank the remaining M − Q elements based on how different they are relative to the

first Q individuals chosen as:

di =
1
N

Q

∑
j=1

N

∑
k=1

|(Aj)k − (Ai)k|2 (F.7)

Then, we join the fitness and diversity rankings in a single metric:

li = λ fi + (1 − λ)di (F.8)

with λ being a real number between 0 and 1. With this new ranking, we now choose the

remaining Q elements in the same manner as we did for the first Q, replacing only the

respective ranking.

Crossover operation

The crossover operation is what determines how the traits of two individuals can be com-

bined to generate an offspring that will inherit qualities from both parents. In our case

we’ve decided to study two approaches: i) binary selection and ii) linear combination. In

the first approach, we generate a phase mask, S, such that each element is either 0 or 1
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chosen at random. Given two parents Qma and Qpa we can generate two offsprings as:

(Oi(Qma, Qpa))k = Sk(Qma)k + (1 − Sk)(Qpa)k (F.9)

(O′
i(Qma, Qpa))k = (1 − Sk)(Qma)k + Sk(Qpa)k (F.10)

The second approach is only possible when dealing with a continuous solution space,

which is our case as we’re dealing with phase masks. The offspring is generated as:

(Oi(Qma, Qpa))k =
1
2

(
(Qma)k + (Qpa)k

)
(F.11)

Mutation operation

Mutations are inherently random, thus the first step in this process is to randomly select a

set of macropixels in the phase mask and then modify them. In our work, we’ve followed

the approach taken by Conkey et al. [121] when choosing the number of macropixels to

modify in each generation as:

R(n) = int
[(

(R0 − Rend)e−n/λ + Rend

)
∗ N

]
(F.12)

Where R0 and Rend define the initial and final mutation rate, and λ defines the mutation

decay rate. This ensures that initially we have a high mutation rate, allowing for the

population to search the solution space more aggressively, and for later generations we

have a low mutation rate thus allowing to converge to an optimal solution.

Having selected the macropixels to alter, we need to define how they should be mod-

ified. We propose 4 methods:

1. Incremental: Each of the selected macropixels are modified as Ak → Ak + dϕ, where

dϕ is a fixed real value;

2. Random: Each of the selected macropixels is set to a random number between 0 and

2π;

3. Phase Flip: Each of the selected macropixels is modified as Ak → π − Ak;

4. Random incremental: Each of the selected macropixels is modified as Ak → Ak ±

dϕ, where dϕ is a fixed real value, but the + or − sign is randomly selected.
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Generational survival

In this final step we choose how many individuals from the current population survive

to the next generation. In our case we’ve decided to implement this step as follows: from

the mutated individuals and offspring, we choose the V most fit elements, and replace

the worst V individuals in the current population with these fitter elements.
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FIGURE F.4: General description of the genetic algorithm employed.
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Focusing through a multimode fibre

In this section we’re going to go over the performance of different algorithms, namely

TM, CSA and GA towards the common goal of single spot focusing through a multimode

fibre. In order to have a quantitative comparison of the focus spot, we have chosen to do

it with respect to the average speckle size of the fibre’s output. To calculate this, we use

the full width at half maximum of the 2D autocorrelation peak of the intensity pattern

[62, 123]. The 2D autocorrelation of a function f (x, y) is defined as:

ΓI(x, y) =
∫ ∫ +∞

−∞
f (ξ, η) f ∗(ξ − x, η − y)dξdη (F.13)

We can recognize equation F.13 as a linear convolution and thus make good use of the

fourier domain:

F
{

ΓI(x, y)
}
= |F(µ, ν)|2 (F.14)

where F(µ, ν) is the fourier transform of f (x, y). The results are shown in figure F.5 and

the calculated average speckle sizes in the x and y direction are:

∆x = (11.7 ± 0.3)pixels (F.15)

∆y = (12.6 ± 0.3)pixels (F.16)

Recognising that the camera was capturing only every two pixels and considering the

8µm pixel pitch, these measures translate directly to:

∆x = (112 ± 3)µm (F.17)

∆y = (121 ± 3)µm (F.18)

FIGURE F.5: Calculation of the average speckle size based on the autocorrelation peak. a)
Output speckle pattern for a constant phase mask as input; b) 2D autocorrelation of the
highlighted area in a), calculated as in equation F.14; c) Vertical and horizontal (green and
red lines) cross sections of the autocorrelation function. The solid semitransparent lines
are the cross sections, and the dashed lines represent a nonlinear fit to a gaussian curve.
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With this in mind we choose as target mask a centered 5 pixel radius circle. Further-

more, as we’ll see all the focal spots have similar shape, and after a careful analysis of one

case obtained with 1024 input modes with the genetic algorithm, we see that the obtained

spot has dimensions of the order of the average speckle size as calculated previously.

FIGURE F.6: Calculation of the spot size. a) Output speckle pattern for an optimised
phase mask; b) close-up image of the highlighted area in a); c) Vertical and horizontal
(green and red lines) cross sections of the autocorrelation function. The solid semitrans-
parent lines are the cross sections, and the dashed lines represent a nonlinear fit to a

gaussian curve.

Upon a nonlinear fit to a gaussian function the spot dimensions are:

∆x = (12.0 ± 0.2)pixels (F.19)

∆y = (12.9 ± 0.3)pixels (F.20)

Experimental rules of thumb for the genetic algorithm

Before diving in to a comparative analysis of the different methods, we have performed

several performance tests with the genetic algorithms to gain some insight on the influ-

ence of the several parameters. In the following we will not present all of our studies.

Instead, we will show a typical study, and we will then present a summary of our conclu-

sions on the application of a GA to focusing through a multimode fibre.

Case study - Population size dependence

In figure F.7 we can see the results for 3 different study cases with population sizes, M, of

10, 30 and 100 individuals. The algorithm parameters are outlined in table F.1.

As seen from the figure, the results are consistent with what we’d expect since a larger

population means a larger span across the solution space, thus the probability of an initial

individual to land near an optimal solution is higher and can then drive the population
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Initial
population

type

Population
size

Fitness
function

Number
of

input
modes

Number
of

crossover
operations

Random M Integral 256 M/2
Number

of
survivals

Crossover
operation

Initial
mutation
rate, R0

Final
mutation
rate Rend

Mutation
decay
rate, γ

M/2 Binary 0.1 0.001 200

Mutation
operation

Mutate
offspring

Include
diversity
ranking

Diversity
importance,

λ

Prob. dist.
for crossover
individuals

Random Yes Yes 0.5
Fitness
aware

TABLE F.1: Genetic algorithms parameters for population size dependence study.

FIGURE F.7: Population size dependence of the single spot focusing performance. a)
Fitness evolution throughout the generations. Solid lines represent the average fitness of
the population, and the shaded region is a representation of the standard deviation of the
fitness. The dashed lines represent the evolution of the fitness of the most fit individual in
each generation; b0)-b2) are the output after 100 generations for each study case; c0)-c2)
are the vertical (green) and horizontal (red) cross sections of the intensity outputs b0) to

b2), respectively; d0)-d2) are the best phase masks after 100 generations.
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towards that better solution. However, this comes at a cost of a greater computation time,

since it scales linearly with the number of individuals in a population.

Summary

From all our results we can outline some rules-of-thumb for dealing with the genetic

algorithm for light manipulation through a multimode fibre:

1. A big population size will lead to better results, but it can take a long time to com-

pute;

2. What defines a what a ”big” population size is is related to the dimensionality of

the solution space, and consequently to the number of input modes;

3. Mutation operations should be performed either in a random or incremental man-

ner;

4. Diversity ranking inclusion did not prove itself to be useful;

5. There is no significant advantage in letting more than 50% of the current population

be replaced;

6. Electronic saturation at the camera is not helpful;

7. An integral fitness function proved itself to be rather effective for single spot focus-

ing;

8. The mutation rate should be kept low, but not too low;

Comparative analysis

Having studied the genetic algorithm, we are now prepared to compare the different

methods. We test all the methods towards single spot focusing, with variable number of

input modes, namely 64, 256, 1024. The parameters for the genetic algorithms are shown

in table F.2. As for the CSA we’ve used 30 phase samples, and the running mean filter

used 5 sample window. The performance metric chosen was the integral method as used

before.

The results can be seen in figure F.8 for 64 input modes. From F.8a) we have the evo-

lution of the different algorithms, thus for each method the x axis represents something

different and curve comparison should be made with care. For the GA, the x axis is the

generations, while for CSA is the macropixel being optimised. The horizontal curve for
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Initial
population

type

Population
size

Fitness
function

Number
of

input
modes

Number
of

crossover
operations

Random 30 Integral N 15
Number

of
survivals

Crossover
operation

Initial
mutation
rate, R0

Final
mutation
rate Rend

Mutation
decay
rate, γ

15 Binary 0.1 0.001 200

Mutation
operation

Mutate
offspring

Include
diversity
ranking

Diversity
importance,

λ

Prob. dist.
for crossover
individuals

Random Yes Yes 0.5
Fitness
aware

TABLE F.2: Genetic algorithms parameters for comparative analysis.

the TM represents only the performance threshold, and with no ties to the x axis. Having

said this, we can see that it takes few iterations for the GA to achieve similar performance

to TM method. Nonetheless, with the current parameters, it seems to have plateaued only

at a slightly better fitness than the TM. On the other hand, the CSA is able to achieve much

higher performance and a noticeable focusing capability. Furthermore, it’s important to

note that the time taken by these methods was 9.88, 73.5, 73.7 seconds (TM, CSA, GA,

respectively).

We increase the number of input modes, and the results are shown in figure F.9. Do

note that in this case we’ve increased the population size of the GA to 50 individuals.

Most of the comparative conclusions from before remain, but it’s important to reinforce

the robustness of the CSA and GA algorithm. By looking at these results one may be

tempted to question the advantage of using the GA, but when looking at the time taken

by these methods - 34.4, 318, 282 seconds for the TM, CSA and GA - the computation time

scaling of the CSA and TM largely outpaces the scaling of the GA since it’s independent

of the number of input modes, whereas the other ones are.

Finally, we repeat for 1024 input modes, and the results are shown in figure F.10. Do

note that in this case we’ve increased the population size of the GA to 100 individuals.

We can see that now the TM performs far better and it outperforms the GA. Furthermore,

it can be seen that the TM allows for a much smaller spot size, however, the GA and the

CSA were constrained to the target mask of 5 pixel radius. This indicates that we can

choose a much smaller radius spot and perhaps choose a peak to background ratio as a
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FIGURE F.8: Comparative analysis with 64 input modes. a) Fitness evolution for the
different methods; b0)-b2) are the output after all the iterations for each method; c0)-c2)
are the vertical (green) and horizontal (red) cross sections of the intensity outputs b0) to

b2), respectively; d0)-d2) are the best phase masks obtained.

fitness function. However, it’s worth pointing out that the time scaling was again quite

notorious as they took 156, 1270 and 672 seconds for the TM, CSA and GA.
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FIGURE F.9: Comparative analysis with 256 input modes. a) Fitness evolution for the
different methods; b0)-b2) are the output after all the iterations for each method; c0)-c2)
are the vertical (green) and horizontal (red) cross sections of the intensity outputs b0) to

b2), respectively; d0)-d2) are the best phase masks obtained.
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FIGURE F.10: Comparative analysis with 1024 input modes. a) Fitness evolution for the
different methods; b0)-b2) are the output after all the iterations for each method; c0)-c2)
are the vertical (green) and horizontal (red) cross sections of the intensity outputs b0) to

b2), respectively; d0)-d2) are the best phase masks obtained.
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Iterative wavefront shaping applied to light manipulation in free-

space propagation

We now wish to apply the previous algorithms and knowledge acquired to the manipula-

tion of light in free space propagation and study the limits of such manipulation. Having

the final 4f system in place as in figure 6.2, we take inspiration on Cojoc and Alexandrescu

[124] and place an extra convex lens within a focal distance of the imaging plane and place

the camera at the fourier plane. The problem now is reduced to a typical phase retrieval

problem which could, in principle, be solved via the Gerberch-Saxton algorithm. How-

ever, we’ve tried to do so by taking an image of the intensity profile at the 4f plane and

then run the algorithm until convergence, but we were unable to reproduce an image at

the fourier plane. Our suspicion is that this happened due to poor alignment of the set-up

and lack of physical correspondence between DMD macro-pixels and camera image.

In order to demonstrate light manipulation capabilities, we’ve tested the GA on 5

different targets, both with binary phase modulation as in figure F.11 and full range phase

modulation F.12.

As can be seen from the figures, we’re able to converge to the intended targets thus

demonstrating that phase modulation with 256 input modes alone is able to manipulate

a speckle pattern.
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FIGURE F.11: Final results for different targets with binary phase modulation. a) Fitness
evolution for the targets; b) panels are the intended target functions; c) panels are the
output after all the iterations for each method; d) panels are the vertical (green) and
horizontal (red) cross sections of the intensity outputs c), respectively; e) panels are the

best phase masks obtained.
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FIGURE F.12: Final results for different targets with full range phase modulation. a)
Fitness evolution for the targets; b) panels are the intended target functions; c) panels are
the output after all the iterations for each method; d) panels are the vertical (green) and
horizontal (red) cross sections of the intensity outputs c), respectively; e) panels are the

best phase masks obtained.





Appendix G

An attempt at a diffractive optical

extreme learning machine

In 2018, Lin et al. [125] introduced an all-optical machine learning architecture using

diffractive deep neural networks. Such set-up consists of consecutive linear layers that

aim to cleverly diffract light such that the intensity at the output plane is enough to in-

fer on the input. For training, they use a physical forward propagation model following

the Rayleigh-Sommerfeld equation, in which a single neuron (i.e. a single pixel from the

diffractive optical element) can be considered as the secondary source of wave wl
i(x, y, z),

given by [40]:

wl
i(x, y, z) =

z − zi

r2

(
1

2πr
+

1
jλ

)
exp

(
j2πr

λ

)
(G.1)

where r =
√
(x − xi)2 + (y − yi)2 + (z − zi)2, j is the imaginary unit, λ is the wavelength.

This allows to model the input field at the ith neuron at the lth layer as:

ul
i(x, y, z) = wl

i(x, y, z)tl
i(x, y, z)∑

k
ul−1

k (xi, yi, zi) (G.2)

where tl
i denotes the complex modulation of a single pixel, i, of the lth diffractive layer.

Having this propagation model, it is possible to implement a backpropagation algorithm

to train the network towards a specific task. An important aspect of these networks is

that they only consist of linear optical elements, thus, in theory, the entirety of the net-

work could be compressed onto a single diffractive layer, yet, they were able to demon-

strate depth advantage of the network, as more layers resulted in a better performance. A

possible reason for this can be due to small nonlinear effects at the surfaces, as well as

unaccounted optical losses throughout the set-up. It’s also worthwhile to note that these

151
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networks also possess a high number of learnable parameters, thus making the training

of the network quite heavy. In fact, the presented machine in [40] features 5 diffractive

optical layers, resulting in 0.8 million trainable parameters. Finally, these works have

been performed using THz input radiation, resulting in large optical elements (in [40] the

diffractive layers were 8x8cm). However, it has recently been shown that it is possible

to achieve similar performances in visible and near-infrared wavelengths [126]. In their

work, each neuron has a size of approximately 4µm, each layer has an area of 4x4 mm and

features 1 million neurons.

FIGURE G.1: Proposed interplay of diffractive optical neural network and extreme learn-
ing machine, exemplified for the a classification task with the MNIST dataset. a) Typical
architecture of a diffractive neural network consisting of an input plane, followed by a
set of trainable diffractive layers redirecting light on an output plane. b) Proposed ar-
chitecture for an extreme learning machine based on diffraction. The input is fed to an

optical complex media and the output is followed by a trainable diffractive layer.

To this end, we’ve used the set-up in figure G.2. In this set-up, the output of the MMF

is sent back to the DMD where it is phase modulated through Lee holography, and the

digital camera is placed on the fourier plane. It’s important to note that even though we

draw inspiration from diffractive neural networks, we are unable to replicate the DOE’s

due to the digital micromirror device’s limitations. On one hand, the pixel pitch is 13.68

µm, which is about 25.7 times larger than the working wavelength of 532nm, which is far
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larger than the current ratios used in the literature, having implications in the physical for-

ward propagation model. Despite this, our previous work (light manipulation sections)

shows that it is possible to manipulate light with a relatively low number of input modes

with large modulation areas. On the other hand, the device only allows binary ampli-

tude modulation, and in turn affects the phase modulation, imposing strict limitations on

the resolution due to the binary quantisation, which are not yet fully documented. Thus,

this device is not suitable for the backpropagation algorithm. To overcome this we’ve

employed a genetic algorithm for training, as described in appendix F.

FIGURE G.2: Experimental set-up used.

We’ve tested our implementation in the dataset represented in figure G.3. As for the

wavefront modulation schemes, we’ve employed those outlined in chapter 4 of the main

text.
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FIGURE G.3: Circular dataset

Fitness functions

The fitness function will greatly influence the convergence of the algorithm. Let T1 and

T0 be the target masks as shown in figure G.4, and Xij
k (Gi, xj) be the intensity recorded on

the kth pixel on the camera with the mask Gi and input data xj, with corresponding label

yj ∈ {0, 1}.

FIGURE G.4: Target masks.

Let us also define the normalized intensities I1 and I2*:

I1(xj) =
∑k Xij

k T1

∑k 255 × T1
(G.3)

I2(xj) =
∑k Xij

k T2

∑k 255 × T2
(G.4)

Let F(Gi) be the fitness function for the individual Gi. We’ve tested the following:

*These are normalized to an 8-bit digital camera.
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f (Gi) = ∑
j




1, I1(xj)− I2(xj) > δI and yj = 0

1, I2(xj)− I1(xj) > δI and yj = 1

 (G.5)

where δI was added to compensate noise fluctuations.

f (Gi) =
N

∑
j

1
N




1 + I1(xj)− I2(xj), yj = 0

1 + I2(xj)− I1(xj), yj = 1

 (G.6)

f (Gi) =
N

∑
j

1
N




1/I2(xj), yj = 0

1/I1(xj), yj = 1

 (G.7)

f (Gi) =
N

∑
j

1
N




I1(xj)

I2(xj)
, yj = 0

I2(xj)

I1(xj)
, yj = 1

 (G.8)

f (Gi) =

〈
I1(xj)

I2(xj)

〉
yj=0

+
C

1 + σ

(
I1(xj)

I2(xj)

)
yj=0

+

〈
I2(xj)

I1(xj)

〉
yj=1

+
C

1 + σ

(
I2(xj)

I1(xj)

)
yj=1

(G.9)

where the ⟨·⟩yj=0 represents the average over the samples with belonging to class 0, and

σ(·)yj=0 the standard deviation with respect to samples belonging to class 0. C is a hy-

perparameter, and can take any value. The terms with the standard deviation were intro-

duced to give some regularization to the solution, that is, the best solution would result

in a low standard deviation, so that all the intensity ratios would be similar.

f (Gi) =
N

∑
j

1
N



∣∣∣∣ 1

I1(xj)−1

∣∣∣∣ , yj = 0

1
I1(xj)

, yj = 1

 (G.10)

f (Gi) =

〈∣∣∣∣∣ 1
I1(xj)− 1

∣∣∣∣∣
〉

yj=0

+
C

1 + σ

(∣∣∣∣ 1
I1(xj)−1

∣∣∣∣
)

yj=0

+

〈
1

I1(xj)

〉
yj=1

+
C

1 + σ

(
1

I1(xj)

)
yj=1

(G.11)
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f (Gi) =
N

∑
j

1
N




1
1+e−C(I1(xj)−0.5) , yj = 0

1 − 1
1+e−C(I1(xj)−0.5) , yj = 1

 (G.12)

f (Gi) =
N

∑
j

1
N




2 + 1
1+e−C(I1(xj)−0.5) − 1

1+e−C(I2(xj)−0.5) , yj = 0

2 + 1
1+e−C(I2(xj)−0.5) − 1

1+e−C(I1(xj)−0.5) , yj = 1

 (G.13)

Equations G.12, G.11 and G.10 aim at evaluating the class of the input merely by looking

at the intensity of a single photodetector, whereas the rest intend to so by comparing the

intensities of two distinct photodetectors.

Results and discussion

Binary modulation

For the binary modulation, we’ve used a maximum modulation area of 512x512 DMD

pixels, consisting of 96x96=9216 macropixels. The algorithm ran for 30 generations with

a total of 20 individuals per generation, 10 crossovers per generation and 10 survivals

per generation. The initial and final mutation rates were kept at 0.1 and 0.001, and the

mutation decay rate at 200. As for the fitness function, we’ve used equation G.13.

FIGURE G.5: Fitness function evolution.

From figure G.5 we can see that the algorithm converged rather quickly, however, this

was not an indication of learning as can be seen when comparing figures G.7 and G.8,

which can be further complemented by figure G.6.
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FIGURE G.6: I1 and I2 values for every sample, panels a) and b) respectively. Blue lines
represent the evolution of the values of samples from class 0 and red lines are those of

class 1.

FIGURE G.7: Machine performance at the 0th generation. a0) shows the value of I1 for
an input with arbitrary coordinates {x, y} within the domain of the dataset in figure G.3,
and a1) shows a vertical (black) and a horizontal (purple) cross sections of the intensity
map, with shaded regions of the boundaries for classification. b0) and b1) show the same

information as the a) panels, but for I2 and likewise for panels c) with I1 − I2.

Grayscale modulation

For the grayscale modulation, we’ve used a maximum modulation area of 512x512 DMD

pixels, consisting of 96x96=9216 macropixels, each with 9 levels. The algorithm ran for

30 generations with a total of 20 individuals per generation, 10 crossovers per generation

and 10 survivals per generation. The initial and final mutation rates were kept at 0.1 and

0.001, and the mutation decay rate at 200. As for the fitness function, we’ve used equation

G.13.

The results have not improved, and the only remark to be done is with respect to

figure G.14 which shows the problem that the GA is effectively trying to solve the focusing

problem rather than the classification one.
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FIGURE G.8: Machine performance at the 30th generation. a0) shows the value of I1 for
an input with arbitrary coordinates {x, y} within the domain of the dataset in figure G.3,
and a1) shows a vertical (black) and a horizontal (purple) cross sections of the intensity
map, with shaded regions of the boundaries for classification. b0) and b1) show the same

information as the a) panels, but for I2 and likewise for panels c) with I1 − I2.

FIGURE G.9: Evolution of the speckle pattern for two samples of distinct classes.

FIGURE G.10: Fitness function evolution.
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FIGURE G.11: I1 and I2 values for every sample, panels a) and b) respectively. Blue lines
represent the evolution of the values of samples from class 0 and red lines are those of

class 1.

FIGURE G.12: Machine performance at the 0th generation. a0) shows the value of I1 for
an input with arbitrary coordinates {x, y} within the domain of the dataset in figure G.3,
and a1) shows a vertical (black) and a horizontal (purple) cross sections of the intensity
map, with shaded regions of the boundaries for classification. b0) and b1) show the same

information as the a) panels, but for I2 and likewise for panels c) with I1 − I2.

FIGURE G.13: Machine performance at the 30th generation. a0) shows the value of I1 for
an input with arbitrary coordinates {x, y} within the domain of the dataset in figure G.3,
and a1) shows a vertical (black) and a horizontal (purple) cross sections of the intensity
map, with shaded regions of the boundaries for classification. b0) and b1) show the same

information as the a) panels, but for I2 and likewise for panels c) with I1 − I2.
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FIGURE G.14: Evolution of the speckle pattern for two samples of distinct classes.

Phase modulation

For the phase modulation, we’ve used a maximum modulation area of 512x512 DMD

pixels, consisting of 32x32=1024 macropixels. The algorithm ran for 30 generations with

a total of 20 individuals per generation, 10 crossovers per generation and 10 survivals

per generation. The initial and final mutation rates were kept at 0.1 and 0.001, and the

mutation decay rate at 200. As for the fitness function, we’ve used equation G.13.

FIGURE G.15: Fitness function evolution.

The results have repeated themselves, and there are no further remarks except that,

within all the above results, all of the fitness functions were tested, but all converged to the

same solution. A greater spot on the target masks did not result in a better performance.

Using saturation in the measurements did not give better results either.
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FIGURE G.16: I1 and I2 values for every sample, panels a) and b) respectively. Blue lines
represent the evolution of the values of samples from class 0 and red lines are those of

class 1.

FIGURE G.17: Machine performance at the 0th generation. a0) shows the value of I1 for
an input with arbitrary coordinates {x, y} within the domain of the dataset in figure G.3,
and a1) shows a vertical (black) and a horizontal (purple) cross sections of the intensity
map, with shaded regions of the boundaries for classification. b0) and b1) show the same

information as the a) panels, but for I2 and likewise for panels c) with I1 − I2.
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FIGURE G.18: Machine performance at the 30th generation. a0) shows the value of I1 for
an input with arbitrary coordinates {x, y} within the domain of the dataset in figure G.3,
and a1) shows a vertical (black) and a horizontal (purple) cross sections of the intensity
map, with shaded regions of the boundaries for classification. b0) and b1) show the same

information as the a) panels, but for I2 and likewise for panels c) with I1 − I2.

FIGURE G.19: Evolution of the speckle pattern for two samples of distinct classes.
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Final remarks

Our approach has not been successful with respect to classification, but there are a few

learning points that are worth highlighting which may lead to interesting future work

since, to the best of our knowledge, the incorporation of the ELM framework with diffrac-

tive neural networks remains unexplored. First of all, an ELM relies on the projection

towards a high dimensional space in a nonlinear manner. Despite not having a physi-

cal non-linearity in our system, the data encoding is in itself a nonlinear operation since

we’re doing it on the phase information, thus, had our system worked, it could still be cat-

egorised as an ELM. Secondly, even though we don’t have a physical nonlinearity, we still

had a projection activation function of sinusoidal nature, but clearly that was not enough.

A way to improve this would be to add a physical nonlinearity through, for example, Kerr

mediums or saturable absorbers, featuring fast response times so as to not retain memory

of previous inputs. This way, we would greatly increase the dimensionality of the pro-

jection without relying on intensity measurements. Finally, it’s important to note that we

had drastically less parameters to optimise than a single diffractive layer of those present

in references [40, 126]. Notably, they reported millions of parameters whereas we never

got over 5000 parameters.
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