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Resumo

Introdução: Epilepsia é uma doença neurológica que afeta dezenas de milhões de pessoas glob-
almente. O diagnóstico geralmente requere a avaliação da semiologia de crises epilépticas. Esta
semiologia é baseada na interpretação subjetiva por parte de epileptologistas dos movimentos que
acontecem durante a crise. A automatização nesta área seria útil para melhorar a eficácia e eficiên-
cia desta análise da semiologia. Nesta linha de investigação e desenvolvimento, a automatização
não invasiva sem contacto com o corpo do doente tem vindo a utilizar sistemas baseados em visão
computacional, normalmente baseados em aprendizagem computacional profunda (DL). Uma das
abordagens mais comuns para este tipo de sistemas envolve a utilização de um sistema de human
pose estimation (HPE), que deteta automaticamente as poses dos sujeitos, para depois trabalhar
com os resultados desse sistema em vez das imagens originais. No entanto, sistemas de HPE
foram maioritariamente estudados e desenvolvidos para uso em situações em que os sujeitos estão
de pé, sem qualquer oclusão relativamente às câmaras vídeo e não deitados e ocultos por cober-
tores, como acontece na análise de semiologia de crises epilépticas. Desta forma, a oclusão por
cobertores é o principal tipo de cenário que impede a utilização de sistemas de visão computa-
cional DL pré-treinados e disponíveis na literatura. Assim, esta dissertação explora o potencial
de aumentar os datasets existentes que não contenham oclusões de cobertores com oclusões de
cobertores geradas por computador (CG) na melhoria do desempenho de sistemas de HPE que
utilizem deep learning.

Métodos: Foi implementado um pipeline para aumentar artificialmente com oclusões de cober-
tores simulados um conhecido e muito usado dataset da literatura (3DPW) que inclui vídeos RGB
de pessoas em cenários normais com o correspondente ground truth da posição e forma do corpo.
O dataset resultande - a que chamamos "BlanketGen-3DPW" - foi depois usado para treinar um
sistema de HPE com deep learning que foi avaliado e comparado quantitativamente com o mesmo
sistema treinado apenas no dataset original. Para além disso, foi criado um novo dataset - a que
chamamos "BlanketSet" - com gravações de vídeos 3D (RGBD) de pessoas deitadas numa cama
de uma Unidade de Monitorização de Epilepsia realizando vários movimentos, tanto com e sem
oclusões de cobertores reais. Este dataset foi utilizado para a avaliação qualitativa dos resultados.

Resultados: Um novo modelo DL de HPE treinado com o nosso BlanketGen-3DPW obteve um
melhor desempenho perante um conjunto de dados que incluiam exemplos de cenas com e sem
oclusões de cobertores simulados (52.46 PA-MPJPE vs 52.70). Como esperado, este novo mod-
elo teve um desempenho pior quando avaliado no dataset original 3DPW (sem oclusões)(50.95
PA-MPJPE vs 44.97). Estes resultados concordam com os resultados da avaliação qualitativa
elaborada com o BlanketSet, na qual o novo modelo obteve melhores resultados nos vídeos em
que o corpo inteiro do participante estava coberto por um cobertor (0.2±0.15).

Conclusões: Aumentar datasets com oclusões de cobertores CG poderá ser uma abordagem viável
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para melhorar sistemas de DL HPE em cenários onde cobertores tendem a cobrir os sujeitos -
como nos cenários hospitalares, mas há necessidade de investigar abordagens para evitar reduzir a
precisão quando não há oclusões.

Palavras-chave: estimação de pose humana, motion capture, oclusões sintéticas, simulação de
tecido, deep learning, aumento sintético de datasets



Abstract

Introduction: Epilepsy is a neurological disorder that affects tens of millions of people worldwide.
Proper diagnosis can include the analysis of the semiology of epileptic seizures. This analysis
is based on the subjective interpretation by epileptologists of the movements that occur during
recorded seizures. Automatization in this area would be helpful to improve the accuracy and effi-
ciency of the semiology analysis. Non-intrusive contact-less automation relies on characterization
of the movements during seizures with vision-based systems. A promising approach is to first
use a human pose estimation (HPE) system and then work with its output instead of the original
video. However, HPE has mostly been studied and developed for use cases where the subjects
are standing up and are unoccluded, whereas in the case of the analysis of semiology of epileptic
seizures the subjects are usually lying down in hospital beds and are often occluded by blankets.
This dissertation explores the potential of augmenting datasets without blanket occlusions with
computer-generated (CG) blanket occlusions in improving the performance of HPE deep learning
systems.

Methods: A pipeline was implemented to augment the 3DPW dataset with CG blanket occlusions,
this dataset was named BlanketGen-3DPW. The 3DPW dataset includes RGB videos of people in
normal everyday scenarios with body mesh and position ground truths. The augmented dataset
was used to train an HPE deep learning system, which was then evaluated and compared quanti-
tatively to the same system trained only on the original dataset. Besides this, a dataset which was
named BlanketSet was created with RGB-D recordings of people in an Epilepsy Monitoring Unit
bed performing various movements both with and without real blanket occlusions. This dataset
was used for qualitative evaluation of the results.

Results: A model fine-tuned on BlanketGen-3DPW underperformed when evaluated on the orig-
inal 3DPW dataset compared to a model without the fine-tuning (50.95 PA-MPJPE vs 44.97),
but provided slightly better results on BlanketGen-3DPW (52.46 PA-MPJPE vs 52.70), which in-
cludes people with and without synthetic blanket occlusions. These results were corroborated by
the results of the qualitative evaluation on BlanketSet, on which there was a statistically significant
performance improvement on videos with full-body blanket occlusions (0.20±0.15).

Conclusions: Augmenting datasets with synthetic blanket occlusions could be a viable approach to
improve DL HPE systems in scenarios where blanket occlusions are common, but more research
needs to be done to address the downgrade in accuracy in situations where blanket occlusions are
not present.

Keywords: human pose estimation, motion capture, synthetic occlusions, cloth simulation, deep
learning, dataset augmentation
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Chapter 1

Introduction

1.1 Context

Human motion analysis has always been a topic of interest for academics, but up until fairly re-

cently computer-powered automatic systems for it weren’t viable. With the processing power

technological boom of the past decades, automatic systems for motion analysis have been improv-

ing drastically, well into the realm of viability. Due to this, automatic human motion analysis has

become a hot topic in several areas of research.

One such area is the semiology of epileptic seizures: accurate and effective diagnosis and clas-

sification of epilepsy requires visiting an Epilepsy Monitoring Unit (EMU), where the patients are

monitored with video-electroencephalogram (video-EEG) systems; the outputs of these systems

during epileptic seizures are then subjectively analyzed by epileptologists. Human motion analysis

can be used to aid the epileptologists with quantitative results [10][11].

Human Pose Estimation (HPE) is a task within the broader concept of human motion analysis

which focuses exclusively on the position of the subjects being analyzed at any given moment.

Different approaches have been studied to tackle the task of HPE, from the use of inertial mea-

surement units (IMUs) to video-based systems [9]. For the specific use-case of seizure semiology

in EMUs, IMUs aren’t practical as they are uncomfortable and patients sometimes need to stay

for considerable periods of time, they are also difficult to keep properly attached during violent

seizures, so video-based systems are the norm.

However, most of the research effort invested into HPE has been focused on the most common

scenarios of subjects standing up and moving either inside or outside with few occlusions and with

variable camera angles [12]; whereas the scenario considered in this dissertation has the subjects

lying down in beds, usually with blankets covering them at least partially, and a fixed camera.

The blanket occlusions in particular are of concern since accurate estimation of occluded joints

is especially difficult. Blanket occlusions do provide some information as to the location of the

occluded joints, but current state-of-the-art systems don’t take advantage of this information, as

they generally make use of Deep Learning (DL) which is extremely reliant on the datasets used

for training and blanket occlusions aren’t present in any dataset used by these systems [12].
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2 Introduction

In order to allow DL HPE systems to make use of the information hidden in blanket occlusions,

this dissertation proposes BlanketGen, a pipeline to augment a dataset with computer-generated

(CG) blanket occlusions. The augmented dataset was used to train a DL HPE system so that the

improvement brought by the augmentation could be analyzed.

1.2 Goals and Objectives

The goal of this dissertation is to study CG blanket occlusion augmentations as a potential ap-

proach to aid DL HPE systems in scenarios where blanket occlusions are present.

In order to fulfill this goal the following steps were taken:

• Technical background study

• State of the art review

• Development of a python script that loads the 3DPW dataset [13] onto blender, simulates a

blanket on top of a subject, then renders the scene.

• Acquisition of BlanketSet, a dataset with real blanket occlusions at the EMU of the Univer-

sity Hospital Center of São João (CHUSJ)

• Training of the DL HPE system HybrIK [14] with and without the augmented dataset to

evaluate the results.

1.3 Structure of the Dissertation

This dissertation has 7 more chapters besides the Introduction.

In chapter 2 the technical background is established which explains the background knowledge

necessary to understand the work of the dissertation; it is split into 5 sections: section 1 covers

Blender, which was used for the simulation and rendering of the augmentations, section 2 covers

the camera model used to superimpose CG objects onto the videos properly, section 3 covers the

basics of Deep Learning, section 4 covers the Azure Kinect and the Azure Kinect SDK which

were used to capture BlanketSet, and section 5 covers the different measurements used to evaluate

HPE systems.

Chapter 3 explores the current state-of-the-art solutions and datasets for HPE as well as pre-

vious studies that have looked specifically at CG blanket occlusion augmentations as a potential

approach to improve HPE in cases where real blanket occlusions are present.

Chapter 4 explains the BlanketGen pipeline, as well as all the design decisions made and

the reasoning behind them; besides this it also explains the challenges that were faced in the

implementation of the pipeline and the solutions found.

Chapter 5 describes BlanketSet, the dataset acquired to help evaluate the performance im-

provement of training the DL HPE system on the augmented dataset. It explains the design deci-

sions of the dataset and includes visualizations and explanations for all the movement sequences
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recorded in the dataset. This chapter was edited from the Data Acquisition Protocol, which was a

document used to propose and explain the dataset and its acquisition plan.

Chapter 6 explains the choice of DL HPE system used as well as the methods chosen to

evaluate the BlanketGen pipeline and their results. It covers the quantitative methods employed to

compare the performance of DL HPE models on the original and the augmented dataset, as well

as the qualitative methods used to evaluate the performance of the models on BlanketSet.

Chapter 7 comments on the results laid out in the previous chapter, it also speculates on the

causes of the successes and failures of the work of the dissertation.

Chapter 8 summarizes the information of all the previous chapters and draws conclusions

based on that information, including a section about the work to be done in the future.
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Chapter 2

Technical Background

2.1 Blender

Blender is a free and open-source program for creating 3D computer graphics, it provides all of

the tools necessary for 3D animation.

It was chosen for the implementation of BlanketGen over other 3D computer graphics pro-

grams due to being free, having a robust cloth simulation implementation, and providing a python

API that supports nearly every capability of the program.

2.1.1 Python in Blender

The default installation of Blender includes its own python distribution as well as an IDE which

can be accessed directly from Blender. Scripts can be run from this IDE, which allows for rapid

testing and development.

In order to interact with Blender through python code, the Blender Python API must be used,

this package is included in the python distribution provided.

The Blender Python API provides extensive control over all the different functionalities of

Blender, so it includes an extremely large set of methods, classes, and functions.

To help with using such a complex API a few tools are provided:

1. Official documentation [15]

2. On-hover tooltips on nearly every button, slider, textbox, etc, with the data-path of what is

being hovered (figure 2.1)

3. A python console with auto-complete suggestions (figure 2.2)

4. A window that displays python code which would have the same effect as each action taken

within the GUI (figure 2.3).

These tools prove themselves invaluable when working with Blender Python, since it has its

own very particular structure. This chapter is an attempt at a brief overview of this structure.

5



6 Technical Background

Figure 2.1: An example on-hover tooltip, the data-path for this button is provided in the last line

Figure 2.2: An example of auto-complete suggestions from the built-in python console

Figure 2.3: Python code that replicates the action of deleting the initial cube, adding a monkey,
and changing its material.

It’s important to note that in Blender some terms have specific meanings that don’t necessarily

match the meaning usually ascribed to them. In this dissertation, terms are displayed in italics

when they’re using Blender’s definition.

A glossary with definitions of terms as they are used in Blender can be found in [16].

2.1.2 Context

In Blender Python, context is a class which describes the state of the entire project at any given

moment. This includes information about the currently selected object, the current active window,

the current scene, etc.

2.1.3 Operators

Operators in Blender Python are methods that interact with the project in some way, be it by

transforming a given object, by adding an animation keyframe, etc.
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Operators take a context object as an input, by default the current context of the project. Some

operators use the current window selection from the context. This proved to be a recurring prob-

lem, as the BlanketGen pipeline was at every point developed to be run from the command line in

headless mode, which doesn’t open up the GUI, and thus, doesn’t have any windows to even be

selected. The pipeline ended up only being run in scenarios where a GUI was permitted, but this

was not guaranteed from the start, so operators were usually avoided wherever possible.

2.1.4 Translation and Rotation

In Blender Python, translation and rotation transformations can be either performed directly (i.e.

by changing the location values of a given object) or through an operator. For the reason explained

in the previous subsection, operators were avoided in BlanketGen.

Each object in the scene has a world matrix defining its rotation and position in relation to the

global axes, this matrix has the following format:

Mw(θx,θy,θz,x,y,z) =


cosθy cosθz cosθz sinθx sinθy − cosθx sinθz sinθx sinθz + cosθx cosθz sinθy x

cosθy sinθz cosθx cosθz + sinθx sinθy sinθz cosθx sinθy sinθz − cosθz sinθx y

−sinθy cosθy sinθx cosθx cosθy z

0 0 0 1


where (θx,θy,θz) are the Euler angles in XYZ format and (x,y,z) are the global coordinates.

To apply a rotation and/or translation transformation to an object, a matrix of the transfor-

mation can be calculated with the same format and then the transformation can be applied by

multiplying the world matrix of the object with the transformation matrix.

Both rotation and translation transformations can also be applied by altering other attributes

of the object. Translations by altering the global coordinates attribute, and rotations by altering

the rotation attribute of the object, with the supported formats being Euler angles, quaternion, and

axis angles.

2.1.5 Image Rendering

Image rendering is any process used to generate a 2D image. In the context of this dissertation,

it refers specifically to the task of generating realistic 2D images from a 3D scene as if they were

captured by a camera.

Blender provides 2 different rendering engines called Eevee and Cycles; the main differences

between these engines are the time they take to render an image with passable quality and the

quality of said image.

Eevee renders images much faster than Cycles, but images rendered by it are much less accu-

rate than images rendered by Cycles (as seen in figure 2.4). This is because Eevee uses a technique

called rasterization, whereas Cycles uses raytracing instead.
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Figure 2.4: The same scene rendered by Eevee (on the left) and Cycles (on the right), note the
red indirect lighting below the monkey, as well as the smooth shadow and the yellow subsurface
scattering

2.1.5.1 Rasterization

Rasterization is a process for rendering that projects all the triangles in the scene into the 2D

screen (illustrated in figure 2.5) then figures out which ones are visible and which aren’t based on

their distance to the camera, this step is called back-face culling. The color of each pixel is then

calculated by the shader of the material of the object. The simplest operation that shaders can

implement is a light level calculation, this is usually by scaling the light level with the cosine of

the angle between the normal of the triangle and the direction of the light.

Figure 2.5: An illustration of projecting an object from 3D space to a 2D camera plane.

To create shadows, the same process used for back-face culling is done from the perspective

of every light to create a map of which areas are hit by the light and which aren’t.

Rasterization is very fast since for every pass it only needs to iterate through the vertices and

through the pixels, however, it doesn’t include many physical phenomena that affect real images

taken by real cameras.

One such phenomenon is indirect lighting: in real life, light bounces off of materials so objects

can light up other nearby objects even if they don’t emit light.

Other phenomena include subsurface scattering, which refers how light scatters inside objects

instead of only interacting with their surface, and smooth shadows caused by non-point lights.
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2.1.5.2 Raytracing

Raytracing is a rendering process based on light ray simulations [1]. At its core, it attempts to

solve the render equation:

Lo(P,ωo) =
∫

S2
f (P,ωo,ωi)Li(P,ωi)|cosθi|dωi

Where Lo is the radiance leaving the surface at point P in direction ωo, and the surface prop-

erty f is the bidirectional reflectance distribution function (BRDF). Li is the incoming light along

direction ωi and the angle between the surface normal and the incoming light direction is θi.

The BRDF is a function that defines the distribution of the light reflected off of a material in

every direction. Different materials have different BRDFs, matte materials reflect light equally in

all directions regardless of the direction of the source, whereas mirrors reflect all of the light in a

single direction (this is illustrated in figure 2.7).

Li requires solving the same equation for every surface point visible from the point being

calculated, which means that the formula must be solved recursively.

In practice, this integral is usually approximated using the Monte Carlo method. Multiple rays

are cast through every pixel and all their interactions with the scene are simulated up until they

either reach a light or bounce a specified number of times (illustrated in figure 2.6). Rays can cast

their own rays and usually do upon colliding with materials according to the BDRF of the material

at the point of the collision, this way the radiance at the point of the collision is also approximated.

The number of rays cast at each step defines how long the image takes to render as well as the

overall quality of the render, with more rays increasing both the quality and the render time.

The maximum number of bounces also affects both the render time and quality of the render,

but the quality increase gained by increasing it diminishes very quickly if there are no mirror

objects in the scene.

Because a Monte Carlo approximation is used, the pixels all end up with random noise, how-

ever, adjacent pixels usually have similar colors so denoising can be done, for example with a low

pass filter, to improve the accuracy of the final result.

2.1.6 Cloth Simulation

Blender uses a spring network model for cloth simulation. Between each pair of adjacent vertices

there’s a tension spring and a compression spring, between non-adjacent vertices of every face a

shear spring, between adjacent faces angular bending springs (as seen in figure 2.8).

Springs are modeled linearly:

F =−kd

The physical simulation of the cloth, including the springs as well as the internal and external

collisions, is done in time steps, and the length of these steps is a parameter that can be set. Longer

time steps provide worse results but simulate faster. The number of vertices in the cloth can also

be controlled, with the quality and time it takes to simulate increasing with the number of vertices.
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Figure 2.6: An illustration of rays being cast from a camera from [1]. It is somewhat incomplete as
it doesn’t include a light: none of these rays would find a light so the image would be completely
black.

Figure 2.7: A visualization of the BDRF of different materials from [1]. Respectively, a mirror,
glossy, and diffuse material.

Figure 2.8: An illustration of cloth springs from [2]; tension springs (blue), compression springs
(red), shear springs (cyan), and angular bending springs (green).

Generally, the biggest inaccuracies that can come from these trade-offs are missed collisions:

if the time steps are too long it’s possible for a vertex to phase through a face or vertex without a

collision being detected if the vertex is moving fast enough. Missed collisions are a big issue and a

single one can completely ruin a simulation since once the vertex has phased through something it

was supposed to collide with, it can usually only phase back out to where it should be if it gathers

enough velocity, which rarely happens.
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In practice, a single missed collision tends to lead to many other missed collisions, which

themselves also lead to more missed collisions. This escalates into a completely inaccurate simu-

lation (as seen in figure 2.9).

Figure 2.9: A couple of renders from a simulation; the monkey phased through the cloth while
it was moving quickly, and even after it stopped moving the simulation never recovered from the
error.

2.2 Camera Model and Parameters

Cameras create 2D images from a 3D world, this process can be described as a series of linear

transformations [17]. This model is based on pinhole cameras and thus assumes no lens distor-

tions. Despite this, it’s still fairly accurate and is the model used to describe the camera parameter

in most datasets.

xs

ys

1

= P


X

Y

Z

1


P = KR[I3|−XO]

Where K is the intrinsic matrix, R is the rotation matrix, and XO is the location vector of the

principal point.

The projection matrix P contains 11 parameters and maps positions in the 3D world to the 2D

image plane.
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2.2.1 Extrinsic Parameters

Extrinsic parameters are the parameters that relate to the position of the camera in the 3D world.

There are a total of 6 extrinsic parameters, 3 for the location of the camera and 3 for its orientation.

These parameters form two matrices, one for rotation and another for location.

R =

 cosθy cosθz −cosθy sinθz sinθy

cosθx sinθz + cosθz sinθx sinθy cosθx cosθz − sinθx sinθy sinθz −cosθy sinθx

sinθx sinθz − cosθx cosθz sinθy cosθz sinθx + cosθx sinθy sinθz cosθx cosθy


With (θx,θy,θz) being the XYZ Euler angles.

[I3|−XO] =

1 0 0 −XO

0 1 0 −YO

0 0 1 −ZO


With XO, YO, and ZO being the 3D coordinates of the camera.

2.2.2 Intrinsic Parameters

Intrinsic parameters are used to project the points into the image plane. There are a total of 5

intrinsic parameters. but for digital cameras the skew is usually 0.

These parameters form the K matrix:

K =

c cs px

0 c(1+m) py

0 0 1


Where c is the distance between the center of projection O and the principal point H, s is the

skew (0 for rectangle pixels), m is the scale in the x and y axes, and (px, py) are the coordinates of

the principal point (the point of the pinhole in a pinhole camera).

2.3 Deep Learning

Deep learning is a subsection of machine learning which utilizes neural networks with several

layers.

While the theory behind deep neural networks (DNNs) was first researched decades ago, they

have only gained popularity more recently. This is because the computational power required for

them wasn’t feasible for most use-cases, but with recent advances in computing, particularly in

devices specialized for massively parallel computing such as GPUs and TPUs, it has become less

of a bottleneck.
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Besides computational power, DNNs also require very large datasets to avoid over-fitting and

the datasets have to be diverse enough for the DNN to be able to generalize and perform well in

real-world situations.

As DNNs became more advanced, they started seeing usage in new fields. Convolutional

neural networks (CNNs) in particular have become central to computer vision [18].

2.3.1 Neural Networks

A neural network is essentially a directed graph of nodes (as represented in figure 2.10) where

the nodes themselves execute some operation given their inputs and pass their outputs to the next

nodes, which take them as inputs [3].

Figure 2.10: Example of a neural network from [3]

NNs generally have 2 sets of parameters to be optimized, the weights and the biases. The

weights scale the output of each node before passing it to the input of the next node, there’s a

weight for every edge in the network. The biases are added to the output of each node, there’s one

for every node in the network.

The functions of the nodes are called activation functions. Common activation functions are

the rectified linear unit (ReLU) function and the sigmoid function (these functions are shown in

figure 2.11).

ReLu : f (x) = max(0,x)

Sigmoid : f (x) =
1

1+ e−x

With this information, the formula for the output of the jth node in the lth layer with the

activation function f(x) can be defined:

al
j = f

(
∑
k

wl
jkal−1

k +bl
j

)
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Figure 2.11: ReLU activation function on the left and sigmoid on the right

A cost function C is chosen to evaluate the network. Optimizing the network is done by

minimizing this cost function. To minimize the cost an algorithm based on gradient descent can

be used. This algorithm consists of iteratively updating the parameters in the direction opposite

that of the gradient. This means each parameter takes a step negatively proportional to its partial

derivative.

wk+1 = wk −η
∂C
∂wk

bk+1 = bk −η
∂C
∂bk

Where η is the step size hyper-parameter. Repeatedly taking steps like this gradually min-

imizes the cost function and hopefully finds a minimum of the cost function, although it’s not

guaranteed to be the global minimum.

In order to accelerate the calculation of these partial derivatives, an algorithm called back-

propagation was invented which takes advantage of the chain rule: since the layers of the network

are connected, we can store the partial derivatives of each layer and use them in the calculation of

the partial derivatives of the next layer, this avoids repeating calculations.

In order to train a NN, first the training dataset is split into batches. Then the batches are

iterated through, with the cost and the gradient of the cost being calculated at every iteration and

the trainable parameters being adjusted accordingly. Iterating once through all the batches of

the training dataset is called an epoch; NNs are usually trained for several epochs, usually with

different hyper-parameters, such as the learning rate. To keep track of the performance of the NN

throughout the training a validation dataset can be used to evaluate the NN repeatedly as it trains.

After training is complete, a test dataset on which the NN hasn’t been trained or evaluated is

used to evaluate the performance of the NN.

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network which uses convolutional

layers, which are layers where the function executed by each node is a convolutional filter.

Convolutional filters perform the convolution of a kernel with the image to be processed.

Output of the convolution of an image I with a kernel K of size (m,n) at pixel (i, j) is given by
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(I ∗K)i, j =
⌊m

2 ⌋

∑
a=−⌊m

2 ⌋

⌊ n
2 ⌋

∑
b=−⌊ n

2 ⌋
Ii−a, j−bKm

2 +a, n
2+b

A visual example of a convolution is presented in figure 2.12.

Figure 2.12: An illustration of the convolution operation from [4]

The outputs of a convolutional layer are called activation maps.

Each convolutional layer performs the convolution of filters with the activation maps (or color

channels) passed to it as inputs and the outputs of these convolutions are summed to create the

output activation maps.

In order to reduce the size of activation maps, pooling layers are used, these layers break the

activation map into chunks with a specified kernel size and then reduce each chunk to a single

value, usually by taking either the max or the average of the chunk (illustrated in figure 2.13).

Both the convolutional layers and the pooling layers can also have a stride parameter, which

defines how many pixels the kernels skip as they are iterated through the activation map.

In computer vision scenarios, the advantage of convolutional layers over fully connected layers

is the massive reduction of the number of trainable parameters: a convolutional layer that takes a

200 by 200 RGB image as an input and uses it to generate an activation map with 7 by 7 kernels

has 147 weights to train, whereas a fully connected layer that takes the same image and calculates

the output of a single node has 120000 weights and 1 bias to train.

Convolutional layers also have the advantage of being invariant to translation: a CNN that

learns to identify objects in an image, for example, is equally able to identify them regardless of

where in the image they are.

This type of neural network is exceptional at tasks such as object recognition in images, in

which it considerably outperforms densely connected networks [18].

2.3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of neural network developed for sequential data. On

each member of the sequence the network takes a memory state as an input and produces as an

output another memory state, which is then passed to the next member.
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Figure 2.13: Examples of pooling operations with a 2 by 2 kernel and a stride of 2.

As seen in figure 2.14: at each step the cell takes an input x as well as a memory state h and

the biases c to calculate an output o, which is then compared to the target y by the loss function L.

The weight matrix U maps the inputs to the current memory state, the weight matrix W maps

the previous memory state to the current one, and the weight matrix V maps the memory state to

the cell output. These weight matrices are the trainable parameters of the network.

at = b+Wht−1 +Uxt

ht = tanhat

ot = c+V ht

Lt = L
(
ot ,yt)

An issue with this approach appears during the calculation of the partial derivatives that make

up the gradient of the loss function: since they’re made up of long products of initially arbitrary

values they tend to either explode or vanish.

To address this issue, Long Short-Term Memory (LSTM) cells, among others, were proposed

[19].

LSTM cells are used in RNNs replacing the nonlinear units (referred to as h in the previous

subsection).

Figure 2.15 illustrates an LSTM cell, it contains a memory cell and three gates, the input gate

i, the forget gate f , and the output gate o.

These are the formulas for the components of an LSTM cell:

it = σ
(
Wxixt +Whiht−1 +Wcict−1 +bi

)
f t = σ

(
Wx f xt +Wh f ht−1 +Wc f ct−1 +b f

)
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Figure 2.14: Illustration of an RNN from [5].

ct = f tct−1 + it tanh
(
Wxcxt +Whcht−1 +bc

)
ot = σ

(
Wxoxt +Whoht−1 +Wcoct +bi

)
ht = ot tanh

(
ct)

σ is the sigmoid function, the W matrices are the weight matrices that map units to each other

and the b scalars are the biases. The weights and the biases are the trainable parameters of the

network.

Since they were introduced in 1997 [19], LSTM cells have become a very powerful tool in the

field of Deep Learning, especially in areas with sequential data such as natural language processing

[20].

2.4 Azure Kinect

The Azure Kinect is the latest sensor in Microsoft’s Kinect line. It includes an RGB camera and

an infrared (IR) camera which, along with IR emitters, is used to estimate a depth map. It also

includes a 7-microphone array, a gyroscope, and an accelerometer, with the latter 2 being used to

track the position of the sensor (figure 2.16).

Microsoft provides a Software Development Kit (SDK) for working with the Azure Kinect,

which includes applications to update the firmware, view both saved recordings and live data, and

record data.
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Figure 2.15: Illustration of an LSTM cell from [6].

Figure 2.16: A diagram of the Azure Kinect from [7]

2.5 HPE Evaluation Measurements

There are many different ways to evaluate pose estimation and body shape estimation.

The Percentage of Correct Keypoints (PCK) is the percentage of joints within a specified

distance of their correct position.

The area under the PCK-threshold curve is called AUC and is calculated by computing PCKs

for a range of threshold values.

Mean Per Joint Position Error (MPJPE) is the mean Euclidean distance between the ground

truth and the predicted location of each joint. It can be calculated with the following formula:
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MPJPE =
1
N

N

∑
i=1

√
(pi,x − p̂i,x)2 +(pi,y − p̂i,y)2 +(pi,z − p̂i,z)2

where N is the total number of joints used, pi is the ground truth position of joint i, and p̂i is

the estimated position of joint i.

Mean Per Joint Angle Error (MPJAE) is the error in degrees between the ground truth orien-

tation of each body part and the prediction. It can be calculated with the following formula:

MPJAE =
1
N

N

∑
i=1

|θi − θ̂i|

where N is the number of body parts, θi is the angle of the body part i, and θ̂i is the predicted

angle of the body part i.

Geodesic Point Similarity (GPS) is calculated with the following formula:

GPS =
1
|P| ∑

pi∈P
exp

−d(p̂i, pi)
2

2κ(pi)2

where −d(p̂i, pi) is the geodesic distance between estimated p̂i and ground truth pi human

body surface points, and κ(pi) is a per-part normalization factor, defined as the mean geodesic

distance between points on the part.

2.5.1 Procrustes Alignment

Procrustes alignment consists of aligning an object in space to another object by the use of linear

transformations.

It can be seen as a scaling transformation, followed by a translation and then a rotation as seen

in figure 2.17.

It’s common when evaluating HPE systems to use Procrustes alignment first before measuring

the error in the joint positions, when this is done the measurement is called Procrustes Aligned

MPJPE (PA-MPJPE). When reporting the MPJAE it’s also common to report it after Procrustes

alignment, in which case it’s called the PA-MPJAE.
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Figure 2.17: An illustration of a Procrustes alignment from [8]



Chapter 3

State of the Art

3.1 Human Pose Estimation

There are several different approaches to HPE, each having its advantages and disadvantages.

[9] is a great review of motion capture technology used in sports, although much of it is more

general and its contents are relevant in other scenarios.

The four main technologies used for motion capture are as follows:

• Electromagnetic Measurement Systems (EMS) use radio transponders to communicate with

fixed base stations, which estimate the location of the transponders using the time-of-flight

of the radio waves [21]. EMS can function in large volumes and they do not require line-

of-sight, but do not provide the best accuracy. Moreover, they’re sensitive to ferromagnetic

materials [22] and thus aren’t ideal for scenarios where interactions with these materials are

expected.

• Image Processing Systems (IPS) utilize optical cameras alongside computer vision pro-

grams to track the subject’s motion. IPS require more local setup than EMS but can provide

more accurate results [9]. IPS are very diverse and thus their performance, as well as their

costs, vary wildly. This is both an advantage in the sense that each situation can use an IPS

tailored to it, and a disadvantage in the sense that they require more setup. However, even

with very minimalist setups good results have been achieved, for example in [23] excep-

tional results were accomplished with only a single camera and no markers.

• Optoelectronic Measurement Systems (OMS) utilize custom markers that either emit or

reflect pulses of light which are then detected by fixed cameras, which use the time-of-flight

of the pulses to estimate the location of the markers. OMS produce the most accurate results

out of these technologies. The accuracy, however, has its costs: OMS require markers and

line-of-sight between the cameras and the markers [24][25], and the cameras can be fairly

expensive. Moreover, they are particularly sensitive to accidental movement of the cameras

[26] and can run into issues if used outside during the day [24] as the sunlight can cause

interference.

21
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• Inertial Measurement Units (IMUs) make use of accelerometers, magnetometers, and gyro-

scopes. The data from the different sensors is fused to estimate the angle of the IMU [27].

Several IMUs can be attached to a subject and their relative position can be estimated by

assuming the body of the subject to be rigid [28][29]. This means IMUs are not restricted

in space like the other three options are, since they don’t require fixed base stations or cam-

eras, and they do not have line-of-sight constraints. Their downsides are their reliance on

the sensor fusion algorithms, which can make them difficult to work with, as well as the

issues inherent to the sensors used.

These approaches are neatly organized in figure 3.1.

Figure 3.1: A diagram displaying the different technologies used for HPE in sports from [9].

Out of these technologies, the ones that are most appealing for motion capture in hospital beds

are IPS [11] and IMUs [30]. Image processing systems have been gaining more attention in recent

years because of advancements in deep learning for computer vision.

3.1.1 Datasets

Several different datasets have been acquired that are useful for the task of HPE.
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Human3.6M [31] contains 3.6 million human poses annotated with 10 high-speed motion

cameras, as well as video recorded by 4 other video cameras and time of flight data recorded by

a sensor placed next to one of the video cameras. 11 actors (6 male, 5 female) performed in 17

common scenarios (having an argument, talking on the phone, etc) so that the data is varied and

conforms to what’s common in the real world.

3D Poses in the Wild (3DPW) [13] contains video from multiple situations outdoors, each

with 1 or 2 actors, recorded with a moving phone camera. Ground truth poses were obtained by

combining data from the videos and IMUs, and were used to generate ground truth body shapes

using the SMPL model. It also contains ground truth camera intrinsics and extrinsics so that the

model can be mapped onto the screen even with a moving camera. Because the videos were

recorded outside in public spaces, there are many unannotated people in them, and because the

camera and the actors were moving and interacting with the world there are many occlusions.

3DPW has a total of over 51 thousand image frames.

MPI-INF-3DHP [32] contains data from constrained indoor and outdoor scenes, 8 actors per-

formed 8 different activities each filmed with 14 cameras. Each scene lasts about 4 minutes and a

total of more than 1.3 million frames were recorded. It contains pose ground truth as well as the

intrinsic parameters for the cameras used.

The Microsoft Common Objects in Context dataset (MS COCO) [33] is a general dataset

for object detection, segmentation, key-point detection, and captioning. It contains 330 thousand

images, of which over 200 thousand are annotated. Despite not being its main focus, it also

includes images of 250 thousand people with masks annotating the area of the image that they

cover.

Avatars in Geography Optimized for Regression Analysis (AGORA) [34] is a fully synthetic

dataset, which means that. while it’s not quite as realistic as other datasets, it can provide ground

truth that is much more accurate and detailed. Due to being synthetic it can also have annotated

data that would be extremely difficult to annotate in the real world, such as scenarios up to 15

people are visible to the camera simultaneously. It uses scanned models of 4240 people, with 257

of them being children. A total of 17 thousand frames were rendered, with each containing at least

5 annotated synthetic humans.

Civilian American and European Surface Anthropometry Resource (CAESAR) [35] is a dataset

containing 3D body scans of 5 thousand people between the ages of 18 and 65 in realistic poses.

SizeUSA [36] is a dataset with 3D scans of over 10 thousand subjects. It was recorded to aid

in the fashion industry in the United States of America (USA) and subjects were scanned in 12

different cities

3.1.2 SMPL

SMPL (Skinned Multi-Person Linear) is a skinned vertex-based model of the human body [37].

It describes any human body in any position by starting off with a base 3D mesh of the human

body and then deforms that mesh linearly with pose and shape parameters. The linearity and
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independence of pose and shape make SMPL particularly useful for most challenges related to

describing the human form in some way.

After fitting the base mesh to scans from the CAESAR dataset, principal component analysis

(PCA) was used to reduce the dimensions required to describe the variations in the mesh. Body

shape deformations were found to follow a mostly Gaussian distribution within each gender, which

means that a very large dimension reduction could be attained with PCA. In fact, despite the base

mesh having 21000 vertices, with only 10 components over 90% of the variation in shapes can be

covered. The authors of [37] made both the male and female SMPL models available as well as a

gender-neutral one, all with 300 principal components.

In order to correct for shape deformations caused by poses, SMPL models shape corrections

based on the poses which are then added to the shape parameters of the model.

Because of its robustness and ease of use, SMPL is used by most HPE systems, and SMPL

parameters are often provided as ground truth in datasets.

The SMPL model was extended to include hand poses in SMPL+H [38] and then to include

facial expressions in SMPL-X [39].

In 2020, a new model called STAR was introduced [40], which improves on SMPL by defin-

ing per-joint pose correctives and learning which vertices are affected by the different joint move-

ments. This way more realistic deformations are achieved and the number of model parameters

can be reduced without negatively affecting the results. Besides this, STAR was also trained on

both CAESAR and SizeUSA.

3.1.3 Image Processing Systems for Human Pose Estimation

While most recent research on the task of HPE with IPS makes use of deep learning, not all of

it does, particularly in cases where large datasets are not yet available. For example, the system

proposed in [11] uses RGB-D data from a Kinect system to semi-automatically track body joints.

Through a software tool called KiMA, ellipsoid masks are manually selected that delimit the parts

of the body to be tracked. Optical flow is then used to keep track of the selected ellipsoids,

requesting manual corrections when needed.

However, for most applications, the focus of research has been on improving DL HPE systems

to make them faster, more accurate, more robust, and to allow them to work off of less information.

The authors of [41] were able to robustly extract the 3D pose of the human body as well as

its 3D shape from a single image. This was accomplished by first using the DeepCut method

introduced in [42], which uses CNNs to estimate 2D body joints from the image, then optimizing

3D body joints generated with the SMPL model [37], using the 2D distance between the 2D

projection of these joints and the DeepCut 2D joints as the error.

HybrIK [14] first finds 3D joint positions with a convolutional network as well as SMPL pose

and shape parameters with a fully connected network. It then uses a hybrid analytical-neural

approach to calculate inverse kinematics to fuse the 3D joint locations and SMPL parameters,

which leads to an improvement on both.
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DynaBOA [43] uses online unsupervised learning to adapt to data from new sources as it’s be-

ing tested; this allows it to adapt to new domains with different attributes such as camera intrinsics

and background colors.

Most DL HPE systems calculate a bounding box around the subject as a first step [43, 14, 42,

41, 44], this is known as a top-to-bottom approach. The opposite, first finding the joints and then

organizing them to fit the subjects and the image, is called a bottom-to-top approach.

Due to only analysing the contents of the image inside the bounding box, top-to-bottom ap-

proaches lose the information as to where in the image the subject is. To address this, CLIFF [45]

keeps the bounding box information and uses it in the estimation of the global orientation of the

subjects.

The authors of PARE [44] found that most state-of-the-art 3D pose and shape estimation meth-

ods rely on global features, which makes them sensitive to occlusions, even small ones. They

addressed this issue by creating an architecture that learns to predict attention masks guided by

body parts which led to improved performance on visible body parts whenever other body parts

are occluded.

Deciwatch [46] makes use of temporal information to improve the speed of other DL HPE

systems on videos. It does so by downsampling the videos and feeding only those frames to

the DL HPE system used as a backbone, then it denoises these poses with transformer-based

encoder modules, and finally, it again makes use of transformer-based encoder modules to fill in

the dropped frames. With this method and PARE as the backbone, results were improved (due to

the temporal information being used) even when only 10% frames were analyzed, which means a

10x speedup was achieved at no cost.

3.2 Computer Generated Blanket Occlusions

The idea of synthetically generating blanket occlusions to augment datasets is not novel. A couple

of papers exploring it have been published.

In [47] synthetic blanket occlusions were used to augment depth video recorded of patients

performing movement sequences in a bed. This dataset (with and without synthetic occlusions)

was used to train and evaluate systems based on random forests, convolutional neural networks,

and recurrent neural networks, which make use of temporal information. Training on the aug-

mented dataset improved the accuracy of all 3 systems, with recurrent neural networks in particular

improving the most.

In [48] the authors made use of synthetic blanket occlusions to augment a dataset consisting of

depth images of subjects lying down in beds. They then used this augmented dataset to train a CNN

that generates SMPL parameters; from these SMPL parameters, pressure maps were estimated.
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Chapter 4

BlanketGen

In order to explore the potential of synthetic blanket occlusion augmentations in improving the per-

formance of DL HPE systems, a pipeline was implemented that augments the 3DPW dataset with

synthetic blanket occlusions, this pipeline was then used to create a dataset with synthetic blanket

occlusions. This pipeline was named BlanketGen and the dataset created with it BlanketGen-

3DPW.

The pipeline was implemented in Blender because it is free, has robust cloth simulation, and

proves a python API which supports most of the capabilities of the program.

3DPW was chosen as the dataset to augment as it has a reasonable size, provides ground truth

body models, and because there are state-of-the-art DL HPE systems with open source code that

used it for training and testing.

4.1 Pipeline Structure

BlanketGen takes the 3DPW dataset and generates videos with CG blankets simulated on top of

the subjects of the videos.

In order to do this, first it loads a video from 3DPW and fetches the ground truth data associated

with it. Then it loads the body model onto the scene, fixes its position to the center of the axes,

and adjusts the position of the camera accordingly; a rectangle cuboid is also placed behind the

body model from the camera’s perspective as a makeshift bed. After the camera, body model, and

bed are positioned properly a blanket is simulated on top of the body model for a short duration in

order for the video to start with the blanket already resting on the person.

After this setting time, the model is animated using shape keys with the blanket continuously

being simulated on top of it. If the blanket falls off the body model then the simulation is stopped

and the pipeline continues without simulating the rest of the video. When this happens the next

video is started where the previous left off with the blanket back in a resting position.

After the cloth simulation is done the scene is rendered with the original frames composited as

the background and both the body model and bed as holdouts, which are transparent masks. The

video is then saved in its own folder as a sequence of frames.
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After the video is saved the process repeats until there are no more videos to augment.

The pipeline is illustrated in figure 4.1

Figure 4.1: Diagram of the BlanketGen pipeline

4.2 Data Loading

In 3DPW the videos are saved as frames with each video in its own folder, ground truth for each

video is provided separately in a sequence file.

This sequence file contains the global location of the subject and the camera both at 30Hz

and 60Hz, the SMPL pose and shape parameters (with 300 principal components), with the poses

being provided at 30Hz and 60Hz, the camera intrinsics and extrinsics, with the extrinsics being

provided only at 30Hz, the genders of the subjects, the 2d joint locations both at 30Hz and 60Hz,

a detailed 3D mesh of the subjects with clothes (only at 30Hz), and texture maps for the detailed

3D mesh.

The detailed 3D mesh isn’t provided for every subject, and the texture maps aren’t provided for

all of the detailed 3D meshes. Because of this, and because of the increased simplicity, BlanketGen

uses the SMPL model instead.

The camera position isn’t accurate for every frame, so a list of all the frames where it is

accurate is also provided.

In order to load the SMPL models onto Blender, the SMPL-X [39] python package is used to

calculate the vertices and faces of the model.

To avoid collision errors caused by the SMPL models intersecting with each other, which

negatively affect the cloth simulation, only one model was loaded for each augmented video, with

the blanket being created on top of the model. This leads to the blanket only interacting with one

of the subjects, which isn’t ideal as some videos contain two subjects, but it’s a practical way to

avoid cloth simulation errors that ruin the entire video.

A camera is created and added to the scene. The created camera’s attributes are then altered to

match the intrinsic matrix provided in the sequence file.

A sun light, which is a light source that shines parallel rays of light is also added.

In figure 4.2 an example of a frame at this stage of the pipeline is shown.
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Figure 4.2: Example of a frame after the data is loaded.

4.3 Positioning

While the positions provided as ground truth are accurate relative to each other, the global positions

have low-frequency errors and so the models drift over time. To address this, the model of the

subject is fixed at position (0,0,0) and the camera is re-positioned so that their relative positions

remain correct.

Besides this, some problems arose from specific Blender interactions and format differences.

The format used for the world matrix in Blender doesn’t match the format of the extrinsic

matrix provided as ground truth for the camera. To address this the world matrix W of the camera

has to be calculated from the provided extrinsic matrix E as shown:

E =


R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1



W =


R11 R12 R13 −Tx

−R21 −R22 −R23 −Ty

−R31 −R32 −R33 −Tz

0 0 0 1


The rotation of the SMPL model is provided in the axis-angle format, which describes the

rotation of the object with a vector perpendicular to the plane of the rotation that has magnitude

equal to the angle of the rotation. Unfortunately, axis-angle rotations in Blender also require use
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of an operator that’s not available in headless mode. Instead, rotation quaternions had to be used.

Given the axis-angle rotation vector V the following calculations were performed to obtain the

rotation quaternion Q:

Q =
[
cos ∥V∥

2 V̂x sin ∥V∥
2 V̂y sin ∥V∥

2 V̂z sin ∥V∥
2

]
The center of the body model in Blender doesn’t match the one in the ground truth, so it has

to be adjusted. Fortunately, Blender allows the center of an object to be relocated, unfortunately,

it relies on operators that can’t be used while running headless. Instead this problem was fixed by

iterating through all the vertices of the model and displacing them by the offset necessary for their

location relative to the center of the model to be correct.

While iterating through all the vertices, the vertex most distant from the camera is found. A

new set of axes is created with this vertex at the center and with one of the axis pointing directly

away from the camera. The rectangle cuboid bed is then placed in the scene using these axes, this

way the distance between the bed and the body model can be a defined constant; this is done to

avoid the subject’s model clipping into the bed and causing the cloth simulation to fail.

The position of the simulated blanket is initially set a short distance away from the body model

in the direction of the camera, and its orientation is set to match the orientation of the bed.

In figure 4.3 an example of a frame at this stage of the pipeline is shown.

Figure 4.3: Example of a frame after all the objects are placed into position.
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4.4 Cloth Simulation

In order to create a realistic blanket, first a rectangular plane is added, then this plane is cut into

5625 (752) smaller rectangles, then the subdivision modifier is used, which further subdivides the

plane and smooths the subdivisions, but which doesn’t affect the cloth simulation. With 2 levels

of subdivision this further increases the number of squares in the blanket to 90000, but with only

the original 5625 being used in the cloth simulation.

The blanket is then set as a cloth with the collision calculations being performed in 15 incre-

ments per frame, and the spring calculations being performed in 10 increments per frame. The

collision distance is set at half a millimeter and the gravity is set perpendicular from the bed.

The cloth simulation is run for 24 frames before the video starts in order to let the blanket

come to a rest on top of the body model.

The simulation of the blanket is updated frame by frame and at every frame the vertex closest

to the body model is found, if the distance between this vertex and the body model is too large the

simulation is stopped and the video goes on in the pipeline. The start of the next video is set to

be the maximum of the frame where the current video ended and the first frame of the video plus

48, this is done to avoid the pipeline getting stuck in cases where the blanket falls off either during

the time the blanket is allowed to come to a rest or in cases where it glitches through the body

model. In the generation of BlanketGen-3DPW there was a bug in this which made it so that the

next video was always started 48 frames after the start of the current video, this lead to significant

overlap in the final dataset, as many frames were part of multiple generated videos.

In figure 4.4 an example of a frame with a simulated blanket is shown.

Figure 4.4: Example of a cloth simulated with the parameters specified in this section.
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4.5 Rendering and Compositing

Rendering is done with the Cycles rendering engine, which uses raytracing to generate physics-

based renders. Due to the ease of parallelization of Monte Carlo estimations the render engine can

use GPUs to speed up considerably. A total of 1000 samples are calculated per pixel, with a time

limit of 10 seconds per frame.

The material of the blanket uses the Principled BSDF model, which is the default option in

Blender and is generally fairly robust. The color is randomized uniformly in the RGB space for

each video generated, the sheen is set to 1, and the specularity is set to 0.16.

The bed and the body model are set as holdouts, which means they function as transparent

masks. This means that when compositing the rendered scene with the original frames, only the

blanket is visible, and when the blanket goes behind the body model from the camera’s perspective

the portion that’s behind the body model becomes invisible. With this the blanket realistically

disappears when the subject goes in front of it.

The compositing is done with the node tree system that blender provides, an alpha-over node

is used to layer the rendered scene on top of the original video.

In figure 4.5 a frame from a generated video is shown.

Figure 4.5: A frame from BlanketGen-3DPW.

4.6 Format

The output of the compositor is saved as a sequence of JPG images in a folder for every video.

Each video folder is contained within a folder for the original video from which it was generated.

Furthermore, these folders are separated into three folders for the three dataset partitions (train,

test, and validation).
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4.7 BlanketGen-3DPW

BlanketGen-3DPW is an augmented dataset generated with the BlanketGen pipeline. It took 3

weeks to generate running on 2 desktop PCs using 3 Nvidia GPUs. In total it contains 1037

generated videos with synthetic blanket occlusions, a total of 96399 frames.

4.7.1 Format

BlanketGen-3DPW was formatted to be used by HybrIK as a drop-in replacement for 3DPW. Each

video is a sequence of frames in its own folder, and the ground truth is contained in one large file

using the COCO format [49].

4.7.2 Excluded Videos

Despite the precautions taken, in some videos the cloth simulation failed, usually due to the body

model clipping into itself or moving too fast for the simulation to keep up. Because of this, 66

generated videos had to be excluded totaling 14332 frames.

The ground truth for the camera location on 3DPW isn’t accurate in every frame, to deal with

this BlanketGen just ignores frames with invalid camera positions and reuses the last valid frame.

In some videos there are many frames in a row without accurate ground truth camera position,

which leads to very inaccurate generated videos. This happened in 172 generated videos, with

23691 frames being excluded for this reason.

This means that 38023 of the original 134422 frames had to be excluded, a waste of 28% of

the generated frames.
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Chapter 5

BlanketSet

5.1 Objective

The goal of this acquisition is to create a dataset (BlanketSet) that can be utilized with deep learn-

ing computer RGB HPE systems to evaluate the benefit of augmenting datasets with blanket oc-

clusions. Beyond this initial use, it could also be used in further research in the future.

5.2 Design and Procedure

5.2.1 Design

Sequences of movements were recorded with an Azure Kinect which records RGB and Infrared

video, which it uses to create depth estimations of the area it’s recording. Every sequence recorded

was recorded both with and without real blanket occlusions.

While BlanketSet was originally planned to be used for quantitative analysis of the improve-

ment of HPE systems caused by BlanketGen, annotation proved to be more of a challenge than

what was feasible, so it was instead used only for qualitative analysis. Annotation approaches are

further discussed in the future work chapter.

5.2.2 Procedure

Each participant had the dataset acquisition protocol explained to them, as well as the information

related to their privacy rights, they were then asked to sign the informed consent form (appendix

A.1). Then for each movement sequence recorded they were instructed on how to do them, af-

terwards they executed the movement sequence in all the planned variations. Movements were

repeated whenever they couldn’t be executed properly; whether the movements were executed

correctly or not was decided subjectively at the time of recording.

A spreadsheet was used to keep track of the movements each participant had to perform and

to streamline the recording process.
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Figure 5.1: A screenshot of the spreadsheet used to aid with the acquisition of BlanketSet

BlanketSet was recorded in the Epilepsy Monitoring Unit of the University Hospital Center of

São João.

5.2.3 Dimensions

There were too many variables to evenly cover all the combinations. So the variables were split

between controlled variables, semi-controlled variables, and uncontrolled variables.

Controlled variables were decided manually to cover their variations as evenly as possible.

Semi-controlled variables were decided randomly in an attempt to avoid correlations between

them.

Uncontrolled variables were ignored as they were too difficult to control, but some that could

affect the quality of the dataset are still listed.

The gender distribution of the subjects was attempted to be controlled, but it ended up being

unbalanced.

Due to the time between recordings and Covid restrictions lifting between them, in some

recordings the subjects had masks and in others they didn’t. Besides this, in the videos without

masks, different bedding (including blankets) was used.

One person participated both before and after the restrictions were lifted, and therefore both

with and without a mask, that person was both IT03 and IT17.

5.2.3.1 Controlled variables

• Movement sequences: 8 movement sequences were performed, they are explained section

5.3.

• Blanket Initial Position (BIP): There were 3 different initial positions for the blanket: no

blanket, fully covering the subject (referred to as Full in chapter 6), and pulled down so that

only about the feet and lower legs were covered (referred to as Half in chapter 6). This last
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BIP was decided to simulate a failed attempt to remove the blanket, as sometimes happens

in real situations in the EMU.

• Blanket: Originally 3 different blankets were alternated between, of different thicknesses

colors, and weights (black heavy, white light, and green heavy). In the recordings after the

restrictions were lifted, different blankets were used (grey heavy, white light, orange heavy).

5.2.3.2 Semi-controlled variables

• Lighting: 4 different lighting setups were used: having the blinds up or down, and having

the lights on or off. However, the blinds in the window next to the bed were broken so they

were always up; after the restrictions lifted a blanket was used to cover the window, so some

control was gained (blanket tied up or not). The light above the bed was also not able to

fully turn on, which reduced control over the lighting.

• Hand position: 4 hand positions were covered, they are covered in subsection 5.2.3.4.

• Time between position changes (referred to as timings from here on out): 0.5 to 2 seconds

(timings were selected in beats per minute with integer precision).

5.2.3.3 Uncontrolled variables

• Body shape

• Clothes

• Hair color/length

• Time of day

5.2.3.4 Hand positions

Hand positions could affect HPE systems and as such 4 variations were included: relaxed, fingers

spread, fingers stretched touching, and closed fist.

Figure 5.2: The 4 hand positions from left to right: relaxed, fingers spread, fingers stretched
touching, and closed fist
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5.3 Movement Sequences

Each motion sequence consists of switching from position to position once per timing for 20 tim-

ings (as defined previously). The emphasis was on ensuring that the motions were repeated prop-

erly over ensuring they were done perfectly as described: movements that were slightly different

from the description but which were consistent with the previous performances of the participant

were accepted over ones which better matched the description but not the previous performances.

This was because there were originally plans to annotate BlanketSet by making use of a state-of-

the-art HPE system on the sequences with no blankets and then use the same annotations with

some manual adjustments to annotate the sequences with blankets. However, this wasn’t feasible

as the repetitions weren’t similar enough.

With each movement taking 20 timings, and each timing taking an average of 1 second, each

sequence takes an average of 20 seconds. In total, 27 sequences were recorded per subject; ini-

tially, 10 subjects were expected to be recorded (5 men, 5 women), but in the final dataset, 14

subjects total were recorded (9 men, 5 women). Therefore, 270 sequences were expected to be

recorded; in total 405 sequences were recorded, since one person recorded 27 sequences before

the restrictions were lifted and 27 after.

In order to cover all the variations of the controlled variables, each sequence was repeated at

least 9 times.

With the original 270 planned recordings, 30 different movement sequences would allow cov-

erage of every combination of the controlled variables, 15 to also evenly cover both genders.

However, to better cover the semi-controlled variables, only 8 sequences were covered.

Considering the context of the thesis, recording movements of the lower half of the body was

more important than the upper half, since it’s more likely to be covered by a blanket in real-world

scenarios, therefore the majority of the motion sequences included the legs. It was also important

to cover as much of the range of motion of each joint as possible.

The sequences were planned to be easily repeated to facilitate annotation, so each motion

generally only moved either the legs or the arms since coordinating arm and leg movements with

the timings and with good precision can be very challenging. Each motion sequence included a

simple motion being repeated several times in a row.

Repeated motions with the weight of a blanket on top can get tiring, so movement sequences

were chosen to avoid tiresome positions, this helped with their repeatability as well.

For the sake of making BlanketSet more challenging, self-occlusions were also included in the

sequences.

After careful consideration, 8 motion sequences were selected, 5 involving the legs and 4

involving the arms (1 involves both the arms and the legs). Each of them was given a simple

name. They are as follows:
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5.3.1 Foot to knee

The participant starts in a default resting position facing upwards, after 1 timing they lift their left

foot and place it on top of the right knee, after 1 more timing they reset back to the default position.

They stay in the resting position for 1 timing, then repeat the same movement with the opposite

foot and knee. Each repetition of both legs takes 4 timings, so there are 5 repetitions per sequence.

Figure 5.3: A 3d model performing sequence 1

This sequence was chosen because it is challenging as the foot occludes the knee. Besides that,

when it is done under a blanket it very significantly displaces the blanket with every repetition, so

if a system is able to extract information from the displacement of the blanket, it will have a lot of

information to take from it.

5.3.2 Knee bend

The participant starts in a default resting position facing upwards with their right knee bent and

their right foot on the bed next to the left knee, after 1 timing they bend their left knee to the same

position, lifting it up while keeping the foot on the bed and simultaneously they stretch the right

leg back down. After 1 timing they repeat the same movement but with the other knee. Each

repetition of both legs takes 2 timings, so there are 10 repetitions per sequence.

Figure 5.4: A 3d model performing sequence 2

This sequence was chosen because it is somewhat challenging, as the knee is moving almost

in the direction of the camera, but also the deformation of the blanket can partially indicate how

high the knee was bent, which should be useful for a system that has learned to extract information

from blanket displacement.
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5.3.3 Swinging legs

The participant starts in a default resting position on the side, with one knee stretched and the

other bent at a 90º angle. After 1 timing they switch the legs, bending the stretched knee to 90º

and stretching the bent one. The side on which the participants lie down is randomly decided at

the time of recording. Each repetition takes only 1 timing, so there are a total of 20 repetitions.

Figure 5.5: A 3d model performing sequence 3

This sequence was chosen because it has a lot of self-occlusions, half of the body is occluded

by the other half, and the lower half of the bottom leg passes under the top leg with every repetition.

Beyond that, the location of the bottom leg is very occluded during the swinging motion, so being

able to make use of both temporal information and information from the blanket displacement will

probably be required for good results.

5.3.4 Hands to shoulders

The participant starts in a default resting position facing upwards, after 1 timing they bring both

hands to the opposite shoulders simultaneously with the right arm in front of the left, then after 1

timing they reset back to the default position. They stay in this position for 1 timing, then repeat

the same movement with the opposite arm in front. Each repetition with both arms in front takes

4 timings, so there are 5 repetitions per sequence.

Figure 5.6: A 3d model performing sequence 4

This sequence was chosen because it is very challenging since the arms cross over each other

and the hands occlude the shoulders. Besides that, the hands can interact with the blanket, so there

will be samples where the blanket is moving but the legs aren’t, which increases the variety of the

data in the dataset.
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5.3.5 Belly-down spread

The participant starts in a default resting position facing down, after 1 timing they spread their

arms and legs to the edges of the bed, then after 1 timing they reset to the default position. Each

repetition takes 2 timings, so there are 10 repetitions per sequence.

Figure 5.7: A 3d model performing sequence 5

This sequence was chosen because it significantly displaces the blanket with each repetition,

and because it involves moving both the arms and legs simultaneously without being difficult to

coordinate.

5.3.6 Torso lean

The participant starts in a leaning position with the right forearm lying down on the bed and the

left arm stretched. Both hands are placed symmetrically on the sides and do not move throughout

the whole sequence. After each timing the participant switches which side they’re leaning on by

stretching one arm and bending the other until the elbow reaches the bed. Each repetition takes 1

timing, so there are 20 repetitions.

Figure 5.8: A 3d model performing sequence 6

This sequence was chosen because it includes movement of the torso, which is generally static

in the other sequences, also one elbow is always occluded, which increases the difficulty of the

dataset.

5.3.7 Stretched arms

The participant starts in a default resting position facing up with their arms stretched next to them.

After 1 timing they raise their arms upwards until they’re perpendicular to the bed, then after 1

timing they bring their arms down, still stretched, to the side to a T-pose. 1 timing later they raise
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their arms back up to the previous position then a timing later they lower their arms back down to

the default resting position. Each repetition takes 4 timings, so there are 5 repetitions

Figure 5.9: A 3d model performing sequence 7

This sequence was chosen because it includes a large portion of the range of motion of the

shoulders plus it is partially vertical, which is a dimension the other sequences don’t prominently

explore.

5.3.8 Feet stretched

The participant starts in a default resting position facing up with their feet at 90º to the rest of the

leg. After 1 timing they stretch their feet to be as in line with the legs as they can. They hold this

position for 1 timing then reset back to the default position. Each repetition takes 2 timings, so

there are 10 repetitions total.

Figure 5.10: A 3d model performing sequence 8

This sequence was chosen because it consists only of movements of the feet, which are noto-

riously difficult to annotate under blankets.
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Evaluation Methods and Results

6.1 HybrIK

In order to evaluate whether CG blanket occlusion augmentations could improve existing DL HPE

systems, one such system was chosen.

HybrIK [14] is a state-of-the-art DL HPE system and has been explained in chapter 3.

It was chosen for the evaluation of BlanketGen over other state-of-the-art alternatives as it has

an open source implementation with training code as well as a pre-trained model. Time was a

scarce resource in the writing of this dissertation so having a pre-trained model was necessary, and

implementing a DL HPE system from scratch was beyond the scope of the dissertation, so having

open source code was also a necessity.

Unfortunately, due to time constraints, it wasn’t feasible to evaluate BlanketGen on any of the

DL HPE systems that make use of the temporal information contained in videos.

The pre-trained model provided was originally trained on a joint dataset consisting of training

data from Human3.6M, MPI-INF-3DHP, 3DPW, and MSCOCO. It was trained on this dataset for

90 epochs with a learning rate of 1e−3, then for 30 epochs with a learning rate of 1e−4, and

finally for 80 epochs with a learning rate of 1e−5.

For the evaluation of BlanketGen it was then trained only on training data from BlanketGen-

3DPW for 10 epochs with a learning rate of 1e−3, then 10 epochs with a learning rate of 1e−4,

and finally 10 epochs with a learning rate of 1e−5.

The architecture doesn’t just predict human pose in 3 dimensions, so the loss function is a

weighted average of different cost functions pertaining to the body model, the bounding box, and

the 2D and 3D joint positions. The loss over the course of fine-tuning is plotted in figure 6.1.

This fine-tuned model was compared with the original pre-trained model.

6.2 Quantitative Evaluation

Quantitative evaluation was done by testing both models on the testing sets of both the original

3DPW as well as BlanketGen-3DPW.
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Figure 6.1: A plot of the loss over the epoch number during the fine-tuning.

The average PA-MPJPE was recorded for all test cases and is reported in table 6.1.

Model PA-MPJPE on 3DPW↓ PA-MPJPE on BlanketGen-3DPW↓
Pre-trained 44.97 52.70
Fine-tuned 50.95 52.46

Table 6.1: Quantitative results

6.3 Qualitative Evaluation

For qualitative evaluation, videos from BlanketSet were annotated using both models. For this,

one sequence from each participant was selected, with each movement sequence, as well as each

blanket, being present at least once in this selection.

All faces present in the annotated videos were then blurred to protect the privacy of the partic-

ipants. Figure 6.2 is a frame from one of these videos.

A google forms survey was then created and made public where the annotated videos could be

rated on a scale from 0 to 10, with 0 being a failure to even locate the subject and 10 being perfect

annotations.

This survey was advertised to all FEUP students with the dynamic email service provided by

the university and gathered a total of 29 responses.

Table 6.2 describes which recordings were used for the survey as well as the average rating

each recording got when annotated with either model, rounded to two decimal cases.

As expected, the determining factor for the quality of the annotations was the BIP; table 6.3

summarizes these results as well as the rating difference between both models and a symmetric

95% confidence interval for these differences calculated with a two-tailed paired t-test.
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Figure 6.2: A frame from one of the annotated videos with the face of the participant blurred.

Participant BIP Sequence Blanket Pre-trained↑ Fine-tuned↑
IT01 Half 2 1 7.28 6.79
IT02 Full 6 2 3.55 4.34
IT03 Half 1 3 5.52 6.07
IT04 Full 4 1 0.28 0.38
IT05 Half 5 2 5.10 4.86
IT06 Full 8 3 0.69 0.45
IT07 Half 7 1 5.62 6.03
IT08 Full 3 2 1.00 1.10
IT09 Half 1 6 8.38 8.52
IT11 Full 2 1 0.55 0.66
IT13 Half 4 5 8.34 8.48
IT15 Full 6 6 5.62 5.34
IT16 Half 3 4 6.07 5.59
IT17 Full 8 5 0.72 1.52
IT20 Half 5 6 8.14 8.34

Table 6.2: Recordings selected for evaluation and qualitative results of their annotations

BIP Pre-trained↑ Fine-tuned↑ Difference
Half 6.81 6.84 0.03±0.14
Full 1.77 1.97 0.20±0.15

Aggregate 4.46 4.57 0.11±0.09
Table 6.3: Summary of the qualitative results, separated by BIP
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Chapter 7

Discussion

From the quantitative results, there was a slight improvement in accuracy on the augmented

dataset, but it came at a much bigger decrease in accuracy on the original dataset.

It’s important to note that BlanketGen-3DPW only has synthetic occlusions on one subject per

video, which means that on all of the videos which included two subjects there was at least one

person who was at least mostly unoccluded, so the accuracy measured on it is a mix of the accuracy

on data with and without blanket occlusions. Taking into consideration the decrease in accuracy

on the original dataset, the results of fine-tuning on the augmented dataset seem promising for

cases where blanket occlusions are present.

Figures 7.1 and 7.2 display annotations both from both models as well as the original image.

Note that on figure 7.1 the fine-tuned model more accurately predicted the location of the occluded

foot. And on figure 7.2 it predicted the location of the feet, at the cost of positioning the shoulders

too far down. This is consistent with the quantitative results: the fine-tuned model performs better

than the pre-trained one when there are blanket occlusions, but worse when there are no occlusions.

Figure 7.1: From left to right: A frame from BlanketGen-3DPW, the same frame with body model
annotations generated with the pre-trained model, and with the fine-tuned model.
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Figure 7.2: From left to right: A frame from BlanketGen-3DPW, the same frame with body model
annotations generated with the pre-trained model, and with the fine-tuned model.

The qualitative results corroborate this, since the fine-tuned model only performed better than

the pre-trained one when there were full blanket occlusions. This improvement in performance in

cases with full real blanket occlusions bodes well for this approach as a solution to HPE in real

world scenarios, although the performance in these cases was still underwhelming.

The decrease in accuracy on unoccluded subjects could be caused by the 30 epochs of fine-

tuning not including data from the other datasets that the model was originally trained on, as

well as the fairly low number of epochs of fine-tuning. If this is the case then this issue could

be addressed by including data from Human3.6M, MPI-INF-3DHP, 3DPW, and MSCOCO in the

fine-tuning, although this would drastically increase the processing time required.

All in all, computing power was the main limiting factor of this dissertation, as both Blanket-

Gen and training the architecture are extremely computationally expensive.

Besides the results, this dissertation also introduced two datasets, BlanketSet, and BlanketGen-

3DPW.

BlanketSet is a large dataset with RGB, IR, and depth video of well-defined movement se-

quences in an EMU bed, with varied lighting, movement frequencies, and blankets. Because of

this, it can function as an effective benchmark dataset to evaluate the performance of HPE systems

on EMUs. If ground-truth annotations are created in the future BlanketSet could also be used for

training said systems.

BlanketGen-3DPW is a version of 3DPW with synthetic blanket occlusions and as such can

fulfill the same purposes as 3DPW, but in contexts where blanket occlusions are present. Because

it is formatted the same as 3DPW, it can be used as a drop-in replacement for 3DPW, as it was in

this dissertation.

For these reasons, both BlanketSet and BlanketGen-3DPW could be published in the future to

aid further research in this area.



Chapter 8

Conclusions and Future Work

Blanket occlusions reduce the performance of vision-based HPE systems whenever they are present;

this is an issue for HPE in epilepsy monitoring units, where patients are often lying under blankets.

The work presented in this dissertation explored the potential of augmenting HPE datasets

with synthetic blanket occlusions as a solution to this problem. A pipeline to augment the 3DPW

dataset was implemented and an augmented dataset called BlanketGen-3DPW was generated;

BlanketGen-3DPW was then used to fine-tune a DL HPE model that was originally trained on

several datasets without blanket occlusions. This fine-tuned model and the original model were

evaluated on both 3DPW and BlanketGen-3DPW and the results were compared.

The fine-tuned model performed better on BlanketGen-3DPW, but worse on 3DPW. The im-

provement on BlanketGen-3DPW was expected and matches the results in the literature, but the

reduction in accuracy on 3DPW was unexpected. This loss in accuracy could be caused by the

fine-tuning not including the original datasets as well as by the low number of epochs in the train-

ing; the pre-trained model was trained for 200 epochs with several datasets combined, with the

setup used for fine-tuning on BlanketGen-3DPW this would have taken several months.

The qualitative results on BlanketSet also suggest that the fine-tuned model improves particu-

larly in HPE of humans under blankets, since it outperformed the pre-trained model only in cases

where the entire body of the participant was occluded. This improvement is also promising as it

shows that the performance boost translates to real-world scenarios, rather than only existing on

BlanketGen-3DPW.

A new dataset called BlanketSet was acquired which contains recordings of 14 subjects lying

down in beds performing 8 different movement sequences with different blankets covering both

their lower body as well as the entire body excluding the face. The same sequences were also

recorded without blanket occlusions.

BlanketSet was then used for qualitative evaluation of the impact of fine-tuning the model on

BlanketGen-3DPW; for this, a survey was done where participants were asked to evaluate on a

scale from 0 to 10 the quality of joint position estimations of sequences from BlanketSet. Each

sequence had estimations generated both with the fine-tuned model and with the original model.
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8.1 Future Work

While this dissertation couldn’t fully explore whether synthetic blanket occlusions are a viable

approach to improve DL HPE systems, it did have promising results; it reaffirms what was already

established in [47] and [48], and brings up new questions about the effect of training on augmented

datasets in HPE of unoccluded subjects, namely does it necessarily reduce the quality of HPE on

unoccluded subjects or can that be overcome with further training? And is there an ideal proportion

of occluded and unoccluded subjects in the training dataset? Future research is needed to answer

these questions.

Besides that, this dissertation couldn’t explore the value of temporal information provided by

synthetic blanket occlusions: in [47] recurrent neural networks saw the most improvement from

the augmentation, which implies that this temporal information is particularly important. To test

this, the methodology used in this dissertation could be reused with an HPE system that uses

temporal information rather than HybrIK.

Annotation of BlanketSet remains a challenge to be tackled as well. Maybe a semi-automatic

approach making use of optical flow like the one proposed in [11] could be used. The initial

idea of using a DL HPE to annotate the sequences with no blanket occlusions and then manually

adjusting those annotations to fit the sequences with blankets remains a possibility as well, but it

would require immense effort considering the size of the dataset. If good enough results can be

achieved with the approach proposed in this dissertation then a prior for the ground truth could

be acquired that way, although it would still almost certainly require some manual adjustments.

Perhaps a mix of these approaches could be used, with a DL HPE system providing a prior that is

then improved with optical flow and finally manually adjusted when needed.

An approach at tackling the task of HPE for subjects in beds that is less related to this disserta-

tion but still somewhat similar to it would be to record a fully synthetic dataset, similar to AGORA

[34], of subject in beds. Soft body simulation for the mattress, rigid SMPL body models executing

movements recorded with IMUs, and cloth simulation for the blankets could provide some level of

realism. As it would be synthetic absolute control over the scenarios recorded could be attained,

as well as perfectly accurate ground truth.
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INFORMED CONSENT TO PARTICIPATE IN INVESTIGATION PROJECT

Please read the following information. If you think something is incorrect or unclear, don’t hesitate to ask for

more information through the emails: joao.neves.carmona@gmail.com, tamas.karacsony@inesctec.pt

If you wish to participate in the study we request your consent, which you can give by signing the document.

You will be given a copy of this consent form so you can read it at any time and keep the necessary contact

information.

Participation in the study is voluntary, the participant can quit it at any time without any consequence, needing

only to contact the person responsible through the email specified above.

This document will remain in the possession of the responsible entity, with the only information shared with the

project group being the approval of this consent form through a numerical code. This code will be the

pseudo-anonymity mechanism used in which only this code, and not your name, is divulged. The connection

between the code and your name will remain confidential with only the responsible entity having access to it.

1.PROJECT DESCRIPTION

Title: BlanketGen: Synthetic Blanket Occlusion Generation For The Augmentation Of Motion Capture Datasets

Responsible Entity: INESC TEC

General: The BlanketGen project aims to develop a pipeline to augment datasets used for motion capture with

synthetic blanket occlusions. This augmentation could lead to the improvement of image processing motion

capture systems that make use of deep learning, particularly in scenarios where the subject is significantly

occluded by blankets.

If successful, the augmentation pipeline could be used to aid with seizure detection and classification in

Epilepsy Monitoring Units (EMUs).

In order to test the pipeline, a dataset will be created that includes data of movement with and without real

blankets.

Procedure: You will be asked to perform a sequence of motions in the bed of the EMU while being recorded by

an Azure Kinect camera, which records RGB-IR-D data (this means it records visible colors as well as infra-red

and depth data). This data will be saved according to the data protection rules (General Data Protection

Regulation - GDPR) as described in this document. All instructions will be explained to you by a member of the

project.

Hospital: The University Hospital Center of São João has provided the location for the data acquisition as well as

clinical opinion on the data acquisition protocol. However, it will not be involved in the processing of data after

it is acquired.

Risks: There are no risks associated with participation in this study.

Benefits: Your participation in this study will help evaluate the data augmentation pipeline, which could

improve motion capture systems for patients in beds, and, in turn, the classification and detection of epileptic

seizures in EMUs. This would lead to a quality of life improvement for the patients that get evaluated in the

EMUs.

Financial compensations and/or costs: There is no financial compensation or cost associated with participation

in this study.
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2.PROCESSING OF PERSONAL DATA

Contact information: You will be requested information to allow the responsible entity to contact you should

the need arise, namely an email and/or phone number. You have the right to deny this request.

Finality of the processing: The data collected will be treated according to the applicable national legislation

and of the EU and will be used by the investigators for the purpose of scientific investigation and publications.

Specifically, it will be used to judge the impact of blanket occlusion augmentations in deep learning motion

capture systems.

Responsible for the processing: INESC TEC – Instituto de Engenharia de Sistemas e Computadores, Tecnologia e

Ciência, Campus da FEUP, Rua Dr. Roberto Frias, 4200 - 465 Porto.

Confidentiality: All the data acquired will be analyzed for scientific purposes in the scope of the project in

question; all those involved in this project have a confidentiality and non-disclosure agreement of the data and

information of personal character acquired from it; some steps will be taken to protect your individual identity,

namely: a) each participant will be assigned a code; b) all data acquired will be saved pseudo-anonymously.

However, since the dataset consists of RGB-IR-D video of your body and face and will be saved as-is without any

blurring or any other similar anonymization techniques, it will still be possible to identify you from the data.

Retention period: The dataset itself will be made public, so it doesn’t have a retention period (it will exist

indefinitely). All the personal information, including the contact information and the association between your

code and your person, will only be kept for 3 months after the conclusion of the project.

Data Accessibility: The RGB-D-IR video data collected will be made publicly available as part of the dataset,

your personal information will not be disclosed, however the videos of the dataset will be published as-is.

Personal Data Sharing: The project results will be divulged/published in the scope of scientific publications.

Besides publications, the dataset itself (which isn’t anonymized in terms of video data) will be publicly

available. So it may be accessed by entities located in other countries outside the European Union.

Rights of the Data Subject: As the subject of the data, the law grants you the following rights: Information,

Access, Rectification, Erasure, Opposition, and Portability. In the case of quitting, the data acquired prior to the

quitting will still be utilized, if not requested otherwise.

The exercise of these rights could be limited in respect to the terms and conditions provided by the applicable

national legislation and of the EU, insofar as the exercise would be susceptible to impossibilitating or seriously

hindering the achievements of the objectives of the processing for investigation purposes, and only within

necessary for the pursuit of these ends.

Data Protection Officer: For any questions, exercise of rights over personal data, requests, or complaints about

the data processing, please contact our data protection officer at the address: dpo@inesctec.pt
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3.INFORMED CONSENT FORM

1. I read and understand the information about the project, including the identity of the responsible

person, the type of data collected, the purpose of the collection and the respective processing.

2. I read and understand the information about how the data is stored and for how long, including

what will happen to my data in the case of ceasing my participation in the project.

3. I have been given the opportunity to ask questions and to clarify any doubts about the project.

4. I understand I can quit participating in the project at any point, without needing to provide any

justification and without suffering any penalty or having my motives questioned.

5. I understand how to communicate my decision to quit, as well as how to exercise my rights as the

data subject.

□

□

□
□

□

The Participant:

I declare I have read and understood this document, as well as the verbal information that has been given to

me previously. As such, I accept to participate in this study and allow the use of the data I offer voluntarily.

Code: __ __ __ __

(Format: 2 letters of the name of the responsible entity and a number with 2 digits; example for INESC TEC:

“IT01”)

Name: ________________________________________________________________________________________

Signature: _______________________________________________                         Date:____/____/_______

(DD/MM/AAAA)

version 1.0 21-04-2022
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