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Resumo

A batimetria, a ciência que estuda o fundo do mar por meios acústicos, é um campo fundamental
para a exploração e mapeamento de oceanos, mares, e lagos. Como tal, é de grande importância
para uma variedade de aplicações, tais como oceanografia física, geologia marinha, geofísica, e
biologia ou gestão de recursos marinhos.

As técnicas actuais de medição e cartografia de profundidade incluem veículos que vão desde
Autonomous Underwater Vehicles (AUVs) a navios de superfície oceânica até satélites localizados
muito acima da Terra. Contudo, vários desafios surgem no mapeamento batimétrico utilizando
AUVs ou embarcações.

Um problema transversal com os algoritmos de cartografia em uso actualmente é a elevada
carga computacional que impede o mapeamento em tempo real. Isto tem uma série de implicações,
tais como a necessidade de regressar ao local ou de não conhecer o ambiente durante a navegação.
Além disso, alguns algoritmos, tais como os baseados em Gaussian Mixture Models (GMM),
tendem a suavizar a superfície ao cartografar áreas de rugosidade significativa, resultando numa
perda significativa de informação.

Considerando que não está disponível informação a priori sobre o fundo do mar, a terrain-
based navigation (TBN) também não é uma técnica viável para este fim. O aumento da in-
certeza na determinação da posição ao longo do tempo, é frequentemente abordado utilizando
filtros Kalman, mas estes não são ideais para o mapeamento em tempo real, dada a quantidade de
informação que deve ser processada para cada medição.

O objectivo desta dissertação é propor, testar, analisar e validar um sistema capaz de proces-
sar e fundir autonomamente a informação recolhida durante os levantamentos batimétricos para
posterior integração num mapa.

A fim de dar robustez, flexibilidade e independência ao sistema, este visa lidar com diferentes
tipos de configurações, tanto em termos de hardware utilizado como em termos do tipo de contexto
de mapeamento em que está inserido, com o objectivo de alcançar precisão, compatível com o
mapeamento em tempo real. O sistema desenvolvido baseia-se na informação adquirida com um
Single Beam Echosounder (SBES), de modo a que cada medição forneça uma única distância, a
ser processada em tempo real e integrada no sistema para produzir um mapa de elevação 2.5D em
tempo real.

O conceito foi implementado em Matlab, dividindo-se em dois componentes distintos - um
simulador batimétrico de levantamento capaz de criar e executar várias rotas personalizáveis e
recolher dados de profundidade que simulam o comportamento de um SBES, e um sistema de
processamento e fusão de dados capaz de gerar um mapa previsto do fundo do mar.

O modelo foi testado, comparado com uma ground truth sob variação de parâmetros, e obteve
resultados inferiores a 2 m para Mean Absolute Error (MAE) e inferiores a 10 para Mean Squared
Error (MSE) em algumas simulações, e provou ser uma ferramenta viável para comparar difer-
entes situações cartográficas utilizando os indicadores de desempenho estabelecidos. O algoritmo
foi capaz de processar uma área de 100m2 com até 300 m de profundidade em menos de 1 segundo.
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Abstract

Bathymetry, the science that studies the seafloor underwater by acoustic means, is a fundamental
field for oceans, seas, and lakes exploration and mapping. As such, it is of great importance for a
variety of applications, such as physical oceanography, marine geology, geophysics, and biology
or marine resource management.

Current techniques for depth measurement and mapping include vehicles ranging from Au-
tonomous Underwater Vehicles (AUVs) to ocean surface vessels to satellites located far above the
Earth. However, several challenges arise in bathymetry mapping using AUVs or vessels.

One cross-cutting problem with mapping algorithms in use today is the high computational
load that prevents real-time mapping. This has a number of implications, such as the need to return
to the site or not knowing the environment during navigation. In addition, some algorithms, such
as those based on Gaussian Mixture Models (GMM), tend to smooth the surface when mapping
areas of significant roughness, resulting in a significant loss of information.

Considering no a priori information about the seafloor is available, terrain-based navigation
(TBN) is also not a viable technique for this purpose. Increasing uncertainty in position deter-
mination over time, is often addressed using Kalman filters, but these are not ideal for real-time
mapping given the amount of information that must be processed for each measurement.

The aim of this dissertation is to propose, test, analyze, and validate a system capable of
autonomously processing and merging the information collected during bathymetric surveys for
later integration into a map.

In order to give robustness, flexibility and independence to the system, it aims to handle dif-
ferent types of configurations, both in terms of hardware used and in terms of the type of mapping
context in which it is inserted, with the objective of achieving accuracy compatible with real-
time mapping. The developed system is based on the information acquired with a Single Beam
Echosounder (SBES), so that each measurement provides a single range, to be processed in real
time and integrated into the system to produce a 2.5D elevation map in real time.

The concept was implemented in Matlab, dividing it into two distinct components - a bathy-
metric survey simulator capable of creating and running various customizable routes and collect-
ing depth data that simulates the behavior of an SBES, and a data processing and fusion system
capable of generating a predicted map of the seafloor.

The model was tested, compared to a ground truth under variation of parameters, and obtained
results of less than 2 m for Mean Absolute Error (MAE) and less than 10 for Mean Squared
Error (MSE) in some simulations, and proved to be a viable tool for comparing different mapping
situations using the established performance indicators. The algorithm was able to process an area
of 100m2 with up to 300 m depth in less than 1 second.
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Chapter 1

Introduction

1.1 Context

Bathymetry, the science that studies the seafloor underwater by acoustic means, is a fundamental

field for oceans, seas, and lakes exploration and mapping. As such, it is of great importance for a

variety of applications, such as physical oceanography, marine geology, geophysics, and biology

or marine resource management.

Bathymetry was progressively discovered in the last century as a result of advances in tech-

nology for measuring ocean depth.

Current techniques for depth measurement and mapping include vehicles ranging from AUVs

to ships on the ocean surface to satellites located far above the Earth. However, when it comes

to bathymetry performed by AUVs or vessels, this still poses several challenges that need further

investigation and development.

One cross-cutting problem with mapping algorithms in use today is the high computational

load that prevents mapping from being performed in real time, so it is only after the bathymetric

survey is complete. This has a number of implications, such as the need to return to the site or

not knowing what is under the ship at any given time. In addition, when mapping areas with

considerable roughness, some algorithms such as the ones based in Gaussian Mixture Models

(GMM) tend to smooth the surface, resulting in a significant loss of information.

Furthermore, when mapping unknown areas, the algorithm must be independent of a priori

information, meaning that systems that rely on terrain based navigation (TBN) are also not ideal.

Although a global positioning system (GPS) is used in most systems, there is an inevitable growing

uncertainty in the position of the vessel over time, something that is predicted in certain models

such as the Kalman filter, but this presents a challenge when trying to implement it in real time

due to the large amount of information that must be processed with each measurement received.

The Center for Robotics and Autonomous Systems (CRAS) of INESC TEC has several aquatic

robotic platforms, both surface and underwater, as well as a set of sonars with different character-

istics.
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2 Introduction

1.2 Motivation

There is a common saying that we know more about the surface of the moon than we do about

the ocean floor of planet Earth. While some areas are fairly well mapped, most others are only

mapped to the point where we have a vague idea of the depth and shape of the ocean floor.

With the oceans covering about 71% of the Earth’s surface [3], while more than 80% of it

remains unmapped, unexplored, and unobserved, there is a growing need for more effective meth-

ods to make detailed inferences about the shape and composition of the world’s submerged surface

across the globe.

Bathymetry studies are of great importance for mapping the seafloor and have applications

in a variety of areas, including risk quantification and prevention of accidents involving vessels,

ships or submarines, study of local geology and even plate tectonics (on a larger scale), which in

turn leads to risk assessment of the effects of tsunamis, assessment of climate change and the rate

of change of the seafloor, study and mapping of marine habitats, and many other applications and

purposes.

Moreover, in environments where there is an increased need to be sure of the proximity of the

bottom, as is the case in ports, for example, it is essential that the estimated bottom is never deeper

than it actually is, since this could lead to a possible collision of the vessel.

1.3 Objectives

This dissertation aims to propose, test, analyze and validate a system that is capable of au-

tonomously processing and merging information collected during bathymetric surveys for later

integration so that the final product is a map.

In order to give robustness, flexibility and independence to the system, it should be able to

handle different types of configurations, in terms of the type of mapping context in which it is

inserted, aiming at an accuracy consistent with real-time mapping.

Therefore, the main objectives of this dissertation are to:

• Create a simulator of the trajectory to be traversed by an AUV or other type of vessel

• Create a data acquisition simulator that can mimic the behavior of a sonar in a real scenario

and correctly acquire measurements

• Perform a proper integration and fusion of data in order to create a map

• Establish an appropriate selection of performance indicators with the aim of providing a

solid analysis of the results obtained.

1.4 Document Structure

In addition to the introduction, the document consists of 5 other chapters.



1.4 Document Structure 3

Chapter 2 presents the background and state of the art of bathymetric operations, including the

history of its origin and an overview of the current procedure, as well as the state of the art, which

presents a study in the field of bathymetry on current technologies, methods of data acquisition

and processing, and the types of existing structures that allow the maps to be displayed.

Chapter 3 explains the problem that this thesis aims to address and the requirements needed to

accomplish such task.

Chapter 4 breaks down and describes the implemented algorithm from the trajectory simulator

and data acquisition, to the detailed description of the data integrator and map generator, and fi-

nally the selection, description, and purpose of the various performance indicators used to evaluate

the generated maps.

Chapter 5 contains the results of the simulations performed and an overview of what was

analyzed from the results.

Chapter 6 contains the conclusion about the developed project and some remarks that could be

useful for possible future works.
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Chapter 2

Background and State of The Art

2.1 Bathymetry Operations

The first steps on recording measurements of what we nowadays call bathymetry mapping, were

done by the British explorer Sir James Clark Ross in 1840, by the U.S. Coast Survey beginning

in 1845 with systematic studies of the Gulf Stream, and by the U.S. Navy, under the guidance of

Matthew Fontaine Maury, beginning in 1849. A weighted hemp or fl ax rope was dropped over

the side of a vessel “lying to” (drifting) and the length of the line recorded once the sinker or lead

weight reached the bottom, not so much like what is being done today, but we can say it was the

beginning of the bathymetric studies. Although the first measurings were done back in the first

half of the 19th century, the first map was only produced a few years later, in 1853 by the same

Matthew Maury who was in the expedition led by Sir James Clark Ross in 1840. Even though the

map was not so accurate, it could show some important features of the seafloor [4].

Nowadays, bathymetry studies rely on data collected from sonars coupled to vessels or some

sort of ship or AUVs. The sonars transmit a sound wave, that is then reflected in the seafloor (or

sometimes in some body, object or plant) and then the distance travelled is calculated with the

time that it took to come back taking into account the speed of the sound in the water (knowing

also that this last may vary depending on temperature, salinity, pressure and mass density) and the

angle of the beam emitted and received, as well as other exterior factors such as the attitude of the

vessel/AUV/ROV and some other sources of uncertainty and error.

2.2 Sonar Sensors

In this section the different types of sonar and their respective characteristics will be introduced,

as well as strengths and weaknesses expected in each type, which will/may be used to allow the

bathymetry studying process.

We will cover their most relevant characteristics such as beam width angle, what comprises each

sonar system, ranges and operating frequency, among others.

Sonar Sensors are fundamentally divided in two types, which are passive and active sonars. In

5
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bathymetry, our area of interest, we deal with active sonars, as the passive ones only wait for a

sound wave emitted by other entity, rather than emitting an acoustic wave and then waiting for its

return.

So, our interest resides in active sonars, and that is what we will be addressing in this section.

It is also very important to note that sonar sensors are based on a technology that shapes the acous-

tic wave beam as it traverses physical space so that it is emitted in a specific direction rather than

in all possible directions - this technology is called beamforming.

2.2.1 Echo Sounders

In general, in sonar measuring, the depth of the seabed (or another object) is obtained through the

analysis between the time it takes from the emission of the sound wave, until it’s reception after

being reflected on the seabed or at other detected object or obstacle, which in the case of the echo

sounders, both these events take place at the transducer (which can be circular or rectangular).

Echo sounders, in general, comprise the following components:

• Transducer – converts an electrical signal to an acoustic wave, by vibrating and the acoustic

waves sensed after the backscatter to an electrical signal – the electrical signal sent by the

transmitter will make the transducer vibrate, by vibrating in the water, an acoustic wave is

formed and a similar process happens the order way around, the acoustic wave received will

force the transducer to vibrate, thus generating an electrical signal which then passes to the

receiver

• Transmitter – responsible for sending the electrical signal to the transducer

• Receiver – sends back the amplified signal, after being converted from an acoustic wave to

an electrical signal, to the recorder

• T/R Switch – sends the power to the transducer

• Recorder – responsible for controlling the emission of the signals, but also to calculate

depths and ranges through time travels, based on the information of when they were sent

and when the backscatter signal was sensed by the transducer

These types of sonars can operate in two separate modes, frequency wise, and should be

appropriated for the environment depth:

• High Frequency – more adequate to shallow waters, since the attenuation is bigger with

higher frequencies; usually associated with a short pulse length in the order of 0.2 ms

• Low Frequency – suited for deeper waters due to the lower impacts of attenuation on lower

frequencies; associated with bigger pulse lengths from 1 ms to 40 ms

Echo sounders are broadly divided into two types, single-beam and multi-beam, which are

discussed in more detail below.
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2.2.1.1 Single-beam Echo Sounders

Single beam echo sounders (SBES), are also known as depth sounders or fathometers and there-

fore are usually used to accurately determine the depth of the seafloor directly under the vessel,

since they are capable of presenting results that easily distinguish the real bottom from any other

factitious signals in the returned echo. The return echo is shown in a form of a water column

echogram thus providing a graphical representation of it.

Although the more common angular amplitude sits around 30 degrees, there can also be found

more narrower ones, of less than 5 degrees – naturally, narrower beams provide more resolution

and produce more accurate results, with the tradeoff being that with a wider beam, the area scanned

per time is bigger. To determine the exact position of bottom features, narrower beam width trans-

ducers are desirable because the narrower the beam, the more precise and accurate it will be, as

mentioned before.

Lower frequency transducers typically have a wider beam width due to the fact that the lower the

frequency the larger the equipment must be to be capable of producing a directional beam. Low

frequency sonars are able to penetrate through the thick (define calibers maybe) dust in the water

and still produce good results, so that it would be the preferable choice when it comes to a dredg-

ing scene, for instance.

As it was mentioned before, operating frequency and range are deeply connected due to attenua-

tion phenomena, briefly explained in the previous section.

Therefore, when talking about range, it is always a matter of range to a specific operating fre-

quency, as we will see below:

• Shallow waters – 200Khz

• Medium range – 24 to 38Khz

• Deep waters – 12Khz

These three frequency ranges are presented in [5] and their results are analyzed for seafloor

classification.

In addition, [6] provides a thorough overview of SBES frequency ranges and explains which depth

ranges the various operating frequencies are better suited for.

Side Scan Sonars are comprised in the category of single-beam echo sounders, although it sys-

tem actually needs more than one beam.

They emit two fan-shaped sound beams, each one facing one side of the vessel/ship, at a wide

angle perpendicular to the ship’s direction of travel. They are commonly used to ensure that ob-

stacles are detected, especially when the operation requires a full knowledge of the underwater

environment to ensure that there are no objects or dangerous obstacles that could interfere with

the task, such as when mapping the harbour or channel environment.

It is also able to detect between sounding lines, which brings more insurance about the surround-

ings.
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Due to its wide angle, in the order of 60 degrees (30 degrees each beam) in the vertical plane and

1 to 2 degrees in the horizontal plane, it can cover wide areas; also useful to detect rough topo-

graphic irregularities, with a particularity that it can provide an understanding of the differences

in material and texture type of the seafloor, such as density, water/sediment density ratios, texture,

compaction, porosity and benthic vegetation cover.

SSS (Side Scan Sonars) are useful when the mission requires the most detail possible, since its

signal is constant across track, and therefore providing a high across track resolution.

Profiling Sonars also belonging to the category of single-beam echo sounders we have the pro-

filing sonars. In Profiling, a narrow “pencil shaped” beam is used, and the footprint is much

smaller than the one generated through Imaging.

Here, we have a single profile line that is generated only by the selected echo returns, that go

through a process of selection due to a given criterion previously defined, based on the values of

echo return strength and minimum profiling range.

Useful for doing 2-D plots of the bottom profile, trench profiles (requires accurate measurement),

pipeline profiles. Given its simplicity, the data sets are relatively small and so it is relatively easy

to manipulate the data and it does not require a big computational effort.

2.2.1.2 Multi-beam Echo Sounders

MBES (Multi-beam Echo Sounders) systems consist of two different arrays that stand perpendic-

ular to each other.

One is a projector array, that sends the acoustic waves to the seafloor and therefore is a transmitting

array and the other one is a hydrophone array that will be "listening" the echoes coming from the

reflection on the sea bottom (or in any other body that stands between the array and the seafloor

and which the sound wave was reflected on) - thus this is the receiving array.

There are two beamforming methods, namely:

• Beam Steering Method

• Coherent Method

This means that the transmitting array will ensonify a strip in the ocean floor, and the receiving

array will form multiple strips, perpendicular to that of the transmitting array.

This will cause them to overlap a number of times that is dependant on the number of beams

formed, and each crossover region will belong to a different strip of the receiving array.

This way, the return echoes on the receiving array will only belong to the ensonified area.

The number of depth measurements will be as many as the number of overlapped sections.
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Figure 2.1: Multibeam echo sounder (MBES), image from [1] - where (xT ,yT ,zT ) and (φT ,θT ,ψT )
correspond to the position and orientation of the transducer, respectively, (xS,yS,zS) correspond to
the conversion of beam angle β and time delay ∆ into a sounding and c to the speed of sound in
water

A single ping can indicate hundreds of depth values.

Along these lines, two main variables are to be accurately measured, the slant distance, and the

direct distance from the vessel to the seafloor.

As we have seen before, due to attenuation there are different frequency bands, used to specific

situations, so normally if the goal is to explore deeper waters, the frequency should be around

12KHz; on the contrary, if we are focusing on shallower waters, the values of frequency are much

higher, around 450KHz which also allow better resolution.

2.3 Other Possibly Useful Sensors

In this section we take a look at some sonar sensors that, although not being useful specifically

in bathymetry, can be present in a mapping operation to provide awareness of the position of the

vessel.
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2.3.1 Doppler Velocity Logs

Figure 2.2: Doppler Velocity Log (DVL) sonar, image from [2]

A Doppler Velocity Log (DVL) is an acoustic sensor that can estimate velocity having as its

reference the sea bottom.

Typically this is used whenever Global Tracking Systems (GPS) are not available.

Basically, it (DVL) sends a long pulse along three acoustic beams, each one of these pointing in

a different direction, producing individual estimates of velocity for each of the beams which are

then converted into a cartesian referential, of coordinates XYZ.

Along with heading estimates, these estimates (of velocity) can be used to calculate a step-by-step

change of position, once it has direction and speed information.

It is important to notice that the velocity estimates must not have any bias or offset, otherwise

it will contribute highly to systematic errors in the position estimate. Also, as all other acoustic

sensors, to increase the range of the DVL, the frequency must be lowered and to produce lower

frequencies it is needed a big transducer, so this is fundamentally a trade-off.

To avoid this, water tracking (which is having as reference the water instead of the bottom) is

possible but not recommendable since it is less accurate due to sea currents.
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2.3.2 Altimeters

Figure 2.3: Altimeter sonar, image from [2]

This type of sonar sensors are primarily used to determine the depth or speaking in terms of what

the sonar really calculates, the height above the seafloor of the vessel.

Altimeters are basically single-beam sonars with a narrow beam, of only a few degrees and are

able to employ basic signal processing, in order to deal with changing environment properties,

such as acoustic propagation and bottom acoustic reflection.

They would not be of good use if the task was to map a considerable area, since it would take much

more time - when compared to other available options - to do it due to only having one narrow

beam, and also they have the setback of being conducive to faulty readings.

This being said, they are good to keep track of the height of the vehicle above the seafloor, keeping

in mind it is a cheap option.

2.4 Sources of Error

The errors in bathymetry come from the most different sources, which should all be considered in

order to obtain the most cohesive, robust and error free map possible.

In [7] it is stated the most common (some of them not so intuitive) sources of error that should be

accounted as follows:

Sources of uncertainty may be:

• State estimate errors (location and relative position, orientation)

• Vehicle in cause and its loading and speed changes, location of sensors, vessel dynamics

(amount of roll, pitch, heave and yawing)

• Sensor measurements such as uncertainty from the sonar, sound speed profiler
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• Environment such as tides, sound speed structure, etc.

• Integration: the time synchronization of all sensor measurements on highly dynamic plat-

form

• Calibration between the instrument being put to use and the motion sensor

• False sea bottom detection (in case it detects objects, big sea fauna, plants, and anything

other than seafloor)

Also for the sonar, it must be taken under consideration the following:

• Positioning system uncertainty

• Range and beam angle uncertainties

• The uncertainty associated to the platform heading

• System pointing uncertainties resulting from sensor misalignment

• Sensor location

• Platform motion sensor uncertainties, as is for roll and pitch for example

• Sensor position offset uncertainties

Apart from these, it should also be taken under account the vertical uncertainty sources, which

are vertical datum uncertainty, water level measurement uncertainties, seabed slope and more,

again, all of them mentioned in [7]

2.5 Underwater Acoustics

In order to be able to comprehend how bathymetry and sonars work, we must first understand the

physics behind the acoustics underwater.

It is not always as intuitive as one might think, and there are some fundamentals that should be

taken into account.

2.5.1 Speed of Sound Underwater

In a more basic sense, the speed of sound in mater, depends on the bulk modulus and the density

of the matter, so we can write:

c =

√
K
ρ

(2.1)
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Where K is the bulk modulus and ρ the density of the matter.

At 20°C, distilled water, the speed of sound is 1481 m/s.

However, sea water has more in its composition than just water, and so more variables have to be

considered in order to reach an accurate value of the speed of sound.

Also, it is known that the temperature of a liquid changes its density, and so does pressure, so

those elements must be accounted for as well. So, the speed of sound in sea water can be written

as a function of temperature T, pressure P and salinity S, as follows:

c = f (T,P,S) (2.2)

And so, this equation deals with temperature, depth and salinity dependencies and is a complex

problem, but a rough answer to this problem is:

c = 1445+T × ∆c
∆T

+P× ∆c
∆P

+S× ∆c
∆S

(2.3)

Again, this is a rough approximation, due to elements that can be present in the water and change

its elasticity and density and therefore change the speed of sound in it, namely microbubbles.

Thankfully, with a sing around sound velocimeter, this last problem can be ignored because it

is not detected as a consequence of a very high operating frequency.

Another formula that represents an approximation to the behavior of the sound velocity varia-

tion in seawater is Medwins’ formula [8], which we can analyze below:

c = 1449.2+4.6×T −0.055×T 2 +0.00029×T 3 +(1.34−0.01T )× (S−35)+0.016D (2.4)

In this equation, T represents temperature, S salinity and D depth.

Many other approximations can be found in the literature.
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2.5.2 Reflection/Refraction of the Sound Waves

The reflection and refraction of sound waves, happens in a similar way to that of light, so one can

analyze Snell’s law to better understand how it works.

Figure 2.4: Snell’s Law of reflection and refraction

Since sound reflection and refraction obeys Snell’s law, we can write, first about reflection:

θ1 = θ3 (2.5)

And now regarding the refraction phenomena:

sin(θ2)
sin(θ1)

=
C2
C1

(2.6)

Total reflection and thus, no refraction, can occur if the angle of incidence - which in this case,

using 2.4 as an example is θ1 - is inclined sufficiently far from the normal.

The amount of reflection and refraction is surface dependant, and so one must know the reflection

coefficient in order to know how much of the incident sound wave will reflect when in contact

with each surface.

At normal incidence, the reflection coefficient is equal to:

V =
Z−Z0

Z +Z0
(2.7)

being Z the impedance of the medium where the sound wave comes from and Z0 the medium

to where the sound wave is heading and with which it will collide.

In the table below, we have the values for impedance of some materials that are commonly

found in underwater navigation.
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Material Impedance
Air 415

Seawater 1.54×106

Clay 5.3×106

Sand 5.5×106

Sandstone 7.7×106

Granite 16×106

Steel 47×106

Table 2.1: Characteristic Impedance of some common materials and elements

Through these values and applying the equation we saw before, we can calculate each surface’s

reflection coefficient.

2.5.3 Problems That Generate Difficult Data Interpretation

Ocean exploration using acoustic waves is very effective and reliable, and avoids some limitations

and problems of optical sensors, but it also has its drawbacks, and that is precisely what we will

address in this section.

Here are some of the problems one might run into, when interpreting data from acoustic means:

• Changes in viewpoints
By imaging the same spot from different angles/viewpoints, it can generate occlusions,

shadow movements, etc.

• Shadowing
Phenomena caused by a body of some sort - object, animal, plant - that blocks the acoustic

waves and therefore creates a blind spot on the ocean floor

• Low Signal-to-Noise Ratio (SNR)

• Reverbation
Consist of multiple sound waves returning after reflection on the same object that are then

detected over the same ping, thus resulting in ambiguous results

• Additive noise
Unwanted sound waves coming from all types of sources that are irrelevant to the task at

hands, may create confusion in the interpretation of the results

• Non-uniform resolution
The number of pixels used to send an echo intensity measurement in the cartesian coordinate

system gets bigger as its range increases.

This phenomena can cause distortion to the image.
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2.6 Map Types

The data collected by bathymetric techniques must then be integrated into some kind of map so

that they can create a representation of what is being observed, in our case the seabed.

It is important to keep in mind that this representation must be compact and serve different pur-

poses, such as localization, path planning for robots, seafloor exploration, or simply geographic

purposes - all of these requirements have one thing in common: they must have the most accurate

map possible.

Below is a brief description of the types of maps available to us for integrating our system.

2.6.1 Occupancy Grid Maps

Occupancy grid maps were first introduced by H. Moravec and A. Elfes in 1985 in [9].

First each measurement provides information about the occupied or empty volume sections, in

the space under influence of the sensor beam and then this information is projected onto a two-

dimensional map, based upon a regular partition of the space into a number of rectangular cells.

Each of these cells store the probability that the corresponding area is occupied by an obstacle,

with the possibility of being updated every time a new measurement about that area is received.

The final product of this map has values that are comprised in the interval [-1, 1] where values less

than zero represent probably empty areas, zero represents unknown space and values greater than

zero correspond to probably occupied areas.

In the meantime, several advances were made in the line of this work, which sought to solve some

problems that arose. Below is a brief comparison of what changes between them.

• Moravec and Elfes 1985 - use an empty and occupied maps, that are then joint together in

an integrated map.

• Matthies and Elfes 1988 - here it is used a similar technique as the previous. Has a more

rigorous bayesian updating formula. Uses a single map instead of 3 different maps although

in both methods cells cannot update occupancy values once they converge to certainty 1 (0

or 1 in case of Matthies and Elfes).

• Thrun 1993 - neural networks are used in this method. The use of neural networks has

its limitations, because they need to be trained to converge, and to do so, environmental

features need to be taken into account, which affects generalisation.

• D.Konolige 1997 - this method divides the sensory model into occupied and free/empty

sections. Uses a single formula for both the occupied and empty sections and updates the

value of the cells with a general formula. Deals with redundant information and with spec-

ular reading by probabilistic inference. If a measurement is assigned a high probability of

specularity, the effect of that measurement is reduced.
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• Thrun 2001 - this method is quite different from the previous, since it considers a sensor

model as a description of the characteristics of the particular operating environment from

causes (occupancy) to effects (measurements). It uses expectation maximisation (EM) as its

basis.

The different methods of using occupancy grid mapping and its evolution over time, as briefly

explained above, are described and compared in more detail in [10]. Also, it is clear in this paper

that the Thrun’s paradigm from 2001 shows the best results.

Most occupancy grid mapping algorithms assume that the environment is static, which limits the

use of this type of maps to tasks in which we have the full knowledge of the area over which it is

intended to operate (mapping, route planning, etc.).

In [11] it is proposed a method in which it is possible to map in changing environments, applying

hidden Markov models (HMM) and which consists in three main steps, occupancy state update,

state prediction and parameter estimation, showing good results mainly when it comes to path

planning.

Since this type of maps do not handle ground unevenness, such as a slope, they are mostly used

in indoor environments and thus would probably not be the best solution for a bathymetry scenario.

2.6.2 Elevation Maps

Elevation maps are a quantitative way of representing the elevation profile of a surface, whether

this is of a given natural landscape, such as the land surface (above or below sea level), or of arti-

ficial or man-made structures.

They are usually represented using contour lines, which are imaginary lines that connect points

that are of equal elevation (or depth in the case of a subsea profile map, which happens to be our

case) and often use bands of color to help interpret the elevation - by standard, the lowest points

are colored in green and get darker all the way to red as height increases; points that are below

sea level are colored in blue, starting by light blue in the shallow areas and going all the way until

dark blue this way representing the deeper areas.

A representation using the exact elevations is also possible, in case the user requires a more accu-

rate reading.

2.6.2.1 Digital Elevation Models

DEMs (Digital Elevation Models) as the name implies are a digital way of representing and con-

structing elevation maps.

After the data collection is done, and before it can be illustrated on an elevation map in the form

mentioned above, the height/depth data is arranged in the form of a DEM, this being a raster data

structure, which therefore consists of a grid with rows and columns.

It usually has the point (0, 0) at the lower left end of the grid, so that the numbering of the rows
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increases upwards and the columns increase to the right.

This DEM grid can then be displayed as a map showing highlighting the elevation, slope, re-

flectance or contours.

Grid DEMs differ from TIN (Triangular Irregular Networks) as these last ones use triangular

facets, created by connecting points in which the height is registered, this way generating a mesh

of triangles, in which only the vertices contain the three-dimensional coordinates (x, y and z).

In areas where the height/depth variation is not considerable the points are more spaced than in

the areas where the height/depth variation is bigger.

2.6.3 Point Clouds

Point clouds are data sets that are used to represent surfaces, objects, or any shape that is desired

to be represented in 3 dimensions.

This type of representation is based on points with Cartesian X, Y and Z coordinates resulting from

individual measurements, usually made using laser scanning technology, which are then combined

in a large number of spatial measurements to form a data set that can represent a whole.

Since point clouds mostly refer to methods that use lasers, namely LiDAR - and thus through op-

tical means rather than acoustic, as is our case in bathymetry - we will not go into further detail.

Among the other options presented, there will be a better representation for the problem at hand.

2.6.4 Multi-level Surface Maps

Multi-level surface maps (MLS maps) arose from the need to create maps that could handle a

variable number of surfaces and represent vertical structures, first introduced in [12]. They have a

similar structure to the elevation maps presented earlier.

One of the differences is that the latter do not allow information from more than one surface to be

stored in the same grid cell.

This is not so much important for seabed mapping (i.e., a horizontal surface), path planning, or

surface traversability analysis, but rather for localization or registration of different maps.

Multi-level surface map consists of a 2D grid map of variable size, where a grid cell can have more

than one surface patch associated with it.

These surface patches store the data obtained from the measurements, namely the height, rep-

resented by the mean, and the uncertainty associated with the height values, represented by the

variance.

An additional variable must be stored in these surface patches, in case the grid cell is at the corre-

sponding location of a vertical structure - such as a building, a mountain, a ramp, a bridge, etc. -

and this is the depth, which takes the value of the height of the patch minus the lowest measure-

ment up to that point, which is thus considered the floor level.
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The map can be created from a point cloud or by merging two different MLS maps into a single

map.

2.7 Data Fusion Algorithms

2.7.1 Octomaps

OctoMap is a library that implements a 3D occupancy grid mapping concept and provides data

structures and mapping algorithms in C++ that are mainly used in robotics scenarios.

Its main data structure is octrees.

Octrees An octree is a tree type data structure in which each node symbolizes the space con-

tained in a cubic volume - this is usually called a voxel - which is then subdivided into a total of

eight subvolumes, and this subdivision happens recursively until a specified minimum is reached.

The smallest of these subvolumes will then be the resolution of the octree, thus, the smaller the

subvolumes of the last subdivision, the bigger the resolution.

In octrees, to distinguish between free and unknown space, we know that areas that are not im-

plicitly initialized correspond to unknown areas and so, conversely, if some area is initialized but

does not have any information about being occupied, that will correspond to free space.

Also, if all the sub-nodes of the same single node have the same state (occupied or free) they

can be "cut off" because that way it is notable that the whole voxel concerned is either entirely

occupied or free.

Examples of mapping using octomaps in aquatic environments can be found in the literature,

such as in [13] - this article uses octomaps in AUV deployments and to develop a SLAM system

that can operate in real time - but algorithms using this library and structure are more associated

with terrestrial mapping and man-made structures, so they are not the best solution for bathymetric

mapping of the seafloor.

2.7.2 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a probabilistic model in which we assume that all data

points can be generated by a mixture of a finite number of Gaussian distributions with certain

parameters.

A Gaussian (or Normal) distribution is a very common, mathematically convenient type of distri-

bution that is graphically represented by a bell curve where half of the data falls on the left side of

the curve and the other half falls on the right side.

A distribution is a listing of the outcomes of an experiment and the probability associated with

each outcome.



20 Background and State of The Art

Gaussian distributions are defined by a mean, which is the centre value of the curve, and a

standard deviation value, which describes how widely the data are scattered. So in a GMM, we

have multiple values for mean and standard deviation (as many as the number of distributions).

The Probability Density Function (PDF) for the Gaussian distribution, where for given values

of mean and standard deviation and for each value of x we have the corresponding probability (y),

is:

y =
1

σ
√

2π
e
−(x−µ)2

2σ2 (2.8)

Where µ represents the mean and σ the standard deviation.

Thus, a Gaussian mixture model is a weighted sum of M Gaussian component densities given by

the following equation[14]:

p(x|λ ) =
M

∑
i=1

ωi ·g(x|µi,Σi) (2.9)

where x is a D-dimensional data vector with continuous value (i.e., measurements), ωi , i =

1,...,M, are the mixture weights, and g(x|µi,Σi), i = 1,..,M, are the component Gaussian densities.

Each component density is a D-variate Gaussian function of the form:

g(x|µi,Σi) =
1

(2π)
D
2 |Σ| 12

exp
{
−1

2
(x−µi)

′
Σ
−1
i (x−µi)

}
(2.10)

where µi is the mean vector and Σi is the covariance matrix.

2.7.2.1 Hyperparameters Estimation Approaches

To estimate the GMM parameters, an iterative method - Expectation-Maximization (EM) [15] - is

used to find either Maximum Likelihood (MLE) or Maximum a Posteriori (MAP) estimates.

The EM method mainly consists of two different phases:

• E-Step: Given the current estimate for the parameters of the model, generates a function for

the expectation of the log-likelihood

• M-Step: Calculates the parameters and tries to optimize them, maximizing the expected

log-likelihood found in the E-Step

Next, we present a workflow to better illustrate the EM algorithm:
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START
Initial Values

Choose an initial parameter
Set k=0

E-Step

Estimate unobserved data
using θk

M-Step

Compute maximum likelihood
Estimate parameter 

θk+1 using estimated data

IS CONVERGED 
?

YESNO
STOP

For more information on MLE and a Matlab code that implements the proposed method using

the case described in the article as an example, see [16].

In [17] you will find a detailed explanation of MAP method and also an application of this method

to a GMM.

Both MLE and MAP are methods for inferring properties of a probability distribution behind

observed data.

The main difference between the two methods is that MLE is based solely on likelihood and MAP

is based on both prior probability distribution (or simply prior) and likelihood.

MLE comes from frequentist statistics, where probability is allowed to speak for itself. In contrast,

MAP comes from Bayesian statistics, where the point estimate is effectively regularized by prior

beliefs (which are usually based on knowledge about the parameters).

2.7.2.2 Kernel Types

A kernel (or covariance function) describes the covariance of the random variables of the Gaussian

process.

Some of the most commonly used kernel types are listed below [18] and [19],

Standard Kernels

• White Noise Kernel

• Squared Exponential Kernel
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• Rational Quadratic Kernel

• Neural Network Kernel

• Periodic Kernel

• Locally Periodic Kernel

• Linear Kernel

Combining Kernels Different kernels can also be generated by combining them through the

following operations,

• Adding Kernels

• Multiplying Kernels

We will not go into too much detail about how each of them works, but rather focus on results

from previous work in this area.

In [20], two different types of kernels, namely Neural Network (NN) and Squared Exponential

(SQEXP) kernels were put to test in a large and complex terrain modelling scenario. Note that NN

is a non-stationary kernel, unlike SQEXP, which is therefore stationary.

The results in [20] show that the NN kernel is much more effective than SQEXP in modeling

terrain data, and this becomes more evident when dealing with sparse and/or complex datasets;

they perform similarly in relatively flat terrain.

The GP-NN (Gaussian process with neural network kernel) also outperforms other interpolation

methods compared in this work, namely nonparametric methods (linear, cubic, biharmonic, mean

of neighborhood and nearest neighbor), parametric (linear, quadratic, cubic), and triangulation

(linear, cubic).

This has to do with the fact that the other techniques (other than GP-NN) impose a priori models

on the data, whereas GP-NN was able to adapt to the data at hand in a much more effective way.

2.7.3 Kalman Filter State Estimation

2.7.3.1 Kalman Filter

Kalman Filtering is a powerful statistics technique, often used in autonomous control of vehicles

to account for noisy and uncertainty contaminated data acquired and has been used extensively in

operations involving autonomous vehicle mobility in general.

See [21] for a detailed theoretical explanation of the Kalman Filter, as well as the application of

the concepts inherent in this method to the problem of state estimation in linear systems.



2.7 Data Fusion Algorithms 23

2.7.3.2 Related work on the field

In [22], the Kalman Filter is included in the cell information update part. This is an example of

mapping above sea level and is therefore not part of bathymetric mapping, but it consists of a

mapping problem something similar to ours.

It is performed by a 4-wheeled vehicle and focuses on real-time terrain mapping. It also does not

require a priori information about the terrain and obtains information about the 6 d.o.f. for each

distance measurement, through a Global Positioning System (GPS) and an Inertial Measuring Unit

(IMU). Additionally, the uncertainty values associated are known. The recording of range values

is done with a laser rangefinder (LRF). The update equation controlling each cell is a Kalman

Filter whose state is equal to the scalar height estimate.

The absence of independent dynamics in the height of a cell means that the state propagation

equations are simply identity, and the height estimate is the result of updates from measurements

whose coordinates point to a location near the cell in question.

In this way, the cells in the map receive a series of updates when a series of sensor measurements

pass over them, but otherwise remain unchanged.

Their main focus here is to ensure that the vehicle can travel at relatively high speeds without

compromising cell update efficiency.

The abbreviated version of the Kalman Filter measurement update equations present in this work

is as follows:

Kk = Pk−1HT (HPk−1HT +R)−1 (2.11)

x̂k = x̂k−1 +Kk(zk−Hx̂k−1) (2.12)

Pk = (I−KkH)Pk−1 (2.13)

Where H is equal to unity, P (error covariance) is equal to the variance in height estimate σ2
h

and R is equal to the variance in the measurement height σ2
m, and so the reduced version of the

equations used to update the height and height variance is:

x̂k =
σ2

h zm +σ2
z x

σ2
h +σ2

z
(2.14)

Pk =
σ2

h σ2
z

σ2
h +σ2

z
(2.15)

The idea that the Kalman filter is suitable for real-time map update from range measurements,

not only for wheeled vehicles, is supported by [23]. This work is based on mapping with an

unmanned ground vehicle (UGV) with legs that relies on proprioceptive sensors (kinematic and
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inertial measurements) for relative localization and therefore does not require GPS information to

perform a mission.

To account probabilistically for the drift in pose estimation, a robot-centric formulation of the

mapping problem and thus a non-inertial frame is introduced here.

They also introduce four coordinate frames, namely the inertial frame I, the map frame M, the

robot frame B, and the sensor frame S, and the measurements can be transformed between the

frames by translation and rotation operations.

Before applying the Kalman filter, for each cell, the values of the height measurements (given by

a Gaussian probability distribution with mean and variance) are transformed to the map frame,

and the variance of the height estimate is calculated using the derived Jacobians (for the sensor

measurement and sensor frame rotation) and the covariance matrix of the range sensor model.

The Kalman filter is then applied, which merges the height measurement with the elevation map

estimation through a one-dimensional Kalman filter. The estimates before an update are marked

with a − super-script while the estimates after an update are marked with a + super-script:

ĥ+ =
σ2

p ĥ−+σ
2−
h p̃

σ2
p +σ

2−
h

(2.16)

σ
2+
h =

σ
2−
h σ2

p

σ
2−
h +σ2

p
(2.17)

Where σ2
p is the variance in the new height measurement, p̃ is the mean of the new measure-

ment (approximated by a gaussian probability distribution), ĥ and σ2
h are the mean and variance

estimates, respectively, of the elevation map estimation.

The Mahalanobis distance, see [24], is applied for situations where multiple measurements with

different height values are assigned to the same cell, e.g. a wall.

In this work, it should be noted that it is geared towards real-time mapping (something that is

of intrinsic interest to us), since its algorithm first collects data and updates the map with distance

measurements associated with the map cells in question, and then, as the robot moves, the prop-

agation of uncertainty resulting from the robot’s motion is taken into account in a further step to

satisfy the robot-centric formulation.

A common thing to both papers is that the regions that stand in front of the robot and therefore

observed more recently have higher accuracy, while uncertainties accumulate in the other regions

- this should not be what we are looking for in the first place if our goal is to produce an accurate

bathymetric map in real time.

An important difference is that the first work introduces three coordinate frames, namely an iner-

tial frame that is fixed to the environment with the real terrain stationary relative to it, the sensor

frame that is fixed to the robot’s sensor, and a map frame that is essentially the elevation map

frame and in the latter work they introduce one more frame apart from the other three, which is

the robot base frame, that is naturally fixed to the base of the robot.
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Between the different frames there are corelations through translation and rotation movements

so that they can be compared at all times. When required, the elevation map data structure, which

consists of two parameters, the height estimate and the covariance matrix of each cell, can be

transformed to a three parameter structure containing the height estimate and its minimum and

maximum values, again for each cell.

This distinguishes the latter from the earlier work of these authors, where the transformation is

from a two-parameter map data structure consisting of mean (height) and height variance esti-

mates to a four-parameter mean, height variance, x-axis variance, and y-axis variance estimates,

which can be inversely transformed to the original representation by infering the mean and vari-

ance from the data of all surrounding cells.

In both works, the variance values of the height, x-axis and y-axis are required to obtain an accu-

rate result.

This work, although proving to be feasible for One disadvantage of this work is that due to

computational costs, the map size must be limited, which in our case is not ideal. Another disad-

vantage is that each time the elevation map is needed, a request must be made to trigger the map

fusion step although the processing of new measurements and the data fusion processes can run in

parallel.

2.7.4 Simultaneous Localization and Mapping (SLAM)

In [25], a procedure for bathymetric mapping missions conducted by an ROV is presented.

A SLAM algorithm is implemented and a state-delayed Extended Kalman Filter (EKF) is used to

integrate the vehicle’s navigation sensors to provide estimates of the vehicle’s position as well as

information about the previously visited vehicle position.

Although they have had good results mapping the seafloor, their main focus has not been on real-

time mapping, so it is not ideal for what we are trying to do.

In [26], we have an elevation mapping system, GEM, which generates an elevation map as a

series of submaps, in real time correcting the robots trajectory with the help of Simultaneous Lo-

calization And Mapping (SLAM). The system is written in C++ and integrated with the Robot

Operating System (ROS).

The algorithm in this paper consists of two main parts: the local dense mapper, which creates

the dense robocentric elevation map, and the global dense mapper, which deforms the graph in

order to obtain the global consistency of the map.

In the local dense mapper, the algorithm starts by transforming the measurements into a global

frame point. Then, the variance values of elevation, for the posterior fusion of the data are obtained
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by calculating the Jacobian matrices of the measurement, i.e., the sensor rotation and translation.

The uncertainty of the elevation is then modelled by an equation using the covariance matrices

of the measured point and the sensor rotation obtained from the uncertainties of the pose estima-

tor, and the Jacobian matrices mentioned before and their transposed values. In this way, each

measurement is given its continuous grid index, elevation and uncertainty.

It is important to note that the elevation uncertainty remains the same since the global frame and

the local map frame are in the same plane.

The algorithm then proceeds to fuse the elevation measurements.

When rendering the local map (centered on the robot), multiple elevation values that lie in the

same grid (this grid that we are focusing on is a portion of the global grid, as the map is treated as

an amalgamation of several submaps) are fused.

The chi-square test is performed to account for outliers (e.g., a vertical object).

Here, the difference between the highest elevation of the most recent step and the grid elevation

with the corresponding variance is evaluated and if it is not greater than a certain threshold, the

grid elevation is reinitialized.

The points that pass this test are then fused through a variance weighted fusion process to obtain

an updated estimate.

Height deviation is computed by comparing the elevation in the neighborhood, which reflects

the roughness of the terrain, and the normal vector reflects the slope of the terrain, which is com-

puted using a local planar patch [27]. In addition, they check for traversability, making use of the

roughness and slope values using an equation from [28].

In the Global Dense Mapper phase, the local robocentric elevation map is then sent to this

phase to be initially merged into a submap, but if the size of this map exceeds a certain threshold,

a new submap is created.

Here, the variance and uncertainty propagation values need to be recalculated as they are merged

into a larger area since the submaps are a series of local elevation maps.

They also use hash tables for disorganized storage of submap points. For each submap, the points

are transformed by projecting them into the global frame along with the submap frame through a

simple operation, leaving the color and variance information unchanged.

The 6DoF correction is applied for a global consistent mapping, which has the consequence that

the changing roll and pitch of the submap frames must be taken into account. Thus, when multiple

points are projected into a grid, the variance-weighted average is used to fuse the elevation in that

grid.

To limit the complexity of the maps, they set a certain threshold. If two submaps overlap in an

area larger than this threshold, both submaps are fused into one.
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In case the same area is visited multiple times and the map is to be deformed multiple times in this

way, the algorithm follows the mechanism for managing local-global threads in state-of-the-art

SLAM systems, such as ORB -SLAM2 [29].

By this mechanism, when a new request is made to the global mapper, the current map deforma-

tion is stopped and the map deformation is restarted later using the trajectory provided by SLAM.

The system was compared with four others, namely: an Octomap, an Octree-based 3-D dense

mapping system with local consistency; C-Blox, a TSDF volume-based 3-D dense mapping sys-

tem; Surfel-Mapping, an unorganized surfel-based 3-D mapping system with global consistency;

Elastic-Fusion, a surfel-based 3-D dense mapping system with CPU-GPU coordination.

A thorough analysis was carried out, which can be found in the seventh chapter of the document

in question. This compared the systems in terms of navigation feasibility, timing analysis of local

and global mapping, global consistency and scalability.

The results show that the accuracy, efficiency, consistency and scalability were validated for real-

world and simulation data sets.
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Chapter 3

Problem

The mapping made through bathymetric data is a complex process due primarily to the fluctuation

of values needed to interpret the information collected, that will vary depending on the environ-

ment, namely the speed of sound in the water and the intensity of reflection of the acoustic wave

on the ocean floor, because it varies depending on the type of bottom in question, since its compo-

sition will vary the index of refraction and refraction of the same, incurring a value of uncertainty

in each record.

However, because Autonomous Robotic Bathymetric Mapping is embedded in a very broad

field, we have chosen to focus on the processes of data acquisition and subsequent post-processing

of the data obtained during a particular bathymetric survey.

We assume that the previously acquired information was collected on a good basis in terms of the

physics of water acoustics, and work from there with the goal of recreating the seafloor as well and

accurately as possible and in real time with the available information. There are many different

aspects to consider when doing so.

One source of uncertainty in the acquired measurements is the depth measurement itself for

each sample, not only because of the uncertainty associated with each sensor, but also because in

each sensor beam footprint, the depth value returned is always the first point encountered by the

acoustic wave.

This can lead to conclusions that can be very erroneous if, for example, if somewhere in the foot-

print there is an element that stands out in elevation from the rest of the area concerned, leading to

the wrong conclusion that the depth at which the entire seafloor is located in that area is far greater

than the true value.

In addition to the uncertainty that may be associated with any measurement due to the error of

the sonar itself, it must also be taken into account that the position of the vessel may be associated

with an error value, an error associated with the tracking equipment, the Global Positioning Sys-

tem (GPS), and therefore means that it is necessary to take into account that the vessel may not

29
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always be located at the exact coordinates that the system indicates at a given moment.

For each received measurement, a bathymetric mapping system must be able to translate each

measurement information and assign it to a specific area, since the acoustic wave is not considered

a straight-line single point wave, but a cone-shaped wave.

Since what is intended in our case is to be able to receive bathymetric information, i.e. depth

values obtained from the travel time of acoustic waves, and to integrate this information to pro-

duce a map in real time, the question arises as to which sonar type should be used for this purpose,

since a sonar type with more sampling and a larger area covered in each measurement, such as the

multibeam echo sounder (MBES), may not be as well suited due to the large amount of informa-

tion that must be processed in each measurement compared to a simpler single beam echo sounder

(SBES), among other examples of sonar types.

From our desire to make an algorithm that is able to develop an iterative map, and therefore in

real-time, a logical difficulty arises, which is that the map is built based only on current and past

values and never future ones, which is a significant difference from the situation where you have

all the data, knowing that no further changes will be made to the current state of the map.

One of the main problems that served as the focus and motivation for the development of this

work was the fact that after thorough research when gathering information in previous work in

the field a in state of the art, it was found that in general the approach to the depth data collected

was always quantitative rather than qualitative, i.e, each measurement is considered to be equally

weighted, or in some cases the measurements are assigned a probability weighting according to a

certain distribution (e.g. Gaussian) assigned to the measurements based on the values previously

assigned to the neighborhood or the location itself where the measurement was performed.

Throughout the study of the problem, it was possible to observe that, assuming correct sonar

behavior and thus that the measurements are correct or have a small deviation, in a given area

covered by the beam’s footprint of a given measurement, no point on the seafloor can be shallower

than the returned value, since the sonar always returns the distance to the point where it was first

reflected.

This problem is explained graphically in the figure below.
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Figure 3.1: Problem of overlapped beam cone areas

Thus, the problem highlighted is that it should be possible to draw qualitative and more mean-

ingful conclusions about the areas where overlap occurs between the cones representing the prop-

agation of the acoustic sonar wave.

The way this problem is dealt with will be explained later in the explanation of the implemented

model.

3.1 Solution Requirements

First, it must be determined how the information is to be received so that the mapping is plausible

in real time.

The developed system first requires the information collected by a single beam echosounder

(SBES) in such a way that only one range value is returned for each measurement, with each range

value associated with the vessel’s coordinates.

The data, as previously defined, is acquired iteratively and in real time.

It is taken into account that each measurement is not definitive and may vary greatly with a new

measurement indicating a significantly different value for the same location.

It is assumed that the sonar responsible for collecting the measurements is coupled to the

vessel in such a way that their position and attitude match at all times, and thus match in the three-

dimensional referential.

In addition to this assumption, it is necessary to know the angular aperture and range of the sonar

device to be used for the bathymetric survey, although this is changeable in the implemented so-

lution.
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Information is also needed on the error interval of the sonar used in the survey so that this can be

taken into account when interpreting the range values.

In theory, GPS information about the absolute location of the vehicle (which is then converted

to a location relative to the map origin) would also be required, but the system has been imple-

mented with a path and data acquisition simulator to simulate data being collected from different

vessels over time and gathered all together to be processed - this process is described in the next

chapter.

The system also assumes that the survey will be conducted in waters with little to no rough-

ness, so it is not necessary to consider attitude values such as roll and pitch, as they would have

very little relevant influence on the results.

If the roll or pitch values exceed the predefined thresholds, the measurements are discarded.

The map produced is an elevation map based on a two-dimensional grid in which the cells that

compose it have a variable granularity and are each assigned a value corresponding to the depth

value.

The sonar sampling rate is defined as 1 sample per second, and the vehicle speed is given in

meters per second.
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Implemented Solution

Our Autonomous Robotic Bathymetric Mapping project aims to make it possible to recreate the

seafloor as accurately as possible in real time by preacquiring data that simulates a bathymetric

survey and translating it into a map of the seafloor, while maintaining the tradeoff between com-

putational complexity and workload, and accuracy of the results obtained.

From a very high level perspective, the project itself is divided in two distinct phases - data acqui-

sition and its post-processing.

In terms of implementation, the first phase comprises the definition of a path to be followed by the

vessel and the acquisition of data, while the second involves the subsequent post-processing and

fusion of the acquired data.

Although the first phase of data acquisition is usually done physically in the field (it was also

possible to use previously acquired data from bathymetric surveys), a simulator for the survey path

and data acquisition was implemented so that it is a closed system, i.e. it is possible, to test data

sets created by the user, modify them, see the results and compare them with each other, all with

the help of this one system relatively easily and rather quickly.

4.1 Path Definer and Data Acquisition Simulator

This section describes how in the system the definition of a path to be traversed by the vessel is

done, as well as the part that involves data acquisition, i.e., distance measurements to the seafloor.

Inherent to this whole process is also the definition of a sea surface on which the measurements

will be performed and which will also be used in a later phase to perform an evaluation of the

results - it thus serves as a ground truth.

4.1.1 Path Definition

In order to describe how a path to be traversed by the vessel is defined in the system, it is essential

to mention the coordinate system on which the whole algorithm is based.
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Therefore, the coordinate system used is the Local North-East-Down Coordinate System (Local

NED) - described in [30], as well as other coordinate systems - in which its origin is arbitrarily

defined as a point at water level located within the area to be mapped.

The x-axis coincides with the north direction, the y-axis with the east direction, and the z-axis

with the downward direction, which means that larger values of z are equivalent to larger values

of depth.

Two different methods have been developed to simulate the paths travelled by the vessel through

the area being mapped: the defined path and the random path generators, the latter not being a

path but a method that simulates what it would look like to collect data from different ships pass-

ing through a given area over a given period of time.

The paths are defined by two distinct arrays, trackN and trackE, which correspond to the vessel’s

position in meters, relative to the referential’s origin, at each moment. This means that (trackN(k),

trackE(k)) are the coordinates of the vessel at measurement k.
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4.1.1.1 Random Path Generator

Algorithm 4.1 Generate Path Randomly

Require: speed[arraySize], speedDuration[arraySize], yaw[arraySize], mapSizeNorth, mapSizeEast

/* speed, speedDuration and yaw are randomly generated previously -

arraySize controls the sampling amount although what holds its value

is posIndex */

Ensure: trackN and trackE are created within maps boundaries

northPosition← Initial Position

eastPosition← Initial Position

cycleCount← 1

posIndex← 1 /* Holds total number of samples */

while 1 do
duration ← speedDuration(cycleCount) /* Number of iterations that speed

will hold its value */

for x← 1 to duration do
northSpeed← cos(yaw(cycleCount))∗ speed(cycleCount)

eastSpeed← sin(yaw(cycleCount))∗ speed(cycleCount)

if northPosition + northSpeed >= mapSizeNorth or northPosition + northSpeed <=

1 or eastPosition+ eastSpeed >= mapSizeEast or eastPosition+ eastSpeed <= 1 then
break /* Skips to next cycle */

else
northPosition← northPosition+northSpeed

eastPosition← eastPosition+ eastSpeed

trackN(posIndex)← northPos

trackE(posIndex)← eastPos

posIndex← posIndex+1

end if
end for
cycleCount← cycleCount +1

if cycleCount is equal to size of speedDuration then
break

end if
end while/* At the end of this process, random uniformly distributed

noise values representing the uncertainty of the ship’s position

are added to trackN and trackE */

trackNErr← random[sizeo f (trackN)]−0.5

trackN← trackN + trackNErr

trackEErr← random[sizeo f (trackE]−0.5

trackE← trackE + trackEErr
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In the complex and random model of automatic path generation, the positional progress of the

vehicle at each iteration depends on three array variables: the value of the yaw angle of the vehicle

(heading), the speed of the vehicle, and the duration of each speed value taken by the vehicle (i.e.,

how many iterations the vehicle travels at a given speed).

This last variable was created to mimic, again, the behavior of a vessel in a bathymetry survey,

where no constant sudden changes in speed are expected. In this way, we are able to pass on the

information that holds the speed over a given interval of iterations.

The speed of the vehicle at each instant is decomposed into a northbound speed and an eastbound

speed according to the yaw value of the vessel, as follows:

northSpeed = cos(ψ)∗ speed (4.1)

eastSpeed = sin(ψ)∗ speed (4.2)

Where northSpeed is the variable that contains the northbound speed, eastSpeed the east-

bound speed and ψ represents the yaw value of the vessel in degrees, with it’s origin being the

north direction.

Since the speed is defined in meters per second and the sampling rate in this simulator is 1 second,

the north coordinate and the east coordinate at time t + 1 are their value at time t added to the speed

at time t in the north and east directions, respectively.

In mathematical representation, we then have:

trackN(t +1) = trackN(t)+northSpeed(t) (4.3)

trackE(t +1) = trackE(t)+ eastSpeed(t) (4.4)

Therefore, the position of the vessel at the kth measurement is equal to the position at time t

when k = t. It should be noted again that this is a discrete system, so that the vehicle coordinates

are only known for integer values of t.

In short, the three vector variables that are the basis of the path the vessel will travel are

randomly generated within certain parameters of minimum and maximum values, all of the same

size, that can be changed, resulting in a larger sample size:

• speed - continuous, scalar, random between minSpeed and maxSpeed, in meters/second

• speedDuration - discrete, scalar, random between minDuration and maxDuration, in sec-

onds

• yaw - continuous, between 0 and 360, in degrees
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4.1.1.2 Defined Path Generator

The defined path generator ensures that the vessel traverses the area to be mapped with lines of a

definable size separated by a customizable value, thus aiming to efficiently cover the area.

Next, it is presented the algorithm for this purpose.
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Algorithm 4.2 Defined Path Generator
Require: northLaneSize, eastLaneSize - size of north and east direction lanes respectively

LatMax, LongMax - maps limits gran - granularity of the grid originX ,originY - original coor-

dinates of the path

Ensure: trackN and trackE are created within maps boundaries

step← 1/gran; i← 1; counter← 2; trackN(1)← originX ; trackE(1)← originY

while 1 do
for i← 1 to (counter+ eastLaneSize) do

if (trackN, trackE out of maps boundaries) then
break

end if
trackN(i)← trackN(i−1)

trackE(i)← trackE(i−1)+ step

counter← counter+1

end for
for i← 1 to (counter+northLaneSize) do

if (trackN, trackE out of maps boundaries) then
break

end if
trackN(i)← trackN(i−1)+ step

trackE(i)← trackE(i−1)

counter← counter+1

end for
for i← 1 to (counter+ eastLaneSize) do

if (trackN, trackE out of maps boundaries) then
break

end if
trackN(i)← trackN(i−1)

trackE(i)← trackE(i−1)− step

counter← counter+1

end for
for i← 1 to (counter+northLaneSize) do

if (trackN, trackE out of maps boundaries) then
break

end if
trackN(i)← trackN(i−1)+ step

trackE(i)← trackE(i−1)

counter← counter+1

end for
if (trackN, trackE out of maps boundaries) then

break

end if
end while
return [trackN, trackE]
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4.1.2 Data Acquisition

The data acquisition phase is performed by simulating the behavior of a single beam echo sounder

(SBES) during a bathymetric survey.

This phase includes two key elements - the model of the seafloor (surface) to be mapped and the

representation of the sonar’s cone-shaped acoustic beam.

Mathematically, the value associated with each measurement corresponds to the smallest abso-

lute distance that results when the beam emitted by the sonar and the underwater surface intersect.

In physics, this means that the value corresponds to the distance to the place where the wave is

first reflected.

Next, we will go into more detail about how the part of the algorithm that determines the

distance value by mathematical means was implemented.

Keep in mind that this logic is based on the fact that we know in advance that the sonar used is

strong enough to reach the seafloor, otherwise we would not have a return value.

4.1.2.1 Seafloor Model

The surface model that represents the seafloor depends on some characteristics that must be defined

at the beginning, such as its size and granularity, that is, the size of the imaginary grid over which

it is located.

Although the concept of a perfect geometric plane does not exist in nature in the real world, in our

system the surface is approximated by one of these planes (or more, as we will see later) so that

it has a mathematically predictable course and the intersection between the beam and the surface

can be found by mathematical means.

To be able to define a surface to be mapped, this is done by the equation of a plane:

ax+by+ cz+d = 0 (4.5)

Where a defines the slope along the x-axis (north), b along the y-axis (east), c along the z-axis,

and d is a constant value.

Since the coordinate system used is NED, larger values for z mean greater depth.

If a grid granularity other than 1 (each cell equals one square meter) is used in the area to be

mapped, the factor must also be applied to the equation of the modeled surface.

For simplicity, we will use gran when referring to granularity.

The surface is thus defined by the following equation:

z(x,y) =
ax∗gran+by∗gran+d

c
(4.6)
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Since the area to be mapped is defined in meters with the variables mapSizeNorth and mapSizeEast,

applying a specific granularity changes the grid’s dimensions from mapSizeNorth by mapSizeEast

to mapSizeNorth/gran by mapSizeEast/gran.

With these equations it is possible to model surfaces through only one plane, as seen in (image

number), or through a set of several planes, as seen in (image number).

4.1.2.2 Modelling of the Cone-Shaped Beam

To replicate the behavior of the single beam echo sounder (SBES) as closely as possible, we as-

sume that the cone shape of the sonar beam can be approximated by an infinite number of straight

lines emanating from the origin of the acoustic wave (theoretically the sonar transducer) and lying

within a cone whose angular aperture is the width of the sonar beam, αmax.

In this way, the general representation of every possible straight line to be defined within the

limits of the beam emitted by the sonar is done by parameterizing it so that:

x = x0 + sin(α)cos(β )t, 0≥ α ≤ αmax

2
and 0≥ β ≤ 360 (4.7)

y = y0 + sin(α)sin(β )t, 0≥ α ≤ αmax

2
and 0≥ β ≤ 360 (4.8)

z = z0 + cos(α)t, 0≥ α ≤ αmax

2
(4.9)
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Figure 4.1: Cone-shaped beam geometry

Where (x0,y0,z0) are the coordinates of the measurement origin, t is the length of the straight

line that is the value to be calculate, α is the angle between the line t and the z-axis, and β is the

angle defined by the rotation of the line t around the z-axis.

4.1.2.3 Measured Values

The distance values obtained from each measurement are the result of the intersection of the

seafloor surface models described previously and the sonar’s cone-shaped acoustic beam.

The multiple lines generated by the beam model are intersected individually with the generated

surface in order to find the shortest possible distance.

As stated in 4.1.2.1 section, the granularity of the grid, if different from one, must also be consid-

ered in the equations. Analytically one has:



x = x0 +
1

gran sin(α)cos(β )t

y = y0 +
1

gran sin(α)sin(β )t

z = z0 + cos(α)t

ax∗gran+by∗gran+ cz+d = 0

(4.10)

Finally, this yields the equation that determines the value of t (and thus the distance value)

given values of alpha, beta, the coordinates of the relative position (x0, y0, z0), and the parameters

that define the surface, a, b, c, and d:

t =
ax0 ∗gran+by0 ∗gran+ cz0 +d

1
gran asin(α)cos(β )+ 1

gran bsin(α)sin(β )+ ccos(α)
(4.11)
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For each measurement, as many distances t are calculated as straight lines are generated within

the limits of the beam width, but only the shortest distance value obtained, which in turn corre-

sponds to the first reflection of the acoustic wave in the real system, is stored and passed on to the

next phase, the map generation phase.

The following shows the implementation of this logic in the system:

Algorithm 4.3 Function that calculates distance to intersection - find_t
Require: a,b,c,d - coefficients of plane equation

αmax
2 ,β - angle values

i, j - where i← trackN(posIndex) and j← trackE(posIndex) gran - granularity of the grid z -

z value at which the surface is

t← a∗i+b∗ j+c∗z+d
a∗ 1

gran∗sinαmax∗cosβ+b∗ 1
gran∗sin αmax

2 ∗sinβ+c∗cos αmax
2

return t
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Algorithm 4.4 Main Procedure to find distances and store the shortest
Require: posIndex - index with the number of the sample, to keep track of vehicle position

gran - granularity of the grid

αmax - sonar’s beam width (in degrees)

betaStep - to define the β angle step each iteration (in degrees)

al phaStep - to define the α angle step each iteration (in degrees) zInit - z coordinate of the

vessel

a,b,c,d - for the different planes in question

Ensure: Shortest distance is found and stored

counter← 1

i← trackN(posIndex)

j← trackE(posIndex)

for α ← 0 to αmax
2 by al phaStep do

for β ← 0 to 360 by betaStep do
if α = 0 then

β ← 0

end if
t1← f ind_t(a1,b1,c1,d1,al pha,beta, i, j,zInit,granularity)

t2← f ind_t(a2,b2,c2,d2,al pha,beta, i, j,zInit,granularity)

t3← f ind_t(a3,b3,c3,d3,al pha,beta, i, j,zInit,granularity)

t← min(t1, t2, t3)

/* To be able to see the footprint - it will store the

coordinates of every intersection */

x(counter)← i+ sin(α)cos(β )∗gran∗ t

y(counter)← j+ sin(α)sin(β )∗gran∗ t

z(counter)← zInit + cos(α)∗ t

if t < minHeight(posIndex) then
minHeight(posIndex)← t

end if
counter← counter+1

end for
end for
/* Value that is passed through to next phase - map generation */

depthValue(posIndex)← minHeight(posIndex)

In order to represent the behavior of the algorithm in a more complex situation, the bottom
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surface is not defined as a single plane, but by the intersection of multiple (in the case above,

three) different planes, all defined as seen in the section 4.1.2.1.

The indices of the coefficients correspond to the plane to which they belong, forming 3 different

planes.

Another important point is the fact that the acoustic beam model footprint is shaped differently

depending on the terrain. Such deformation can be demonstrated by the developed system using

records of shapes generated by intersection points with surfaces with different slopes, as shown

below.

(a) (b)

Figure 4.2: Comparison between footprint shapes on surfaces with different slopes

In 4.2a it is visible the footprint shape that results from executing the above described al-

gorithm, performing a single measurement with αmax = 6, betaStep = 12, al phaStep = 1 and a

2x+ z+ constant = 0 surface.

4.2b results from the same execution, except the equation of the surface is 6x+ z+ constant = 0.

4.2 Map Generation

The part of the path simulation and data acquisition system already described is followed by the

processing of the collected data in order to integrate them into the map that will be developed

in this phase, with the aim of creating a representation as close as possible to the surface to be

mapped, that is, as close as possible to the ground truth.

4.2.1 Map Structure

After a thorough investigation of different types of maps and map-oriented representations per-

formed in Background and State of The Art, and taking into account the fact that the implemented
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algorithm runs in real time, which means that a trade-off between map quality, accuracy and in-

formation and the feasibility of processing data in real time must be considered, it was concluded

that an elevation map is the type best suited to the task at hand.

In this way, the map consists of a 2D grid, that is, a two-dimensional matrix in which each cell

has only one value, a value corresponding to the average depth in that section. As we have already

seen, each cell can represent a variable area of the surface, and the edge dimension of each cell is

called granularity.

4.2.2 Measurement Propagation

Although in any measurement it is impossible to know the exact location where the acoustic wave

was first reflected, and therefore it is impossible to determine the exact location within the area

of the footprint to which a measurement belongs, it is assumed to originate from the centre of

the measurement, and this information is then propagated to the surrounding area with the proper

depth adjustment.

Having said that, by propagating the measurement we mean the values that are assigned in an

area around the absolute point in space where the measurement lands.

This process is carried out taking into account the fact that the shape of the bottom is not known

and therefore no assumptions are made a priori about the underwater surface.

Once a point in space is assigned to a specific measurement, a radius of influence can be es-

tablished around that point to ensure that no point on the ocean floor in the area covered by a circle

of the same radius has a depth less than that assigned to it.

In the following figure, the acoustic sonar beam model is divided into several segments that serve

as reference throughout the project.
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(a) Side view

(b) View from the top

Figure 4.3: Sonar beam model divided into several segments

r = sin(
αmax

2
)∗measured (4.12)

Where r represents the radius of influence, αmax corresponds to half of the beam width (as

seen previously) and measured is the distance value of the measurement.

Other conclusions follow directly from a single measurement, such as the lowest depth value

at which the seafloor could be located:

lowestDepth = cos(
αmax

2
)∗measured =

sin(αmax
2 )

tan(αmax
2 )

(4.13)
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Also the greatest possible difference, in meters, between the measured distance and the actual

real depth of that one point in space, εmax, can be calculated by:

εmax = measured− cos(
αmax

2
)∗measured = measured− lowestDepth (4.14)

4.2.3 Post Bathymetric Survey Data Processing

This subsection describes how the system processes the data collected after the bathymetric survey

has been conducted, whether in the field or simulated with the simulation system described in 4.1

- which cells to update with each measurement, which measurements to discard or not, and how

the system generally interprets each measurement.

4.2.3.1 Area Updated With Each Measurement

There are several approaches as to which cell region should be updated for each new measurement.

Since it is not possible to have an idea of what the seafloor will be like in the region where

the measurement is performed, the system developed aims to predict the seafloor as neutrally as

possible, so that in each measurement the cells to which values are assigned correspond to those

contained in the surface that would represent the base of a cone with a spherical base - and hence

a concave base.

Thus, the criterion for the selection of cells, which are updated at each new measurement, lies in

the geometry of the intersection of the sonar cone with an assumed neutral flat bottom.

This means that the cells to be updated must be located within a circle with a radius defined as

before in equation 4.12 and with the center at the origin of the measurement.

To update depth values for only those cells that meet this requirement, a cycle is run that visits

only those cells that are in a neighborhood that does not exceed a range value defined as a number

of cells from the center of the measurement, reach:

reach = [r/gran] (4.15)

Since the grid is a discrete and not a continuous model, the above expression represents the

integer result of the division between the distance of the footprint’s radius, r and the granularity of

the map, gran.
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Figure 4.4: Beam footprint generated of a 200m measurement

In the figure you can see an example of the generated footprint with a received measurement

of 200 meters.

Note that the footprint is symmetrical, even if it does not look that way because the viewing angle

is not quite vertical.

4.2.3.2 Cell Depth Values Update

After defining the area to be updated in each measurement, it is necessary to define how this area

should be updated, following the discussion in the previous chapter.

First, returning to the problem presented in figure 3.1, we can state that in areas where the

measurement area overlaps with the areas of previous measurements, if the sonar detects a dis-

tance value greater than the value assigned to the intersection area, the area will be updated with

the new value (the greater distance), since the sonar returns the first point where the acoustic wave

is reflected and the seafloor can never be at a lesser distance, which implies a correct operation

of the sonar, ie, it is assumed that the measurement is performed correctly.i.e., assuming that the

measurement is not erroneous.

In this way, for each measurement, the implemented algorithm goes through all the cells in the

neighborhood that meet the requirements mentioned in the previous section, compares the value

they contained before with the newly calculated depth value, and if it is higher, updates the value

in the cell; otherwise, the new value is ignored and the existing one is kept.
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Under this premise, it is possible to "dig" the map as in an occupation grid, approaching the

bottom more and more without ever crossing it, i.e. without exceeding the seabed.

To go through all the cells and know if they still belong to the radius of influence of a particular

measurement, and if so, to check whether their value should be updated, a rather simple function,

CalcDistUniversal, was developed.

Algorithm 4.5 Function - CalcDistUniversal

Require: northDist - distance in the North-axis to measurement’s center

eastDist - distance in the East-axis to measurement’s center

depthValue - distance value of the measurement

gran - granularity of the grid

reach - beam footprint radius

α,β - angle values

gran - granularity of the grid

Ensure: CellValue of the cells within the update area, gets updated if new depthValue is bigger

than previous one

hypotenuse←
√
(northDist ∗gran)2 + (eastDist ∗gran)2

if hypotenuse < reach then
CalcDistUniversal←

√
depthValue2 − hypotenuse2

else
CalcDistUniversal← 0

end if

if CalcDistUniversal >CellValue then
CellValue←CalcDistUniversal

end if

CalcDistUniversal will hold the true depth value, according to the measurement, of a cell that

is hypotenuse meters away from the (x,y) - northPosition,eastPosition) - coordinates of the origin

of the measurement.

The algorithm described above in pseudocode for calculating the depth values for each cell

with each measurement is called recursively for each cell within the footprint boundaries.

4.3 System Performance Indicators

This chapter presents the various performance indicators used to transversely evaluate the perfor-

mance of the developed system, which will be used to draw conclusions about the results obtained,
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in the next chapter.

Each measure is presented in detail below.

4.3.1 Mean Squared Error (MSE) and Mean Absolute Error (MAE)

Mean squared error (MSE) and Mean absolute error (MAE) are numerical indicators that mea-

sure the magnitude of error in statistical models.

MSE evaluates the mean squared difference between the observed values (in this case, the

values of each cell belonging to the generated map) and the actual values (in this case, the surface

corresponding to the ground truth). Ideally, when a model has no error, the MSE is equal to zero.

As model error increases, its value increases.

The mean square error is also known as the mean square deviation (MSD).

Several evaluations and uses of the MSE or models derived from it are described in the lit-

erature, such as [31] and [32], which have shown that it is a simple yet robust method for error

assessment in statistical models.

The equation for calculating the MSE for a given data set is as follows:

MSE =
1
n

n

∑
i=1

(Yi− Ŷi)
2 (4.16)

Where n is the size of the data set, i.e., in our case, the number of cells that have a value

different from 0, Yi is the value of the generated map in a cell, and Ŷi is the ground truth value for

the same cell.

It can also be represented as:

MSE =
1
n

n

∑
i=1

(ei)
2 (4.17)

Where ei corresponds to the error of the ith measurement.

In analogy to the MSE, MAE evaluates the absolute value of the error between the observed

and the actual values.

The equation for calculating the MAE is:

MAE =
1
n

n

∑
i=1
|Yi− Ŷi| (4.18)
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4.3.2 Coverage Rate (CR)

The coverage rate is a performance indicator that can be used to evaluate the percentage of the

area being mapped that has actually been captured by successive measurements of the sensor.

Thus, it is the percentage value of the quotient of the area that has been "hit" by the beam at least

once and the total area to be mapped that has been previously determined.

The value of this parameter varies between 0 and 100%.

Since the map is a grid composed of cells, the number of cells with at least one assigned value

is divided by the total number of cells that make up the map, as a percentage.

So the mathematical expression to calculate the Coverage Rate is as follows:

CR =
Nvisited

N
∗100 (4.19)

Where CR is the abbreviation for Coverage Rate, Nvisited is the number of cells with assigned

values and N is the total number of cells.

4.3.3 Overlap Rate (OR)

The Overlap Rate is an indicator that serves as an extension of the coverage rate.

It indicates the percentage of cells that have passed through the beam coverage area at least twice,

i.e., the areas that have received at least one confirmation beyond the value assigned to them in the

first scan.

This performance indicator arises from the need to support the conclusions drawn by the cov-

erage rate, because if a high value is registered for the latter, it is possible to draw erroneous

conclusions about performance, since the cells may have been visited only once, implying that

there was no confirmation of the measurements taken initially.

Logically, a high overlap rate would mean that the map is more robust and has greater confi-

dence in the values presented when compared to a low overlap rate.

The value of this parameter varies between 0 and 100%.

The mathematical expression to calculate the Overlap Rate is as follows:

OR =
Ncon f irmed

N
∗100 (4.20)
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Where OR is the abbreviation for Overlap Rate, Ncon f irmed is the number of cells visited at

least twice and N is the total number of cells.

4.3.4 Overlap Variance (σ2) and Standard Deviation (σ )

Overlap variance and overlap standard deviation are indicators intended to provide a more concrete

impression of the efficiency of the bottom coverage resulting from a path traveled in a bathymetric

survey.

Logically, the higher the values of variance and standard deviation, the greater the discrepancy

between the values of areas where more sweeps were conducted and areas where fewer sweeps

were conducted.

Theoretically, the closer the value of the variance and standard deviation is to zero, the bet-

ter; this value indicates that an equal number of passages were made over the entire area being

mapped, and this can ensure at least an equivalent value of trust in the different areas of the map

created.

There are two different methods of calculating the value of variance - sample variance and

population variance.

The sample variance is used when the data set to which it is applied represents a sample drawn

from a larger population of interest; on the other hand, the population variance is used in cases

where the data set represents an entire population, i.e., the totality of values of interest.

Thus, since we have access to all the data, the value that will be calculated will be the popula-

tion variance.

To calculate this, there is the following equation:

σ
2 =

∑
n
i=1(Xi−µ)2

N
(4.21)

Where N is the sum of the individual values of each cell for the number of times each has been

visited (i.e., the total sum of the number of times each cell is under the beam influence radius -

this is called a visit to a cell), Xi represents the number of visits to the ith cell, n is the total number

of cells that make up the map, and µ is the mean of the visits to each cell.
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Since the population standard deviation is simply the square root of the population variance, it

follows:

σ =

√
∑

n
i=1(Xi−µ)2

N
(4.22)

4.3.5 Time of execution (Time)

Since our system is about real-time mapping, it is very important to know how long it takes to run

the entire algorithm in order to evaluate its feasibility.

Therefore, we will evaluate the time it takes to execute the algorithm, in seconds, from the

definition of the parameters to the final product, the map.

It should be noted that a personal computer with a 2.70 GHz Intel i7-10850H vPRO processor

was used for the simulations.

All this will be analyzed and evaluated in the next chapter.
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Chapter 5

Results and Discussion

5.1 Methodology

In this section, the results of the simulations made from the algorithm that was implemented are

shown and analysed.

The parameters are changed so its possible to evaluate many different scenarios, and later on con-

clude which would be the better setup for different types of cases, and the better suited when the

topic is the trade off between map quality and accuracy and real time feasibility with a concern

also on traversing path efficiency.

A thorough analysis of the changes in the results that occur as a result of changing each pa-

rameter value is provided, as well as some high level general conclusions about the effects of each

parameter on the results.

Unless explicitly stated otherwise, simulations are run using the following default values for

the following parameters:

Table 5.1: Default Parameter Values

Parameter Default Values

Gran (m) Beam Width Distance

Between

Lanes (m)

Bottom

Model (m)

Map Area

(m2)

0.5 5º 6 Ramp (x+

z+100 = 0)

100

These default values were established based on other simulations performed in papers on the

same topic.

In the Results section, we run simulations where we vary these parameter values and compare

55



56 Results and Discussion

them with the ground truth and the results obtained with the default values.

5.2 Results

5.2.1 Default Values Simulation

This subsection shows the settings and results for the simulation with the defined default parame-

ter values.

(a) Default traversed path (b) Default bottom model (x+ z+100 = 0)

(c) Default generated map

Figure 5.1: Path, bottom model and generated map from the default simulation

The table below, 5.2, shows the values for the performance indicators in relation to the sim-

ulation of the default parameter values, which will serve as a common basis for the upcoming

comparisons.

Table 5.2: Values for the performance indicators after simulating with the default values

Performance Indicators

Gran
(m)

OR (%) CR (%) µ MAE MSE σ2 Time

(s)

Samples

0.5 98.0 98.3 18.70 3.39 20.05 61.88 0.3657 1537
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In all the following tables, the results of the simulations are shown with the default values

shaded.

Note that, throughout the results, the bottom models are defined in depth values, so larger positive

values mean larger distances below the surface.

5.2.2 Granularity Variation

In this subsection, the results and performance indicators are evaluated by varying the granularity

of the map grid. To do this, the default granularity of 0.5 is compared to values of 0.25 and 1.

(a) Map generated with granularity = 1

(b) Map generated with granularity = 0.25

Figure 5.2: Maps Generated under variation of the map grid’s granularity

Table 5.3: Values for the performance indicators under variation of granularity

Performance Indicators

Gran
(m)

OR (%) CR (%) µ MAE MSE σ2 Time

(s)

Samples

1 99.7 99.5 17.49 3.49 20.81 60.04 0.2349 1532

0.5 98.0 98.3 18.70 3.39 20.05 61.88 0.3657 1537

0.25 97.3 97.1 19.47 3.10 13.79 71.99 0.8806 1629
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From analyzing the table, as granularity decreases, MAE and MSE also decrease, which is to

be expected because for the same footprint area, lower granularity covers more cells and therefore

assigns more possible depth values.

The values of OR and CR are hardly affected, but also decrease with decreasing granularity. The

value of CR decreases as the unmapped areas consist of a larger number of cells, and although the

mapped areas also follow this reasoning, the difference in ratio is noticeable.

The OR has a decreasing behavior with decreasing granularity for the same reason, coupled with

the fact that now the areas that were not revisited also represent a larger number of cells in addition

to those that were not visited at all.

The values for σ2 and µ increase for the opossite reason.

5.2.3 Beam Width Variation

Next, we evaluate the results when sonars with different aperture angles are used without changing

the other parameter values.

A 4º and a 6º aperture angle are compared to the standard 5º beam width.

The results are shown below.

(a) Map generated with beam width = 4◦

(b) Map generated with beam width = 6◦

Figure 5.3: Maps Generated under variation of the sonar’s beam width
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Table 5.4: Values for the performance indicators under variation of the beam width

Performance Indicators

Beam
width

OR (%) CR (%) µ MAE MSE σ2 Time

(s)

Samples

4◦ 95.5 95.7 12.19 3.19 15.56 31.59 0.3113 1537

5◦ 98.0 98.3 18.70 3.39 20.05 61.88 0.3657 1537

6◦ 99.0 99.2 26.22 3.63 23.78 114.17 0.4803 1537

From the results obtained, it can be observed that the coverage and overlap rates increase with

larger sonar aperture angle, which is due to the larger area covered in each measurement when

the aperture angle is increased, and this is also reflected in the µ and σ2 values, since in deeper

areas the difference between the area covered with different apertures is accentuated, leading to

the existence of zones with very high values of the total number of visits to the cell (deeper zones)

and zones with lower values (shallower zones), as can be seen in the following graphs.

(a) Accumulated visits to cells graph
(beam width = 4◦)

(b) Accumulated visits to cells graph
(beam width = 5◦)

(c) Accumulated visits to cells graph
(beam width = 6◦)

Figure 5.4: Plot of the accumulated visits to cells for the different values of beam width simulated

On the other hand, the fact that a larger area is seen in each measurement generally leads to a

higher error value, which can also be seen in 5.3.

In summary, a larger sonar aperture angle leads to better efficiency in bottom coverage, espe-

cially in scenarios where it is not possible to cover the entire bottom with a narrower beam.



60 Results and Discussion

Conversely, a smaller aperture angle leads to a higher accuracy of the results.

5.2.4 Distance Between Lanes Variation

In this subsection, the distances between the lanes that the ship travels are varied to get a sense of

what effect this has on the final product, the map.

(a) Path with 2 meters distance between
lanes

(b) Path with 10 meters distance between
lanes

Figure 5.5: Paths traversed by the vessel with 2 and 10 meters distance between lanes

(a) Map generated from traversing path 5.5a

(b) Map generated from traversing path 5.5b

Figure 5.6: Maps generated from traversing paths in 5.5
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Table 5.5: Values for the performance indicators under variation of the distance between lanes

Performance Indicators

Distance
(m)

OR (%) CR (%) µ MAE MSE σ2 Time

(s)

Samples

2 98.4 98.5 55.02 1.55 6.61 584.99 0.8206 4417

6 98.0 98.3 18.70 3.39 20.05 61.88 0.3657 1537

10 96.8 97.2 12.07 4.85 34.48 27.77 0.3358 997

From the results presented in 5.5, it can be observed that as the distance increases, the overlap

rate and coverage rate decreases, which is to be expected because as the distance between lanes

increases, the bottom is not examined as thoroughly.

It is important to analyze that a significant portion is unmapped in 5.6b, which must be ac-

counted for in a bathymetry operation because this area could represent a map outlier (a significant

indentation or protrusion) that would remain in the unknown.

This phenomenon is due to the fact that the sonar footprint in the shallowest part of the bottom

model cannot fully cover half of the distance between lanes.

The same is not true for the deeper part, since logically and as previously discussed in sonar geom-

etry, the deeper the ground, the larger the sonar footprint, which in this case results in the radius

of the footprint in the deeper areas exceeding half of the distance between the lanes.

Another value that must be analyzed in the table is the number of samples resulting from each

path traveled.

Since the sampling rate is 1 sample per second, we see that with a spacing of 2 meters per lane,

the path requires 4417 seconds to be completely covered, which is roughly 74 minutes, and 4.43

times more than the path with greater spacing (10 meters between lanes), which should be taken

into account when planning a route efficient bathymetric survey.

MAE and MSE naturally decrease with intensive sampling of the seafloor, as on the other

hand, the σ2 value increases.

5.2.5 Traversed Path Variation

When first approaching an area to be mapped, one must decide how to traverse the area most

efficiently in light of one’s objectives, i.e., whether one wishes to obtain the most accurate map

possible, regardless of the time required to do so, or whether one wishes only to obtain a general

idea of how the seafloor is in that particular area.
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In this subsection, we simulate and analyze the results of traversing the defined area in differ-

ent ways and compare them with the default mode estabilished - traversing the path orthogonal to

the default, the default followed by the orthogonal one, and we also analyze a hypothetical case

seen in 4.1.1 that simulates a bathymetric data collection done randomly over time by several ves-

sels.

Next, we have the different paths to be simulated and evaluated.
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(a) Default path

(b) Orthogonal path

(c) Composed path

(d) Random path

Figure 5.7: Different paths simulated
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(a) Map generated from traversing the path in 5.7b

(b) Map generated from traversing the path in 5.7c

(c) Map generated from traversing the path in 5.7d

Figure 5.8: Generated maps from traversing the orthogonal, composed and random paths
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Table 5.6: Values for the performance indicators under variation of the path traversed

Performance Indicators

Path
Tra-

versed

OR (%) CR (%) µ MAE MSE σ2 Time

(s)

Samples

Orthogonal 98.4 98.6 18.63 1.90 13.65 62.93 0.3572 1537

Default 98.0 98.3 18.70 3.39 20.05 61.88 0.3657 1537

Composed 98.6 98.6 37.34 1.79 12.64 241.01 0.6286 3074

Random 89.8 91.1 14.61 1.99 8.10 136.64 0.4012 1400

From the results presented in 5.6, it can be seen that traversing along the slope presents better

results for the indicators, when compared to traversing perpendicular to the slope’s orientation.

The better results are also linked to the fact that in the orthogonal path the vessel travels closer the

the area’s limits in the shallower areas.

It is visible in 5.8a that in the lower part of the map, in the deepest part of the seabed, there are

still unmapped areas, while in 5.8b they are no longer present due to the more efficient coverage

of the area.

Thus, this type of path traversal can be used to increase the level of certainty in the complete cov-

erage of the area.

Regarding the random path, although it did not show high values for MAE and MSE (these

are only accounted for in the mapped area, so even if the CR was as low as 10% the MAE and

MSE values could still be very low), it displayed a less efficient way of covering the seafloor, with

lower OR and CR values.

If a qualitative rather than just quantitative evaluation is done to the generated map, it can also be

seen that some big areas were not covered which translates to the big unmapped areas observable

in 5.8c.

It also presents a high σ2 value, which can be explained through the following graph of accumu-

lated visits to cells:
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Figure 5.9: Plot of the accumulated visits to cells for the random path generated map

As can be seen in 5.9, there are areas that have a very high number of visits to a single cell,

and others that present very low values, which translates in a high σ2 value.

5.2.6 Bottom Model Variation

In this subsection, we consider the results of various simulations in which the bottom model is

varied.
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(a) Flat Bottom Model (z = 200)

(b) Steeper Ramp Bottom Model (2x+ z+100 = 0)

(c) Composed Bottom Model (2x+ z+ 100 = 0 and 2y+ z+ 100 = 0 and
z = 200)

Figure 5.10: Different bottom models simulated
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(a) Map generated from 5.10a

(b) Map generated from 5.10b

(c) Map generated from 5.10c

Figure 5.11: Maps generated from different bottom models
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Table 5.7: Values for the performance indicators under variation of the bottom model

Performance Indicators

Bottom
Model

OR (%) CR (%) µ MAE MSE σ2 Time

(s)

Samples

Flat

Bottom

99.9 99.9 34.9 0.014 0.0008 85.99 0.5089 1537

Ramp 98.0 98.3 18.70 3.39 20.05 61.88 0.3657 1537

Steeper

Ramp

99.0 99.1 30.85 7.65 115.68 256.24 0.5181 1537

Composed 98.3 98.4 20.79 2.75 16.69 113.09 0.6354 1537

First, if we compare the default results with the results of a plane bottom model, it is possible

to see that the latter has much better results in terms of error values, MAE and MSE, since the

developed algorithm is neutral in terms of the estimation of the seafloor, which means that a plane

bottom gives better estimation results.

It is also possible to observe a higher coverage and overlap rate, since the model of the level

ground is at a depth of 200 meters at all times, while the ramp starts at 100 meters (which leads to

a smaller area of the footprint, as previously discussed).

This also leads to a higher value of variance, combined with the fact that the vessel never passes

too close to the map boundaries and so the central area has a higher accumulated value of visits,

as can be seen in the following graph of cell visit accumulation:

Figure 5.12: Plot of the accumulated visits to cells for the flat bottom

In contrast to the flat bottom, but for the same reasons explained earlier, if the ramp is steeper,
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it is possible to verify that the error values, MAE and MSE, increase as the slope of the plane

increases.

It is also possible to verify that the values of µ and σ2 increase as the depth range varies from

[100, 200] to [100, 300], so that the area covered varies with each measurement, resulting in a

marked value of visits to cells in the deepest part of the map, but also higher values of CR and OR.

The following graphs explain the difference in σ2 of both scenarios:

(a) Accumulated visits to cells (Ramp)

(b) Accumulated visits to cells (Steeper ramp)

Figure 5.13: Plot of the accumulated visits for different slope values

Although the values of µ for the composed bottom model are close to those of the default

ramp, we can see from the accumulative plot that the concentration is higher in one particular area

than in others, which is why the σ2 value is so much higher.
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Figure 5.14: Plot of the accumulated visits to cells for the composed bottom model

The low error values, MAE and MSE, obtained for the composed bottom model are indicative

of the correct functioning of the implemented algorithm, despite a higher complexity of the bottom

model.

5.2.7 Error in position

Next, the results are evaluated for simulations where an error is added to the vessel positioning to

test scenarios where the received position is not 100% correct.

To do this, the default model, i.e., without error, is compared to two simulations where a ran-

dom error in positioning of +/- 2 and also of +/- 4 meters occurs for the north and east coordinates

for each measurement.
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(a) Generated map with +/−2m error in positioning

(b) Generated map with +/−4m error in positioning

Figure 5.15: Generated maps resulting from adding error to the vessel’s position

Table 5.8: Values for the performance indicators under variation of the error in position

Performance Indicators

Error
(m)

OR (%) CR (%) µ MAE MSE σ2 Time

(s)

Samples

0 98.0 98.3 18.70 3.39 20.05 61.88 0.3657 1537

+/−2 98.0 98.3 18.71 2.80 15.81 62.62 0.3813 1537

+/−4 98.0 98.2 18.70 2.33 12.19 62.82 0.3837 1537

Although one might initially think that the error in positioning would lead to higher error val-

ues, this is not the case, as the implemented model is always conservative in that it aims to never

exceed the seafloor line.



5.2 Results 73

(a) Side view of the default model simulation

(b) Side view of the simulation with +/−2m error in
positioning

(c) Side view of the simulation with +/−4m error in
positioning

Figure 5.16: Side view of the simulations with respect to table 5.8

As can be observed in figures 5.16b and 5.16c, some parts of the generated map go beyond

the bottom model (ground truth) - this effect is more evident in 5.16c, thus, it is more evident for

higher error values.

So, this happens when a positioning error is added, and although it does not represent a loss in

the error comparing with the ground truth, it represents a loss in the security of the generated map.

In practice, this means that conservative estimates, when an error is applied, are compensated

by those that go beyond the seafloor line, resulting in a decrease in the error as the error in posi-

tioning value increases, albeit with little difference and in the cases simulated.
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The values of OR and CR seen in 5.8 tend to increase in this case with the addition of the po-

sition error, since the system is not able to cover every corner of the map with the default settings

set, but with the addition of the error some measurement points may drift off the path to approach

some unmapped areas.

5.3 Discussion

An in depth overview of the parameters values variation and their impacts in different performance

indicators was done in the results section, having come to meaningful conclusions.

In general, decent to good values of error and execution time were obtained, that proved the

robustness and feasibility of the algorithm implemented.

On a high level perspective, it is possible to say that, σ2 values increase with poor coverage of

the area or surfaces with higher incline levels.

Since a neutral slope (slope = 0) is assumed for the spread of the beam footprint, increasing

values for MAE and MSE result with increasing slope in the bottom model, in general. These also

increase with increasing values for granularity and beam width. The increase in µ values is also

associated with growing σ2 values if there is a significant depth difference in the designated area

in the bottom model.

These two values are not necessarily related directly co-related if there is considerable depth

but there is not much variation between the deeper and shallower areas - in this case µ will also

show increasing values for increasing depth as the footprints are larger compared to shallower

areas and consequently so is OR.

As for the number of samples, this value only changes with the path traversed - a shorter

distance between lanes means a higher number of samples, which ultimately translates into a

longer time to cover the intended area.

As we wanted more accurate results that showed little values of error, we opted for using

narrow SBES, but there are wider beams currently being used in bathymetry operations, compro-

mising in map accuracy though, but that would achieve results of full bottom coverage.

As for execution time, it is generally expected to increase for the following reasons: complex-

ity of the bottom model, which results in the algorithm having to process more information at each

measurement, larger depth values, which result in a larger beam footprint and thus a larger area to

be updated at each measurement, bigger aperture values of the beam width, and higher number of

samples.

It should be noted that the obtained runtime values are not very reliable, since the algorithm was

run in several simulations over a long period of time on a PC with the specifications already men-

tioned in 4.3.5.

Thus, it should be looked at as in a relative way of comparing different simulations rather than in

an absolute one.
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Conclusions and Future Work

6.1 Conclusions

In this work, an autonomous mapping system was designed for situations where the sonar used to

collect bathymetric information is of the SBES type, such that each measurement provides a range

value that is recorded into the system and processed in real time.

In order to test the developed concept, an algorithm was created in the Matlab tool that is divided

into two different components - a bathymetric survey simulator capable of creating and running

different customizable routes and collecting depth data that simulates the behavior of an SBES, and

a data processing and fusion system capable of generating an elevation map - which has proven to

be a powerful tool for analyzing, testing, and comparing various indicators and performance mea-

sures as a function of different seafloor types and parameters associated with bathymetric surveys.

The model was tested, compared with a ground truth varying those same parameters and pro-

vided satisfactory results that met the objectives initially established. The conclusions drawn from

the results are in line with the original expectations, having validated the viability of the algorithm

in real time, after testing different types of geometrically approximated backgrounds in an area of

100m2 and at depths not exceeding 500 meters, with processing time never exceeding the 1 second

mark.

The algorithm also proved capable of providing satisfactory results when simulating different

aperture angles, which proved useful not only for a particular sonar but for several in the SBES

range.

Moreover, the algorithm is extensible to the use of MBES, since it would imply modularization

and subsequent reproduction in multiple units of the logic applied to a single beam.

Finally, the system allows to perform simulations where the aim is either more accuracy-

oriented surveys or more execution-time-oriented simulations by combining different parameter

values.

For accuracy-oriented simulations, the granularity of the grid should be lower, the distance

between lanes should be shorter, the sonar beam should be narrower, and the path should ideally

75
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be of the composed type presented earlier. On the other hand, if the goal is essentially to favor

execution time over accuracy, the parameter should be varied in the opposite way.

To find a compromise between the two, a middle ground combination of parameters should be

analyzed, taking into account the context and specifications of the intended mapping.

Finally, it can be concluded that this work, in addition to the successful fusion of data obtained

by simulating bathymetric acquisition means, also proved to be a powerful tool in evaluating the

accuracy of the maps obtained and the efficiency of the processes used for this purpose.

6.2 Future work

The work and the algorithm developed fulfilled the original objectives established. However,

further work can be done on what was developed to more thoroughly test the robustness of the

system.

Conclusive results of the variation of the performance indicators were presented, as well as the

visible results of the simulations under variation of the individual parameters of the model.

Nevertheless, there are a variety of parameter combinations that can be tested to prove the

actual robustness of the system as well as its real-time capability. Although results have been

obtained that support the theory that it can be used in real-time, the system should be tested in a

real-world scenario to confirm this claim.

The system should be further tested with more complex seafloor models or, ideally, with real

data collected from actual bathymetric surveys.

Although the addition of the position error tested in 5.2.7 can mimic the effect of roll and pitch

values to some extent, future work should implement a function that can reproduce these values in

both coherent footprints and correct depth values.

Since the uncertainty of the vessel’s position tends to increase over time, this should be re-

flected in the measurements so that lower certainty values are assigned to the collected measure-

ments over time.

Future work also includes running the algorithm on a specialized high-performance computer,

as the computer used for this purpose was not optimally suited for the task at hand.

Finally, the system should be able to receive and interpret data from different sonar types to

make it independent of sonar type.

This last point would require a restructuring of the overall architecture of the algorithm and there-

fore would require a significant amount of work beyond the system developed.
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