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Abstract

Convolutional Neural Networks, better known as CNNs, are a class of feed-forward artificial
neural networks that are mostly used for image classification. However, these networks have
other application areas, such as object detection, biometric authentication, machine translation,
autonomous cars, among other applications. In addition, this type of networks can also be used
in time series.

With an increasingly constant use in the real world it is imperative to ensure that CNNs are
optimized, ensuring prediction times as low as possible and their accuracy as high as possible, to
thus provide a better experience and results for those who use them. With this increasing use,
several studies have been carried out in recent years to make the training of Machine Learning
models faster, however, little research has been done on reducing latency times.

The Onion Router (TOR) software, that offers its users anonymity when surfing the Internet,
which has caused some users to take advantage of this anonymity to engage in illegal activities.
The processing of each user’s traffic on TOR is done using CNNs and if these are sufficiently
optimized it is possible to know which user is responsible for committing illegal activities using
TOR. This example is just one of several that exist in today’s world that reveal the importance
of studying and optimizing CNNs for the best functioning of the various applications that depend
on them.

This dissertation describes a series of several tests performed to understand which factors
positively and negatively influence the execution time of a CNN, without ever forgetting the
efficiency values. Furthermore, a final table was also built to reveal which of these factors are
the best for network optimization and which meet the purpose of this dissertation.
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Resumo

As Redes Neuronais Convolucionais, mais conhecidas como CNNs, são uma classe de redes
neuronais artificiais do tipo feed-forward que são usadas na maior parte das vezes para classificação
de imagens. Contudo, estas redes têm outro tipo de áreas de aplicação, tais como deteção de
objetos, autenticação biométrica, tradução automática, automóveis autónomos, entre outras
aplicações. Este tipo de redes pode também ainda ser usado em séries temporais.

Com uma utilização no mundo real cada vez mais constante é imperativo garantir que as
CNNs são otimizadas, garantindo tempos de execução tão baixos quanto possíveis e a eficácia
das mesmas o alta possível, para assim proporcionar uma melhor experiência e resultados a
quem usufrui delas. Com esta crescente utilização, vários estudos foram realizados nos últimos
anos de modo a tornar o treino de modelos de Machine Learning mais rápido, no entanto, pouca
investigação foi feita no que toca à redução dos tempos de latência.

O software The Onion Router (TOR), que oferece anonimidade aos seus utilizadores na
navegação da internet, o que fez com que alguns utilizadores se aproveitassem desta anonimidade
para a prática de atividades ilegais. O processamento do tráfego de cada utilizador no TOR é
feito com recurso a CNNs, e se estas estiverem suficientemente otimizadas é possível saber que
utilizador é responsável pela prática de atividades ilegais com recurso ao TOR. Este exemplo,
é apenas um dos vários que existem no mundo atual que revelam a importância de estudar e
otimizar CNNs para o melhor funcionamento das várias aplicações que dependem delas.

Esta dissertação descreve uma série de diversos testes efetuados para perceber que fatores
influenciam positivamente e negativamente o tempo de execução de uma CNN, sem nunca
esquecer os valores de eficácia. Para além disso, foi também construída uma tabela final que
revela quais destes fatores são os melhores para a otimização da rede e que vão ao encontro do
propósito desta dissertação.
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Chapter 1

Introduction

1.1 Motivation

Model accuracy is the main topic of Machine Learning (ML) research, however, many systems in
the world must adhere to rigid latency specifications at the time of prediction. While much work
has gone into making model training faster using more dependable and user-friendly software
libraries that can fully utilize the available computational resources, comparatively little research
has gone into prediction latency. Convolutional Neural Network (CNN) and Recurrent Neural
Networks (RNNs) are two examples of complex deep neural architectures that have delays at
prediction time that are incompatible with many high throughput low latency applications.

In this context, we present The Onion Router (TOR) which is a free software that uses the
onion routing mechanism to offer anonymity. With the use of several encryption layers, users’
transmitted and received data can be hidden by using an internet traffic redirection technique
called onion routing that sends their traffic to specific servers. These techniques are used to
anonymize the identity and data of the sender and the recipient. In addition, TOR was primarily
developed to assist internet users with issues related to their right to privacy and freedom of
speech, such as network surveillance that jeopardizes their personal identity and privacy and
unlawful traffic tapping [40].

However, the fact that TOR provides this sort of privacy also has its downside, as it allows
users to access illicit content and markets, such as child pornography or firearms dealing. With
the use of TOR, these users can easily bypass governmental or ISP restrictions. Furthermore,
TOR can also be used for other negative purposes besides the previous examples mentioned,
such as spreading malware and hacking illegally while remaining anonymous [40].

With more than 2 million daily users [2], this means that TOR is already very well known
and used by internet users which makes this problem quite worrisome. Motivated by the
problem described, we are inserted in a project with a team that seeks to develop tools to
deanonimize TOR Onion Services (OS) sessions. Such tools can potentially expose TOR’s
vulnerabilities and help acquire knowledge that can contribute to benefit licit uses such as privacy,
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2 Chapter 1. Introduction

censorship circumvention and mitigate potential criminal activities such as human traffic and
child pornography.

The main method employed in a wide variety of attacks researched against TOR is flow
correlation. This means that an attacker must see a portion of flows entering and leaving the
TOR network in order to perform flow correlation. If the attacker is successful in intercepting
both the ingress and egress portions of a given TOR connection he can then deanonymize that
connection. Therefore, by attempting to intercept a larger percentage of TOR’s entry and egress
flows, an adversary can raise his chances of deanonymizing TOR connections [36].

Now, since Convolutional Neural Networks (CNNs) are used to learn a correlation function for
TOR’s noisy network, as network flow features can be modeled as time series, and the CNNs are
known to have good performance on time series. If these networks are as optimized as possible,
it will undoubtedly help in solving the problem.

With the whole problem and motivation explained, this dissertation project will put a strong
emphasis on CNNs while concentrating on ML model inference optimization and through this,
numerous applications can benefit from CNNs ability to reduce latency at inference time. Within
a diverse team working on illicit hidden service discovery on TOR networks, this work will be
especially focused on models for high throughput network traffic analysis.

1.2 Main goals

In this dissertation, we defined the following goals to be accomplished by the end of the project:

• To study the state of the art on latency optimisation of ML models;

• To define a methodology to develop and evaluate ML models under strict latency constraints;

• To study complexity-accuracy trade-offs of different ML methods;

• To apply the methodology to multiple use cases, with special emphasis on network traffic
analysis with CNN;

• To optimize DeepCorr, a flow correlation system;

• To evaluate multiple approaches and report the results.

1.3 Contributions

The execution of this dissertation has achieved the following contributions:

• A methodology to develop and evaluate ML methods within strong latency constraints;
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• Study of the various hyperparameters that make up a CNN, to understand which of these
positively influence the prediction time of the network;

• Study of various architectures of a CNN, in order to find architectures that are beneficial
in terms of CNN optimization;

• Software contributions to the DAnon project.

1.4 Dissertation layout

This dissertation is divided into six chapters which are going to be briefly explained. In Chapter 2
are presented the fundamental concepts necessary to understand the work being presented,
namely ML, Deep Learning (DL), a detailed description of CNN and the layers that make up
this network and also time series forecasting.

In Chapter 3 a comprehensive state-of-the-art and literature review is presented to sustain
the decisions made. The studies already carried out in the field of CNN optimization as well as a
detailed description of them is what can be found in this chapter.

Chapter 4 presents the proposed methodology used in this dissertation, as well as an
explanation of the dataset used for the experiments that were performed. In this chapter
there is also a small test using this methodology that proves its reliability.

In chapter 5, are all the tests and experiments performed using the proposed methodology
described in the previous chapter. A careful analysis of these results and explanations for the
collected results are also given.

Finally, the conclusions obtained are reported in Chapter 6, along with possible lines of
development that may be applied in future work.





Chapter 2

Fundamental concepts

In this chapter, we will present fundamental concepts for a clearer understanding of this whole
dissertation. A brief description of Machine Learning (ML), Deep Learning (DL), Convolutional
Neural Network (CNN) and other important concepts is what you will find here.

2.1 Machine Learning

ML is a branch of Artificial Intelligence (AI) which was born from the premise that computers
could look at some specific data and generate rules in order to perform a task, all this by itself[12].

In classical programming, the user obtains answers by inputting data and some rules to be
processed by this data. ML also takes as basis data, rules and answers, however, these are used
in different orders. It is only given the machine data and the answers to the problem that one
wants to solve and the system will automatically define rules that will autonomously solve the
problem based on a statistical structure found on the data and answers given. ML is typically
used when tasks are too complex to program or also when tasks are beyond human capabilities.

Figure 2.1: Machine Learning Vs Traditional Programming

This may be difficult to understand, but, take this as an example: You want to convert
degree Celsius to Fahrenheit, using ML. So you will give the system data (numbers representing
degree Celsius) and answers (numbers that correspond to the conversion of the degree Celsius to
Fahrenheit). Using these two elements the system will then create a formula (rules), thus the

5



6 Chapter 2. Fundamental concepts

next time you input a number, corresponding to a degree Celsius, it will give you the analogous
Fahrenheit number.

Nowadays, ML has become very popular and it is widely used in various fields that demand
information extraction from large datasets. There are numerous examples of that such as Tesla’s
car that use ML to detect obstacles, traffic lights and others cars in order to allow the car to
drive itself. There is also Amazon Alexa which was trained to recognize voice commands and
execute orders and tasks, and many other examples of the application of ML in real life.

Learning, however, is a extremely vast subject. Therefore, ML has branched into multiple
sub-fields that deal with various sorts of learning problems. So, four parameters were defined in
order to categorize learning paradigms.

2.1.1 Supervised learning

Similarly to the previous example, in supervised learning, an input data is provided to known
targets, and from here, the algorithm will then adjust the parameters, iteration after iteration
with the purpose of making the value of the loss function as close to zero as possible [12][6]. The
open parameters of the ML model are then calibrated using the pairs of input and output data
from the training set. Following a model’s successful training, it can be used to forecast the
target variable y using fresh or previously unobserved data points of the input attributes x [24].
To help better understand this concept, in figure 2.2 is illustrated an example of how supervised
learning works.

To shed some light on what the loss function is, it’s a technique for assessing how well a
particular algorithm models the supplied data. This function would produce an extremely big
number if forecasts differ too far from the actual outcomes. The loss function gradually gains
the ability to lower prediction error with the use of some optimization function [38].

In supervised learning, it is important to avoid overfitting, which takes effect when a model
learns the detail and noise in the training data exhaustively that impacts the performance of
the model on new data, in an adversely way. Moreover, it’s possible to split supervised learning
algorithms into classification and regression algorithms. On one hand, regression it is based on
predicting continuous variables, in other words an uncountable set of values, like age or salary.
On the other hand, classification algorithms are used to predict or classify the discrete values,
that is to say that information can only take certain values such as Male or Female, True or False,
and other examples. Although classification and regression make up the majority of supervised
learning, there are also more unusual variations, such as sequence generation, object detection,
image segmentantion, and others.
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Figure 2.2: Brief example of how Supervised learning works

2.1.2 Unsupervised learning

Another field of ML is Unsupervised learning, and unlike supervised learning, here there is the
input of data without the providing of targets, this approach is used to the better understanding
and comprehension of a dataset before seeking to solve a supervised learning problem. As a result,
training data only includes variables x with the intention of discovering structural information of
relevance, such as collections of pieces with similar characteristics (known as clustering) or data
representations that are projected from a high-dimensional space into a lower one (known as
dimensionality reduction) [24].

Given the previous information, it is important to mention that the purpose of clustering
is to find some structure in the dataset, for example, looking at the image below, it is easy to
identify 3 groups. In clustering, similarity is a crucial concept, with this being said, points that
are on the same group are similar, consequently they share some properties. A good example of
the application of unsupervised learning, is for example in electronic markets where clustering
techniques are applied to group customers or markets into segments for the purpose of a more
target-group specific communication [24].
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Figure 2.3: Example of how clustering works (https://www.geeksforgeeks.org/clustering-in-
machine-learning/, accessed on 7 April 2022).

2.1.3 Self-supervised learning

Self-supervised learning or semi-supervised learning, is very similar to Supervised learning,
however it learns mainly from unlabeled data as the number of unlabeled examples is far superior
to the number of labeled examples. The unlabeled examples are produced from the input data
using normally a heuristic algorithm and the goal is the same as the last two methods described,
which is to help the learning algorithm to find a better model [10] [12].

The ability of self-supervised learning to make use of the massive volumes of unlabeled data
that become accessible in the big data era is essential to its success. Now is the moment for
deep learning algorithms to stop relying on human supervision and resume self-supervision of the
data. Inherently occurring co-occurrence correlations in the data are used as the self-supervision
in self-supervised learning, which has the potential to be flexible. For instance, a well-trained
language model would predict "eating" for the blank in the incomplete sentence "I like ____
apples" because it regularly co-occurs with the context in the corpora [32].

Despite demonstrating encouraging results when compared to fully-supervised procedures,
purely self-supervised techniques provide much worse visual representations. As a result, they
have a limited range of practical applications and self-supervision is still insufficient [49].

2.1.4 Reinforcement learning

The environment’s feedback is another foundation for reinforcement learning. The information
is more qualitative in this instance though and does not aid the agent in calculating an exact
measurement of its inaccuracy. This feedback which is frequently referred to as a reward in
reinforcement learning (sometimes a negative one is referred to as a penalty), is helpful in
determining if a certain action carried out in a condition is positive or not. To constantly
make the best choice in terms of the highest immediate and cumulative reward the agent must
understand the policy of the most useful sequence of activities. In other words, even if a course

https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/


2.2. Overfitting and underfitting 9

of action is flawed, it must nevertheless provide the best overall reward in the context of global
policy. This approach is predicated on the notion that a rational agent always seeks out goals
that will improve his or her income. Reinforcement learning is especially effective when the
environment is not totally deterministic, when it is frequently very dynamic and when a precise
error measure is unattainable [6]. In figure 2.4, is a schematic representation of how reinforcement
learning works as well as the interaction between the agent and the environment.

Although, Reinforcement learning is currently mostly a research area and has not yet had
significant practical successes beyond games, it is a matter of time before it is applicable in various
real world applications such as self-driving cars, robotics, resource management, education, and
so on [12].

Figure 2.4: Illustrative picture of how reiforcement learning works where an agent interacts
with the environment, trying to take smart actions to maximize cumulative rewards (https:
//lilianweng.github.io/posts/2018-02-19-rl-overview/ , accessed on 12 September 2022).

2.2 Overfitting and underfitting

In every ML situation overfitting occurs and for ML to be mastered, dealing with overfitting must
be learned [12]. When a model has too much capacity and can no longer properly generalize given
the initial dynamics provided by the training set, this is called overfitting. When an unknown
input is given the related prediction error can be very high, yet it can virtually flawlessly link all
known samples to the appropriate output values [6].

The conflict between generalization and optimization is the core problem in ML. Generaliz-
ation, as opposed to optimization, refers to how well a trained model performs on data it has
never seen before. Optimization refers to the process of changing a model to attain the greatest
performance possible on the training data. Naturally, the objective of the game is to achieve
good generalization but there’s control on generalization and all that is to do modify the model
using the training data. Generalization and optimization are associated from the beginning of
training: the smaller the loss on training data, the lower the loss on test data. The model is
considered to be underfit (which occurs when the model is unable to adequately represent the
dynamics revealed by the same training set [6]) while this is taking place because there is still
work to be done and the network hasn’t fully modeled all pertinent patterns in the training set.

https://lilianweng.github.io/posts/2018-02-19-rl-overview/
https://lilianweng.github.io/posts/2018-02-19-rl-overview/
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However, generalization stops improving after a certain number of iterations on the training data
and validation measures stagnate before declining, indicating that the model is beginning to
overfit [12].

As mentioned, overfitting is a very common problem in ML, fortunately, there are already
several techniques that have been studied to avoid this type of problem.

2.3 Neural networks

A Neural network is a directed structure that connects an input layer with an output layer. It
is named this way because it is a reference to neurobiology and also an attempt to simulate
the decision-making process in the human brain consisting of a biological neural network made
of neutrons. Furthermore, Neural networks can learn and model relationships between inputs
and outputs that are nonlinear and complex making problems that are difficult easy to solve
using fairly simple computational operations, such as additions, fundamental logic elements and
multiplication [17].

This type of networks has three different types of layers which are:

• Input Layer;

• Hidden Layer, that could be one or more layers;

• Output Layer.

Now that we have knowledge of the three layers that make up a neural network, it will be
easier to understand how these networks operate.

Starting from the input layer, each node is connected to the other nodes and has a weigh and
threshold linked with it. Every node also produces an output, and if that output exceeds an
established threshold value the node is activated and data is sent to the next tier of the network.
Otherwise, no data is sent on to the network’s next tier.
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Figure 2.5: Diagram of a Neural Network

In terms of real life application, Neural networks are very useful tools in AI and computer
science as they allow to classify and cluster data at high speeds and it also play an important
part in speech and image recognition [14].

The training process of a neural network is built around the following components:

• The input data and and the respective associated targets;

• Several layers;

• The Loss function that gives the prediction error of the network, which then will give
feedback to the optimizer;

• The optimizer receives feedback from the loss function and then update the network’s
weight in order to improve the network.

2.4 Deep Learning

The Machine Learning’s offspring, Deep Learning, is a larger family of methods and algorithms
that aim for general intelligence while achieving specialized intelligence. Deep Learning typically
suggests that the approach is being used to handle issues that require more generalization, such
as computer vision and speech recognition, or that the approach is trying to solve a problem in
a more generic fashion, like spatial reasoning. People are good at finding solutions to general
problems, like us humans can, for instance, match visual patterns in virtually any situation. Along
with supervised learning, unsupervised learning, and reinforcement learning, Deep Learning also
addresses these issues. Typically, Deep Learning systems use numerous layers of Artificial Neural
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Networks (ANNs) and this number of layers is what defines the so-called depth of the model. The
layers work together to solve difficult problems in order to achieve a broader purpose. Each layer
handles specific challenges by utilizing distinct levels of intelligent components. For instance,
recognizing any object in an image is a general issue but it can be divided into comprehending
color, recognizing object forms, and recognizing relationships between objects to accomplish a
task [20].

In figure 2.6, the difference between ML and DL is illustrated, however, it is worth to enunciate
in written form some of the differences that separated DL (a subsection of ML) from ML:

• For ML to produce results more constant human engagement is needed. Although more
difficult to set up, DL requires less intervention once it is running;

• DL systems require extra setup time but produce results immediately (although the quality
is likely to improve over time as more data becomes available). ML systems can be swiftly
set up and run but their effectiveness may be constrained;

• ML typically uses conventional techniques like linear regression and calls for organized
data. Neural networks are used in DL, which is designed to handle enormous amounts of
unstructured data;

• While DL systems need far more powerful hardware and resources, ML applications are
frequently less sophisticated and can run on standard computers [34].

Figure 2.6: The difference between Deep Learning and Machine Learning (https://www.turing.
com/kb/ultimate-battle-between-deep-learning-and-machine-learning, accessed on 16 August
2022).

https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning
https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning
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2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) appear as one of the types of DL networks which are
used for several areas such as image identification and classification, face detection, self-driving or
autonomous cars, document classification and many other useful areas [33]. CNNs key advantage
over its forerunners is that it recognises the pertinent elements automatically and independently
of human intervention [4].

Equivalent representations, sparse interactions, and parameter sharing were the three main
advantages that Goodfellow et al. [16] cited for the CNN. In contrast to typical fully connected
networks, the CNN uses shared weights and local connections to fully exploit 2D input-data
structures, such as visual signals. This technique uses a remarkably minimal amount of parameters
which speeds up the network while also making training easier.

There are different architectures of CNNs, however the basic components are quite similar
which are three types of layers. These are convolutional layers, pooling layers and dense layers
(or Fully Connected (FC) layers) [37]. In the figure 2.7 it is possible to see an illustrative scheme
of the standard architecture of a CNN. On a side note, it should be noted that the big difference
between a neural network and a CNN is that whereas in a neural network each neuron in the
network is connected to every other neurons, in a CNN only the last layer is fully connected.

Using the CNN shown in the figure 2.7 we can divide it into 3 areas:

1. The first and the main building piece of a CNN is the convolutional layer and it is
responsible for the majority of the network’s computational burden. This layer does a dot
product between two matrices, one of which is a set of learnable parameters known as a
kernel and the other is the limited section of the receptive field [35].

2. The pooling layer will just downsample the input along its spatial dimension, bringing
the number of parameters in that activation even lower [37].

3. The Dense layers will then carry out the ANNs normal functions and try to create class
scores from the activations for categorization.

Figure 2.7: Illustrative schema of the functioning of a CNN
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2.5.1 Convolutional Layer

How CNNs function depends critically on the convolutional layer that performs feature extraction,
which combines linear and nonlinear processes, or more specifically activation functions and
convolutional operations [47].

Convolution is a form of linear operation used for feature extraction in which a tiny array of
numbers called a kernel is applied over the input, which is an array of numbers called a tensor.
A feature map, also known as an output value in the corresponding place of the output tensor,
is obtained by computing an element-wise product between each element of the kernel and the
input tensor at each point of the tensor and summing it [47]. An illustrative image of this process
can be seen in the figure 2.8.

This process is repeated while applying various kernels to create an infinite number of feature
maps that represent various properties of the input tensors; various kernels can thus be thought
of as various feature extractors. It should also be noted that two hyperparameters that define
the convolution operation are size and number of kernels. Another important hyperparameter
is the stride which also describes the convolution operation and is the distance between two
subsequent kernel points [47].

There is also the zero-padding hyperparameter which is a quick and efficient way to give more
control over the dimensionality of the output volumes by padding the input’s boundary [37].

Figure 2.8: An example of convolutional operation with a kernel size of 3x3, no padding and
stride of 1 [47].

2.5.2 Pooling Layer

A pooling layer offers a standard downsampling method that lowers the feature maps’ in-plane
dimensions to introduce translation invariance to slight shifts and distortions and limit the
number of ensuing learnable parameters. It is important to notice that none of the pooling
layers have a learnable parameter, whereas filter size, stride, and padding are hyperparameters
in pooling operations, much like convolution operations [47].
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Max pooling is the most widely used type of pooling operation and it takes patches from the
input feature maps, outputs the largest value in each patch and discards all other values as can
be observed in the figure 2.9.

It is also crucial to realize that CNN architectures may also include general-pooling in addition
to max-pooling. L1/L2-normalization, average pooling, and other common operations can all be
carried out by the pooling neurons that make up general pooling layers [37].

Figure 2.9: An example of of how max pooling works (https://computersciencewiki.org/index.
php/File:MaxpoolSample2.png accessed on 19 September 2022).

2.5.3 Dense Layer

Following the pooling layer, the final convolution or pooling layer’s output feature maps are
often flattened, which is converting the data into a one-dimensional array for inputting it to
the following layer [26]. After flatenned they are connected to one or more dense layers, also
known as FC layers, in which each input is connected to each output by a learnable weight. A
subset of fully connected layers then maps the features provided by the convolution layers and
the downsampling layers to the network’s final outputs, such as the probabilities for each class
in classification tasks. The number of output nodes in the final fully connected layer normally
equals the number of classes. A nonlinear function, such as ReLU (or any other), is followed by
each completely linked layer.

2.6 Time series forecasting

The practice of studying time series data using statistics and modeling to produce forecasts and
inform strategic decision-making is known as time series forecasting. It is not always an accurate
prediction, but forecasting can give us a real prediction on what events will occur most and less
likely compared to other possible outcomes [1].

https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
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Figure 2.10: One-dimensional convolutional neural network for multi-step ahead time series
prediction [11]

Although CNNs are known to be applied mostly to computer vision problems this type of
network shows excellent results when it comes to time series forecasting. Because CNN offers
dilated convolutions in which filters may be used to compute cell dilations, it is useful for
forecasting time series data. The neural network can better comprehend the correlations between
the various observations in the time series thanks to the magnitude of the gap between each
cell [46].

Its robustness but also low training times compared to other more complex architectures also
make it a good reason to use this architecture for time series problems [22].

2.7 Summary

This chapter has introduced several concepts and topics such as ML, Neural Networks, Deep
Learning and CNN as well as a detailed description of what happens at each layer of a CNN.
The information obtained in this chapter will be extremely important for the understanding of
the rest of the dissertation.

In chapter 3 we will be showing some research already developed on the optimization of CNN
and use that knowledge throughout the rest of the dissertation.



Chapter 3

State of the Art

Convolutional Neural Network (CNN) have been shown to have an impact in several areas
through good implementation. A factor that may be determinant for these networks to be better
and achieve better results is the response times they present.

In this case, is intended to use Convolutional Neural Networks (CNNs) in the context of time
series, as these present quite positive results in the indicated context. With the optimisation of
this type of network, it is possible to contribute to the resolution of some current problems, such
as, for example, the greater ease in identifying users of private networks (for example The Onion
Router (TOR)) that may be using the same private networks to commit illegal acts [36].

This chapter contains literature review related to the optimization of CNNs through several
studied methods.

3.1 Width Vs Depth

An approach aimed at optimising CNNs would be the adjusting of width and depth values of the
network. Questions on whether network models should be wider or deeper have been going on
and on for years [29] and opinions vary as to which of these two attributes is more relevant for
the model to show the best results.

It is worth mentioning that the depth of the net corresponds to the number of layers in the
net while the width refers to the number of neurons in a given layer [7].

In 2007, Bengio and Le Cun [5] proved that models with few depth and a larger width, the
so-called shallow models, demand exponentially more components than models with a higher
depth.

In the same year, Larochelle et al. [29] performed multiple experiences using different models
with deep architectures on the MNIST dataset, which is a large database of handwritten digits
that is commonly used for training various image processing systems [3], and came to the

17



18 Chapter 3. State of the Art

conclusion the deep architectures models have shown great results. In the vast majority of cases
these type of architectures outperformed shallow architectures like SVMs, NNET and others.
The only example where shallow architectures were superior, was when used on images from the
MNIST to which rotation motion was applied. Larochelle et al. justify this admirable result due
to the fact that were a large number of samples in the training set and also because, there was
only one factor applied.

A more recent study done by Zagoruyko and Komodakis [48] contradicts what the previous
article mentioned attaching more importance to width than to depth. In a study where multiple
image datasets were used, they tried to adjust the depth and width of residual networks also
taking into account the number of parameters and the results were pretty interesting:

• The first conclusion to draw is that unless the number of parameters is unreasonably high
it does not affect the effectiveness of the model;

• Secondly, it was proved that the widening factor is more relevant since increasing its value
almost always showed improvements in residual networks with different depths. The only
example where this was not the case was when the number of parameters was too high;

• Finally, when the number of parameters becomes too high, stronger regularization is
required.

In terms of prediction times this study also concludes that wide networks also have better
prediction times, even giving the example of two different networks. Comparing a thin and a
wide network, for both to achieve the same efficiency, the thin had an prediction time 8 times
slower than the wide, thus revealing the great advantage of the wide networks [48].

3.2 Dropout

Adding a dropout layer to a CNN might be another way of ensuring that they have better results.
Dropout is basically an approach to reduce overfitting and an extremely efficient way of operating
model averaging with neural networks [18].

Even though there have been no studies done on the prediction times when adding a dropout
layer to a CNN, its accuracy has been proven with a decrease in test error in the majority of the
cases this layer is applied but especially when the optimal value of depth and width is found and
then this layer is applied [48].

3.3 Different architecture designs

Lebedev and Lempitsky [31] have conducted a study on the different approaches already in
place to speed up CNNs. Therefore, there are several architectures that have been studied and
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developed, but I will only mention a few.

AlexNet is the name of one of the best-known architectures in the world, for the extraordinary
results it proved to have at the time it was developed. Moreover, the SqueezeNet architecture [21]
has shown to have the same performance as AlexNet with 50 times less parameters using three
essential rules:

• Use 1x1 filters whenever possible, this will allow the model to be small and fast as smaller
filters need fewer operations and have fewer parameters;

• Reduce the number of input channels when 3x3 filtering is required, just like in the previous
rule, this allows the model to be small and fast;

• Late in the network, downsample to allow most layers to function with large high-resolution
maps. This will boost the acurracy of the model.

Putting these three rules together, this model has a shorter inference time than AlexNet.

Another architecture is MobileNet [19] which is based on changing the the network width
and input resolution, proving to be a simple method for managing trade-offs between speed and
quantity of parameters on the one hand and precision on the other.

In comparison to the previous architecture, with the same model size and one tenth of the
mult-add operations MobileNet can achieve greater accuracy. However, because depth-wise
convolution is not as effectively implemented on GPU as standard convolution, this advantage in
operation number is difficult to transfer into real inference speed-up on GPU.

The EffNet architecture [15] is a variation of MobileNet building block and is based on the
following principles:

• Use depthwhise separable convolutions, then takes it even farther by breaking a 3x3
convolution into two 1x3 and 3x1 kernel convolutions;

• Apply downsampling along one dimension is performed with strided convolution and along
other using 2x1 pooling;

• Reject convolutions with filters larger than 1x1.

Table 3.1 gives a short summary of the different CNN architectures, containing their main
characteristics.
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Architecture Design Main Principles

AlexNet

- 8 layers with learnable parameters;
- 5 convolutional layers with a combination of max-pooling layers;
- 3 fully connected layers;
- Activaction function used in all layers is ReLU;
- 2 Dropout layers;
- Activaction function used in the output layer is Softmax.

SqueezeNet

- Use 1x1 filters whenever possible;
- Reduce the number of input channels
when 3x3 filtering is required;
- Late in the network, downsample to allow most layers
to function with large high-resolution maps.

MobileNet
- Use depthwise separable convolutions;
- Use 1 by 1Point-wise convolution.

EffNet

- Use depthwhise separable convolutions;
- Apply downsampling along one dimension is performed;
with strided convolution and along other using 2x1 pooling;
- Reject convolutions with filters larger than 1x1.

Table 3.1: Summary table of the different architecture designs

3.4 Automatic architecture search

CNN brings the problem that the evaluation function is too expensive due to the fact that the
number of hyperparameters is too large. Given this problem, automatic architecture search
arises, which is basically a hyperparameter optimization.

The Neural Architecture Search (NAS) algorithm, that uses reinforcement learning, was the
first effective attempt at automatic architectural search. The NAS biggest problem is the fact
that even in tiny datasets it requires a significant amount of computational resources, making
this architecture impossible for datasets that are much too large.

Larger datasets can be tackled in two different ways: either by developing more efficient
search algorithms or by guaranteeing that results achieved on smaller datasets can be applied
to larger datasets. This method requires only the architecture of a single block to be predicted
rather than the entire network, resulting in a substantially smaller search area making NAS
faster [31].

It is possible to further speed up the NAS either anticipating the architecture’s eventual
performance based on the initial epochs in the training process or exchanging parameters between
multiple designs. Nevertheless, all different approaches that split evaluation and architecture
construction demand evaluating a high number of CNNs whose resource consumption can be
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reduced if both the architecture and the CNN training is done at a time [31].

3.5 Quantization

Quantization is a simple approach to compress and decrease the memory requirements of a neural
network while also speeding up computations [31].

Hinton et al. [18] pointed out that neural networks are not only resistant to noise but that
noise insertion can also improve training performance. Therefore, if the quantization process is
appropriately adjusted, noise-like distortions introduced by it may not be harmful. With this
being said, quantization is a potential strategy for speeding up neural networks if the hardware
enables it.

Compression generally goes hand-in-hand with speed enhancement and certain strategies
are applicable to both convolutional and fully connected layers, making the study conducted by
Jegou et al. [25] extremely important for speeding up CNNs where they present binarization and
scalar quantization. Simple scalar quantization and product quantization showed great results
and to mention also that binarization is a very auspicious approach due to its simplicity and
high compression rate.

Following the same line of thought, it is feasible to reduce the CNN capacity (number of
nodes and layers) using regularization, dropout or by reducing the number of filters which will
lead to compression and ultimately speed-up. However, there is a great dependence on the size
of CNN, because accelerating smaller CNNs is always easier than in larger ones [31].

Courbariaux et. al [13] suggests producing binarized weights numerous times as a test
time to generate an ensemble of models, however, assembly is incompatible with the speed-up
target, and keeping full-precision weights is incompatible with compression. Forward propagation
with binarized weights can be much faster, but once again, the results are only reasonable for
small datasets. An efficient attemp at binarizing largen CNNs is the XNOR-Net [39]. However,
comparing, for example, a full precision AlexNet and a XNOR-Nets AlexNet, the accuracy drops
dramatically from the first to the second, suggesting that binarization suggesting that although
binarization gives us significant gains in speed, accuracy is also significantly compromised which
in some cases may not be the most advisable.

To conclude, both weight quantization and binarization are efficient techniques for CNN
compression. Quantization of CNNs weights or activations clearly speeds up calculations, although
the amount of time saved varies on the low-level implementation. Most researchers do not disclose
such implementations, and when they do, it appears that existing floating point implementations
are quite highly tuned and the real speedups offered by quantization approaches are not nearly
as large as the operation-count based forecast predicts [31].
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3.6 Pruning

Pruning is an approach used to reduce the complexity of convolution operations, thus leading to
acceleration of CNNs.

Although there are many different ways of prunning most of them follow the same pipeline
that consists of:

1. The significance of neurons is determined using a criteria. The neurons that are not as
vital are pruned;

2. Fine-tune the network and the accuracy decrease is somewhat recovered.

In addition to what was explained above, it is also required to make 3 choices when it comes
to implementing the pipeline, which are:

• Choose the desired sparsity structure;

• Select the importance pruning norm;

• If the select approaches uses one, determine a sparsity-inducing regularizer [31].

3.7 Teacher-student approaches

The concept behind the teacher-student technique is that instead of training on labeled data,
a CNN model might be trained on the outputs of another model (the so-called teacher). This
method allows knowledge to be transferred from one model to another and unlabeled or synthetic
data to be incorporated into the training process.

Another natural application of the teacher-student technique would be to transfer information
from big, slow, and accurate models to small, rapid models.

Based on these principles, a paper published by BuciluÂ et al. [9] suggests that an ensemble
of models be compressed into a single neural network. When compared to a single model, an
ensemble is supposed to be more resistant to overfitting, so, the first step is to train an ensemble
of classification models on a certain annotated dataset. This ensemble is used to label a huge
quantity of synthetic data created by various basic random sampling techniques and then a single
model is taught on the synthetic dataset as a consequence.

Although the authors of this paper point out that this approach can alleviate the overfitting
problem for neural networks, this approach is limited if the datasets are too large or the models
are too large to build ensembles.
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3.8 Fine-Tuned CP-Decomposition

Fine-Tuned CP-Decomposition is a tensor decomposition scheme which aims to accelerate
convolutions through, as the name implies, Fine-Tuning and CP-Decomposition. It should be
noted that this approach is more complex than the previous ones mentioned.

On one hand, Fine-Tuning is based on transfer learning which consists of using features used
to solve a previous problem and using them to solve a new similar problem. Fine-Tuning is an
optional step in the transfer learning process that achieves very positive results and does not
take long execution times [44] [27]. On the other hand, CP-Decomposition basically factorizes a
tensor into a linear combination of rank one tensors [28].

Having said this, Fine-Tuned CP-Decomposition method can be split into two stages. In the
first stage, CP-Decomposition is used to decompose the kernel of a select a selected convolutional
layer, it is also possible to do the CP-Decomposition with non-linear least squares. In the second
stage, fine-tuning is applied to the all network using backpropagation [30].

When it comes to results, Lebedev et al. [30] have tried to apply this method to already
constructed CNNs. They applied their method to the layers of the CNN described in (Jaderberg
et al. [23]) and the results were a success as they achieved a network 8.5 faster than the previous
one with just a drop of 1% in accuracy.

However, applying their method to the second convolutional layer of AlexNet, a way larger
network, the results were not that appealing since they were unable to find a good learning rate
due to the instability of the low-rank CP-decomposition.

It was therefore, concluded that this approach while excellent for smaller networks is not a
good approach for large networks.

3.9 Summary

In this chapter several studied techniques for CNN optimization have been presented, that will
serve as inspiration to approach the problem of this dissertation. Although several techniques
have been presented and studied in this chapter, we will only apply Width Vs Depth and Dropout
to the set of tests to be performed because we believe they are the most appropriate for the
problem and dataset in question.

In the next chapter, the methodology used for this dissertation will be presented and described,
as well as a short demonstration of the methodology.





Chapter 4

Proposed Methodology

This chapter contains a brief description of the methodology used throughout this dissertation to
reduce the latency times of a Convolutional Neural Network (CNN). In addition, it includes a
short test run as well as a description of the dataset to be used.

4.1 Dataset

As introduced in chapter 1, the goal will be to optimize CNNs which in this particular case
receive traffic data as input. Similar to the DeepCorr [36], the CNN built for this problem will
receive as input raw flow features and will use them to derive complex features. A bidirectional
network flow, i, is represented by the following array:

Fi = [T u
i ; Su

i ; T d
i ; Sd

i ]

where T represents the vector of Inter-Packet Delays (IPD) of the flow i, S is the vector
of i’th packet sizes, and u and d superscripts represent "upstream" and "downstream" sides of
bidirectional flow i.

In the instance where we want to correlate two flows i and j (which is what happens in
section 5.3), where for example i was intercepted by a malicious Tor guard relay and j was
intercepted by an accomplice exit relay. This pair of flows with the following two-dimensional
matrix consisting of 8 rows is represented as follows:

Fi,j = [T u
i ; T u

j ; T d
i ; T d

j ; Su
i ; Su

j ; Sd
i ; Sd

j ]

where the lines of the array are taken from the flow representations Fi and Fj .

In summary, the traffic is processed and transformed into a time series of 2 variables being
the size of the packets and the time interval between packets, the latter being what turns the
traffic into a time series and serves as input to the CNN.
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4.2 Methodology

The architecture of a CNN can be seen in the figure 4.1 and as it turns out, it is quite complex
since it consists of several layers and the input undergoes several transformations until it is
translated into an output.

Figure 4.1: Simple scheme of how a CNN works

Although in the figure 4.1 there is only one convolution and pooling layer, most networks
have 2 or more of both layers mentioned, making networks even more complex. When looking
at a CNN the main goal of its optimization is to get a good trade-off between prediction time
and accuracy, i.e., the shortest possible time and an efficiency as close to the value 1 as possible.
This becomes possible by changing some hyperparameters that make up the network or changing
the architecture of the network itself.

In order to define the methodology for this dissertation, a table (table 4.1) of the hyperpara-
meters that constitute a CNN was made and on the constructed table it is important to highlight
that a hyperparameter is a variable that must be pre-set, whereas a parameter is a variable that
is automatically optimized during training.

After having the information provided by table 4.1, the goal will be to make individual
tests of each hyperparameter by changing that same hyperparameter in an already designed
model. After training the model and consequent testing we will proceed to build a comparative
graph with two axes, one representing the model’s accuracy and the other the model’s execution
time, making it much easier to analyze results. If it is not possible to construct a graph, given
the attributes that the hyperparameter can have we will proceed to construct a table that will
compare the different attributes of that hyperparameter. It should also be noted that after
training the built model we will use the test dataset to test both the prediction time and the
accuracy of the model. Note that we will repeat the test 10 times and choose the minimum
time in order to avoid interference problems from other processes on the machine, which are
noticeable because the prediction times obtained are relatively short (any simultaneous process,
however small, potentially has a high impact on the time measurement). In listing 4.1, the code
describing how we obtain this prediction time is presented.
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Parameters Hyperparameters

Convolutional layer Kernels

Kernel Size
Number of Kernels
Stride
Padding
Activaction Function

Pooling Layer None

Pooling Method
Filter Size
Stride
Padding

Dense Layer Weights
Number of Weights
Activaction Function

Table 4.1: List of hyperparameters of a CNN [47]

Listing 4.1: Example of building a CNN model
1 this_execution = np.zeros(10)
l3s, labels3 = generateDataset(testPairsFolders)

3 for j in range(10):
start_test = time.time()

5 test_loss, test_accuracy = model.evaluate(l3s,labels3,
batch_size=BATCH_SIZE, verbose=1)

7 end_test = time.time()
this_execution[j] = end_test - start_test

9 print(’Prediction time = ’, np.min(this_execution))

In addition to the tests that will be done regarding the hyperparameters, experiments involving
the CNN architecture will also be done, such as with increasing or decreasing convolution/max
pooling layers, increasing or decreasing dense layers, the use of dropout, and others.

In the next section Preliminary Studies, we will show a preliminary study that was done, in
order to better exemplify the methodology used throughout this dissertation and also to better
understand some of the attributes to be modifiable in a CNN.

4.3 Preliminary Studies

Using the Fashion MNIST dataset (which is a slight variation of the classic MNIST dataset) that
contains articles of clothing, a model of a CNN was created which goal would be to correctly
identify as many articles of clothing as possible. We used 60000 images to train the network and
10000 images to evaluate how accurately the network learned to classify images

The model built consisted of 2 pairs of convolutional/Max Pooling layers and 2 dense layers
as you can see in Listing 4.2.
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Listing 4.2: Example of building a CNN model
1 model = tf.keras.Sequential([

tf.keras.layers.Conv2D(32, (3,3), padding=’same’, activation=tf.nn.relu,
3 input_shape=(28, 28, 1)),

tf.keras.layers.MaxPooling2D((2, 2), strides=2),
5 tf.keras.layers.Conv2D(64, (3,3), padding=’same’, activation=tf.nn.relu),

tf.keras.layers.MaxPooling2D((2, 2), strides=2),
7 tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation=tf.nn.relu),
9 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

The next step was to test various kernel sizes in the convolution layer and to understand
what the trade-off would be between efficiency and prediction time whose code used can be seen
at listing 4.3. So, a graph was produced for a better analysis which can be seen at figure 4.2.

Listing 4.3: Code used to test the accuracy and prediction time of different kernel values
this_execution = np.zeros(10)

2 l3s, labels3 = generateDataset(testPairsFolders)
for j in range(10):

4 start_test = time.time()
test_loss, test_accuracy =

6 model.evaluate(l3s,labels3, batch_size=BATCH_SIZE, verbose=1)
end_test = time.time()

8 this_execution[j] = end_test - start_test
print(’Accuracy on test dataset:’, test_accuracy)

10 print(’Execution time = ’, np.min(this_execution))

Figure 4.2: Trade-off of execution time and accuracy depending on the size of the kernel

Analyzing the graph, it is possible to conclude that the best value for the kernel size would
be 3 since it has the best accuracy of all sizes and the prediction time is the second lowest.

Moving on to the next layer, the pooling layer, there is one attribute that can greatly influence
the quality of the model, and that is stride. Similar to what was done with the kernel size, here
too several models were tested with different stride values, to try to understand what the optimal
value would be.
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Figure 4.3: Trade-off of prediction time and accuracy depending on the stride value

According to the graph, we can state with certainty that the optimal stride value will be
between 2 and 3 since it presents great accuracy and an extremely positive prediction time.

4.4 Summary

In this chapter, was presented the methodology to be used in this dissertation as well as a
small demonstration of how this methodology and its application will work. In the next chapter,
this methodology will be put into practice by perform several studies and understand which
hyperparameters or network structure is most beneficial for a more optimal CNN.





Chapter 5

Results and analysis

In this chapter, the various experiments performed with the purpose of optimizing Convolutional
Neural Networks (CNNs) will be presented as well as a detailed analysis of the results obtained.
Finally, a conclusion will be made illustrating the best results obtained and contributing factors.

All code used in this work is available at the following repository: https://github.com/
andretse77/Notebook-Thesis

5.1 Torpedo

The experiments performed in this dissertation were done in the scope of the DAnon project using
Torpedo. Torpedo is a distributed system that offers a global service for the deanonymization
of The Onion Router (TOR) Onion Services (OS) sessions with the goal of assisting Law
Enforcement Authorities (LEAs) in the investigation of cybercrime. The deanonymization
inquiries that LEAs send as part of criminal investigations are processed by Torpedo which is
a system built on a federated architecture of network monitoring servers operated by Internet
Service Providers (ISPs). Torpedo uses a multi-stage pipeline based on various Machine Learning
models for filtering and correlating OS sessions in order to analyze OS traffic at scale.

The architecture of Torpedo’s prediction pipeline is quite extensive and consists of different
sections. For the purpose of this dissertation we only focused on two specific parts of this pipeline,
which was the Ranking Stage and the Correlation Stage, while the rest of the team focused on
their part of the pipeline.

Ranking Stage is the first step in torpedo’s matching phase and its role is to quickly and
roughly scan the flow pairs, reducing the search space for the more complex but slower Correlation
Stage. In a nutshell, the Ranking Stage will examine a little amount of metadata for each flow
pair and produce a score between 0 and 1. This score can be read as the confidence that a given
pair is correlated.

The Correlation Stage, the second stage in Torpedo’s matching pipeline, is in charge of
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Layer Details
Input Size: 3
Fully Connected 1 Size: 300, Activation: ReLU
Fully Connected 2 Size: 80, Activation: ReLU
Fully Connected 3 Size: 10, Activation: ReLU
Output Layer Size: 1, Activaction: Sigmoid

Table 5.1: Network architecture used in the Ranking Stage

ingesting and processing a collection of potentially correlated flow pairs chosen by the Ranking
Stage. A score between 0 and 1 represents the likelihood that a client-generated flow would be
correlated with a specific OS-generated flow is the result of the Correlation Stage. In this context,
it should be noted that there is a balanced proportion between 0’s and 1’s in the training dataset,
consisting of traffic samples corresponding to the launch and startup of 1000 Tor clients and
1000 OSes.

5.2 Ranking Stage

The purpose of the Ranking Stage has already been described in the previous section. For this
part of the pipeline, a very simple neural network was constructed (which can be seen in table 5.1)
to produce the confidence scores on the potential correlation of flow pairs.

With the model already built, we started by basing ourselves on one of the methods studied
in chapter 3 and tested the approach of preferring a wide net to a deep net, and to do so we
removed one layer from the original model. The next step would be to choose the indicated
number of neurons to place between the input and output layer. Since the input layer provides
300 neurons and the output layer has only 1, in our opinion, the layer between them should have
a number that would be roughly a similar distance apart. Therefore, we chose to do a small
test with values between 150 and 60 and for these values, we chose intervals of 10 in 10 in each
experiment and the results can be seen in the figure 5.1 and in table 5.2.
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Accuracy and prediction time of different models
Model Accuracy Prediction Time
Original model 0.8 0.004953
3 layers - 150 neurons 0.8006 0.004366
3 layers - 140 neurons 0.7996 0.0041423
3 layers - 130 neurons 0.7998 0.004203
3 layers - 120 neurons 0.8002 0.004233
3 layers - 110 neurons 0.8032 0.004198
3 layers - 100 neurons 0.8011 0.004566
3 layers - 90 neurons 0.8006 0.004444
3 layers - 80 neurons 0.8011 0.004483
3 layers - 70 neurons 0.8009 0.004473
3 layers - 60 neurons 0.8004 0.004564

Table 5.2: Accuracy and Prediction time of the different models tested

Figure 5.1: Trade-off of prediction time and accuracy using only three dense layers

Looking at the graph there is clearly one value that stands out which is 110 neurons that
besides having the best accuracy compared to the other competitors, the prediction time is close
to being one of the lowest. It only remained to be seen whether this result would only be better
than the others compared, or whether it would be better than the original model that is built.

Since this network is quite small and is intended to be very fast, it is not possible to obtain
very significant conclusions regarding the purpose of this thesis although slight improvements are
seen in the removal of a dense layer. Since if we look at the results in table 5.2, all tested models
had a shorter prediction time than the original model and we also point out that the accuracy of
these models is very similar to the original one.

Although the gains are not very significant it is possible to state that there are gains in terms
of prediction time when making the network wider instead of deeper, as can be seen in table 5.2
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because all tested models had a shorter prediction time than the original model. Furthermore,
we also point out that the accuracy of these models is very similar to the original one.

As was stated this network was of low complexity, so this small test was only performed as a
small study for chapter 5.3, where further and more complex experiments will be performed.

5.3 Correlation Stage

Also embedded in the Torpedo, there was the Correlation Stage. Shortly, the neural network
receives as input a collection of features that were taken from two flows, comprising eight vectors
of length N, where N is the number of training packets, in this case 100. These eight vectors may
be divided into quadruples (one for each flow), where each quadruple contains time-series for:

• Incoming packets inter-arrival time;

• Outgoing packets inter-arrival time;

• Incoming packet sizes;

• Outgoing packet sizes for that particular flow.

Layer Details

Convolutional Layer 1

Kernel num: 2000
Kernel size: (2,30)

Stride: (2,1)
Activation: ReLU

Max Pool 1
Window size: (1,5)

Stride: (1,1)

Convolutional Layer 2

Kernel num: 1000
Kernel size: (4,10)

Stride: (4,1)
Activation: ReLU

Max Pool 2
Window size: (1,5)

Stride: (1,1)
Fully connected 1 Size: 3000, Activation: ReLU
Fully connected 2 Size: 800, Activation: ReLU
Fully Connected 3 Size: 100, Activation: ReLU

Table 5.3: DeepCorr’s hyperparameters optimized to correlate Tor traffic. [36]

In this section of the pipeline there was also a built model which is a slightly modified version
of DeepCorr [36], an advanced deep learning architecture that learns a flow correlation function
tailored to TOR’s network. Therefore, the structure of the model can be seen in Table 5.4.
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Input vectors that are anticipated to be correlated for linked TOR flows are captured by
the first convolution layer. The second convolution layer uses a combination of timing and size
information to capture aspects of the overall traffic flow.

Layer Details
Input Layer Size: 8 * Flow Length

Convolutional Layer 1

Kernel num: 2000/reduce_factor
Kernel size: (2,30)

Stride: (2,1)
Activation: ReLU

Max Pool 1
Window Size: (1,5)

Stride: (1,1)

Convolutional Layer 2

Kernel num: 1000/reduce_factor
Kernel size: (4,10)

Stride: (4,1)
Activation: ReLU

Max Pool 2
Window Size: (1,5)

Stride: (1,1)
Fully Connected 1
Fully Connected 2
Fully Connected 3
Output Layer

Size: 3000, Activation: ReLU
Size: 800, Activation: ReLU
Size: 100, Activaction: ReLU
Size: 1, Activation Sigmoid

Table 5.4: Network architecture used in the Correlation Stage

To have a method of comparison between the two models the DeepCorr model is described
in the table 5.3. Although looking at the tables the models look similar there is one rather
important factor. In the model in the table 5.4, a reduce_factor with a value of 16 has been set,
this significantly reduces the complexity of the network which allows us to make the experiments
feasible on the available hardware and also faster. In the next subchapters we will show the study
that was done and analyze the importance of the various hyper-parameters and Convolutional
Neural Network (CNN) architecture that can significantly influence the prediction time of these
networks.

5.3.1 Kernel

By using the network architecture described in table 5.4 we start by varying the kernel width in
the first layer between the values 15 and 40 and then in a second test in the second layer, we
varied the kernel width between 5 and 15. In both cases, the range of values mentioned was
chosen, because it was a range that contained values before and after the original value of the
kernel width. It should also be noted that a larger range of values was not chosen because from
the graph, a certain tendency is already observed.
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It is important to note that when changes were made in the first layer, the second remained the
same as the original architecture and vice versa, as will happen in the remaining tests throughout
this dissertation. The results of both tests can be seen in figure 5.2 and 5.3, respectively.

Figure 5.2: Trade-off between accuracy and prediction time by varying the kernel width in 1st

the layer

Figure 5.3: Trade-off between accuracy and prediction time by varying the kernel width in 2nd

the layer

Analyzing the figure 5.2, we can observe that the prediction time values when the kernel
width in the first layer is between 15 and 31 are quite high, however, after that the prediction
time drops dramatically (compared to the other points) while its accuracy remains quite high
during all tests. These results are an indicator that the kernel width values should be as high as
possible, as they present the lowest prediction times without ever having a too significant loss in
model accuracy. The kernel size refers to the height and width of the filter mask to be applied in
the convolution, the bigger the kernel, the fewer convolution operations that need to take place
and consequently the convolution process will be faster.

Moving on now to the analysis of figure 5.3, compared to the previous graph (figure 5.2),
here it is possible to see that the kernel width influences the prediction time in a more significant
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way, since while in figure 5.2 the lowest prediction time reached was around 0.24s. In this graph
(figure 5.3) we are analyzing that is possible to reach 0.18s, and in both cases the accuracy values
remain quite similar.

Given the results presented, the figures and values suggest that the influence of the kernel on
prediction time is more significant in the second convolution layer than in the first. One of the
facts that can help explain this phenomenon is related to the size of the kernel and the input
shape that each layer receives.

As far as the first convolution layer is concerned, it receives an input with the size 8x100 and
since the kernel has the size of 2x30 and knowing that the strides in this layer is 2x1, the time
required to go through the entire input will be relatively large. This is why we see a tendency
for the prediction time to drop as the kernel width size increases.

Nevertheless, if we now look at the second convolution layer, the same logic of the first layer
does not apply here because in the graph in figure 5.3 the exact opposite is observed. This can
be explained by the following fact: the second convolution layer receives the output of the first
max pooling layer which has a size of 4x67 that corresponds to the same height as the kernel
in this layer 4x10. This may seem good but with a kernel with the same height as the input it
receives, it will take a long time to perform the convolution operation, since it is a very large
matrix and therefore many operations will have to be done.

Concluding the study on this hyperparameter, it seems like a good approach to vary the
kernel size to reduce the prediction time of a CNN, but special care must be taken not to have a
kernel that is too large and takes too long to perform the convolution operations and also not to
have one that is too small and takes too long to go through the entire input.

5.3.2 Strides in Convolutional layer

Still inside the convolution layer, there is the strides parameter that is an integer, tuple, or list
of two numbers that specifies the height and width of the convolution’s strides. In table 5.5, the
results of this same experiment are displayed. We varied the strides between 1 and 2, both in
height and width, the already defined architecture of the network, did not allow us to vary these
values even more in this first convolutional layer, however, it has already allowed us to extract
some elations.

Strides in 1st convolutional layer Accuracy Prediction Time
(1,1) 0.9178 0.2512
(1,2) 0.9167 0.1662
(2,1) 0.9157 0.2136
(2,2) 0.9082 0.1423

Table 5.5: Results obtained when changing strides in the 1st convolutional layer
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The results obtained are quite interesting, we clearly notice a drastic decrease in prediction
time when we use higher strides in width, which in this case is using the value of 2. When using
this stride value for both attributes the best result was obtained. Regarding accuracy, the values
remain relatively close and high so we can focus solely on prediction time.

These results have their logic, since as we can see, the worst prediction times are when the
window is smaller (1x1) which makes sense, since the window is smaller it will take longer to
scroll through the entire input. Conversely, the lowest prediction time is when the window is
larger (2x2) and so it will be much faster to scroll through the input. Between these two examples
there is a difference of about 0.11s, which in this context is 44% less prediction time, a value that
we consider significant. There is also a significant difference when you increase either the width
or the height of the stride. In this case, we suspect that these results are due to the structure
of the dataset we are using. Overall, however, we assume that a plausible hypothesis to obtain
better prediction time is to increase the strides value in the convolutional layer.

5.3.3 Filters

Looking at the convolution process, there is a very important argument that is filters consisting
of an integer, which gives the dimensionality of the output space or in other words the number of
output filters in the convolution [41]. Since it was a hyperparameter that we considered extremely
relevant, we experimented varying the values above and below the original value of the initial
model (seen in table 5.4). We started by performing experiments on the first convolution layer
given that the tests performed saw the integer filters vary between 4000 and 1100 and the results
of this experiment can be seen in figure 5.4.

Figure 5.4: Trade-off between accuracy and prediction time by varying the size of the filters in
the 1st convolutional layer

After a carefull analysis of the figure 5.4 it was possible to conclude that the results were
actually quite interesting. There is a large variation in prediction times with the change of the
integer filters value and if we look specifically between the maximum value and the minimum
value there is a difference of 0.2s which translates to a 42% difference. In addition to this,
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we observe an increasing trend in prediction time as this value increases. Looking now at the
accuracy in figure 5.4 the values vary inconsistently, however, they all remain above 0.91 accuracy,
which is still a quite high accuracy. If we look at the value of the initial model, that value has
the highest accuracy, however, the prediction time is not the lowest at all.

Performing the test now on the second convolution layer we have varied the filters value
between 1900 and 100.

Figure 5.5: Trade-off between accuracy and prediction time by varying the size of the filters in
the 2nd convolutional layer

Similar to figure 5.4, here in figure 5.5 we also observe an increasing trend in prediction time
as the number of filters increases, with minimum values of 0.18s and maximum values of 0.26s,
a not very significant difference. Looking at the accuracy values they turn out to be a little
inconstant although there is a slight tendency for the accuracy to decrease as the number of
filters increases, despite this, the accuracy values always remain high.

In summary, in a model with 2 convolution/max pooling layers changing the number of filters,
either in the first or second layer, appears to us to be a viable approach to reduce the prediction
time of a CNN.

5.3.4 Pool_Size

When entering into the max pooling layer, one of the arguments the model can take is pool_size,
which is an integer or tuple of two numbers, the size of the maximum-taking window [43]. We
therefore experimented to perform a set of tests and understand the relevance of this parameter
in the latency time of CNNs. In the original architecture, the pool_size was set to "(1,5)", in
this experiment we will try varying the width of the pool_size, in both layers, between 1 and
31 and the height will have to stay at 1, since its height never exceeds 1. The width value was
limited to 31, since, as we were changing the width value in both max pooling layers, if we set
a width value of 32 in the first layer, the output_shape, as far as width is concerned, in the
second layer would be equal to 31 (which would make it impossible to enter a pool_size value of
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"(1,32)"). In this way, we ensure that we cover as much of the pool_size widths as possible for
better completion of the results.

Figure 5.6: Trade-off between accuracy and prediction time by varying the pool_size width in
both max pooling layers

The results obtained of the experiment conducted are shown in figure 5.6. On one hand,
it is possible to observe a clear tendency for the prediction time to increase as the pool_size
width increases. On the other hand, the accuracy shows inconstant and rather less significant
values than the prediction time. According to what was described in the first paragraph of this
subsection this tendency can be easily justified, according to our thinking. Well, as mentioned,
pool_size takes the maximum value from a window of defined size, i.e., in our view it seems
trivial that if this window is small, the minimum value will be found faster than in a larger
window because there is less "space" to travel to find this minimum value along the window. Since
only one value is chosen within the pool_size, our idea would be that the larger the pool_size,
the less effective the model would be since many features that could be relevant would be lost.
Although this happens in a certain way since there is a slight tendency for the accuracy value to
decrease as the pool_size width increases, it was not as significant as we thought it would be,
since the accuracy of all the tested models was always above 0.9, a value that we consider very
reasonable.

In conclusion, and looking at concrete values in figure 5.6, within this experiment, there is
a difference of about 0.25s between the maximum value (about 0.50s) and the minimum value
(about 0.25s), which represents twice the time between these extremes. Therefore, we consider
that the hyperparameter is quite important in optimizing the time, so a plausible hypothesis to
optimize a CNN is to keep the pool_size as low as possible.

5.3.5 Strides in Max Pooling layer

After analyzing all the hyperparameters associated with the convolution layer, we move on to the
max pooling layer. We start by performing two tests by changing the stride values, being that
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in the first one we change the stride values in the first layer and in the second one we change
the stride values in the second layer and the results can be seen in figure 5.7 and figure 5.8,
respectively.

Figure 5.7: Trade-off between accuracy and prediction time by varying the stride width in 1st

the layer

Figure 5.8: Trade-off between accuracy and prediction time by varying the stride width in 2nd

the layer

When examining both results we can observe an interesting detail. While in the first layer
the stride value influences the prediction time more significantly and the accuracy is almost null,
in the second layer the opposite occurs since the variance of the prediction time is almost null
and the accuracy of the model is affected more relevantly.

From our point of view, as far as figure 5.7 is concerned, the results shown seem to make a
lot of sense, this is because strides specifies how far the pooling window moves for each pooling
step, and as such, the larger the stride in total, the fewer translations will be made and as such,
the prediction times will be faster.

When it comes to figure 5.8, the results in terms of prediction time were very low with a
difference of only about 0.004 seconds between the maximum and minimum time, however, if
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you think about the entire CNN pipeline it is a result that appears to make sense. By getting a
summary of the model (table 5.6), we can see that the output shape that reaches the second
convolution layer is quite small, and as such, whether the stride is large or small, it will never
make much difference because there is only a small "area" to go around.

Layer (type) Output Shape Param #
conv2d_4 (Conv2D) (None, 4, 18, 125) 7625
activaction_7 (Activaction) (None, 4, 18, 125) 0
max_pooling2d_4 (MaxPooling2D) (None, 4, 14, 125) 0
conv2d_5 (Conv2D) (None, 1, 5, 62) 310062
activaction_8 (Activaction) (None, 1, 5, 62) 0
max_pooling2d_5 (MaxPooling2D) (None, 1, 1, 62) 0

Table 5.6: Part of the table obtained by executing the command that gives a summary of the
model

Finally, we ran one last test that combined changing the strides width value in both max
pooling layers, the results of which are shown in table 5.7. The results are in line with what we
studied and analyzed in the previous results because as can be seen, when we have strides with
larger values the prediction time values are significantly lower. The acuraccy of the models does
not prove to be a problem with the change of stride values because as these values vary, the
accuracy always remains quite high.

Strides 1st max pool Strides 2nd max pool Accuracy Prediction Time
(1,1) (1,1) 0.9185 0.2635
(1,1) (1,2) 0.9157 0.2635
(1,1) (1,3) 0.9151 0.2659
(1,1) (1,4) 0.9217 0.2652
(1,2) (1,1) 0.9170 0.1893
(1,2) (1,2) 0.9223 0.1889
(1,2) (1,3) 0.9186 0.1878
(1,2) (1,4) 0.9190 0.1913
(1,3) (1,1) 0.9142 0.1673
(1,3) (1,2) 0.9155 0.1659
(1,3) (1,3) 0.9145 0.1655
(1,3) (1,4) 0.9187 0.1673
(1,4) (1,1) 0.9193 0.1554
(1,4) (1,2) 0.9189 0.1555
(1,4) (1,3) 0.9208 0.1560
(1,4) (1,4) 0.9125 0.1585

Table 5.7: Results obtained by varying the stride value in both max pooling layers

Focusing on the problem of this dissertation, the practice of increasing the stride away from
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values that are too low appears to be a good solution for optimizing CNNs since a downward
trend in prediction time is observed as the stride value increases. At the same time, there is also
a decrease in the accuracy value of the model, so we would say that it is at personal discretion
how much of the accuracy can be sacrificed to achieve a lower prediction time.

5.3.6 Padding

Regarding the convolutional and the max pooling layer, one of the arguments it receives is
padding. The padding has 2 values "valid" or "same" where valid means no padding and "same"
means results in padding that is uniformly distributed to the input’s left, right, or up and down,
such that the output has the same height and width dimensions as the input [43].

Tests were performed on the 2 convolution layers we had, changing the padding values, to see
what effect they had on the model’s accuracy and prediction time and the results can be seen in
table 5.8.

Padding Accuracy Prediction Time
’VALID’ in both layers 0.9130 0.2141
’VALID’ in the first layer
’SAME’ in the second layer

0.9117 0.2305

’SAME’ in the first layer
’VALID’ in the second layer

0.9143 0.2784

’SAME’ in both layers 0.9190 0.2988

Table 5.8: Results obtained by changing padding in the convolutional layers

Looking at the table with the results, one can see a relatively significant difference between
not using padding (’VALID’) and using padding (’SAME’) in both convolution layers. Without
using padding, we obtained the shortest prediction time for the tests performed, and on the
opposite side of the coin, the longest prediction time was obtained with the use of padding.
Following this logic, there is also an observable difference between not using padding in the first
layer and not using it in the second layer. Since we have already seen that not using padding is
more beneficial for a shorter prediction time, the explanation we found for this difference between
layers has to do with the output shape since it is obviously much larger in the first layer than in
the second one. Furthermore, its relevance turns out to be more important in a larger shape
than in a smaller one, and the results prove it. Mentioning also the accuracy values, they have
always remained practically equal and above 0.91 which we consider to be a very solid accuracy.

In addition to the first test, the influence of padding was also tested but this time on the
max pooling layers. Looking at the table 5.9 which constitutes the results and comparing it to
those obtained in the first test, there is the same tendency to get better results without the use
of padding (’VALID’) than with its use. Besides this, there is also a very interesting fact, the
discrepancy between values is much smaller and the minimum values are lower than the ones
registered in table 5.8. The accuracy, once again, always remains at values above 0.91.
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Padding Accuracy Prediction Time
’VALID’ in both layers 0.9156 0.2114
’VALID’ in the first layer
’SAME’ in the second layers

0.9148 0.2089

’SAME’ in the first layer
’VALID’ in the second layers

0.9172 0.2203

’SAME’ in both layers 0.9182 0.2237

Table 5.9: Results obtained by changing padding in the max pooling layers

Overall, we cannot state an absolute truth about whether or not to use padding when it
comes to optimizing CNNs, as it will always depend on the datasets we have been dealing with
and analyzing. However, from the results obtained, it seems to be much more plausible to change
the padding value in the max pooling layer than in the convolution layer.

5.3.7 Activaction Functions

When working with CNN it is very important to introduce activation functions into their
architecture. Data can be mapped into dimensions more effectively with an appropriate activation
function. A neural network model’s expression capacity is further increased by using an activation
function, which can provide the deep neural network the true importance of Artificial Intelligence
(AI) [45].

With the information obtained and mentioned above, we decided to test whether the different
activation functions would have any effect on the prediction time or the accuracy of the model,
so we experimented in addition to the original model activation function ("relu"), two more
activation functions, being "sigmoid" and "tanh". The fact that they are the most commonly
used [8] is what led us to choose these activation functions over others.

Looking at the table 5.10 with the results of the different activation functions, they all seem
quite identical, both in model accuracy, with values around 0.9 and in prediction time, where
all the values are within 0.21s. Although certain types of problems require a certain type of
activation function, the results obtained lead us to believe that these functions have practically
no influence on improving the prediction time of a CNN, so, according to the problem addressed
in this dissertation, changing the activation function of a network does not seem to be a good
option when it comes to optimizing it.

Activaction Function Accuracy Prediction Time
ReLU 0.9110 0.2110
Sigmoid 0.9 0.2171
Tanh 0.9181 0.2148

Table 5.10: Results obtained by using different activation functions
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5.3.8 Dropout

As already mentioned in section 3.2, the use of dropout can be one of the techniques used to
reduce latency time in a CNN. To prove this theory, we first ran two tests in which we compared
the original model, which has the use of a dropout of 0.4, and a model that has no dropout,
as can be observed in the table 5.11. It should be clarified that in order to avoid overfitting,
the Dropout layer randomly sets input units to 0 with a frequency of rate at each step during
training. The sum of all inputs is maintained by scaling up non-zero inputs by 1/(1 - rate) [42].

Dropout Accuracy Prediction Time
Yes (value of 0.4) 0.9165 0.2182
No 0.9182 0.2111

Table 5.11: Results obtained by using or not Dropout

Although we did not observe any major differences in the results between the two tests, we
decided to manipulate the dropout values and see if we would come to any conclusions that
would be relevant and constructive to the study being done.

We therefore ran 9 different tests varying the dropout value on a scale of 0.1 with each
experiment and the results can be seen in figure 5.9. The maximum value that the dropout
can have is 1 and the minimum is 0, and as such, we decided to use this scale of 0.1 among
the various tests performed so that it would be possible to observe a possible trend from the
generated graph(figure 5.9).

Through our analysis of the graph in figure 5.9 the prediction time has a tendency to increase
as the dropout probability increases. There is also another interesting perspective, although a
little inconstant in the initial values, the trend of the model’s accuracy values tends to decrease
as the probability of dropout values increase. The maximum time value found in the graph is
around 0.222s while the minimum value is around 0.212s, which is a difference of only 0.01s, a
difference that we do not consider to be very relevant. If we now compare with the values in
table 5.11, in the sense that we can compare the difference between using dropout or not, there
is still no significant difference when it comes to improving prediction times.

In a general conclusion, we consider that although the use of dropout is a good technique
to avoid overfitting, in terms of improving prediction times it does not seem to be a plausible
hypothesis.
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Figure 5.9: Trade-off between accuracy and prediction time using different dropout probabilities

5.3.9 Number of neurons

Table 5.4 shows the architecture of the network that is being used to perform various experiments
and, as can be seen, there are 4 dense layers in this architecture. Since the first and the last are
unchanged because they correspond to the input and output layer, we experimented with varying
the number of neurons in the second dense layer, since there was a large distance of neurons from
the input layer to the input layer and even to the third dense layer. The number of neurons was
then manipulated between 500 and 2000 which is a range that we consider reasonable to draw
good insights.

Figure 5.10: Trade-off between accuracy and prediction time varying the number of neurons in
the 2nd dense layer

The prediction time and accuracy of the tested models can be seen in figure 5.10, and as can
be seen there is a tendency for the prediction time to increase as the number of neurons increases,
while the accuracy remains quite inconsistent but with very positive values above 0.91. If we look
at concrete values, there is a difference of about 0.0175s between the maximum and minimum
values, which is quite a tiny difference. Therefore, from our point of view, we understand that
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varying the number of neurons does not appear to be the best option in optimizing CNNs.

5.3.10 Number of Convolutional/Max Pooling Layers

After having done several experiments involving the hyperparameters of a CNN, we move on to
experiments involving changes in the network architecture. It started by removing a convolution
and max pooling layer and after that, varying in individual tests the kernel and stride values and
seeing if there was any trend.

Figure 5.11: Trade-off between accuracy and prediction time using only one convolutional/pooling
layer and varying the kernel

When it comes to tests involving the kernel the results were quite surprising, as we can see in
figure 5.11. To have a comparison, in the similar test performed in figure 5.2, the prediction time
values were between 0.24 and 0.26, and in this test performed with only one layer the values are
between 0.19 and 0.165 which is a drop in prediction time of between 31% and 27%. This may
not seem like high values but on larger datasets with much longer prediction times this drop can
be crucial for better results. There is also another interesting fact, the accuracy values, except
for one loose case, are quite similar to those obtained with a model with 2 convolution and max
pooling layers with the nuance that in this experiment we have much lower prediction times.
Finally, it should also be mentioned that figure 5.11 also shows the tendency for the prediction
time to increase as the kernel width increases.
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Figure 5.12: Trade-off between accuracy and prediction time using only one convolutional/pooling
layer and varying the stride

Regarding the tests performed involving stride that can be seen in figure 5.12, one clearly
notices a downward trend in prediction time as stride increases. As for accuracy, it doesn’t
oscillate much, being within a short but high value range. However, when the stride value is 1
the accuracy reaches minimum values but from then on this value goes up and remains relatively
constant.

Again, compared to the stride test observable in figure 5.7, where the prediction times were
around minimum values of 0.14s and maximum values of 0.22s, in this graph (figure 5.12), we get
minimum times around 0.11s and maximum times around 0.15s. On the one hand this difference
may not seem significant, but on the other hand, in this experiment the time values are in a
more concentrated and smaller time interval which can guarantee low prediction times. In terms
of accuracy values, the graph in the figure 5.7 appears to have slightly higher accuracy values
than in the experiment we are analyzing, although in both cases the values are acceptable.

Comparing now the influence of the strides and kernel hyperparameters, it is concluded that
similar to the tests that were performed on the original model, the strides hyperparameter in the
max pooling layer influences the prediction time more significantly than the kernel hyperparameter
in the convolution layer. Nevertheless, in both cases there were improvements in prediction times
and relatively similar accuracy values, and this leads us to believe that when it comes to the
optimization of a CNN a permissible scenario for optimizing the network would be to prefer a
network with only one convolution layer and max pooling rather than two.

On the reverse side, another experiment that was tested was to increase the number of
convolution/max pooling layers to 3. This being said, as mentioned, the tested model had three
convolution layers and for this test to be possible the network architecture had to be slightly
changed. For this purpose, the architecture of this new network can be seen in table 5.12

The results presented by this network were not very encouraging, as can be seen in table 5.13,
the accuracy values of the models proved to be similar although a slightly higher value was noted
for the accuracy of the original model. If we analyze the time, however, the model with 3 layers
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Layer Details
Input Layer Size: Flow Length * 8

Convolutional Layer 1

Kernel num: 2000/reduce_factor
Kernel size: (2,30)

Stride: (2,1)
Activaction: ReLU

Max Pool 1
Window Size: (1,5)

Stride: (1,1)

Convolutional Layer 2

Kernel num: 1000/reduce_factor
Kernel size: (2,30)

Stride: (2,1)
Activaction: ReLU

Max Pool 2
Window Size: (1,5)

Stride: (1,1)

Convolutional Layer 3

Kernel num: 500
Kernel size: (2,30)

Stride: (4,1)
Activaction: ReLU

Max Pool 3
Window Size: (1,5)

Stride: (1,1)
Fully Connected 1
Fully Connected 2
Fully Connected 3
Output Layer

Size: 3000, Activaction: ReLU
Size: 800, Activaction: ReLU
Size: 100, Activaction: ReLU
Size: 1, Activaction: Sigmoid

Table 5.12: Network architecture used by using 3 convolutional/max pooling layers

Model Accuracy Prediction Time
Original Model 0.9110 0.2110
Model with
3 convolutional/max pooling layers

0.9 0.2643

Table 5.13: Comparison table between the original model and a model with 3 convolutional/max
pooling layers

of convolution/max pooling, shows a higher prediction time by about 0.05s, which is an increase
of roughly 19%, which is not much but proves to be higher. Through the results obtained, and
comparing with the results of having only one layer, we understand that for an optimized CNN,
an admissible hypothesis seems to be to reduce the number of layers in the network instead of
increasing them.
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Model Accuracy Prediction Time
Original Model 0.9110 0.2110
Model with 3 dense layers 0.9167 0.2075

Table 5.14: Comparison table between the original model and a model with only 3 dense layers

5.3.11 Dense layer

As seen in table 5.4 the network architecture has 4 dense layers. It was observed that the gap
between the third layer and the output layer was relatively short and as such, we decided to
remove this layer and observe the results that can be seen in table 5.14. As the results, both
for accuracy and prediction were quite similar, after removing a dense layer we experimented
varying the number of neurons, similar to how it was in subsection 5.3.9, to try to see if the
results could be any better with the results of this experiment being shown in figure 5.13.

If we compare the results of this experiment with those of figure 5.10, there is a common
trend, the prediction time decreasing as the number of neurons increases and an inconstant but
always high accuracy (above 0.9). Even so, the results for figure 5.10, where there is one more
dense layer show to be slightly better, as the maximum and minimum values are both lower than
the maximum and minimum values in figure 5.13.

Figure 5.13: Trade-off between accuracy and prediction time varying the number of neurons in
the 2nd dense layer and with 1 layer less
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Figure 5.14: Trade-off between accuracy and prediction time varying the number of neurons in
the 4th dense layer

In the same way that we removed a dense layer to test results, we proceeded to add another
dense layer to test the results that would be obtained. The network was then left with 4 dense
layers plus the output layer and it was in this last dense layer that we decided to vary the
number of neurons. As in the previous layer the value was 100 neurons, we decided to vary in
this layer the number between 10 and 90 for a better analysis of the results, which are registered
in figure 5.14. Similar to figure 5.10, here too there is an upward trend in prediction time as
the number of neurons increases, and in accuracy, despite inconsistency there is also an upward
trend. If we compare in terms of values, although they have different maximum and minimum
values, they are still quite similar. With that said, when it comes to improving the prediction
times of a CNN removing or adding dense layers does not appear to be a good approach, from
our perspective.

5.3.12 Absence of the Max Pooling layer

The use of pooling layers is not strictly necessary when building a CNN model. Without the
existence of a layer that does pooling there is no downsampling, and the only repercussion this
has on a CNN is that it can make it harder to train. Since the goal of this dissertation is not
focused on training time but rather on prediction time, this was an approach we sought to take.
As mentioned, we removed the two max pooling layers constituting the original network and
tested the results of the model that we recorded in table 5.15, with the results of the original
model so that a comparison could be made.

The values obtained show a time gap of 0.03s, a small value that represents the difference
of 15%, which can be justified by the reduction in the number of layers that the input has to
pass through. Overall, and although we have seen better approaches so far, removing the max
pooling layers from a network seems to be a reasonable approach for optimizing CNNs if there is
not the problem of spending more resources on training the network.
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Model Accuracy Prediction Time
Original Model 0.9110 0.2110
Model without
max pooling layers

0.9120 0.1864

Table 5.15: Comparison table between the original model and a model with no max pooling
layers

5.4 Analysis of the results

Once all the experiments were done, we decided to build a table that could summarize these
same experiments and classify which hyperparameters or changes in the network architecture
could benefit more or less from the optimization process of a CNN.

Hyperparameters and CNN Architecture Positive Influence on
Prediction Time

Kernel Medium
Strides in

Convolutional Layer
High

Filters High
Pool_Size Low∗

Strides in
Max Pooling layer

High

Padding Low
Activaction
Functions

None

Dropout Low
Number of

neurons
Low

Add Convolutional/
Max Pooling layers

None

Remove Convolutional/
Max pooling layers

High

Add dense layers None
Remove dense layers Low
Remove Max Pooling

layer
Medium

*depends on the circumstance

Table 5.16: Summary of performed tests with corresponding influence in prediction time

Table 5.16, therefore, summarizes all the experiments performed, dividing them into hyper-
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parameters and CNN architecture and further classifying them into four degrees of relevance for
improving the prediction time of a CNN, which are:

• None, which means that in the tests performed there was no improvement over the initial
model.

• Low, there has been an improvement in the best experience of less than 10% over the initial
model

• Medium, there was an improvement in the best experience between 10% and 20% over the
original model.

• High, there was an improvement in the best experience of more than 20% over the original
model.

It is important to emphasize that this assignment of relevance degrees is based on the dataset
used for this dissertation and has the original model of the table 5.4 as a comparison.

There is, however, a special case in the table 5.16 that we would like to address and that
was properly marked with an asterisk. In the original model we had, the pool_size was set to
"(1,5)" and since the graph in the figure 5.6 showed an increasing trend, the time gains that
were obtained in the best experiment were minimal. But observing that same figure 5.6 the
times varied between about 0.25s and 0.50s which represents a significant difference of 50%,
i.e., if we had an original model with a larger pool_size the gains would be greater and the
relevance attribution would be different. What we mean by this is that the pool_size may not be
significant in the circumstances used but since there is a large difference between the minimum
and maximum values, on other occasions it may prove to be more significant.

5.5 Summary

In this chapter, the methodology described in chapter 4 was applied to conduct several experiments
involving CNNs.

Within the tests performed, very interesting and positive results were obtained that contribute
positively to the study of CNN optimization in the context of network traffic analysis. In addition,
a table was created that summarizes and qualifies the different tests performed. In chapter 6 all
the conclusions reached with this dissertation will be addressed as well as a table that summarizes
the entire study that was done in this chapter.





Chapter 6

Conclusions

In this chapter the development and results accomplished throughout this dissertation is going
to be described. Firstly, a brief overview of the research and development made during the
dissertation is made. Secondly, a description of the results obtained is done, comparing all the
tests performed and concluding which ones achieved the best trade-off in accuracy and prediction
time. Finally, some directions on future work are given.

6.1 Research and development

This dissertation described a study on the optimization of Convolutional Neural Networks (CNNs).
A methodology has been developed to evaluate which factors, whether hyperparameters or
network architectures, positively or negatively influence the prediction time and accuracy of a
Convolutional Neural Network (CNN).

A careful study was also done that analyzed the importance of each hyperparameter of a CNN
that influences its optimization, and this study was summarized in a table made in chapter 5. In
addition to this, some changes in the network architecture were also studied which will also be
represented in this table.

After performing all the tests and observing the results, we understand that when it comes
to hyperparameters, the strides in both the convolution layer and the max pooling layer, and the
filters proved to be the most decisive in the study of this dissertation. When it comes to changes
in the architecture of a CNN, the removal of layers proved to be the most beneficial approach in
reducing the latency times of these networks.

Finally, it is also important to emphasize that this entire dissertation contributes to the
DAnon project from Torpedo but above all to the study of CNN optimization in the context of
network traffic analysis.

55
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6.2 Future work

As already mentioned in this chapter, the results obtained were quite interesting and contribute
to the optimization of CNNs in the context of network traffic analysis. However, it would be
interesting to test this study done in datasets from other areas, such as in image classification,
recommendation systems and among others. Furthermore, it would be interesting to test other
approaches in changing the architecture of a CNN and to analyze the results, using a machine
with much more computational power than the one used in this dissertation so that more complex
and demanding tests could be done. On top of all this, it would be interesting to test several
changes of hyperparameters and architectures at the same time and see what results would go.

Although the analysis of the results was relatively simple it would also be interesting to create
a metric that could provide a value that represents a good trade-off between accuracy and model
prediction time for even more accurate analysis of a model.
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