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Abstract—We consider a marketplace in the context of 5G
network slicing, where Application Service Providers (ASP), i.e.,
slice tenants, providing heterogeneous services, are in competition
for the access to the virtualized network resource owned by a
Network Slice Provider (NSP), who relies on network slicing. We
model the interactions between the end users (followers) and
the ASPs (leaders) as a Stackelberg game. We prove that the
competition between the ASPs results in a multi-resource Tullock
rent-seeking game. To determine resource pricing and allocation,
we devise two innovative market mechanisms. First, we assume
that the ASPs are pre-assigned with fixed shares (budgets) of
infrastructure, and rely on a trading post mechanism to allocate
the resource. Under this mechanism, the ASPs can redistribute
their budgets in bids and customise their allocations to maximize
their profits. In case a single resource is considered, we prove that
the ASPs’ coupled decision problems give rise to a unique Nash
equilibrium. Second, when ASPs have no bound on their budget,
we formulate the problem as a pricing game with coupling
constraints capturing the shared resource finite capacities, and
derive the market prices as the duals of the coupling constraints.
In addition, we prove that the pricing game admits a unique varia-
tional equilibrium. We implement two online learning algorithms
to compute solutions of the market mechanisms. A third fully
distributed algorithm based on a proximal method is proposed to
compute the Variational equilibrium solution of the pricing game.
Finally, we run numerical simulations to analyse the market
mechanism’s economic properties and the convergence rates of
the algorithms.

Index Terms—Communication service market, Game theory,
Trading post mechanism, Pricing, 5G network slicing, Resource
allocation.

I. INTRODUCTION

Next-generation wireless network is expected to deliver support
to emerging sectors like Virtual Reality (VR) live broadcast,
automotive, healthcare, manufacturing, etc. Critical challenges
in mobile network applicability to the sectors mentioned above
are their heterogeneity and conflicting communications needs,
the current monolithic network is insufficient to meet. Several
new concepts have been proposed for the upcoming 5G network
design to satisfy these critical needs. Probably one of the most
important one is “network slicing”.

Network slicing is the concept of running multiple inde-
pendent logical networks (slices) on top of a common shared
physical infrastructure. Each independent logical network (slice)

Corresponding author: mandar.k.datar@gmail.com
This work was supported by Nokia Bell Labs and MAESTRO-5G-ANR.
An early version of this manuscript [1] has appeared in the 33rd Edition of

the International Teletraffic Congress (ITC’33).

is then explicitly dedicated to meeting each slice tenant’s
needs, contrary to the “one-size-fits-all” approach that was
the mainstream allocation method in the previous mobile
generations [2]. Network slicing brings a paradigm shift
towards a multi-tenancy ecosystem where multiple tenants,
owning individual slices, negotiate with multiple virtualized
infrastructure network providers, i.e., NSPs, to request resources
for service provision. In this competitive multi-agent setting, the
Application Service Providers (ASPs), also called slice tenants,
generally express a demand for a dedicated virtual network with
full ownership of their Service Level Agreement (SLA). On
the contrary, NSPs aim to maximize their return on investment
by enabling the dynamic sharing of the infrastructure, as
this lowers their operational and capital costs and allows
them to monetize their infrastructure to its fullest potential.
However, the infrastructure sharing may expose the tenants
to the risk of violating their SLAs. Hence, one of the
fundamental issues in network slicing is an efficient sharing of
the network resources, which arbitrages between two conflicting
interests, i.e., inter-slice isolation and efficient network resource
utilization. In order to balance the inter-slice isolation and
efficient resource utilization, Caballero et al. in [3] proposed the
“Share-Constrained Proportional Allocation” (SCPA) scheme
where each slice is pre-assigned with a fixed share (budget)
of infrastructure. Slices are then allowed to redistribute their
shares and customize their allocation according to the load
dynamics. In turn, NSP allocates each resource to slices in
proportion to their shares on that resource. This approach
allows a dynamic sharing, where tenants can redistribute their
network share based on the load dynamics. At the same time,
it provides the slice tenants a degree of protection by keeping
the pre-assigned share intact.

Game-theoretic models have been employed for strategic
resource allocation in communication networks, power systems,
and more generally, a large number of deregulated industries.
When dealing with strategic resource allocation, each player’s
utility function depends on its own decision variables, and
on that of the other players. The players’ feasibility sets
can also be coupled through some global and local coupling
constraints, capturing the laws of physics or, simply, shared
capacity constraints. Extending duality results from standard
continuous optimization to non-cooperative games, the dual
variables of the coupling constraints can be interpreted as
market prices, also called shadow prices or locational marginal
prices, capturing the state of the network, e.g., congestion.
Applying a similar model to dynamic resource trading in a
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5G network, we design a new communication service market
where the NSP charges dynamically the ASPs, depending on
how much they contribute to the infrastructure utilization. The
market prices are locational, being differentiated by cell and
resource. From this literature, this approach seems promising
regarding ASPs’ cost reduction, as analysed in [4] that considers
a service market where dynamic market prices are adjusted
according to supply and demand (im)balances.

Relying on network slicing, we consider a market design
where a set of ASPs lease their respective networks from
a NSP and employ a network slicing mechanism to request
resources required for their service provision. Network Slice
Providers (NSPs) can be either Mobile Network Operators
(MNOs), owning their own spectrum, or Mobile Virtual
Network Operators (MVNOs). They rely on network slicing to
allocate resources based on priorities (Quality of Services). We
assume that the ASPs offer dedicated services to their users, and
the resource inventory available with ASPs characterizes their
service performance. The users are free to choose their ASPs.
Their decisions are made based on the service satisfaction
attained from ASPs. Furthermore, the ASPs collect revenue
by providing services to their customers. Assuming a dynamic
resource sharing mechanism and that ASPs maximize their
utilities, it is highly expected that selfish ASPs may exhibit
strategic behaviour. For example, they might strategically
distribute their shares on the resources conditioned on the
trade-off between the Quality of Service (QoS) they want
to offer and the congestion perceived by the users. In this
work, we focus on: 1) building a game-theoretic model of the
communication service market where ASPs negotiate with NSP
to request resources and compete with one another to serve a
pool of end users; 2) developing a dynamic resource allocation
and pricing mechanism under a competitive environment.

A. Related Work

There is a large part of the literature dedicated to the design of
communication service markets. Broadly, communication ser-
vice markets have been studied as a two-stage non-cooperative
game involving four categories of agents: Infrastructure network
Provider (InP), Network Slice Providers (NSP)1, Application
Service Provider (ASP) and End Users (EU). We focus on
ASPs who allow the EUs to access applications (identically
called services in the rest of the paper) by connecting to slices
which are built on top of the resources bought from an NSP
[5]. At the upper level of the game, ASPs (buyers) lease the
resources from the NSPs (sellers), negotiating for resource
prices and quantities. At the lower level, ASPs (buyers) use the
acquired resources from NSPs to offer a certain service to their
EUs (buyers). At this level, ASPs decide on their service price
and their resource schedule, while EUs make their subscription
decisions. In [6], ASPs’ strategic service pricing has been
analyzed as a Cournot game.

In [7], Korcak et al. considered that the Quality of Service
(QoS) achieved by the ASP’s users depends on the number

1In many articles, the terms Mobile Network Operators (MNOs), Mobile
Service Providers (MSPs) and slice providers are used synonymously.

of subscribers of that ASP, and users’ choice behaviour can
be analyzed relying on Evolutionary Game Theory (EGT).
Li et al. in [8] integrated both the users’ choice evolution
and the ASPs pricing scheme. They formulated the resulting
problem as a Stackelberg game. The ASPs, interpreted as
leaders, strategically decide the price to attract the users, and
the users, seen as followers choose the ASPs to maximize their
service satisfaction level. Also, the number of subscribers of
the ASPs depends on the perceived QoS and, consequently, on
their resources availability. Focusing on competitive aspects,
the ASPs can act strategically when computing their resource
demand, giving rise to a simultaneous non-cooperative game
[9]. In [10], D’Oro et al. used a similar Stackelberg game
formulation for resource allocation and scheduling in the
network functions virtualization scenario. In [11], Azouzi et
al. considered that the competition between ASPs takes place
both in prices and in QoS. In practice, ASPs may not have
complete information about the other ASPs’ resources. Dealing
with such an incomplete information setting, Li et al. in [12]
studied ASPs’ pricing strategies relying on a Bayesian game
formulation, where ASPs compute their prices based on their
beliefs about the resource availability. Li et al. also considered
the possibility that the ASPs can coordinate and analysed the
impact of ASPs coordination on the pricing scheme.

In [13], Xi et al. proposed a dynamic resource polling
and trading mechanism for network virtualization relying on
Stackelberg game, where the carrier is considered as the
leader while the users are the followers. The techno-economic
interaction of NSPs and ASPs is modelled as a multi-leader
multi-follower Stackelberg game in [14] in their proposed
model, NSPs act as leaders who decide the price per unit of
cell capacity, while ASPs act as followers who select an NSP
which maximizes its profit. In [15], Ho et al. proposed a two-
stage Stackelberg game based dynamic pricing for resource
allocation in wireless network virtualization, where the NSP
aims to maximize its revenue by leasing the bandwidth to the
Mobile Virtual Network Operator (MVNO); on the contrary,
MVNOs want to minimize their costs while serving their users
at the best performance. In [16], Hu et al. considered an
Orthogonal Frequency Division Multiple Access (OFDMA)
system consisting of an NSP, multiple MVNOs and downlink
users. They formulated the resource allocation in a radio access
network slicing as a tri-level Stackelberg game. In [17], Tran
et al. discussed the resource allocation and pricing problem for
network slicing as a multi-leader multi-follower Stackelberg
game that captures the interactions among access and backhaul
ASPs, and their end users.

In [18], Kazmi et, al. modelled the service selection and
resource purchasing problem as a two-stage combinatorial
optimization problem and solved it using a hierarchical
matching game-based scheme, where matching between user
and ASPs is performed at the low level, while matching
between ASPs and NSP takes place at the upper level. In [19],
Raveendran et al. proposed a cyclic three-sided matching game-
based wireless resource allocation mechanism for slicing. In
their proposed mechanism, allocation is performed by matching
between radio resources, physical infrastructure, and mobile
users. In [20], Lotfi et al. studied the economics of competition
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and cooperation between NSPs and ASPs using a sequential
game that they solve by computing a Subgame Perfect Nash
Equilibrium (SPNE).

On the contrary, the literature devoted to multi-resource
allocation with finite budget agents is rather limited, to the
extent of our knowledge. In [21], Nguyen et al. modeled edge
computing resource allocation problem for service as a Fisher
market. In the same vein, Moro et al. in [22] formulated a
resource allocation problem for 5G network slicing as Fisher
market, wherein apart from edge resources like computation
and memory, authors also included radio resource. Although
[21], [22] deal with multi-resource service provisioning with
budget constraints similarly to us, their utility functions do not
describe economic quantities such as profits and costs.

TABLE I
LITERATURE REVIEW AND RESEARCH CONTRIBUTION POSITIONING.

Article Network
Share
(Budget)

Resources Model

[13], [14], [15],
[16], [17]

Non-Fixed Single type Stackelberg game

This Work Fixed and Non-
Fixed

Multi-type Coupled constraint
Stackelberg game

[4] Non- Fixed Single type Potential game
[23][18][19] Non- Fixed Single type Matching game
[24] Fixed Single type Orthogonal

constraint game

In all the above works, the ASPs lease the resources from
the NSP and compete to serve EUs, which is also the case in
our work. However, our work innovates in that the resources
are shared using a slice-based dynamic sharing mechanism.
Moreover, in our case, resources are spatially distributed, and
service offered in a particular cell can only be supported by the
resources available within that cell. In communication networks,
one of the well-known scheme for resource allocation is the
auction-based allocation [25], e.g., Kelly’s mechanism. Datar
et al. in [26], as well as Tun et al. in [27], proposed multi-
bidding Kelly’s mechanism-based resource allocation for 5G
slicing. They showed that Kelly’s mechanism leads to a fair and
efficient resource allocation both at slices and EUs levels. Our
work departs from the auction-based mechanism like [26]–[27],
where agents’ bids are unbounded.

In follow up work to [3], Zheng et al. in [28] studied network
slicing under stochastic loads and applied SCPA. They modeled
the resource sharing scheme as a non-cooperative game and
proved that slices achieve efficient statistical multiplexing
at Nash equilibrium. Guijarro et al. in [24] designed a
communication service market where ASPs employ the SCPA
mechanism to request resources from NSP. They analyzed
the economic impact of network slicing on the market. In [4],
an automated negotiation mechanism is defined relying on an
aggregative game that enables the slice tenants to dynamically
trade radio resources and customize their slices on instantaneous
demands, which help tenants achieve higher profits. Our paper
is closely related to [24]. The main novelty of our work lies in
the fact that we consider multi-resource service provisioning,
contrary to most articles dealing with communication service
market design, which, to the best of our knowledge, only deals

with radio resources. Moreover, in this work, we consider
a more realistic scenario where the service providers own
finite budgets to procure their resources. This makes resource
allocation and pricing more challenging than most work in
the literature, where resource distribution and pricing depend
on the agents’ marginal utilities. The positioning of our work
contribution is described in Table I.

In our paper, we leveraged the Tullock Contest (TC) frame-
work [29] to model the competition between slices. This frame-
work has been extensively used in the communication network
literature, to model the interactions between competitive agents.
To mention a few, in [30], the competition between social media
users for visibility over the timeline was modeled as a TC.
Luo et al. in [31] proposed a TC based incentive mechanism
for crowdsourcing. The TC framework has been applied to the
multipath TCP network utility maximization problem [32]. In
[33], Altman et al. studied the multi-cryptocurrency blockchain
from a game-theoretic perspective, where the competition
between the miners is framed as a TC. To the best of our
knowledge, the theoretical results on the TC framework and its
applications in literature only deal with a single resource case.
We extend the TC framework to a multi-resource scenario, and
thus our results also contribute to the theoretical literature on
the TC framework.

We list below the key contributions of our article.

B. Main Contributions

1) We model the interactions between the ASPs and the
EUs as a Stackelberg game, where the ASPs act as
leaders and the EUs as followers. Besides, we rely on
replicator dynamics to model the latter’s supplier choice
and determine the ASP’s market shares in closed form
expression relying on EGT.

2) We extend the study on Tullock-rent seeking games
by showing that the non-cooperative game induced by
the competition between ASPs admits a unique Nash
equilibrium (NE).

3) We design an innovative communication service market
relying on the solving of a generalized Nash equilibrium
problem, where ASPs are charged depending on how
much they contribute to the infrastructure utilization.
The economic performance of this innovative market is
compared to benchmark post trading mechanisms with
finite budget constraints.

4) Finally, we provide two online learning algorithms and
a fully distributed proximal based algorithm, new to our
application field, to reach the NE and the Variational
equilibrium solutions of the post trading mechanism
and generalized Nash equilibrium problem respectively.
Numerically, we observe that the proximal method
significantly outperforms the online learning benchmark
algorithms in terms of scalability and convergence rates.

The rest of the paper is organised as follows: Section II
introduces the system model. Section III details the game-
theoretic model of competition between the ASPs. In Section
IV, we describe the Stackelberg game between the ASPs and the
EUs. In Section V, we analyse the existence and uniqueness
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Fig. 1. The ASPs lease the resources from a NSP at different locations and
compete to offer heterogeneous services to the end users.

of the NE. Section VI introduces the resource pricing and
market equilibrium. In Section VII, we provide two (semi-
decentralized) online learning algorithms and a fully distributed
algorithm to compute market equilibria. In Section VII, we
report on numerical results. A concluding section ends the
paper.

II. SYSTEM MODEL

We consider a market design, where at the upper level, a
set of ASPs, S, leases some resources from a NSP to create
one or more slices to provide different heterogeneous vertical
applications (services). The NSPs lease the physical resources
from Infrastructure network Providers (InPs) to form their own
softwarized network, which can then be used to tailor slices
to a host of application services (vertical services) demanded
by the ASPs. For example, an ASP can lease some resources
from NSP in the form of two slices, one for ultra-reliable low
latency communications applications and another for enhanced
mobile broadband applications. Each slice created by NSPs
can be either managed by themselves or through third-party
application service providers (ASP). If NSPs manage some
of their own created slices and provide direct service to end
users, they act as both NSPs and ASPs simultaneously. At the
lower level, the ASPs (sellers) use the leased resources and
compete to attract the maximum number of end-users (buyers).
Specifically, we assume that the NSP owns a network that
consists of a set of base stations or cells, C. Each base station
at different locations accommodates multiple types of resources
such as bandwidth, CPU, memory, etc. Users are spread across
the network. Let N c be the number of users present in cell c.
We assume that the service offered by the ASP in a particular
cell can only be supported by the resources available within
that cell. The system model is depicted in Fig. 1.

Notation: Let Rn indicate the set of n dimension real
vectors, and Rn+ its nonnegative orthant. ‖.‖ represents the
Euclidean norm. Given a vector x, xT denotes its transpose.
Let col(x1, ..., xN ) := [xT1 , ..., x

T
N ]. For a closed set F ⊆ Rn,

the mapping projF : Rn → F denotes the projection onto

TABLE II
MAIN NOTATIONS USED THROUGHOUT THE PAPER

C := {1, . . . , C} , Set of base stations or cells
S := {1, . . . , S} , Set of ASPs
K := {1, . . . ,K} , Set of services available
Mc , Set of resources at base station c
Nc
k , Number of users demanding service k

in cell c
νcsk , Utility of service type k user associated

with ASP s in cell c
qcsk , Quality of service k offered by ASP s

in cell c
ncsk , Number (subscribers) users form ser-

vice k associated with ASP s in cell
c

dcs := (dcsm)m∈Mc , Bundle of resources available with ASP
s in cell c

dcsm , Amount of resource type m available
with ASP s in cell c

Dcm , Capacity of resource type m at base
station c

ωcm , Price per unit resource of type m at
base station c

psk , Service fees charge by ASP s for
service k to users

Rs(.) , ASP s expected revenue
Us(.) , ASP s profit
Bs , Budget available with ASP s
I , Set of coupling constraints
(gi(.))i∈I , Coupling constraint functions
τc
s,s′ (n

c, Uc) , Revision protocol which defines the
switching rate at which users in cell
c switch their choice from ASP s to
ASP s′

As , Slice association probability function
fcs (.) , term in As signifying total utility ex-

perience by the potential subscribers of
ASP s

bcsm , Bid of ASP s to resource m at cell c
λcsm , Lagrange multipliers of the capacity

based coupling constraints
rs , Ratio of the coupling constraint dual

variable at r-normalized Nash equilib-
rium (λcm) over dual variable evaluated
by ASP s (λcsm)

ys , Auxiliary variable which accumulates
discounted gradient for ASP s

αn , Discounting factor or step size
hs(.) , Regularization function or a penalty

function
ζ , Vanilla ADMM penalty term
β̃ , Proximal approximation penalty term

F , i.e., projF (x) := arg miny∈F‖y − x‖. Depending on the
context, |.| will denote the absolute value of a scalar or the
cardinal of a set. Table II summarizes the main notation used
in the paper.

A. User Model

We assume that the users might need different categories of
services, e.g., Virtual Reality (VR) service, online gaming,
autonomous driving, etc. To balance their demand, they have
to subscribe to one of the ASPs. Let K denote the set of all
the services that are available to the users. N c

k represents the
number of users who need service type k in cell c; vector
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[N c
1 . . . N

c
K ] denotes the distribution of users in cell c for each

of the K services.

We consider that each user is opportunistic and free to switch
from one ASP to another, which is equivalent to choosing one
slice among the set of available slices providing the same
application at its base station. The user chooses the slice (or,
equivalently, the ASP) that offers the better trade-off, i.e., the
higher QoS at the lowest price. We model the utility of each
user of service type k served by ASP s ∈ S in cell c as [12]

νcsk(ncsk, q
c
sk, psk) = log

(
qcsk
ncsk

)
− psk, (1)

where qcsk is the QoS for service type k provided by ASP s in
cell c, ncsk is number of service type k users connected to ASP
s, while psk is the subscription fees charged by ASP s for its
service k. We assume that the service fees charged by each
ASP is the same across all cells. The use of a logarithmic2

(concave) function in QoS to model the user’s utility means
that the users’ satisfaction level saturates as the QoS increases,
which is coherent with the economic principle of diminishing
marginal returns. In turn, the ASP QoS depends on its resources
inventory availability. We assume that each ASP applies a
scheduling policy to distribute its resources among the users,
in order to achieve equal QoS among them, in the long run.

Remark 1. In the user’s utility function (1), psk can be broadly
interpreted as the service fee charged by any ASP s ∈ S, for
any service k ∈ K. This constant term might also cover other
costs, like the entry cost or the switching cost that the ASPs
might charge the users for churning from one supplier to
another. In sophisticated formulations, the service price could
be non linear and defined through some convex functions.

B. Application Service Provider Model

We suppose that the ASPs offer different types of services to
the users and let Ks denote the set of the services provided
by each ASP s to the users, and for each service type, ASPs
operate through a separate slice. The ASPs aim to maximize
their number of subscriber ncs = [ncs1 . . . n

c
sK ], by attracting

users with a better QoS and lower price. We assume that the
QoS provided by each ASPs depends on the resource inventory
available at the slice and is defined according to the relationship
qcsk , qcsk(dcsk). Let dcks , (dcsm)m∈Mc denote a bundle of
resources available with ASPs s. dcskm catpures the amount
of resource type m acquired by ASP s for slice k at cell c.
We assume that for all c ∈ C, k ∈ K and s ∈ S, the function
qcsk (dcsk) is concave non decreasing in dcsk. This assumption is
classical in economics, reflecting the principle of diminishing
marginal returns.

Each ASP s ∈ S collects revenue from the fees paid by its
subscribers. The expected revenue of ASP s over the network

2The choice of a logarithm function captures the fact that the ASPs achieve
a proportional fair allocation between the users in the long run.

is defined as

Rs =

(∑
c∈C

∑
k∈K

pskn
c
sk

)
. (2)

Each ASP needs to pay for the resources it leases from the
NSP. Let ωcm be the price per unit of resource of type m
charged by the NSP, at base station c. Let dcs,m =

∑
k∈K d

c
skm

denotes total amount of resource of type m allocated to ASPs
s at cell c

The total cost each ASP s needs to pay to the NSP for
resource activation is therefore

∑
c∈C
∑
m∈Mc ωcmd

c
s,m. We

define the profit gained by ASPs as a quasi linear utility function

Us = Rs −
∑
c∈C

∑
m∈Mc

ωcmd
c
s,m. (3)

Depending on the ASPs’s’ budgets, we consider two possible
cases in the following.

In Case I, we assume that each ASP s has a finite budget
Bs, which captures the market (purchasing) power of the ASP.
Another relevant interpretation in the context of network slicing
is that it represents the ASP’s priority or a fixed share of the
available resource pool, such that

∑
s∈S Bs = 1. In this case,

each ASP s must satisfy
∑
c∈C
∑
m∈Mc ωcmd

c
s,m = Bs. This

budget constraint makes ASP s’s decision variables coupled
over the cells c ∈ C. As a result, Case I can not be decomposed
over each cell.

In Case II, we assume that ASP s has no bound over its
budget. Its strategy set is defined as the set of vectors ds such
that dcs,m ≥ 0,∀m ∈Mc,∀c ∈ C. A set I of additional linear
coupling constraints can be included in the form gi(d) ≤
0,∀i ∈ I. Note that contrary to Case I, Case II can be
decomposed over each cell.

C. Resource Allocation and Pricing Problem

In this section, we discuss the central problem that we address
in this paper. We observe from equation (2) that if an ASP
wants to increase its market share, it needs to propose to EUs
the best QoS at the lowest price. Indeed, at the lower level, EUs
will choose to subscribe to the ASP that provides the best QoS
and lowest price. The resource inventory available with the
ASP characterizes their service performance: larger resources
availability with the ASP guarantees a better QoS. However,
the resources available with the NSP are limited, resulting in
double-sided competitive interactions between the ASPs: one
side of the interactions captures the competition for service
provision, while the other side represents the competition for
resource procurement. Undoubtedly, allocating and pricing
resources in such a double-sided competitive environment is a
significantly challenging task. In this work, our primary focus
is on designing a resource pricing and allocation mechanism
for the communication marketplace, which maximizes the
network resources utilization and assigns slice tenants with their
favourite bundle. In the next section, we model the interactions
between users, ASPs and NSP as a generalized Stackelberg
game involving coupling constraints at the lower level.
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III. GAME THEORETIC MODEL

We assume that each user is utility-maximizer and selfish, and
takes decisions to maximize its profit. From (1), we observe
that the utility of each user depends on the total number of
users of the ASP. On the one hand, as the number of users
connected to the ASP increases, the utility of the user decreases.
Therefore, the decision made by each user is also influenced
by decisions taken by the other users. On the other hand, ASPs
maximize their revenues by attracting the maximum number
of users. Naturally, each ASP anticipates the users’ behaviour
while computing their strategy. Therefore, it is highly expected
that users and ASPs exhibit strategic behaviors. In our work,
the ASPs take selfish decisions while anticipating the rational
reactions of the users. We model the interactions between the
users and the ASPs as a generalized Stackelberg game, where
the ASPs act as leaders while users react rationally as followers,
computing their best responses to the signal sent by the ASPs.
In the first stage, ASPs compete in terms of QoS to attract the
maximum number of users. In the second stage, users optimally
select their ASPs to maximize their utility given prices and
QoS offered by ASPs.

In classical game theory, Nash equilibrium is the most
popular solution concept to analyze non-cooperative game
solutions. This concept is based on the assumptions that each
player has an exact knowledge about all other players’ strategies
at the equilibrium, and no player has an incentive to deviate
from its own strategy at equilibrium. In many cases, knowing
the exact information about all other players equilibrium
strategies is a strong assumption, particularly when there are
many users, and information about the strategy profile of all
opponents is rarely perfectly known. In light of these limitations,
we model the interactions between the users as a population
game that extends the formulation of a non-cooperative game
by incorporating the notion of population.

A. Multi-Population Game E Among Users

The population game provides an alternative to the classical
equilibrium approach by involving a dynamic model. Unlike
a single-play game or repeated games where all agents take
their decisions simultaneously and repetitions occur at regular
time periods, in a population game, each agent revises its
decision sporadically, and the decision made by the revising
agent only depends on the current system state and available
payoff opportunities. Now for each cell c, and each service
type k we define the population game Eck as presented in the
Fig. 2

• Population: set of users requesting service type k, N c
k :=

{1 . . . N c
k} in cell c.

• Strategy: it is the choice of ASP s ∈ S that each user in
cell c opts to join.

• Utility: the utility achieved by each user of ASP s ∈ S
with service type k is equal to νcsk.

Remark 2. To simplify the notation and because the problem is
decomposable over the set of services, we remove the subscript

k, used for denoting service type k, from the mathematical
analyses in the rest of the paper (unless explicitly specified).

In a population game, each agent revises its decision
occasionally after some random duration of time. Whenever
an agent reconsiders its decision, it depends on the system
state and payoff opportunity available at that time. A general
model of decision of the game is based on the concept of
revision protocol. It is a mapping that translates the current
population state (i.e., distribution of user) and available payoff
(i.e., utilities (1) ) into a switching rate which determines when
users might update their choice of provider. Let τ cs,s′ (n

c, U c)
be the revision protocol which defines the switching rate
at which users switch their choice from ASP s to ASP s′,
given population state nc = [nc1 . . . n

c
S ] and utility vector

νc = [νc1 . . . ν
c
S ]. Let Nc =

{
nc|
∑
s∈S n

c
s = N c

}
define the

set of all possible population states. Population game E with
revision protocol τ generates a continuous time evolutionary
process on set Nc defined as

ṅcs =
∑
s′

ncs′τ
c
s′,s − ncs

∑
s′

τ cs,s′ . (4)

The first-term in the right-hand side of equation (4) measures
the rate at which users connect to ASP s. The second term
measures the rate at which the portion of the population
connected to ASP s disconnects. A different choice of revision
protocol results in a different dynamics. In this work, we
assume that the users follow the pairwise proportional imitation
behavior, e.g., after every random interval of time, each user
interacts with its opponents (i.e., other users), and only if
users meet an opponent with a higher utility than its own, it
imitates the opponent with a probability proportional to the
utility difference. The switching rate at which users in cell c
switch from ASP s to ASP s′ takes the form

τ cs,s′ =
ncs′

N c
[νcs′ − νcs ]+ . (5)

After replacing τ cs,s′ in (4) with (5) and after some analytical
calculations detailed in Appendix C we get the replicator
dynamics

ṅcs = ncs

[
νcs −

1

N c

∑
s′

ncs′ν
c
s′

]
. (6)

An Evolutionarily Stable Strategy (ESS) characterizes the
equilibrium solution concept for population games. Once the
evolutionary process reaches an ESS, the population state will
not change. It is defined as the fixed point of the dynamical
system defined through equation (4).

Proposition 1. For all c ∈ C and for any bundle of resources
available with ASP s, the replicator equation (6) admits a
unique evolutionary equilibrium n̂s. Moreover, the number of
users n̂cs in cell c associated with ASP s at the equilibrium
point can be defined as

n̂cs =
N cqcse

−ps∑
s′∈S

qcs′e
−ps′

. (7)

Proof. The replicator equation (6) is nothing but a set of
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Fig. 2. Application service providers and end users interactions as a generalized
Stackelberg game.

ordinary differential equations (ODE). The equilibrium is the
stationary point of ODE. Hence, to show that the replicator
dynamics admits a unique equilibrium point, it is sufficient
to show that the right-hand side of (6) is continuously
differentiable and that it admits a unique stationary point [34].
Replacing νcs , ν

c
s′ from (1) in (6), we derive analytically the

equilibrium point expression (7). A detailed proof is provided
in Appendix A.

IV. STACKELBERG GAME BETWEEN SERVICE PROVIDERS
AND USERS

In our game-theoretic formulation of the communication serivce
market, the ASPs are the leaders, and the users are the followers
as described in Fig. 2. We have proved in Section III that
the equilibrium of the population game Ec between the users
admits a unique solution, and the distribution of users at
the equilibrium point is derived relying on the closed form
expression (7). In this section, we model the interactions
between the ASPs as a non-cooperative game.

We note that the analytical expression of the number of
users n̂cs in cell c of ASP s at equilibrium is very similar to a
contest success function from the well known TC framework
[35]. The TC framework is commonly used in the economics
literature to model strategic interactions between two or more
competing agents. The basic contest framework consists of
competing agents who expend costly resources to win a prize
(a contest). Given the efforts exerted by all the agents, the
probability of an agent i winning a prize is defined by the
contest success function (CSF). Typically, the CSF function
is defined as ρi(x) = (xi)

r∑
i′ (xi′ )

r where xi is the effort made
by an agent i and r is a parameter. For example, r = 1 is the
well know lottery and r →∞ defines the all-pay auction.

In the communication market context, the ASPs compete
to attract users to their services by exerting effort on costly
resources. The resources acquired by ASPs further reflect their
service quality (a higher QoS is seen as a desirable attribute
in the process of ASP selection). Thus, in our case, the CSF
can be interpreted as the probability that any ASP successfully
attracts an end-user. We call it the slice association probability
function As. It is the probability that given resources expended

by all ASPs, a user will associate with ASP s. For our model,
we rely on a more general and multi-resource CSF function or
slice association probability function

Acsk(dc, p) =
f cs (dcsk, psk)∑

s′∈S
f cs′k (dcs′k, ps′k)

,∀s ∈ S,∀c ∈ C,∀k ∈ K.

(8)

Remark 3. Bernstein and Federgruen proposed a very well
known general equilibrium model, named as attraction model,
for industries with price and service competition in [36]. It is
very similar to our slice association probability function.

In (8), the number of potential users in each cell as well
as the slice association probability for each slice, might vary
from cell to cell. The expected number of users choosing ASP
s is defined as∑
c∈C

∑
k∈K

N c
kA

c
sk(dc, p) =

∑
c∈C

∑
k∈K

N c
kf

c
s (dcsk, psk)∑

s′ f
c
s′k (dcs′k, ps′k)

. (9)

Incorporating (7) and (2) in (3), we get

(10)
Us(ds, d−s) =

∑
c∈C,K∈K

psk
N c
kf

c
sk(dcsk, psk)∑

s′∈S
f cs′k(dcs′k, ps′k)

−
∑

m∈Mc

ωcmd
c
s,m.

In this work, we set

f csk(dcsk, psk) = qcsk(dcsk)e−psk . (11)

We assume that fsck(dcsk, psk) is an increasing concave
function in dcsk for a fix value of psk, while it is a convex
decreasing function in psk given fix value of dcsk. The function
translates the effort exerted by ASP in terms of resource and
prices charged by them to the total utility exprienced by its
potential subscribers. We assume that ASPs are selfish, and
that each ASP aims at maximizing its profit. They take into
account the decisions of the other ASPs when computing
their own decision. To theoretically analyze the outcome of
these strategic interactions, we define the non-cooperative game
G ,

〈
S, (Fs)s∈S , (Us)s∈S

〉
as follows:

• Player set: the set of application service providers S.
• Strategy: the vector of resource demand ds =(

d1
s, . . . , d

C
s

)
where dcs is the amount of resource to be

requested by each base station c. The strategy set for each
ASP s is Fs.

• Utility: the utility of each ASP s is defined as Us.

We study the competition between ASPs in terms of QoS,
i.e., how ASPs strategically spend their budget on the resources
to attract the maximum number of users and, in turn, maximize
their profits. The ASPs’ profit depends on both their individual
decision and the decision taken by the other ASPs. Let ds be
the vector of strategy of ASP s, d−s , col

(
(ds′)s′ 6=s

)
is the

stack vector which contains the vector of strategies of all the
ASPs in S except s. The decision problem of each ASP s is
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defined as

Qs maximize
ds∈Fs

Us(ds, d−s).

To study the outcome of the non-cooperative game G, we
recall the solution concept of Nash equilibrium (NE)

Definition 1. [37] A strategy profile d∗ = (d1
∗, . . . , dS

∗) is a
Nash equilibrium of the game G if

∀s ∈ S, Us(ds∗, d−s∗) ≥ Us(ds, d−s∗),∀ds ∈ Fs. (12)

Here, (ds, d−s
∗) denotes the strategy profile with sth element

equals ds and all other elements equal ds′
∗ (for any s′ 6= s).

In the next section, we analyze the existence and uniqueness
of the Nash equilibrium (NE) solution of the non-cooperative
game G.

V. EXISTENCE AND UNIQUENESS OF THE NASH
EQUILIBRIUM

In this section, we establish the existence and uniqueness of
the NE of game G. To prove the uniqueness of the NE, we rely
on the concept of diagonally strict concavity (DSC) introduced
by Rosen [38]. Intuitively, DSC is a generalization of the idea
of convexity to a non-cooperative game setting.

Definition 2 (Diagonal Strict Concavity [38]). A game with
profiles of strategies d and profiles of utility functions U is
called diagonally strict concave (DSC) for a given vector r if
for every distinct d̄ and d̂,[

g(d̄, r)− g(d̂, r)
]

(d̄− d̂)′ < 0, (13)

with g the concatenation of the weighted gradients of the
players’ utility functions

g(d, r) =
[
r1∇1U1(d), r2∇2U2(d), . . . , rS∇SUS(d)

]
, (14)

where ∇sUs(d) denotes the gradient of utility of player s with
respect to his own strategy ds

Theorem 1. The game G admits a unique NE.

Proof. The utility of each ASP in game G is continuous,
increasing, and concave, while the strategy space for each
ASP is convex and compact. Therefore, the existence of an
equilibrium for the game follows from [38], Thm.1. To prove
the NE uniqueness, we note that if the players’ utilities in the
game G satisfy the DSC property, then G admits a unique NE
(see [38], Thm.2).

Let G(d, r) be the Jacobian of g(d, r) with respect to d,
where d is any profile of strategies. In order to prove the
strict DSC of g(d, r), from [38], Thm.6, we note that it is
sufficient to prove that the symmetrized version of the pseudo-
Jacobian, i.e., Ĝ(d, r) , G(d, r)+G(d, r)′, is negative definite
over the domain of interest. To show that Ĝ(d, r) is negative
definite, we must prove that the following three conditions
hold simultaneously:

C 1. each Us(d) is a regular strictly concave function of ds
(i.e., its Hessian is negative definite).

C 2. each Us(d) is convex in d−s.

C 3. there is some r > 0 such that function σ(d, r) =∑
s rsUs(d) is concave in d.

The negative definiteness of [G(d, r)+G′(d, r)] follows from
[39], Lem.1. We first consider the case of a single base station
c with a single population demanding service k and show that
Ĝck(d, r) is negative definite for this case. We compute the
Hessian (HsU

c
sk) of utility of any ASP s with respect to ASP

s owns strategy

(15)

HsU
c
sk = −2

psk
∑

s′∈S,s′ 6=s
f cs′k( ∑

s′∈S
f cs′k

)3

×

[
(∇sf csk)T∇f csk −Hs(f

c
sk)
∑
s′∈S

f cs′k

]
.

On the right hand side of (15), matrix (∇sf csk)T∇sf csk is
positive semi-definite, where ∇sf csk is the gradient row vector
of f csk with respect to ASP s’s own strategy dcsk, Hs(f

c
sk) is the

Hessian of f csk with respect to dcsk and it is negative definite as
f csk is concave. Thus, the Hessian of utility HsU

c
sk is negative

definite and satisfies the first condition C1.
We still need to show that the utility of each ASP s is convex

in the strategy of all other ASPs. For that purpose, consider
the Hessian of utility of ASP s with respect to strategy of all
other ASPs

H−sUs = 2
f csk( ∑

s′∈S
f cs′k

)3 [M c
sk − diag−s {H(f cuk)}] , (16)

where is M c
sk block matrix and uvth block is defined as

M c
skuv = (∇uf cuk)T∇vf ckv where u, v 6= s, u, v, s ∈ S.

(17)

∇uf cuk is the gradient row vector of f cuk with respect to ASP
s’s own strategy and diag−s {H(f cuk)} is the block diagonal
matrix with block u where H(f cuk) is the Hessian of f cuk with
respect strategy vector of u itself ∀u, u 6= s, u ∈ S. In right
hand side of equation (16) matrix M c

sk is positive definite
and the block diagonal matrix diag−s {H(f cuk)} is negative
definite as the each diagonal matrix element. H(f cuk) is negative
definite, thus H−sUs is positive definite, which satisfies the
condition C2.

Finally, by choosing rs = 1
psk
∀s ∈ S we check that

σ(d, r) ,
∑
s rsUs(d) is concave in d, therefore satisfying

the condition C3.
We now want to extend the previous proof to the multi-

service case. We have already shown that Ĝck is negative definite
for any single service k. For K service types consider a Ĝc

symmetrized version of the pseudo Jacobian, after arranging
colunms and rows we get (see [40], Cor.2)

(Ĝc) = diag
{
Ĝc1, . . . , Ĝ

c
k, . . . Ĝ

c
K

}
.
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The above Ĝc matrix is negative definite as each diagonal
matrix is negative definite. Similarly extending results to multi-
cell scenario we show that Ĝ matrix is negative definite

(Ĝ) = diag
{
Ĝ1, . . . , Ĝc, . . . ĜC

}
.

which proves the DSC property holds for the multi-cell-multi-
service setting. By applying [38], Thm.2, we prove that the
NE d∗ solution of the game G is unique.

VI. RESOURCE PRICING AND EQUILIBRIUM

We have shown in the previous section that there exists a unique
NE solution of the non-cooperative game G. We assume that
the capacity of the resource released by the NSP in each
cell is finite. Given the per-unit prices for resources decided
by the NSP, the total resource requested by the ASPs at
the NE of G may violate the infrastructure capacity. Thus,
the NSP’s primary concern is how to efficiently allocate
the finite capacity constrained resources to competing ASPs.
The desired allocation must satisfy all the ASPs’ constraints
and simultaneously maintain high resource utilization. In this
regard, we assume that the NSP optimizes the unit price of
each resource such that at the NE of the game G each ASP
utilizes its entire budget and no resource remains leftover,
i.e, the total demand of resources matches the available
infrastructure capacity. In market economics, this pricing
problem is formulated as a market clearing problem, e.g, a
Fisher market, where the market prices are settled in such a
way that the amount of resources requested by the buyers is
equal to the amount of resources supplied by the sellers. We
propose two approaches, introduced in Section II B, to deal
with this challenge depending on whether the ASPs’ budget is
binding.

One way to compute the market equilibrium is through
Walras’ “tâtonnement” process, i.e., if the demand exceeds
the resource capacity, the market operator increases the
resource’s price. Conversely, the market operator decreases
the resource’s price when the demand is smaller than the
resource capacity. The process is repeated until demand equals
supply (resource capacity). The disadvantage of this approach
is that its outcome (known as a general equilibrium) relies
on the strong assumption of perfect competition, which in
practice does not hold. To overcome this limitation, we use the
approach introduced by Shapley and Shubik in their pioneering
work [41], also known as Trading post or share constrained
proportional allocation (SCPA) scheme[3]. Now we formally
define the trading post mechanism.

A. Trading Post Mechanism

In the trading-post mechanism, each player (i.e, ASP) places a
bid on each type of resource. Once all ASPs have placed their
bids, each resource type’s price is determined by the total bids
placed for that resource. Precisely, let ASP s submits a bid
bcsm to resource m at cell c. The price per unit of resource m
at cell c is then set to

∑
s∈S b

c
sm

Dc
m

. Accordingly, ASP s receives

a fraction of dcsm in return to his spending of bcsm

dcsm =

{
bcsmD

c
m∑

u∈S b
c
um

if bcsm > 0,

0 otherwise.
(18)

After replacing dcsm in (3) and (Qs) in terms of bids, the
decision problem of each ASP s can be written as follows

Q̂s maximize
bs

Us (bs, b−s) ,

subject to
∑
c∈C

∑
m∈Mc

bcs,m ≤ Bs, bcs,m ≥ 0.

We may consider two possible behaviours for the ASPs. First,
they are price takers, i.e., they accept the prices decided by the
price setter (market operator), and they only act strategically
in terms of QoS by optimizing their demand in the bundle
resources. Second, ASPs are price makers, i.e., they anticipate
the effect of their demand on the price of the bundle of
resources. The trading post mechanism induces a new non-
cooperative game Ĝ defined as follows:

• Player set: the set of ASPs S.
• Strategy: the vector of bids bs =

[
b1s, . . . , b

C
s

]
where bcs is

the bid to be submitted to cell c. ASP s strategy set is Fs ,{
bs|bcsm ≥ 0,∀m ∈Mc, c ∈ C,

∑
c∈C

∑
m∈Mc

bcs,m = Bs

}
.

• Utility: The utility of each ASP s is Us.

To study the outcome of the mechanism, we consider the
standard notion of NE, applied to the trading post mechanism

Definition 3. A multi-bid strategy b∗ = (b∗1, . . . , b
∗
S) is called

a NE of the game Ĝ if

∀s ∈ S, Us(b∗s, b∗−s) ≥ Us(bs, b∗−s), bs ∈ Fs. (19)

Here, (bs, b
∗
−s) denotes the strategy vector with sth element

equals bs and all other elements equal b∗v (for any v 6= s).

For the proposed mechanism, a NE solution of game Ĝ
constitutes a stable bidding policy where each ASP maximizes
its utility and the NSP implements the resource allocation
mechanism (18). We investigate conditions for the existence
and uniqueness of the NE solution of the game Ĝ. This requires
complex calculations. Thus, to keep the analysis tractable, we
restrict the problem to a single resource (radio resource). We
assume that the QoS provided by ASP s in cell c is given
by qcs , (dcs)

ρcs where ρcs is the sensitivity parameter and
0 < ρcs ≤ 1. Such a type of function has been used in [24] to
model the effect of users sensity towards their service provider
selection. We replace qcs = (dcs)

ρcs in (11) and from (8) we get

Acs(d
c, p) =

(dcs)
ρcs e−ps∑

s′∈S
(dcs′)

ρc
s′ e−ps′

. (20)

Proposition 2. If for a single resource, the QoS provided by
ASP s in cell c is defined by qcs = (dcs)

ρcs and 0 < ρcs ≤ 1,
then the game Ĝ admits unique NE.

Proof. If the QoS provided by ASP s in cell c is defined by
qcs = (dcs)

ρcs and 0 < ρcs ≤ 1, then the ASPs’ utility functions
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satisfy the three conditions C1,C2 and C3. The rest of the
proof is the same as the proof of Theorem 1.

Moving ahead, we compare the profit gained by ASPs at the
NE of the game with the baseline static proportional allocation
scheme (SS), i.e., the allocation where each resource is allocated
to a ASP s in proportion to its budget, e.g., Bs∑

s′∈S Bs′
.

Proposition 3. For two application service providers, the
revenue gained under a dynamic resource sharing scheme
is at least equal to the revenue gained under a proportional
allocation scheme

Proof. The proof is provided in Appendix B.

We have seen in the first part of this section, that when
ASPs are constrained by budgets, the resource pricing can
be implemented by a trading post mechanism. However, this
mechanism requires a third-party player (market operator) to
centralize the bids made by all the ASPs, and thus can only
lead to semi-decentralized implementations. Furthermore, the
network capacity constraints are only implicitly taken into
account through the budget constraint.

In the next section, we design a pricing and resource
allocation scheme for Case II introduced in Section II B,
that explicitly takes into account network capacity constraints
and can be implemented in a fully distributed way. Case II
gives rise to a generalized Nash equilibrium problem (GNEP)
involving global coupling constraints, which take into account
the network finite capacities. To solve the GNEP, we rely
on a variational reformulation of the non-cooperative game,
which leads to a unique variational equilibrium (VE). Using
that property, we implement two algorithms to compute the
VE: the first one requires an extended game reformulation
of the GNEP and is based on asymmetric projected gradient
descent methods; the second one relies on an extension of the
alternating direction method of multipliers (ADMM).

B. Pricing Game

We consider a non-cooperative game where, similar to game G,
each ASP aims at maximizing its profit by requesting resources
under a set of local constraints that are not binded by a finite
budget. However, we now assume that the ASPs take into
account the infrastructure capacity while requesting resources,
therefore giving rise to a global coupling constraint for each
cell and each resource available within that cell∑

s∈S
dcsm ≤ Dc

m,∀c ∈ C,m ∈M. (21)

Let F̃s , {ds|dcsm ≥ 0,∀m ∈ Mc, c ∈ C,Ks(ds) ≤ 0}.
The decision problem faced by each ASP in this new non-
cooperative game can be formulated as a parametrized opti-
mization problem with local and global coupling constraints

Qs maximize
ds∈F̃s

Rs(ds, d−s),

subject to
∑
s∈S

dcsm ≤ Dc
m,∀c ∈ C,m ∈M, (λcsm)

(22)

where λcsm at the right of (22) and between brackets, is the
Lagrange multiplier (shadow price) of the coupling constraint
(22).

We define a new non-cooperative game Gp ,〈
S,
(
F̃s
)
s∈S

, (Rs)s∈S

〉
, where the set of players and

utility is the same as in game G. However, the strategy set
of the players are coupled through the capacity constraint
(22), giving rise to a GNEP. Consider the generalized Nash
equilibrium (GNE) as the solution to this game.

Definition 4. [42] A strategy profile d∗ = (d1
∗, . . . , dS

∗) is
called a GNE of the game Gp if

∀s ∈ S, Rs(ds∗, d−s∗) ≥ Rs(ds, d−s∗), (23)

ds ∈ F̃s, dcsm ≥ 0,∀m, c and
∑
s∈S d

c
sm ≤ Dc

m,∀c ∈ C,m ∈
M.

Due to coupling, solving directly Gp requires coordination
among possibly all ASPs, which might be hard to enforce in
practice. To solve Gp, we will make use of the duality approach
as a natural way to obtain a hierarchical decomposition of the
GNEP. To that purpose, we start by characterizing the GNE
solutions of game Gp in terms of KKTs [42]: any strategy
profile d is a GNE of the game Gp if and only if it satisfies
the KKT conditions, which are: ∀s ∈ S, ∀c ∈ C, ∀m ∈Mc,

∂Rs
∂dcsm

(d) = λcsm,

λcsm

(∑
s∈S

d
c

sm −Dc
m

)
= 0,

with λcsm ≥ 0, ds ∈ F̃s.

(24)

In the above KKT conditions, we are primarily interested
in λcsm, the Lagrange multipliers of (22), as these Lagrange
multipliers can be interpreted as shadow prices for the resource
allocation and can be used in the game Gp as the evaluations by
the ASPs of the prices charged by the NSP per resource unit.
However, notice that if implemented without coordination, the
Lagrange multipliers for each ASP are different, resulting in
possibly discriminatory pricing. Moreover, there can be multiple
possible GNEs. In fact, there are infinite GNEs solutions of Gp
in this case. Nevertheless, in the following discussion, we show
that there exists an equilibrium solution to Gp with a special
characteristic: it is unique and gives rise to the same valuation
among the players. Rosen [38] has introduced concept of such
equilibrium in his seminal work and called it as normalized
Nash equilibrium

Definition 5. A r-normalized equilibrium point is such that
there exists a λcm > 0 associated to each resource at each cell
so that for all end users λcsm = λcm/rs, for a suitable vector
of nonnegative coefficients vector r.

It is very common in the literature, to relate normalized Nash
equilibrium to the concept of variational equilibrium (VE) [42].
We will use both concepts without distinction in the following.
The parameters {r1 . . . rS} intuitively show the proportion of a
burden on ASP s for satisfying the coupling constraints among
all other application service providers in the set. Notice, λcm is
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the same for all the ASP and thus can be treated as the base
price. Next, we prove that such r-normalized Nash equilibrium
(variational equilibrium), is unique for game Gp.

Corollary 1. The Pricing Game Gp admits a unique normalized
equilibrium for rs = 1

ps
.

Proof. In the proof of Theorem 1, we have shown that the
Game G has the DSC property ∀c ∈ C and ∀c ∈M and any
ωcm ≥ 0. The utilities of players in the Game Gp (i.e. revenues)
are the same as in G with ωcm = 0. Hence, the Pricing Game
Gp also satisfies the DSC property . The proof is a consequence
of [38], Thm.4.

Theorem 2. Every r-normalized Nash equilibrium of the
Pricing Game Gp with shadow prices λcsm =

λc
m

rs
for all

s ∈ S,m ∈ Mc, c ∈ C is a NE for the corresponding Game
G with ωcm = λcm,∀m ∈Mc,∀c ∈ C.

Proof. We reformulate Gp using an augmented system-like
utility function, that we call the Nash game (NG)-game utility
function [43]. The NG utility function is defined as a two
argument function

R̃(d;x) ,
S∑
s=1

rsRs(d−s, xs) ,∀x ∈ F̃ ,
∏
s

F̃s, (25)

where x , (xs)s and d−s defined as before. We note that
Definition 5 can be equivalently formulated with respect to the
NG utility function. A vector d∗ ∈ F̃ is called a NE solution
of this game if its NG utility function R̃ satisfies

R̃(d∗; d∗) ≥ R̃(d∗;x) ∀x ∈ F̃ . (26)

The above condition can equivalently be written as follows,
for given d∗−s

S∑
s=1

rsRs(d
∗
−s; d

∗
s) ≥

S∑
s=1

rsRs(d
∗
−s;xs),∀x ∈ F̃ . (27)

Note that the NG utility function R̃ is separable in the second
argument x for any given first argument d∗. The existence of
NE is guaranteed by Theorem 2 [43]. Now to extend the NG
utility function formulation to coupled constrained game, i.e.,
pricing game, we use the fact that the pricing game is related to
a constrained maximization of NG utility function with respect
to the second argument keeping the first argument as a fixed
point solution. Consider that the ASPs maximize their revenue
subject to coupled constraints gi(d) ≤ 0, i ∈ I , C × M
where gi(d) , Dc

m −
∑
s′ d

c
s′m. Then

R̃(d∗; d∗) ≥ R̃(d∗;x) x ∈ F , g̃(d∗−s, xs) ≤ 0, (28)

where g̃(d∗;x) =
∑S
s=1 g(d∗−s, xs). We introduce the aug-

mented Lagrangian function of the constrained NG utility
maximization problem, with λ a Lagrange multiplier vector

L̃(d;x;λ) , R̃(d;x) + λT g̃(d;x). (29)

In our case ∀s ∈ S, Rs is increasing concave and continuously
differential, and g is affine. Thus, all the constraints are active
at the equilibrium. If d∗ is an equilibrium solution of the

pricing game Gp, then by [43], Lem.2, there exists a unique
λ∗ > 0 such that ∇dL̃(d, x, λ∗) = 0 and d∗ maximizes the
Lagrangian L̃, over x ∈ F̃ as a fixed point.

Relying on the duality framework, we prove that we can
decompose the coupled constrained game Gp into the equivalent
game with no coupled constraints, and indeed the equivalent
game coincides with the non-cooperative game G with ωcm =
λcm. To that purpose, we consider the dual cost function D(λ)
defined as

D(λ) , L̃(d∗; d∗;λ). (30)

Equivalently, relying on the notion of fixed point, the dual cost
can be written as

D(λ) ,

[
max
x∈Ω

L̃(d;x;λ)

] ∣∣∣∣
x=d

. (31)

The dual NG can then be defined as the minimization of the
dual cost function

D∗ = min
λ≥0

D(λ). (32)

The Lagrangian function L̃ is separable over each ASP. Thus,
the dual function can be separately written for each player as

D(λ) ,
∑
s∈S

[
max
xs∈Ωs

Ls(d−s;xs;λ)

] ∣∣∣∣
xs=ds

(33)

=
∑
s∈S

Ls
(
u∗−s(λ), u∗s(λ), λ

)
, (34)

where

Ls(d−s;xs;λ) = rsRs(d−s;xs) + λT g(d−s;xs). (35)

From [43], Thm.3, we prove that D(λ) can be obtained by
solving the relaxed game with utility function Ls and no
coupled constrains. Indeed, that relaxed game is the game
G with ω = λ, which concludes the proof.

This approach enables us to reformulate the GNEP Gp, as a
lower-level non-cooperative Nash game with utility function Ls
(Us) and a higher-level optimization problem for coordination.

C. Extended Pricing Game

Paccagnan et al. addressed decentralized computation of
variational equilibrium (VE) for aggregative games with
quadratic utility functions [44], [45]. They relaxed the coupling
constraints of the generalized Nash equilibrium problem by
including a penalty term in the original utility functions. A
VE is then computed applying asymmetric gradient algorithms
with constant step size. The purpose of the penalty term is
to assign large penalties to deviations from the constraints.
The penalty reformulation helps avoid the high computational
complexity of conventional optimization reformulations or the
requirement of projection steps. Traditionally, drawbacks is
that penalty method convergence might be quite sensitive on
selecting penalty parameters. To overcome this issue, we follow
the formulation proposed in the [46]. We consider a game with
S + 1 players, where the first S players are the ASPs and the
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(S + 1)th player is the NSP, who controls the λ price vector.
We define the decision problem of the NSP, QS+1 as below

QS+1 maximize
λ≥0

∑
c

∑
m

λcm

(∑
s

dcsm −Dc
m

)
. (36)

The idea behind using
∑
c

∑
m λ

c
m (
∑
s d

c
sm −Dc

m) as the
utility for NSP in the above decision problem, is that it solves
complementary condition from KKT (24). For the remaining
S players the decision problem is

Qs maximize
ds≥0

Rs(ds, d−s)−
1

rs

∑
c

∑
m

λcmd
c
sm ∀s ∈ S.

We call Q+ , {Q1, . . . , QS+1} the extended pricing game.
The difference between the extended pricing game and the
pricing game Gp is that in the former, there are no coupled
constraints – complementary conditions are treated as the utility
of an additional player (NSP).

Proposition 4. If d is a r-normalized equilibrium of the pricing
game, then there exists λ ≥ 0 such that (d, λ) is an equilibrium
of the extended pricing game.

Proof. We have already proved that the pricing game Gp is
monotone on F̃ , which implies that the extended pricing game
is also monotone on F̃ × R, the proof follows from [46],
Prop.4.

VII. ALGORITHMS TO COMPUTE MARKET EQUILIBRIA

In this section, we introduce two semi-decentralized algorithms
to compute the equilibria solutions of the trading post mecha-
nism and extended pricing game, respectively. Computational
and privacy issues might limit the implementation of such
algorithms on medium to large-scale problems. To mitigate
these issues, we propose a fully distributed proximal algorithm,
inspired from the inexact-ADMM, to compute the VE of the
pricing game Gp.

A. Semi-Decentralized Learning Algorithms

We have proved in Section V that G admits a unique equilibrium
for any price vector decided by the NSP. A similar result also
holds for VI-A when dealing with a single resource. However,
we still need to check whether ASPs can reach this equilibrium
in a decentralized fashion. In this regard, we propose the use
of the dual averaging or mirror–descent method suggested for
continuous action convex games [47]. We proceed by describing
the dual averaging method. In the dual averaging method,
each player, i.e., ASP s estimates its marginal utility or utility
gradient with respect to its own strategy. To increase their
utilities, the players need to take action along the direction
of their utility gradient while maintaining their action in the
feasible action space. In order to achieve this, each player s at
each time step n accumulates its discounted utility gradient in
some auxiliary variable ys

ys(n+ 1) = [ys(n) + αn ObsUs(bs(n), b−s(n))] . (A1)

In the above equation αn denotes the discount factor or step
size. Once the discounted gradient has been accumulated, every
ASP s uses its own updated value of the auxiliary variable, ys,
to take the next feasible action

bs(n+ 1) = Qs(ys). (37)

In turn, each ASP s maps the recent value of auxiliary variable
ys to its decision space Fs using the mapping Qs(ys), e.g.,
Qs can be interpreted as a projection map. The map Qs(ys)
is defined more generically as

Qs(ys) = argmax
bs∈Fs

{〈ys(n), bs〉 − hs(bs)} , (A2)

where hs(b) is a regularization function, also called penalty
function, over the feasible action set Fs. The penalty hs(b)
aims to force the algorithm to converge within the interior of the
feasible domain set. Different definitions of the regularization
functions induce different maps. For instance, the use of l2
norm hs(·) = ‖·‖ as a regularizer, results in the well-known
Euclidean projection map.

For the game G, where application service providers actions
are bounded by the their budgets, we use the Gibbs entropy
function as a regularization function

(38)hs(bs) ,
∑
c ∈C

∑
m ∈M

bcsm log(bcsm).

We replace hs(bs) in equation (A2) by the entropic regulariza-
tion function and after some calculation we get the exponential
mapping

bcsm =
Bs exp(ycsm)∑

c∈C
∑
k∈M exp(ycsk)

. (39)

The induced map Qs(ys) is similar to the well-know Logit
map, where each player distributes its budget (weights) to
different resources depending on exponential of accumulated
discounted gradients.

Algorithm 1 Online Learning Algorithm for Ĝ
Require:

∑+∞
n=0 αn = +∞, αn → 0 as n→ +∞

1: repeat n = 1, 2, . . . ,
2: for each ASP s ∈ S
3: Observe gradient of utility and update
4: ys = [ys + αn ObsUs(bs, b−s)]
5: end for
6: for each ASP s ∈ S
7: for each cell x ∈ C and resource m ∈Mc

8: Play bcsm ←
Bs exp(ycsm)∑

c∈C
∑

k∈M exp(ycsk) .

9: end for
10: end for
11: until ‖(b(n)− b(n− 1)‖ ≤ ε

Theorem 3. If Algorithm 1 satisfies the required conditions for
step size sequence, e.g.,

∑∞
n=0 αn = +∞, αn → 0 as n →

+∞, then it converges to the unique NE of the Game G.

Proof. The proposed exponential algorithm is the special case
of the dual averaging algorithm. If the NE of any continuous
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action convex game is strictly r-variationally stable, then the
converges of the dual averaging algorithm to a unique NE of
the game is guaranteed by [47], Thm. 4.6. Hence to prove the
convergence of the proposed algorithm, it is sufficient to show
that the unique NE of game G is strictly r-variationally stable.
The unique NE b̂ of any convex game is strictly r-variationally
stable if ∀bs ∈ Fs∑

s∈S
rs∇sUs(b)(bs − b̂s) < 0. (40)

As we have already shown in section V, the ASPs’ utility
functions in game G satisfy the DSC for rs = 1

ps
, ∀s ∈ S∑

s∈S
rs

[
∇sUs(b)−∇sUs(b̂)

]
(bs − b̂s) < 0. (41)

We know that for any continuous action convex game, a feasible
point b̂ is a NE of the game if and only if∑

s∈S
rs∇sUs(b̂)(bs − b̂s) ≤ 0. (42)

Inequalities (42) and (41) imply (40), which proves that the
unique NE of game G is strictly r-variationally stable and then
by [47], Thm. 4.6, Algorithm 1 converges to the unique NE
of game G.

For Case II when the ASPs have no bound on their budgets,
we have proved in Section VI B that the resource pricing
scheme can be set up by solving the GNEP Gp. Furthermore,
we have also shown that the VE solution to Gp can be computed
as the solution of an extended pricing game Q+. Now, we
provide an online semi-decentralized learning algorithm that
enables the ASPs and the NSP to reach the VE of Gp. In the
proposed semi-decentralized algorithm, we leverage on the
framework from [48]: the first S players, i.e., the ASPs, follow
similar steps as in Algorithm 1. However, an (S + 1)th player,
i.e., the NSP, accumulates the augmented discounted gradients
of its utility in the auxiliary variable yS+1

yS+1 = λcm + αn

[(∑
s∈S

dcsm − Ccm

)
− θnλn

]
. (43)

Here rationale behind adding an extra term is that the original
game is strictly monotone, and thus convergence is guaranteed
in that case. However, the extended pricing game is just
monotone and therefore, to make the algorithm converge to an
equilibrium point, an additional term must be included [48].
NSP updates the market price by projecting the stored auxiliary
variable on the positive orthant

λcm ← projR≥0

(
λcm + αn

[(∑
s∈S

dcsm − Ccm

)
− θnλn

])
.

(44)

Theorem 4. [48] If Algorithm 2 satisfies the required
conditions for step size sequence, e.g.,

∑+∞
n=0 αn =

+∞, αn → 0 as n → +∞ and for an augmented sequence
θn,

∑N
n=1 αnθn∑N
n=1 αn

→ 0, N → 0, then it converges to the unique
equilibrium of the extended pricing game.

Algorithm 2 Online Learning Algorithm for Q+

Require:
∑+∞
n=0 αn = +∞, αn → 0 as n→ +∞

1: repeat n = 1, 2, . . . ,
2: for each ASP s ∈ S
3: Observe gradient of utility and update
4: ys ← [ys + αn OdsUs(ds, d−s, ωs)]
5: end for
6: for each ASP s ∈ S
7: ds ← projDs

[ys]
8: end for
9: NSP update the resource prices

10: for each Cell c ∈ C
11: for each Resource m ∈M update the base price
12: λcm ← max

[
0, λcm + αn

(∑
s∈S d

c
sm − Ccm

)]
13: end for
14: end for
15: until ‖(d(n), ω(n))− (d(n− 1), ω(n− 1))‖ ≤ ε

B. A Distributed Proximal Algorithm

We assume a fully connected communication graph between
the ASPs, e.g., Γs , S \ {s},∀s ∈ S. We want to compute
the r-normalized Nash equilibrium solution of Gp relying on a
fully distributed algorithm. To that purpose, we set xss , ds
as ASP s’s own action, xs−s as ASP s’s estimate of the other
ASPs’ actions, and xs , col(xss, x

s
−s) as the concatenation of

ASP s’s own action and estimate of the others’ actions. Let
F̃s , {xss|xss ≥ 0, ωTxss = Bs} be the strategy set of ASP
s. Following [49], [50], we decompose the pricing game GP
per agent. Some slack variables (vss

′
)s,s′ and (wss′)s,s′ are

introduced to guarantee the coincidence of the local copies.
Let MS−1 be the matrix made of S − 1 blocks, each one of
them containing the Identity matrix of size

∑
c|Mc|×

∑
c|Mc|.

Each ASP s solves the local optimization problem

min
λs≥0,(wss′ )s′

max
xss∈F̃s,(vss

′
)s′

[
Rs(xss, xs−s)− λTs (xss +MS−1x

s
−s

−D)
]
, (45a)

s.t. xs
′

= vs
′s′′ , ∀s′ ∈ S, ∀s′′ ∈ Γs′ , (αs

′s′′) (45b)

xs
′′

= vs
′s′′ ,∀s′ ∈ S, ∀s′′ ∈ Γs′ , (βs

′s′′) (45c)

λs′ = rs′ws′s′′ , ∀s′ ∈ S, ∀s′′ ∈ Γs′ , (γs′s′′)
(45d)

λs′′ = rs′′ws′s′′ ,∀s′ ∈ S,∀s′′ ∈ Γs′ . (δs′s′′)
(45e)

where rs′ = 1
ps′

and rs′′ = 1
ps′′

,∀s′ ∈ S, s′′ ∈ Γs′ . Note that
we use the convention to have superscript indices for primal
variables, and lowerscript indices for duals of Gp. A solution of
Gp is obtained by assuming that each ASP s solves the partial
dual optimization problem (45) and by identifying xss = ds
and λs = 1

rs
λ. Let ζ > 0 be a scalar coefficient. We follow

the alternating direction method of multipliers (ADMM). To
that purpose, we explicit the Lagrangian function associated
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with (45)

Ls(x
s, {v, α, β}, λs, {w, γ, δ})

:=Rs(xs)− λTs (xss +MS−1x
s
−s −D)

−
∑
s′

∑
s′′∈Γs′

[
(αs

′s′′)T (xs
′
− vs

′s′′) + (βs
′s′′)T (xs

′′
− vs

′s′′)
]

+
∑
s′

∑
s′′∈Γs′

[
γs′s′′(λs′ − rs′ws′s′′) + δs′s′′(λs′′ − rs′′ws′s′′)

]
,

and associated KKTs, which give rise to the following
relationships: αss

′
+ βss

′
= 0 and γss′ + δss′ = 0,∀s′ ∈ Γs.

To update the ASPs’ strategies, we rely
on the augmented Lagrangian associated
with (45): L̃s(x

s, {v, α, β}, λs, {w, γ, δ}) ,

Ls(x
s, {v, α, β}, λs, {w, γ, δ}) − ζ

2

(∑
s′
∑
s′′∈Γs′

(‖xs′ −

vs
′s′′‖2+‖xs′′ − vs

′s′′‖2)
)

+ ζ
2

(∑
s′
∑
s′′∈Γs′

((λs′ −

rs′ws′s′′)
2 + (λs′′ − rs′′ws′s′′)2

)
. Following vanilla ADMM,

the duals in (45) are updated according to the rules

αs
′s′′(t) =αs

′s′′(t− 1) +
ζ

2
(xs
′
(t− 1)− xs

′′
(t− 1)), (46a)

βs
′s′′(t) =βs

′s′′(t− 1) +
ζ

2
(xs
′′

(t− 1)− xs
′
(t− 1)), (46b)

γs′s′′(t) =γs′s′′(t− 1) +
ζ

2
(
λs′(t− 1)

rs′
− λs′′(t− 1)

rs′′
), (46c)

δs′s′′(t) =δs′s′′(t− 1) +
ζ

2
(
λs′′(t− 1)

rs′′
− λs′(t− 1)

rs′
). (46d)

We update the slacks v, w by solving the following opti-
mization problems

vss
′
(t) = arg max

vss
′
L̃s
(
xs(t− 1), {v, α(t), β(t)}, λs(t− 1),

(47a)

{w(t− 1), γ(t), δ(t)}
)
,

wss′(t) = arg min
wss′

L̃s
(
xs(t− 1), {v(t), α(t), β(t)}, λs(t− 1),

{w, γ(t), δ(t)}
)
. (47b)

Assuming that αss
′
(0) = βss

′
(0) = 0 and γss′(0) = δss′(0) =

0 and relying on (46a)-(46d), the slack update rules (47a)-(47b)
give rise to the following closed form expressions

vs
′s′′(t) =

1

2
(xs
′
(t− 1) + xs

′′
(t− 1)), (48a)

ws′s′′(t) =
1

2
(
λs′(t− 1)

rs′
+
λs′′(t− 1)

rs′′
). (48b)

Set Φs ,
∑
s′∈Γs

(αss
′

+ βs
′s) and Ψs ,

∑
s′∈Γs

(γss′ +
δs′s). From (46a)-(46b) and (46c)-(46d), we get that Φ and Ψ
are updated according to the rules

Φs(t) = Φs(t− 1) + ζ
∑
s′∈Γs

(xs(t− 1)− xs
′
(t− 1)), (49a)

Ψs(t) = Ψs(t− 1) + ζ
∑
s′∈Γs

(
λs(t− 1)

rs
− λs′(t− 1)

rs′
). (49b)

Let β̃s > 0 be a penalty factor for the proximal first-order
approximation for s ∈ S.

Following [50], from (48a)-(48b), the primal update rule for

Algorithm 3 Distributed Proximal Algorithm for Gp
Require: ζ > 0, β̃s > 0,∀s ∈ S, εprimalstop , εdualstop , tmax

1: ] Initialization Step
2: Each ASP s builds initial estimate xs(0) ∈ F̃ and λs(0) ≥

0
3: Set αss

′
= βss

′
= 0 and γss′ = δss′ = 0,∀s ∈ S,∀s′ ∈

Γs
4: while εprimal(t) ≥ εprimalstop ∨ εdual(t) ≥ εdualstop ∧ t ≤ tmax

5: ] Communication Step
6: Each ASP s exchanges his previous estimate xs(t−1) and

his dual Lagrange mutliplier λs(t− 1) with his neighbors
s′ ∈ Γs

7: ] Action Step Update
8: for each ASP s ∈ S
9: Φs(t) is updated according to (49a)

10: Ψs(t) is updated according to (49b)
11: xss(t) is updated by solving (50)
12: λs(t) is updated according to (51)
13: xs−s(t) is updated according to (52)
14: end for

t = t+ 1
15: end while

ASP s is obtained by solving a local optimization problem

xss(t) = arg max
xss∈F̃s

{
∇xssRs(x

s(t− 1))T (xss − xss(t− 1))

− 1

2ζ|Γs‖

[
2ζrs

∑
s′∈Γs

λs(t− 1) + λs′(t− 1)

rs + rs′
−Ψs(t)

+xss(t− 1) +MS−1x
s
−s(t− 1)−D

]T
(xss − xss(t− 1))

− β̃s
2
‖xss − xss(t− 1)‖2−Φss(t)

Txss

−ζ
∑
s′∈Γs

‖xss −
xss(t− 1) + xs

′
s (t− 1)

2
‖2
}
. (50)

Dual update rule takes the form

λs(t) =proj
R
∑

c|Mc|
+

( 1

2ζ|Γs|
(xss(t) +MS−1x

s
−s(t− 1)−D

−Ψs(t) + 2ζrs
∑
s′∈Γs

λs(t− 1) + λs′(t− 1)

rs + rs′
)
)
. (51)

Let F̃−s ,
∏
s′ 6=s F̃s′ ⊆ R(S−1)

∑
c|M

c|
+ . It is a closed

set as the product of closed sets. The mapping projF̃−s
:

R(S−1)
∑

c|M
c|

+ → F̃−s denotes the projection onto F̃−s.
Update of ASP s’s estimates can be obtained as

xs−s(t) =projF̃−s

(1

2
(xs−s(t− 1) +

1

|Γs|
∑
s′∈Γs

xs
′
−s(t− 1))

− 1

2ζ|Γs|
Φs−s(t)

)
. (52)

Theorem 5. If f cs (.). is Kc
s Lipschitz continuous forall s ∈

S, c ∈ C, Algorithm 3 converges to the r-normalized Nash
equilibrium solution to Gp.
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TABLE III
DESCRIPTION OF THE PARAMETERS (vs,r) IN THE ASPS’ QOS FUNCTION.

ASP 1 ASP 2
ASP11 ASP12 ASP21 ASP22

Bandwidth (vBW ) 10 5 10 5
VCPU(vvCPU ) 32 20 40 36
Memory (vMEM ) 244 80 160 70

Proof. See Appendix D.

VIII. NUMERICAL EXPERIMENTS

In this section, we consider two numerical experiments to
validate the proposed pricing and the multi-resource allocation
schemes. In the first experiment, described in Section VIII.A,
we consider the first case when application service providers
own the finite budgets to procure the resources. In the second
experiment, illustrated in Section VIII.B, we consider the
second case where ASPs are not limited by their budgets.

A. Numerical Experiment 1

In this experiment we consider a more general setting where
ASPs can support multiple services; one service being defined
per slice. For each type of service provisioning, ASPs require
various kinds of resources. In this scenario, particularly to
define the QoS as a function of multi resources, we consider
a general class of utility function known as CES (constant
elasticity of substitution), mathematically defined as

qs(ds) =

(∑
r

vskr(dskr)
ρ

)1/ρ

,

where ρ ∈ (−∞, 0) ∪ (0, 1] can be used to parametrize
the whole family of utility functions. For example ρ = 1
corresponds to linear (additive) valuations qs(ds) =

∑
r vsrdsr,

ρ → 0 corresponds to Cobb Douglas function qs(ds) =
Πr(dsr)

vsr , ρ→ −∞ correspond to Leontief utility functions
qs(ds) = min

r
{dsrvsr
}, and Ds = (vs1 . . . vsr), where vsr is the

amount of resource type r needed by ASP s to support one
unit of QoS. Linear valuation signifies the perfect substitutes,
representing a scenario where the resources can replace each
other in utilization. On the contrary, Leontief utility functions
represent the perfect complement scenario where one resource
may have no value without the other. For instance, the CPU
and computer memory are both essential for completing a
computing task. CSE utility function interpolate between
perfect substitutes and the perfect complement through the
parameter ρ. We consider that application service providers
ASP 1 and ASP 2 support two types of services. ASP 1 and
ASP 2 provide the service type 1 through slice ASP11 and
slice ASP21, while they provide service type 2 through slice
ASP12 and ASP22 respectively. We consider the number of
end-users demanding service type 1 and service type 2 at cell
C1 are 120 and 180, while their numbers at cell C2 are 130
and 170, respectively.

For numerical experiments, we consider that each service
needs three types of resources, namely, Bandwidth (Gbps),
vCPU, Memory (GB). We consider that the total available
capacity of bandwidth and vCPU memory is fixed at 40 Mhz,
60 units and 400 GB respectively The values of parameters
vsr for the application services providers and their respective
services (slices) are as described in the table.

We apply our online learning algorithm to compute a
NE. To evaluate the performance of the proposed allocation
mechanism, we compare the revenue gained through the
proposed resource allocation with three different baseline
allocation schemes; first, with the static proportional resource
allocation scheme (SS), where each resource required by the
application service providers are allocated in proportion to
their budgets; second, with the Fisher market equilibrium based
resource allocation scheme (FM) proposed in [21] and [22]. We
calculate the market equilibrium as a solution to the Eisenberg-
Gale optimization problem, where the objective is to maximize
the weighted proportional quality of service provided by ASPs

maximize
ds∈F̃s

∑
s

∑
c

∑
k

BsNck log
(
qsck(dsck)

)
, (53a)

subject to
∑
s

∑
k

dcckm ≤ Dc
m∀c ∈ C,m ∈M. (53b)

Third, we compare our proposed allocation scheme with the
well-known socially optimal resource allocation scheme (SO),
where resources are allocated to ASPs such that the weighted
sum of the QoS provided by the ASPs is maximized [51]

maximize
ds∈F̃s

∑
s

∑
c

∑
k

BsN
c
kq
c
sk(dcsk), (54a)

subject to
∑
s

∑
k

dcckm ≤ Dc
m∀c ∈ C,m ∈M. (54b)

For numerical simulations, we consider different values of
parameter ρ = 0.5,−5 and budget B1 = 0.5 and B1 = 0.7.
The bar graphs in Fig. 3 describe the respective revenue
obtained by the ASPs under NE, SS, FM, and SO based
resource allocations. We observe from the bar graphs that the
revenues gained by ASPs for different values of parameters
under NE and SS are almost equal and are in proportion to
the budgets owned by the ASPs. We can observe that ASP
with high marginal quality of service and high budget gains
the maximum revenue under SO allocation. Thus, even if SO-
based distribution maximizes the total system performance, it
is at the cost of poor fairness in allocation. For the FM-based
scheme, in Fig. 3(c), we observe that even though ASP 1 has
a higher budget than ASP 2, ASP 1 gains less revenue than
ASP 2; again, this is also not fair from a business point of
view. The bar graphs in Fig. 3(e) describe the distribution of
revenue gained by the ASPs from their different slices.

B. Numerical Experiment 2

We consider that application service providers ASP 1 and
ASP 2 offer a service type 1 from the previous experiment.
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Fig. 3. ASPs’ revenues at the NE of game G vs ASPs’ revenues under static proportional allocation scheme (SS), Fisher market based resource allocation
(FM), Socially optimal resource allocation (SO) a) for ρ = 0.5, B1 = 0.5 and B2 = 0.5; b)for ρ = −5, B1 = 0.5 and B2 = 0.5; c) for ρ = 0.5, B1 = 0.7
and B2 = 0.3; d) for ρ = −5, B1 = 0.7 and B2 = 0.3. ASPs’ revenues for ρ = 0.5, B1 = 0.5 and B2 = 0.5 from e) service type 1; f) service type 2;
and comparison of the ASPs’ revenues for ρ = −5, B1 = 0.7, B2 = 0.3 from g) service type 1; h) service type 2.

For the bandwidth and vCPU, we keep their total availability
fixed. At the same time, for the memory, we vary the available
capacity from 100 GB to 400 GB, and we examine the its
effects on the resources’ prices. First, we consider the case
where the QoS provided by ASPs follows a substitutable
relationship between resources, e.g., we rely on the CSE
function with ρ = 0.1. Fig. 4(a) illustrates the effect of available
capacity of resources on the resources price. As the total
availability of memory increases. In this case, the cost of
memory decreases. However, as the relationship between the
resources is substitutable, we observe from the figure that a
change in memory availability does not affect the price of the
other resources.

Next, we consider the scenario where the ASPs’ QoS is
defined by the CSE function with ρ = −1.5. In this case, the
relationship between the resources is more complementary than
the previous one. Fig. 4(b) illustrates the effect of available
capacity of resources on the resources price. As the availability
of memory increases, the cost of memory decreases. However,
in this case, we observe that a change in memory availability
also affects the price of the other resources. The cost of
bandwidth and VCPU also increases with a rise in memory’s
availability. An increase in the capacity of memory gives ASPs
room to improve their QoS, but at the cost of increasing the
other related resources, Bandwidth and VCPU. Thus, it causes
congestion at Bandwidth and VCPU hence resulting in a rise in
their prices. Similarly, Fig. 4(d) presents a change in the prices
of the resources with respect to the capacity of the memory

where QoS is considered a CSE function with ρ = −2.5. In
Fig. 4(d) we demonstrate the fast convergence of Algorithm
3. For simulation purposes, we consider the availability of
Bandwidth, VCPU and Memory as 40 Gbps 60 units and
100 GB, respectively. The plot in the figure shows the exact
convergence of total demand for all three resources to their
available capacity. Fig. 4(e) shows the convergence of error
in decision variable (resources’ demand) by the ASPs and the
convergence of error in price λ.

IX. CONCLUSION

In this work, we have considered a setting where application
service providers lease resources from an network slice provider
through a network slicing mechanism and compete with one
another to serve a large pool of end-users. We have shown
that the interactions between the end-users and application
service providers can be modelled as a Stackelberg game,
where the ASPs act as leaders and the end-users as followers.
In addition, we have proved that the competition between
the ASPs results in a multi-resource Tullock rent-seeking
game, which admits a unique Nash equilibrium. The market
price is computed by the NSP for each resource, taking into
account the finite capacity of the network. To compute the
market price and resource allocation, we have proposed two
innovative market mechanisms. First, we have implemented a
trading post mechanism taking into account the fact that the
ASPs have bounds on their budgets. We have proved that the
non-cooperative game induced by the trading post mechanism
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Fig. 4. Changes in the price (λ) with respect to the available memory capacity, with a) ρ = 0.1, b) ρ = −1.5, and c) ρ = −2.5. d) Convergence of Algorithm
3, convergence of total resources’ demand to the available capacity. e) Convergence of the primal and dual errors in Algorithm 3.

admits a unique Nash equilibrium in case a single resource
is considered. We have implemented a semi-decentralized
exponential learning algorithm to compute the unique Nash
equilibrium of this game. However, this mechanism does
not enable an explicit incorporation of the network finite
capacity constraints. To overcome that limitation, in a second
design, when ASPs have no bound on their budgets but
take into account the network finite capacity as a global
coupling constraint, we have shown that the market equilibrium
can be obtained by solving a generalized Nash equilibrium
problem. We have provided a dual averaging-based semi-
decentralized algorithm to compute solution of the extended
game reformulation of the pricing game, and a proximal
inexact- ADMM based distributed algorithm that provably
converges to the Variational equilibrium of the pricing game.
Finally, we have provided numerical results to analyse the
economic properties of the two market designs, and confirm
the fast convergence rate of the inexact-ADMM highlighting
its practical applicability.

APPENDIX

A. Proof of Proposition 1

To find the equilibrium of the replicator dynamics defined
in (6) consider log

(
qcs
nc
s

)
− ps = log

(
qc
s′
nc
s′

)
− ps′ . Taking the

exponential of both sides, we obtain qcs
nc
s

nc
s′
qc
s′

= eps−ps′ ⇔
qcs
nc
s
ncs′ = qcs′e

ps−ps′ . Summing over all s′ ∈ S gives us∑
s′
qcs
nc
s
ncs′ =

∑
s′ q

c
s′e

ps−ps′ , which can be rewritten as

ncs =
Ncqcse

−ps∑
s′ q

c
s′e
−p

s′
, i.e., ncs =

Ncfc
s (dcs)e−ps∑

s′ f
c
s′ (d

c
s′ )e
−p

s′
.

B. Proof of Proposition 3

Consider that for any bid bc2 > 0 submitted by ASP 2 at cell c,
ASP 1 places a bid of bc1 = B1

bc2
B2

at cell c. Then, the quantity

of resource received by ASP 1 at cell c is dc1 =
B1

bc2
B2

B1
bc2
B2

+bc2

=

B1

B1+B2
. This proves that for any strategy played by ASP there

exists a strategy for the other ASP such that he receives the
resource in proportion to his budget.

C. Revision Protocol

Let recall the revision protocol, which defines the switching
rate at which users switch their choice from ASP s to ASP s′

given population state n τs,s′ = ns′ [νs′ − νs]+. Note that for
the sake of simplicity, we omit the cell dependence (c).

Relying on the evolutionary process (4) and by substitution
of the revision protocol, we get

ṅs =
∑
s′

ns′τs′,s − ns
∑
s′

τs,s′ ,

ṅs =
∑
s′

ns′ns [νs − νs′ ]+ − ns
∑
s′

ns′ [νs′ − νs]+ ,

ṅs = ns
∑
s′

ns′ [νs − νs′ ] ,

ṅs = ns

[
νs −

∑
s′

ns′νs′

]
.
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Similarly, considering the revision proctocol τs,s′ =
ns′
N [U cs′ − U cs ]+, we get

ṅs =
∑
s′

ns′τs′,s − ns
∑
s′

τs,s′ ,

ṅs =
∑
s′

ns′
ns
N

[νcs − νcs′ ]+ − ns
∑
s′

ns′

N
[νcs′ − νcs ]+ ,

ṅs = ns
∑
s′

ns′

N
[νs − νs′ ] ,

ṅcs = ncs

[
νcs −

1

N

∑
s′

ncs′ν
c
s′

]
.

D. Proof of Theorem 5

Taking the gradient of Rs(.) with respect to xss := ds, we
obtain:
∇xs

s
Rs(d) =

∑
c psN

c ∇xs
s
fc
s (dcs)e−ps

(
∑

s′ f
c
s′ (d

c
s′ )e
−p

s′ )
2

∑
s′ 6=s f

c
s′(d

c
s′)e
−ps′ .

For any d, d̃ ∈ F , ‖∇xs
s
Rs(d) − ∇xs

s
Rs(d̃)‖≤∑

c psN
c max

{
∇xs

s
fc
s (dcs)e−ps

(
∑

s′ f
c
s′ (d

c
s′ )e
−p

s′ )
2 ;

∇xs
s
fc
s (d̃cs)e−ps

(
∑

s′ f
c
s′ (d̃

c
s′ )e
−p

s′ )
2

}
.

‖
∑
s′ 6=s f

c
s′(d̃

c
s′)e
−ps′ −

∑
s′ f

c
s′(d̃

c
s′)e
−ps′‖ by Hölder

inequality. Then, applying Jensen’s inequality,
we obtain that ‖∇xs

s
Rs(d) − ∇xs

s
Rs(d̃)‖≤∑

c psN
c max

{
∇xs

s
fc
s (dcs)e−ps

(
∑

s′ f
c
s′ (d

c
s′ )e
−p

s′ )
2 ;

∇xs
s
fc
s (d̃cs)e−ps

(
∑

s′ f
c
s′ (d̃

c
s′ )e
−p

s′ )
2

}
.∑

s′ 6=s‖f cs′(dcs′) − f cs (d̃cs)‖. If f cs (.) is Kc
s

Lipschitz continuous then by setting Ls :=∑
c psN

c max
{

∇xs
s
fc
s (dcs)e−ps

(
∑

s′ f
c
s′ (d

c
s′ )e
−p

s′ )
2 ;

∇xs
s
fc
s (d̃cs)e−ps

(
∑

s′ f
c
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c
s′ )e
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2

}
then for any d, d̃ ∈ F , ‖∇xs

s
Rs(d) − ∇xs

s
Rs(d̃)‖≤

Ls‖d − d̃‖1≤ Ls.
√
S.
∑
c|Mc|.‖d − d̃‖2. This proves that

∇xs
s
Rs(.) is Ls.

√
S.
∑
c|Mc| Lipschitz continuous. In

addition, the coupling constraints in the pricing game Gp are
linear in the ASPs’ decision variables. Though we introduce
projection operators in (51), (52), Cauchy-Schwarz inequality
implies that the norm of the projection matrix can be upper
bounded by 1. This enables us to derive the same upper bound
and statement as in [50], Thm.1.
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[50] H. Le Cadre, Y. Mou, and H. Höschle, “Parametrized inexact-admm
based coordination games: A normalized nash equilibrium approach,”
European Journal of Operational Research, vol. 296, no. 2, pp. 696–716,
2022.

[51] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan,
“Radio access network sharing in cellular networks,” in 2013 21st IEEE
International Conference on Network Protocols (ICNP). IEEE, 2013,
pp. 1–10.

Mandar Datar received the M.Tech. degree in
electrical engineering with a specialization in control
systems from the University of Mumbai, India, and
a PhD in computer science from INRIA, Sophia
Antipolis, France, and the University of Avignon,
Avignon, France. He is currently a Postdoctoral
Researcher at INRIA. Previously, he worked as
an assistant professor at VJTI, Mumbai, India and
as a Research Assistant at the Indian institute of
technology (IIT) Bombay, Mumbai, India. His area
of interest includes game theory, optimization, and

learning in games, MDP with applications in the wireless communication
network.

Eitan Altman received a B.Sc. degree in electrical
engineering, B.A. in physics, and PhD in electrical
engineering from Technion–Israel Institute of Tech-
nology, Haifa, 1984, 1984, and 1990, respectively,
and B.Mus. in music composition from Tel-Aviv
University, Israel, in 1990. Since 1990, he has been
a Researcher with INRIA, France. His areas of
interests include network engineering games, social
networks, and the analysis through game theoret-
ical models of network neutrality issues. He has
received the Grand Prix de France Telecom, the

ISAACS Award, and the Distinguished Technical Achievement Recognition
Award (IEEE TCBD). His detailed information can be found at http://www-
sop.inria.fr/members/Eitan.Altman/.

Hélène Le Cadre received the M.Sc.A. degree from
the ENS and University of Rennes, Dipl.Ing. in
information science and control theory from Institut
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