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Differentially Private Coordinate Descent
for Composite Empirical Risk Minimization

Paul Mangold 1 Aurélien Bellet 1 Joseph Salmon 2 3 Marc Tommasi 4

Abstract
Machine learning models can leak information
about the data used to train them. To mitigate
this issue, Differentially Private (DP) variants of
optimization algorithms like Stochastic Gradient
Descent (DP-SGD) have been designed to trade-
off utility for privacy in Empirical Risk Minimiza-
tion (ERM) problems. In this paper, we propose
Differentially Private proximal Coordinate De-
scent (DP-CD), a new method to solve composite
DP-ERM problems. We derive utility guarantees
through a novel theoretical analysis of inexact co-
ordinate descent. Our results show that, thanks
to larger step sizes, DP-CD can exploit imbal-
ance in gradient coordinates to outperform DP-
SGD. We also prove new lower bounds for com-
posite DP-ERM under coordinate-wise regularity
assumptions, that are nearly matched by DP-CD.
For practical implementations, we propose to clip
gradients using coordinate-wise thresholds that
emerge from our theory, avoiding costly hyperpa-
rameter tuning. Experiments on real and synthetic
data support our results, and show that DP-CD
compares favorably with DP-SGD.

1 Introduction
Machine learning fundamentally relies on the availability
of data, which can be sensitive or confidential. It is now
well-known that preventing learned models from leaking
information about individual training points requires partic-
ular attention (Shokri et al., 2017). A standard approach for
training models while provably controlling the amount of
leakage is to solve an empirical risk minimization (ERM)
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problem under a differential privacy (DP) constraint (Chaud-
huri et al., 2011). In this work, we aim to design a differen-
tially private algorithm which approximates the solution to
a composite ERM problem of the form:

w∗ ∈ arg min
w∈Rp

1

n

n∑
i=1

`(w; di) + ψ(w) , (1)

where D = (d1, . . . , dn) is a dataset of n samples drawn
from a universe X , ` : Rp×X → R is a loss function which
is convex and smooth in w, and ψ : Rp → R is a convex
regularizer which is separable (i.e., ψ(w) =

∑p
j=1 ψj(wj))

and typically nonsmooth (e.g., `1-norm).

Differential privacy constraints induce a trade-off between
the privacy and the utility (i.e., optimization error) of the
solution of (1). This trade-off was made explicit by Bassily
et al. (2014), who derived lower bounds on the achievable
error given a fixed privacy budget. To solve the DP-ERM
problem in practice, the most popular approaches are based
on Differentially Private variants of Stochastic Gradient De-
scent (DP-SGD) (Bassily et al., 2014; Abadi et al., 2016;
Wang et al., 2017), in which random perturbations are added
to the (stochastic) gradients. Bassily et al. (2014) analyzed
DP-SGD in the non-smooth DP-ERM setting, and Wang
et al. (2017) then proposed an efficient DP-SVRG algorithm
for composite DP-ERM. Both algorithms match known
lower bounds. SGD-style algorithms perform well in a wide
variety of settings, but also have some flaws: they either re-
quire small (or decreasing) step sizes or variance reduction
schemes to guarantee convergence, and they can be slow
when gradients’ coordinates are imbalanced. These flaws
propagate to the private counterparts of these algorithms.
Despite a few attempts at designing other differentially pri-
vate solvers for ERM under different setups (Talwar et al.,
2015; Damaskinos et al., 2021), the differentially private
optimization toolbox remains limited, which undoubtedly
restricts the resolution of practical problems.

In this paper, we propose and analyze a Differentially Private
proximal Coordinate Descent algorithm (DP-CD), which
performs updates based on perturbed coordinate-wise gra-
dients (i.e., partial derivatives). Coordinate Descent (CD)
methods have encountered a large success in non-private ma-
chine learning due to their simplicity and effectiveness (Liu
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et al., 2009; Friedman et al., 2010; Chang et al., 2008; Sardy
et al., 2000), and have seen a surge of practical and theo-
retical interest in the last decade (Nesterov, 2012; Wright,
2015; Shi et al., 2017; Richtárik & Takáč, 2014; Fercoq
& Richtárik, 2015; Tappenden et al., 2016; Hanzely et al.,
2020; Nutini et al., 2015; Karimireddy et al., 2019). In con-
trast to SGD, they converge with constant step sizes that
adapt to the coordinate-wise smoothness of the objective.
Additionally, CD updates naturally tend to have a lower
sensitivity. Operating with partial gradients thus enables
our private algorithm to reduce the perturbation required
to guarantee privacy without resorting to amplification by
subsampling (Balle et al., 2018; Mironov et al., 2019).

We propose a novel analysis of proximal CD with perturbed
gradients to derive optimal upper bounds on the privacy-
utility trade-off achieved by DP-CD. We prove a recursion
on distances of CD iterates to an optimal point that keeps
track of coordinate-wise regularity constants in a tight man-
ner and allows to use large, constant step sizes that yield
high utility. Our results highlight the fact that DP-CD can
exploit imbalanced gradient coordinates to outperform DP-
SGD. They also improve upon known convergence rates
for inexact CD in the non-private setting (Tappenden et al.,
2016). We assess the optimality of DP-CD by deriving lower
bounds that capture coordinate-wise Lipschitz regularity
measures, and show that DP-CD matches those bounds up
to logarithmic factors. Our lower bounds also suggest inter-
esting perspectives for future work on DP-CD algorithms.

Our theoretical results have important consequences for
practical implementations, which heavily rely on gradient
clipping to achieve good utility. In contrast to DP-SGD,
DP-CD requires to set coordinate-wise clipping thresholds,
which can lead to impractical coordinate-wise hyperparam-
eter tuning. We instead propose a simple rule for adapting
these thresholds from a single hyperparameter. We also
show how the coordinate-wise smoothness constants used
by DP-CD can be estimated privately. We validate our
theory with numerical experiments on real and synthetic
datasets. These experiments further show that even in bal-
anced problems, DP-CD can still improve over DP-SGD,
confirming the relevance of DP-CD for DP-ERM.

Our main contributions can be summarized as follows:

1. We propose the first proximal CD algorithm for com-
posite DP-ERM, formally prove its utility, and high-
light regimes where it outperforms DP-SGD.

2. We show matching lower bounds under coordinate-
wise regularity assumptions.

3. We give practical guidelines to use DP-CD, and show
its relevance through numerical experiments.

The rest of this paper is organized as follows. We first

describe some mathematical background in Section 2. In
Section 3, we present our DP-CD algorithm, show that it
satisfies DP, establish utility guarantees, and compare these
guarantees with those of DP-SGD. In Section 4, we derive
lower bounds under coordinate-wise regularity assumptions,
and show that DP-CD can match them. Section 5 discusses
practical questions related to gradient clipping and the pri-
vate estimation of smoothness constants. Section 6 presents
our numerical experiments, comparing DP-CD and DP-SGD
on LASSO and `2-regularized logistic regression problems.
Finally, we review existing work in Section 7, and conclude
with promising lines of future work in Section 8.

2 Preliminaries
In this section, we introduce important technical notions
that will be used throughout the paper.

Norms. We start by defining two conjugate norms that will
be crucial in our analysis, for they allow to keep track of
coordinate-wise quantities. Let 〈u, v〉 =

∑p
j=1 uivi be the

Euclidean dot product, let M = diag(M1, . . . ,Mp) with
M1, . . . ,Mp > 0, and

‖w‖M =
√
〈Mw,w〉 , ‖w‖M−1 =

√
〈M−1w,w〉 .

When M is the identity matrix I , the I-norm ‖·‖I is the
standard `2-norm ‖·‖2.

Regularity assumptions. We recall classical regularity as-
sumptions along with ones specific to the coordinate-wise
setting. We denote by ∇f the gradient of a differentiable
function f , and by ∇jf its j-th coordinate. We denote by
ej the j-th vector of Rp’s canonical basis.

Convexity: a differentiable function f : Rp → R is convex
if for all v, w ∈ Rp, f(w) ≥ f(v) + 〈∇f(v), w − v〉.

Strong convexity: a differentiable function f : Rp → R is
µM -strongly-convex w.r.t. the norm ‖·‖M if for all v, w ∈
Rp, f(w) ≥ f(v)+〈∇f(v), w − v〉+ µM

2 ‖w − v‖
2
M . The

case M1 = · · · = Mp = 1 recovers standard µI -strong
convexity w.r.t. the `2-norm.

Component Lipschitzness: a function f : Rp → R
is L-component-Lipschitz for L = (L1, . . . , Lp) with
L1, . . . , Lp > 0 if for all w ∈ Rp, t ∈ R and j ∈ [p],
|f(w + tej)− f(w)| ≤ Lj |t|. It is Λ-Lipschitz if for all
v, w ∈ Rp, |f(v)− f(w)| ≤ Λ ‖v − w‖2.

Component smoothness: a differentiable function f : Rp →
R is M -component-smooth for M1, . . . ,Mp > 0 if for all
v, w ∈ Rp, f(w) ≤ f(v)+〈∇f(v), w − v〉+ 1

2 ‖w − v‖
2
M .

When M1 = · · · = Mp = β, f is said to be β-smooth.

The above component-wise regularity hypotheses are not
restrictive: Λ-Lipschitzness implies (Λ, . . . ,Λ)-component-
Lipschitzness and β-smoothness implies (β, . . . , β)-
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component-smoothness. Yet, the actual component-wise
constants of a function can be much lower than what can be
deduced from their global counterparts. This will be crucial
for our analysis and in the performance of DP-CD.

Remark 2.1. When ψ is the characteristic function of a con-
vex set (with separable components), the regularity assump-
tions only need to hold on this set. This allows considering
problem (1) with a smooth objective under box-constraints.

Differential privacy (DP). Let D be a set of datasets and
F a set of possible outcomes. Two datasets D,D′ ∈ D are
said neighboring (denoted by D ∼ D′) if they differ on at
most one element.

Definition 2.2 (Differential Privacy, Dwork 2006). A ran-
domized algorithm A : D → F is (ε, δ)-differentially pri-
vate if, for all neighboring datasets D,D′ ∈ D and all
S ⊆ F in the range of A:

Pr [A(D) ∈ S] ≤ exp(ε)Pr [A(D′) ∈ S] + δ .

The value of a function h : D → Rp can be privately re-
leased using the Gaussian mechanism, which adds centered
Gaussian noise to h(D) before releasing it (Dwork & Roth,
2014). The scale of the noise is calibrated to the sensitivity
∆(h) = supD∼D′ ‖h(D)− h(D′)‖2 of h. In our setting,
we will perturb coordinate-wise gradients: we denote by
∆(∇j`) the sensitivity of the j-th coordinate of gradient of
the loss function `with respect to the data. When `(·; d) isL-
component-Lipschitz for all d ∈ X , upper bounds on these
sensitivities are readily available: we have ∆(∇j`) ≤ 2Lj
for any j ∈ [p] (see Appendix A). The following quan-
tity, relating the coordinate-wise sensitivities of gradients to
coordinate-wise smoothness is central in our analysis:

∆M−1(∇`) =
( p∑
j=1

1

Mj
∆(∇j`)2

) 1
2 ≤2 ‖L‖M−1 . (2)

In this paper, we consider the classic central model of DP,
where a trusted curator has access to the raw dataset and
releases a model trained on this dataset1.

3 Differentially Private Coordinate Descent
In this section, we introduce the Differentially Private proxi-
mal Coordinate Descent (DP-CD) algorithm to solve prob-
lem (1) under (ε, δ)-DP constraints. We first describe our
algorithm, show how to parameterize it to satisfy the desired
privacy constraint, and prove corresponding utility results.
Finally, we compare these utility guarantees with DP-SGD.

1In fact, our privacy guarantees hold even if all intermediate
iterates are released (not just the final model).

3.1 Private Proximal Coordinate Descent

Let D = {d1, . . . , dn} ∈ Xn be a dataset. We denote by
f(w) = 1

n

∑n
i=1 `(w; di) the M -component-smooth part

of (1), by ψ(w) =
∑p
j=1 ψj(wj) its separable part, and let

F (w) = f(w) + ψ(w). Proximal coordinate descent meth-
ods (Richtárik & Takáč, 2014) solve problem (1) through
iterative proximal gradient steps along each coordinate of F .
Formally, given w ∈ Rp and j ∈ [p], the j-th coordinate of
w is updated as follows:

w+
j = proxγjψj

(
wj − γj∇jf(wt)

)
, (3)

where γj > 0 is the step size and proxγjψj (w) =
arg minv∈Rp

{
1
2 ‖v − w‖

2
2 + γjψj(v)

}
is the proximal op-

erator associated with ψj (Parikh & Boyd, 2014).

Update (3) only requires the computation of the j-th entry of
the gradient. To satisfy differential privacy, we perturb this
gradient entry with additive Gaussian noise of variance σ2

j .
The complete DP-CD procedure is shown in Algorithm 1.
At each iteration, we pick a coordinate uniformly at random
and update according to (3), albeit with noise addition (see
line 7). For technical reasons related to our analysis, we
use a periodic averaging scheme (line 9). This scheme is
similar to DP-SVRG (Johnson & Zhang, 2013), although
no variance reduction is required since DP-CD computes
coordinate gradients over the whole dataset.

3.2 Privacy Guarantees

For Algorithm 1 to satisfy (ε, δ)-DP, the noise scales σ =
(σ1, . . . , σp) can be calibrated as given in Theorem 3.1.

Theorem 3.1. Assume `(·; d) is L-component-Lipschitz

∀d ∈ X . Let ε ≤ 1 and δ < 1/3. If σ2
j =

12L2
jTK log(1/δ)

n2ε2

for all j ∈ [p], then Algorithm 1 satisfies (ε, δ)-DP.

Sketch of Proof. (Complete proof in Appendix B). We track
the privacy loss using Rényi differential privacy (RDP),
which gives better guarantees than (ε, δ)-DP for the com-
position of Gaussian mechanisms (Mironov, 2017). The
j-th entry of ∇f has sensitivity ∆(∇jf) = ∆(∇j`)/n ≤
2Lj/n. By the Gaussian mechanism each iteration of DP-

CD is (α,
2L2

jα

n2σ2
j

)-RDP for all α > 1. The composition
theorem for RDP gives a global RDP guarantee for DP-CD,
that we convert to (ε, δ)-DP using Proposition 3 of Mironov
(2017). Choosing α carefully finally proves the result.

The dependence of the noise scales on ε, δ, n and TK (the
number of updates) in Theorem 3.1 is standard in DP-ERM.
However, the noise is calibrated to the loss function’s com-
ponent-Lipschitz constants. These can be much lower their
global counterpart, the latter being used to calibrate the
noise in DP-SGD algorithms. This will be crucial for DP-
CD to achieve better utility than DP-SGD in some regimes.
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Algorithm 1 Differentially Private Proximal Coordinate Descent Algorithm (DP-CD).
Input: noise scales σ = (σ1, . . . , σp) for σ1, . . . , σp > 0; step sizes γ1, . . . , γp > 0; initial point w̄0 ∈ Rp; iteration budgets
T,K > 0.

1: for t = 0, . . . , T − 1 do
2: Set θ0 = w̄t

3: for k = 0, . . . ,K − 1 do
4: Pick j from {1, . . . , p} uniformly at random
5: Draw ηj ∼ N (0, σ2

j )

6: Set θk+1 = θk

7: Set θk+1
j = proxγjψj (θ

k
j − γj(∇jf(θk) + ηj))

8: end for
9: Set w̄t+1 = 1

K

∑K
k=1 θ

k

10: end for
11: return wpriv = w̄T

We also note that, unlike DP-SGD, DP-CD does not rely
on privacy amplification by subsampling (Balle et al., 2018;
Mironov et al., 2019), and thereby avoids the approxima-
tions required by these schemes to bound the privacy loss.

Remark 3.2. Theorem 3.1 assumes ε ∈ (0, 1] to give a
simple closed form for the noise scales. In practice we com-
pute tighter values numerically using Rényi DP formulas
directly (see Eq. 18 in Appendix B), removing the need for
this assumption.

3.3 Utility Guarantees

We now state our central result on the utility of DP-CD for
the composite DP-ERM problem. As done in previous work,
we use the asymptotic notation Õ to hide non-significant
logarithmic factors. Non-asymptotic utility bounds can be
found in Appendix C.

Theorem 3.3. Let `(·; d) be a convex and L-component-
Lipschitz loss function for all d ∈ X , and f be convex and
M -component-smooth. Let ψ : Rp → R be a convex and
separable function. Let ε ≤ 1, δ < 1/3 be the privacy
budget. Let w∗ be a minimizer of F and F ∗ = F (w∗).
Let wpriv ∈ Rp be the output of Algorithm 1 with step
sizes γj = 1/Mj , and noise scales σ1, . . . , σp set as in
Theorem 3.1 (with T and K chosen below) to ensure (ε, δ)-
DP. Then, the following holds:

1. For F convex, K = O
(
RM
√
pnε

‖L‖M−1

)
, and T = 1, then:

E[F (wpriv)− F ∗] = Õ

(√
p log(1/δ)

nε
‖L‖M−1 RM

)
,

where RM = max(
√
F (w0)− F (w∗),

∥∥w0 − w∗
∥∥
M

)

and more simply RM =
∥∥w0 − w∗

∥∥
M

when ψ = 0.

2. For F µM -strongly convex w.r.t. ‖·‖M , K = O (p/µM ),

and T = O (log(nεµM/p ‖L‖M−1)), then:

E[F (wpriv)− F ∗] = Õ

(
p log(1/δ)

n2ε2
‖L‖2M−1

µM

)
.

Expectations are over the randomness of the algorithm.

Sketch of Proof. (Complete proof in Appendix C). Existing
analyses of CD fail to track the noise tightly across coordi-
nates when adapted to the private setting. Contrary to these
classical analyses, we prove a recursion on E

∥∥θk − w∗∥∥2

M
,

rather than on E
[
F (θk)− F (w∗)

]
. Our key technical result

is a descent lemma (Lemma C.3) allowing us to obtain

E
[
F (θk+1)− F ∗

]
− p− 1

p
E
[
F (θk)− F ∗

]
(4)

≤ E
∥∥θk − w∗∥∥2

M
− E

∥∥θk+1 − w∗
∥∥2

M
+
‖σ‖2M
p

.

The above inequality shows that coordinate-wise updates
leave a fraction p−1

p of the function “unchanged”, while the
remaining part decreases (up to additive noise). Importantly,
all quantities are measured in M -norm. When summing (4)
for k = 0, . . . ,K − 1, its left hand side simplifies and its
right hand side is simplified as a telescoping sum:

1
p

K∑
k=1

E
[
F (θk)− F ∗

]
(5)

≤ E
[
F (w̄t)− F ∗

]
+ E

∥∥w̄t − w∗∥∥2

M
+ K

p ‖σ‖
2
M−1 ,

where w̄t comes from θ0 = w̄t. As w̄t+1 =
∑K
k=1

θk

K and
F is convex, we have F (w̄t+1)− F ∗ ≤ 1

K

∑K
k=1 F (θk)−

F ∗. This proves the sub-linear convergence (up to an ad-
ditive noise term) of the inner loop. The result in the
convex case follows directly (since T = 1, only one in-
ner loop is run). For strongly convex F , it further holds
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that E ‖w̄t − w∗‖2M ≤
2
µM

E[F (w̄t)− F (w∗)]. Replacing
in (5) with large enough K gives E

[
F (w̄t+1)− F ∗

]
≤

1
2E[F (w̄t)− F ∗]+‖σ‖2M−1 , and linear convergence (up to
an additive noise term) follows. Finally,K and T are chosen
to balance the “optimization” and the “privacy” errors.

Remark 3.4. Our novel convergence proof of CD is also
useful in the non-private setting. In particular, we improve
upon known convergence rates for inexact CD methods
with additive error (Tappenden et al., 2016), under the hy-
pothesis that gradients are noisy and unbiased. In their
formalism, we have α = 0 and β = ‖σ‖2M−1 /p. With
our analysis, the algorithm requires 2pR2

M/(ξ − pβ) (resp.
4p/µM log((F (w0)−F ∗)/(ξ− pβ))) iterations to achieve
expected precision ξ > pβ when F is convex (resp. µM -
strongly-convex w.r.t. ‖·‖M ), improving upon Tappenden
et al. (2016)’s results by a factor

√
pβ/2R2

M (resp. µM/2).
See Appendix C.3 for details. Moreover, unlike this prior
work, our analysis does not require the objective to decrease
at each iteration, which is essential to guarantee DP.

Our utility guarantees stated in Theorem 3.3 directly depend
on precise coordinate-wise regularity measures of the objec-
tive function. In particular, the initial distance to optimal,
the strong convexity parameter and the overall sensitivity
of the loss function are measured in the norms ‖·‖M and
‖·‖M−1 (i.e., weighted by coordinate-wise smoothness con-
stants or their inverse). In the remainder of this section, we
thoroughly compare our utility results with existing ones
for DP-SGD. We will show the optimality of our utility
guarantees in Section 4.

3.4 Comparison with DP-SGD and DP-SVRG

We now compare DP-CD with DP-SGD and DP-SVRG, for
which Bassily et al. (2014) and Wang et al. (2017) proved
utility guarantees. In this section, we assume that the loss
function ` satisfies the hypotheses of Theorem 3.3, and
is Λ-Lipschitz. We denote by µI the strong convexity pa-
rameter of `(·, d) w.r.t. ‖·‖2 and RI the equivalent of RM
when M is the identity matrix I . As can be seen from Ta-
ble 1, comparing DP-CD and DP-SGD boils down to com-
paring ‖L‖M−1 RM with ΛRI for convex functions and
‖L‖2M−1/µM with Λ2/µI for strongly-convex functions.
We compare these terms in two scenarios, depending on the
distribution of coordinate-wise smoothness constants. To
ease the comparison, we assume that RM =

∥∥w0 − w∗
∥∥
M

and RI =
∥∥w0 − w∗

∥∥
I

(which is notably the case when
ψ = 0), and that F has a unique minimizer w∗.

Balanced. When the smoothness constants M are all equal,
‖L‖M−1 RM = ‖L‖2RI and ‖L‖2M−1/µM = ‖L‖22/µI .
This boils down to comparing ‖L‖2 to Λ. As Λ ≤ ‖L‖2 ≤√
pΛ, DP-CD can be up to p times worse than DP-SGD.

This can only happen when features are extremely corre-

lated, which is generally not the case in machine learning.
We show empirically in Section 6.2 that, even in balanced
regimes, DP-CD can still significantly outperform DP-SGD.

Unbalanced. More favorable regimes exist when smooth-
ness constants are imbalanced. To illustrate this, consider
the case where the first coordinate of the loss function `
dominates others. There, Mmax =M1�Mmin =Mj and
Lmax =L1�Lmin =Lj for all j 6= 1, so that L2

1/M1 dom-
inates the other terms of ‖L‖2M−1 . This yields ‖L‖2M−1 ≈
L2

1/M1 ≈ Λ/Mmax, and µM = µIMmin. Moreover, if the
first coordinate ofw∗ is already well estimated byw0 (which
is common for sparse models), then RM ≈ MminRI . We
obtain that ‖L‖M−1 RM ≈

√
Mmin/MmaxΛRI for convex

losses and ‖L‖M−1

µM
≈ Mmin

Mmax

Λ2

µI
for strongly-convex ones.

In both cases, DP-CD can perform arbitrarily better than
DP-SGD, depending on the ratio between the smallest and
largest coordinate-wise smoothness constants of the loss
function. This is due to the inability of DP-SGD to adapt its
step size to each coordinate. DP-CD thus converges quicker
than DP-SGD on coordinates with smaller-scale gradients,
requiring fewer accesses to the dataset, and in turn less noise
addition. We give more details on this comparison in Ap-
pendix D, and complement it with an empirical evaluation
on synthetic and real-world data in Section 6.

4 Lower Bounds
We now prove a new lower bound on the error achievable
for composite DP-ERM with L-component-Lipschitz loss
functions. While our proof borrows some ideas from the
lower bounds known for constrained ERM with Λ-Lipschitz
losses (Bassily et al., 2014), deriving our lower bounds re-
quires to address a number of specific challenges. First,
we cannot use an `2 norm constraint as in Bassily et al.
(2014) in the design of the worst-case problem instances:
we can only rely on separable regularizers. Second, imbal-
anced coordinate-wise Lipschitz constants prevent lower-
bounding the distance between an arbitrary point and the
solution. This leads us to revisit the construction of a “rei-
dentifiable dataset” from Bun et al. (2014) so that we have
L-component-Lipschitzness while the sum of each column
is large enough, which is crucial in our proof. The full proof
is given in Appendix E.

Theorem 4.1. Let n, p > 0, ε > 0, δ = o( 1
n ),

L1, . . . , Lp > 0, such that for all J ⊆ [p] of size at least
d p75e,

∑
j∈J L

2
j = Ω(‖L‖22). Let X =

∏p
j=1{±Lj} and

consider any (ε, δ)-differentially private algorithm that out-
puts wpriv . In each of the two following cases there exists a
dataset D ∈ Xn, a L-component-Lipschitz loss `(·, d) for
all d ∈ D and a regularizer ψ so that, with F the objective
of (1) minimal at w∗ ∈ Rp:
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Table 1. Utility guarantees for DP-CD, DP-SGD, and DP-SVRG for L-component-Lipschitz, Λ-Lipschitz loss.

Convex Strongly-convex

DP-CD (this paper) Õ

(√
p log(1/δ)

nε
‖L‖M−1 RM

)
Õ

(
p log(1/δ)

n2ε2
‖L‖2M−1

µM

)
DP-SGD (Bassily et al., 2014)
DP-SVRG (Wang et al., 2017) Õ

(√
p log(1/δ)

nε
ΛRI

)
Õ

(
p log(1/δ)

n2ε2
Λ2

µI

)

1. If F is convex:

E
[
F (wpriv;D)− F (w∗)

]
= Ω

(√p ‖L‖2 ‖w∗‖2
nε

)
.

2. If F is µI -strongly-convex w.r.t. ‖·‖2:

E
[
F (wpriv;D)− F (w∗)

]
= Ω

( p ‖L‖22
µIn2ε2

)
.

We recover the lower bounds of Bassily et al. (2014) for
Λ-Lipschitz losses as a special case of ours by setting L1 =
· · · = Lp = Λ/

√
p. In this case, the loss function used in

our proof is indeed (
∑p
j=1 L

2
j )

1/2 = Λ-Lipschitz. To relate
these lower bounds to the performance of DP-CD, consider
a suboptimal version of our algorithm where the step sizes
are set to γ1 = · · · = γp = (maxjMj)

−1. In this setting,
results from Theorem 3.3 still hold, and match the lower
bounds from Theorem 4.1 up to logarithmic factors. We
leave open the question of the optimality of DP-CD under
the additional hypothesis of smoothness.

We note that the assumption on the sum of the Lj’s over a
set of indices J in Theorem 4.1 can be eliminated at the
cost of an additional factor of Lmin/Lmax for convex losses
and (Lmin/Lmax)2 for strongly-convex losses, making the
bound looser. Although the aforementioned assumption
may seem solely technical, we conjecture that better utility
is possible when a few coordinate-wise Lipschitz constants
dominate the others. We discuss this further in Section 8.

5 DP-CD in Practice
We now discuss practical questions related to DP-CD. First,
we show how to implement coordinate-wise gradient clip-
ping using a single hyperparameter. Second, we explain
how to privately estimate the smoothness constants. Finally,
we discuss the possibility of standardizing the features and
how this relates to estimating smoothness constants for the
important problem of fitting generalized linear models.

5.1 Coordinate-wise Gradient Clipping

To bound the sensitivity of coordinate-wise gradients, our
analysis of Section 3 relies on the knowledge of Lipschitz

constants for the loss function `(·; d) that must hold for
all possible data points d ∈ X , see inequality (2) and the
discussion above it. This is classic in the analysis of DP
optimization algorithms (see e.g., Bassily et al., 2014; Wang
et al., 2017). In practice however, these Lipschitz constants
can be difficult to bound tightly and often give largely pes-
simistic estimates of sensitivities, thereby making gradients
overly noisy. To overcome this problem, the common prac-
tice in concrete deployments of DP-SGD algorithms is to
clip per-sample gradients so that their norm does not exceed
a fixed threshold parameter C > 0 (Abadi et al., 2016):

clip(∇`(w), C) = min
(

1,
C

‖∇`(w)‖ 2

)
∇`(w) . (6)

This effectively ensures that the sensitivity ∆(clip(∇`, C))
of the clipped gradient is bounded by 2C.

In DP-CD, gradients are released one coordinate at a time
and should thus be clipped in a coordinate-wise fashion.
Using the same threshold for each coordinate would ruin the
ability of DP-CD to account for imbalance across gradient
coordinates, whereas tuning coordinate-wise thresholds as
p individual hyperparameters {Cj}pj=1 is impractical.

Instead, we leverage the results of Theorem 3.3 to adapt
them from a single hyperparameter. We first remark that
our utility guarantees are invariant to the scale of the matrix
M . After rescaling M to M̃ = p

tr(M)M so that tr(M̃) =

tr(I) = p, as proposed by Richtárik & Takáč (2014), the key
quantity ∆

M̃−1(∇`) as defined in (2) appears in our utility
bounds instead of ‖L‖M−1 . This suggests to parameterize
the j-th threshold as Cj =

√
Mj/tr(M)C for some C >

0, ensuring that ∆
M̃−1({clip(∇j`, Cj)}pj=1) ≤ 2C. The

parameter C thus controls the overall sensitivity, allowing
clipped DP-CD to perform p iterations for the same privacy
budget as one iteration of clipped DP-SGD.

5.2 Private Smoothness Constants

DP-CD requires the knowledge of the coordinate-wise
smoothness constants M1, . . . ,Mp of f to set appropriate
step sizes (see Theorem 3.3) and clipping thresholds (see
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above).2 In most problems, the Mj’s depend on the dataset
D and must thus be estimated privately using a fraction of
the overall privacy budget. Since f is an average of loss
terms, its coordinate-wise smoothness constants are the aver-
age of those of `(·, d) over d ∈ D. These per-sample quanti-
ties are easy to get for typical losses (see Section 5.3 for the
case of linear models). Privately estimating M1, . . . ,Mp

thus reduces to a classic private mean estimation problem
for which many methods exist. For instance, assuming that
the practitioner knows a crude upper bound on per-sample
smoothness constants, he/she can compute the smoothness
constants of the `(·, d)’s, clip them to the pre-defined upper
bounds, and privately estimate their mean using the Laplace
mechanism (see Appendix F for details). We show numer-
ically in Section 6 that dedicating 10% of the total budget
ε to this strategy allows DP-CD to effectively exploit the
imbalance across gradients’ coordinates.

5.3 Feature Standardization

CD algorithms are very popular to solve generalized linear
models (Friedman et al., 2010) and their regularized version
(e.g., LASSO, logistic regression). For these problems, the
coordinate-wise smoothness constants are Mj ∝ 1

n ‖X:,j‖22,
where X:,j ∈ Rn is the vector containing the value of the
j-th feature. Therefore, standardizing the features to have
zero mean and unit variance (a standard preprocessing step)
makes coordinate-wise smoothness constants equal. How-
ever, this requires to compute the mean and variance of each
feature in D, which is more costly than the smoothness
constants to estimate privately.3 Moreover, while our the-
ory suggests that DP-CD may not be superior to DP-SGD
when smoothness constants are all equal (see Section 3.4),
the numerical results of Section 6 show that DP-CD often
outperforms DP-SGD even when features are standardized.

Finally, we emphasize that standardization is not always
possible. This notably happens when solving the problem
at hand is a subroutine of another algorithm. For instance,
the Iteratively Reweighted Least Squares (IRLS) algorithm
(Holland & Welsch, 1977) finds the maximum likelihood
estimate of a generalized linear model by solving a sequence
of linear regression problems with reweighted features, pro-
scribing standardization. Similar situations happen when us-
ing reweighted `1 methods for non-convex sparse regression
(Candès et al., 2008), relying on convex (LASSO) solvers
for the inner loop. DP-CD is thus a method of choice to
serve as subroutine in private versions of these algorithms.

2In fact, only Mj/
∑
j′Mj′ is needed, as we tune the clipping

threshold and scaling factor for the step sizes. See Section 6.
3We note that the privacy cost of standardization is rarely ac-

counted for in practical evaluations.
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Figure 1. Relative error to non-private optimal for DP-CD (blue),
DP-CD with privately estimated coordinate-wise smoothness con-
stants (green), DP-SGD (orange) and DP-SCD (red, only applica-
ble to the smooth case) on two imbalanced problems. The number
of passes is tuned separately for each algorithm to achieve lowest
error. We report min/mean/max values over 10 runs.

6 Numerical Experiments
In this section, we assess the practical performance of
DP-CD against (proximal) DP-SGD on LASSO4 and `2-
regularized logistic regression5. On the latter problem, we
also consider the dual private coordinate descent algorithm
of Damaskinos et al. (2021) (DP-SCD). For LASSO, we use
the California dataset (Kelley Pace & Barry, 1997), with
n = 20, 640 records and p = 8 features as well as a syn-
thetic dataset (coined “Sparse LASSO”) with n = 1, 000
records and p = 1, 000 independent features that follow a
standard normal distribution. The labels are then computed
as a noisy sparse linear combination of a subset of 10 active
features. For logistic regression, we consider the Electric-
ity dataset (Electricity) with 45, 312 records and 8 features.
On California and Electricity, we set ε = 1 and δ = 1/n2,
which is generally seen as a rather high privacy regime. The
Sparse LASSO dataset corresponds to a challenging setting
for privacy (n = p), so we consider a low privacy regime
with ε = 10, δ = 1/n2. Privacy accounting for DP-SGD
is done by numerically evaluating the Rényi DP formula
given by the sampled Gaussian mechanism (Mironov et al.,
2019). Similarly for DP-CD, we do not use the closed-form
formula of Theorem 3.1 but rather numerically evaluate the
tighter Rényi DP formula given in Appendix B.

For DP-SGD, we use constant step sizes and standard gra-
dient clipping. For DP-CD, we adapt the coordinate-wise
clipping thresholds from one hyperparameter, as described
in Section 5.1. Similarly, coordinate-wise step sizes are set
to γj = γ/Mj , where γ is a hyperparameter. When the
coordinate-wise smoothness constants are not all equal, we
also consider DP-CD with privately computed Mj’s, as de-
scribed in Section 5.2. For each dataset and each algorithm,
we simultaneously tune the clipping threshold, the number

4i.e., `(w, (x, y)) = (w>x− y)2, ψ(w) = λ ‖w‖1.
5i.e., `(w, (x, y)) = log(1+exp(−yw>x)), ψ(w) = λ

2
‖w‖22.
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of passes over the dataset and, for DP-CD and DP-SGD, the
step sizes. After tuning these parameters, we report the rela-
tive error to the (non-private) optimal objective value. The
complete tuning procedure is described in Appendix G.1,
where we also give the best error for various numbers of
passes for each algorithm and dataset. The code used to
obtain all our results is available in a public repository6 and
in the supplementary material.

6.1 Imbalanced Datasets

In the Electricity and California datasets, features are natu-
rally imbalanced. DP-CD can exploit this through the use
of coordinate-wise smoothness constants. We also consider
a variant of DP-CD (DP-CD-P) which dedicates 10% of
the privacy budget ε to estimate these constants (see Sec-
tion 5.2) from a crude upper bound on each feature (twice
their maximal absolute value). It then uses the resulting pri-
vate smoothness constants in step sizes and clipping thresh-
olds. Figure 1 shows that DP-CD outperforms DP-SGD and
DP-SCD by an order of magnitude on both datasets, even
when the smoothness constants are estimated privately.

6.2 Balanced Datasets

To assess the performance of DP-CD when coordinate-
wise smoothness constants are balanced, we standardize
the Electricity and California datasets (see Section 5.3). As
standardization is done for all algorithms, we do not ac-
count for it in the privacy budget. On standardized datasets,
coordinate-wise smoothness constants are all equal, remov-
ing the need of estimating them privately. We report the
results in Figure 2. Although our theory suggests that DP-
CD may do worse than DP-SGD in balanced regimes, we
observe that it still improves over DP-SGD (and DP-SCD)
in practice. Similar observations hold in our challenging
Sparse LASSO problem, where DP-SGD is barely able to
make any progress. We believe these results are in part due
to the beneficial effect of clipping in DP-CD, and the fact
that DP-SGD relies on amplification by subsampling, for
which privacy accounting is not perfectly tight. Addition-
ally, CD methods are known to perform well on fitting linear
models: our results show that this transfers well to private
optimization.

6.3 Running Time

The results above showed that DP-CD yields better util-
ity than DP-SGD. We also observe that DP-CD tends to
reach these results in up to 10 times fewer passes on the
data than DP-SGD (see Appendix G.1 for detailed results).
Additionally, when accounting for running time, DP-CD sig-

6https://gitlab.inria.fr/pmangold1/
private-coordinate-descent/

nificantly outperforms DP-SGD: we refer to Appendix G.2
for the counterparts of Figure 1 and 2 as a function of the
running time instead of the number of passes.

7 Related Work
DP-ERM. Differentially Private Empirical Risk Minimiza-
tion was first studied by Chaudhuri et al. (2011), using
output perturbation (adding noise to the solution of the non-
private ERM problem) and objective perturbation (adding
noise to the ERM objective itself). Bassily et al. (2014) then
proposed DP-SGD and proved its near-optimality. Wang
et al. (2017) obtained faster convergence rates using a DP
version of the SVRG algorithm (Johnson & Zhang, 2013;
Xiao & Zhang, 2014). DP-SGD has become the standard
approach to DP-ERM. In our work, we show that coordinate-
wise updates can have lower sensitivity than DP-SGD up-
dates and propose a DP-CD algorithm achieving competi-
tive results. A private variant of the Frank-Wolfe algorithm
(DP-FW) was also proposed to solve constrained DP-ERM
problems (Talwar et al., 2015). Although these algorithms
achieve a good privacy-utility trade-off in theory, we are
not aware of any empirical evaluation. DP-FW algorithms
access gradients indirectly through a linear optimization or-
acle over a constrained set. Restricting to a constrained set
is not necessary in DP-CD, allowing its use for a different
family of problems.

DP-SCO. Recent work has also studied algorithms and
utility guarantees for stochastic convex optimization under
differential privacy constraints, a problem very similar to
DP-ERM. Bassily et al. (2019) (following work from Hardt
et al., 2016; Bassily et al., 2020) extended results known
for DP-ERM to this setting, showing that the population
risk of DP-SCO is asymptotically equivalent to the one of
non-private SCO. Efficient algorithms for DP-SCO were
proposed by Feldman et al. (2020); Wang et al. (2022), and
Asi et al. (2021); Bassily et al. (2021) studied stochastic
variants of DP-FW. As detailed by Dwork et al. (2015);
Bassily et al. (2016); Jung et al. (2021) results from DP-
ERM can be converted to DP-SCO.

Coordinate descent. Coordinate descent (CD) algorithms
have a long history in optimization. Luo & Tseng (1992);
Tseng (2001); Tseng & Yun (2009) have shown convergence
results for (block) CD algorithms for nonsmooth optimiza-
tion. Nesterov (2012) later proved a global non-asymptotic
1/k convergence rate for CD with random choice of coordi-
nates for a convex, smooth objective. Parallel, proximal vari-
ants were developed by Richtárik & Takáč (2014); Fercoq
& Richtárik (2015), while Hanzely et al. (2018) further con-
sidered non-separable non-smooth parts. Shalev-Shwartz &
Zhang (2013) introduced Dual CD algorithms for smooth
ERM, showing performance similar to SVRG. We refer to
Wright (2015) and Shi et al. (2017) for detailed reviews on

https://gitlab.inria.fr/pmangold1/private-coordinate-descent/
https://gitlab.inria.fr/pmangold1/private-coordinate-descent/
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Figure 2. Relative error to non-private optimal for DP-CD (blue), DP-SGD (orange) and DP-SCD (red, only applicable to the smooth
case) on three balanced problems. The number of passes is tuned separately for each algorithm to achieve lowest error. We report
min/mean/max values over 10 runs.

CD. Inexact CD was studied by Tappenden et al. (2016), but
their analysis requires updates not to increase the objective,
which is hardly compatible with DP. We obtain tighter re-
sults for inexact CD with noisy gradients (see Remark 3.4).

Private coordinate descent. Damaskinos et al. (2021) in-
troduced a CD method to privately solve the dual problem
associated with generalized linear models with `2 regulariza-
tion. Dual CD is tightly related to SGD, as each coordinate
in the dual is associated with one data point. The authors
briefly mention the possibility of performing primal coor-
dinate descent but discard it on account of the seemingly
large sensitivity of its updates. We show that primal DP-CD
is in fact quite effective, and can be used to solve more gen-
eral problems than considered by Damaskinos et al. (2021).
Primal CD was successfully used by Bellet et al. (2018)
to privately learn personalized models from decentralized
datasets. For the smooth objective they consider, each coor-
dinate depends only on a subset of the full dataset, which
directly yields low coordinate-wise sensitivity updates. In
contrast, we introduce a general algorithm for composite
DP-ERM, for which a novel utility analysis was required.

8 Conclusion and Discussion
We presented the first differentially private proximal coordi-
nate descent algorithm for composite DP-ERM. Using an
original approach to analyze proximal CD with perturbed
gradients, we derived optimal upper bounds on the privacy-
utility trade-off achieved by DP-CD. We also prove new
lower bounds under a component-Lipschitzness assumption,
and showed that DP-CD matches these bounds. Our results
demonstrate that DP-CD strongly outperforms DP-SGD
when gradients’ coordinates are imbalanced. Numerical
experiments show that DP-CD also performs very well in
balanced regimes. The choice of coordinate-wise clipping
thresholds is crucial for DP-CD to achieve good utility in
practice, and we provided a simple rule to set them.

Although DP-CD already achieves good utility when most

coordinates have small sensitivity, our lower bounds suggest
that even better utility could be achieved by dynamically
allocating more privacy budget to coordinates with largest
sensitivities. A promising direction is to design DP-CD
algorithms that leverage active set methods (Yuan et al.,
2010; Lewis & Wright, 2016; Nutini et al., 2017; De Santis
et al., 2016; Massias et al., 2018), which could provide
practical alternatives to recent DP-SGD approaches that use
a subspace assumption (Zhou et al., 2021; Kairouz et al.,
2021). Finally, we believe that adaptive clipping techniques
(Pichapati et al., 2019; Thakkar et al., 2021) may help to
further improve the practical performance of DP-CD when
coordinate-wise smoothness constants are more balanced.
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A Lemmas on Sensitivity
In this section, we let X be the universe where the data is drawn from. To upper bound the sensitivities of a function’s
gradient, we start by recalling in Lemma A.1 that (coordinate) gradients are bounded by (coordinate-wise-)Lipschitz
constants. We then link this upper bound with gradients’ sensitivities in Lemma A.2.

Lemma A.1. Let ` : Rp ×X → R be convex and differentiable in its first argument, Λ > 0 and L1, . . . , Lp > 0.

1. If `(·; d) is Λ-Lipschitz for all d ∈ X , then ‖∇`(w; d)‖2 ≤ Λ for all w ∈ Rp and d ∈ X .

2. If `(·; d) is L-component-Lipschitz for all d ∈ X , then |∇j`(w; d)| ≤ Lj for all w ∈ Rp, d ∈ X and j ∈ [p].

Proof. Let d ∈ X . We start by proving the first statement. First, if ∇`(w; d) = 0, ‖∇`(w; d)‖2 = 0 ≤ Λ and the result
holds. Second, we focus on the case where∇`(w; d) 6= 0. The convexity of ` gives, for w ∈ Rp, d ∈ X :

`(w +∇`(w; d); d) ≥ `(w; d) + 〈∇`(w; d),∇`(w; d)〉 = `(w; d) + ‖∇`(w; d)‖22 , (7)

then, reorganizing the terms and using Λ-Lipschitzness of ` yields

‖∇`(w; d)‖22 ≤ `(w +∇`(w; d); d)− `(w; d) ≤ |`(w +∇`(w; d); d)− `(w; d)| ≤ Λ ‖∇`(w; d)‖2 , (8)

and the result follows after dividing by ‖∇`(w; d)‖2. To prove the second statement, we set j ∈ [p], and w ∈ Rp, and
remark that if ∇j`(w; d) = 0, then |∇j`(w; d)| ≤ Lj . When∇j`(w; d) 6= 0, the convexity of ` yields

`(w +∇j`(w; d)ej ; d) ≥ `(w; d) + 〈∇`(w; d),∇j`(w; d)ej〉 = `(w; d) +∇j`(w; d)2 . (9)

Reorganizing the terms and using L-component-Lipschitzness of ` gives

∇j`(w; d)2 ≤ `(w +∇j`(w; d)ej ; d)− `(w; d) ≤ |`(w +∇j`(w; d)ej ; d)− `(w; d)| ≤ Lj |∇j`(w; d)| , (10)

and we get the result after dividing by |∇j`(w; d)|.

Lemma A.2. Let ` : Rp ×X → R be convex and differentiable in its 1st argument, Λ > 0 and L1, . . . , Lp > 0.

1. If `(·; d) is Λ-Lipschitz for all d ∈ X , then ∆(∇`) ≤ 2Λ.

2. If `(·; d) is L-component-Lipschitz for all d ∈ X , then ∆(∇j`) ≤ Lj for all j ∈ [p].

Proof. We start by proving the first statement. Let w,w′ ∈ Rp, d, d′ ∈ X . From the triangle inequality and Lemma A.1, we
get the following upper bounds:

‖∇`(w; d)−∇`(w′; d′)‖2 ≤ |∇`(w; d)|+ |∇`(w′; d′)| ≤ 2Λ , (11)

which is the claim of the first statement. To prove the second statement, we proceed similarly: the triangle inequality and
Lemma A.1 give the following upper bounds:

|∇j`(w; d)−∇j`(w′; d′)| ≤ |∇j`(w; d)|+ |∇j`(w′; d′)| ≤ 2Lj , (12)

which is the desired result.

We obtain the inequality (2) stated in Section 2 as a corollary.

Corollary A.3. Let L1, . . . , Lp > 0. Let `(·; d) : Rp → R be a convex, L-component-Lipschitz function for all d ∈ X .
Then

∆M−1(∇`) =
( p∑
j=1

1

Mj
∆(∇j`)2

) 1
2 ≤

( p∑
j=1

4

Mj
L2
j

) 1
2

= 2 ‖L‖M−1 . (13)
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B Proof of Theorem 3.1
To track the privacy loss of an adaptive composition ofK Gaussian mechanisms, we use Rényi Differential Privacy (Mironov,
2017, RDP). We note that similar results are obtained with zero Concentrated Differential Privacy (Bun & Steinke, 2016).
This flavor of differential privacy, gives tighter privacy guarantees in that setting, as it reduces the noise variance by a
multiplicative factor of log(K/δ) in comparison to the usual advanced composition theorem of differential privacy (Dwork
et al., 2006). Importantly, RDP can be translated back to differential privacy.

In this section, we recall the definition and main properties of zCDP. We denote by D the set of all datasets over a universe
X and by F the set of possible outcomes of the randomized algorithms we consider.

B.1 Rényi Differential Privacy

We will use the Rényi divergence (Definition B.1), which gives a distribution-oriented vision of privacy.

Definition B.1 (Rényi divergence, van Erven & Harremoës 2014). For two random variables Y and Z with values in the
same domain C, the Rényi divergence is, for α > 1,

Dα(Y ||Z) =
1

α− 1
log

∫
C

Pr [Y = z]
α Pr [Z = z]

1−α
dz . (14)

We now define RDP in Definition B.2. RDP provides a strong privacy guarantee that can be converted to classical differential
privacy (Lemma B.3 and Corollary B.8).

Definition B.2 (Rényi Differential Privacy, Mironov 2017). A randomized algorithm A : D → F is (α, ε)-Rényi-
differentially private (RDP) if, for all all datasets D,D′ ∈ D differing on at most one element,

Dα(A(D)||A(D′)) ≤ ε . (15)

Lemma B.3 (Mironov 2017, Proposition 3). If a randomized algorithmA : D → F is (α, ε)-RDP, then it is (ε+ log(1/δ)
α−1 , δ)-

differentially private for all 0 < δ < 1.

Remark B.4. The above (α, ε)-RDP guarantees hold for multiple values of α, ε. As such, ε = ε(α) can be seen as a
function of α, and Lemma B.3 ensures that the algorithm is (ε′, δ)-DP for

ε′ = min
α>1

{
ε(α) +

log(1/δ)

α− 1

}
. (16)

We can now restate in Theorem B.5 the composition theorem of RDP, which is key in designing private iterative algorithms.

Theorem B.5 (Mironov 2017, Proposition 1). Let A1, . . . ,AK : D → F be K > 0 randomized algorithms, such that for
1 ≤ k ≤ K,Ak is (α, εk(α))-RDP, where these algorithms can be chosen adaptively (i.e.,Ak can use to the output ofAk′ for

all k′ < k). Let A : D → FK such that for D ∈ D, A(D) = (A1(D), . . . ,AK(D)). Then A is
(
α,
∑K
k=1 εk(α)

)
-RDP.

Finally, we define the Gaussian mechanism (Definition B.6), as used in Algorithm 1, and restate in Lemma B.7 the privacy
guarantees that it satisfies in terms of RDP.

Definition B.6 (Gaussian mechanism). Let f : D → Rp, σ > 0, and D ∈ D. The Gaussian mechanism for answering the
query f is defined as:

MGauss
f (D;σ) = f(D) +N

(
0, σ2Ip

)
. (17)

Lemma B.7 (Mironov 2017, Corollary 3). The Gaussian mechanism with noise σ2 is (α, ∆(f)2α
2σ2 )-RDP, where ∆(f) =

supD,D′ ‖f(D)− f(D′)‖2 (for neighboring D,D′) is the sensitivity of f .

Proof. The function h = f
∆(f) has sensitivity 1, thus for any s > 0, the Gaussian mechanismMGauss

h (·; s) is (α, α
2σ2 )-RDP

(Mironov, 2017, Corollary 1). As f = ∆(f)× h, we haveMGauss
f (·;σ) = ∆(f)×MGauss

h (·; σ
∆(f) ). This mechanism is

thus (α, ∆(f)2α
2σ2 )-RDP.
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Corollary B.8. Let 0 < ε ≤ 1, 0 < δ < 1
3 . If a randomized algorithm A : D → F is (α, γα2σ2 )-RDP with γ > 0 and

σ =

√
3γ log(1/δ)

ε for all α > 1, it is also (ε, δ)-DP.

Proof. From Remark B.4 it holds thatA is (ε′, δ)-DP with ε′ = minα>1

{
γα
2σ2 + log(1/δ)

α−1

}
. This minimum is attained when

the derivative of the objective is zero, which is the case when γ
2σ2 = log(1/δ)

(α−1)2 , resulting in α = 1 +
√

2 log(1/δ)σ2

γ . A is thus
(ε′, δ)-DP with

ε′ =
γ

2σ2
+

√
γ log(1/δ)√

2σ
+

√
γ log(1/δ)√

2σ
=

γ

2σ2
+

√
2γ log(1/δ)

σ
. (18)

Choosing σ =

√
3γ log(1/δ)

ε now gives

ε′ =
ε2

6 log(1/δ)
+
√

2/3ε ≤ (1/6 +
√

2/3)ε ≤ ε , (19)

where the first inequality comes from ε ≤ 1, thus ε2 ≤ ε and δ < 1/3 thus 1
log(1/δ) ≤ 1. The second inequality follows

from 1/6 +
√

2/3 ≈ 0.983 < 1.

B.2 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. From the privacy perspective, Algorithm 1 adaptively releases and post-processes a
series of gradient coordinates protected by the Gaussian mechanism. We thus start by proving Lemma B.9, which gives an
(ε, δ)-differential privacy guarantee for the adaptive composition of K Gaussian mechanisms.

Lemma B.9. Let 0 < ε ≤ 1, δ < 1/3, K > 0, p > 0, and {fk : Rp → R}k=K
k=1 a family of K functions. The adaptive

composition of K Gaussian mechanisms, with the k-th mechanism releasing fk with noise scale σk =
∆(fk)

√
3K log(1/δ)

ε is
(ε, δ)-differentially private.

Proof. Let σ > 0. Lemma B.7 guarantees that the k-th Gaussian mechanism with noise scale σk = ∆(fk)σ > 0 is
(α, α

2σ2 )-RDP. Then, the composition of these K mechanisms is, according to Theorem B.5, (α, kα2σ2 )-RDP. This can be

converted to (ε, δ)-DP via Corollary B.8 with γ = K, which gives σk =
∆(fk)

√
3k log(1/δ)

ε for k ∈ [K].

We now restate Theorem 3.1 and prove it.

Theorem 3.1. Assume `(·; d) is L-component-Lipschitz ∀d ∈ X . Let ε < 1 and δ < 1/3. If σ2
j =

12L2
jTK log(1/δ)

n2ε2 for all
j ∈ [p], then Algorithm 1 satisfies (ε, δ)-DP.

Proof. For j ∈ [1, p],∇jf in Algorithm 1 is released using the Gaussian mechanism with noise variance σ2
j . The sensitivity

of ∇jf is ∆(∇jf) =
∆(∇j`)

n ≤ 2Lj
n . Note that TK gradients are released, and

σ2
j =

12L2
jTK log(1/δ)

n2ε2
for j ∈ [1, p] ,

thus by Lemma B.9 and the post-processing property of DP, Algorithm 1 is (ε, δ)-differentially private.
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C Proof of Utility (Theorem 3.3)

C.1 Problem Statement

Let D ∈ Xn be a dataset of n elements drawn from a universe X . Recall that we consider the following composite empirical
risk minimization problem:

w∗ ∈ arg min
w∈Rp

{
F (w;D) =

1

n

n∑
i=1

`(w; di)︸ ︷︷ ︸
=:f(w;D)

+ψ(w)

}
, (20)

where `(·, d) is convex, L-component-Lipschitz, and M -component-smooth for all d ∈ X , and ψ(w) =
∑p
j=1 ψj(wj) is

convex and separable. We denote by F the complete objective function, and by f its smooth part. For readability, we omit
the dependence on their second argument (i.e., the data) in the rest of this section.

C.2 Proof of Theorem 3.3

In this section, we prove our central theorem that guarantees the utility of the DP-CD algorithm. To this end, we start by
proving a lemma that upper bounds the expected value of F (θk+1) in Algorithm 1. Using this lemma, we prove sub-linear
convergence for the inner loop of DP-CD. This gives the sub-linear convergence of our algorithm for convex losses. Under
the additional hypothesis that F is strongly convex, we show that iterates of the outer loop of DP-CD converge linearly
towards the (unique) minimum of F .

We recall that in Algorithm 1, iterates of the inner loop are denoted by θ1, . . . , θK , and those of the outer loop by w̄1, . . . , w̄T ,
with w̄t = 1

K

∑K
k=1 θ

k for t > 0. Algorithm 1 is randomized in two ways: when choosing the coordinate to update and
when drawing noise. For convenience, we denote by Ej[·] the expectation w.r.t. the choice of coordinate, by Eη[·] the one
w.r.t. the noise, and by Ej,η[·] the expectation w.r.t. both. When no subscript is used, the expectation is taken over all random
variables. We will also use the notation Ej,η[·|θk] for the conditional expectation of a random variable, given a realization of
θk.

C.2.1 DESCENT LEMMA

We begin by proving Lemma C.1, which decomposes the change of a function F when updating its argument θ ∈ Rp, in
relation to a vector w ∈ Rp, into two parts: one that remains fixed, corresponding to the unchanged entries of θ, and a
second part corresponding to the objective decrease due to the update. At this point, the vector w is arbitrary, but we will
later choose w to be a minimizer of F , that is a solution to (20).

Lemma C.1. Let `, f, ψ, and F be defined as in Section C.1. Take a random variable θ ∈ Rp and two arbitrary
vectors w, g ∈ Rp. Let a random variable j, taking its values uniformly randomly in [p], Choose γ1, . . . , γp > 0 and
Γ = diag(γ1, . . . , γp). It holds that

Ej[F (θ − γjgjej)− F (w)|θ]− p− 1

p
(F (θ)− F (w))

≤ 1

p

(
f(θ)− f(w) + 〈∇f(θ),−Γg〉+

1

2
‖Γg‖2M + ψ(θ − Γg)− ψ(w)

)
. (21)

Remark C.2. To avoid notational clutter, we will write γjgj instead of γjgjej throughout this section.

Proof. We start the proof by finding an upper bound on Ej[F (θ − γjgjej)− F (w)|θ], using the M -component-smoothness
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of f :

Ej[F (θ − γjgjej)− F (w)|θ] =

p∑
j=1

1

p
(F (θ − γjgj)− F (w)) (22)

F=f+ψ
=

1

p

p∑
j=1

f(θ − γjgj)− f(w) + ψ(θ − γjgj)− ψ(w) (23)

f smooth
≤ 1

p

p∑
j=1

(
f(θ) + 〈∇f(θ),−γjgj〉+

1

2
‖γjgj‖2M − f(w) + ψ(θ − γjgj)− ψ(w)

)
(24)

= f(θ)− f(w) +
1

p

p∑
j=1

(
〈∇f(θ),−γjgj〉+

1

2
‖γjgj‖2M + (ψ(θ − γjgj)− ψ(w))

)
(25)

= f(θ)− f(w) +
1

p
〈∇f(θ),−Γg〉+

1

2p
‖Γg‖2M +

1

p

p∑
j=1

(ψ(θ − γjgj)− ψ(w)) . (26)

The regularization terms can now be reorganized using the separability of ψ, as done by (Richtárik & Takáč, 2014). Indeed,
we notice that

p∑
j=1

(ψ(θ − γjgj)− ψ(w)) =

p∑
j=1

(
ψj(θj − γjgj)− ψj(wj) +

∑
j′ 6=j

ψj′(θj′)− ψ(wj′)
)

(27)

= ψ(θ − Γg)− ψ(w) + (p− 1)(ψ(θ)− ψ(w)) . (28)

Plugging (28) in (26) results in the following:

Ej[F (θ − γjgjej)− F (w)|θ] ≤ f(θ)− f(w) +
1

p
〈∇f(θ),−Γg〉+

1

2p
‖Γg‖2M

+
1

p
(ψ(θ − Γg)− ψ(w)) +

p− 1

p
(ψ(θ)− ψ(w)) (29)

=
1

p

(
f(θ)− f(w) + 〈∇f(θ),−Γg〉+

1

2
‖Γg‖2M + ψ(θ − Γg)− ψ(w)

)
+
p− 1

p
(f(θ) + ψ(θ)− f(w)− ψ(w)) , (30)

which gives the lemma since F = f + ψ.

To exploit this result, we need to upper bound the right hand side of (21) for the realizations of θk in Algorithm 1. This is
where our proof differs from classical convergence proofs for coordinate descent methods. Namely, we rewrite the right hand
side of (21) so as to obtain telescopic terms plus a bias term resulting from the addition of noise, as shown in Lemma C.3.

Lemma C.3. Let `, f, ψ, and F defined as in Section C.1. For k > 0, let θk and θk+1 be two consecutive iterates of the
inner loop of Algorithm 1, γ1 = 1

M1
, . . . , γp = 1

Mp
> 0 the coordinate-wise step sizes (where Mj are the coordinate-

wise smoothness constants of f ), and gj = 1
γj

(θk+1
j − θkj ). Let w ∈ Rp an arbitrary vector and σ1, . . . , σp > 0 the

coordinate-wise noise scales given as input to Algorithm 1. It holds that

Ej,η
[
F (θk+1)− F (w)

∣∣θk]− p− 1

p
(F (θk)− F (w))

≤ 1
2

∥∥θk − w∥∥2

Γ−1 − 1
2Ej,η

[∥∥θk+1 − w
∥∥2

Γ−1

∣∣∣θk]+ 1
p ‖σ‖

2
Γ , (31)

where ‖σ‖2Γ =
∑p
j=1 γjσ

2
j and the expectations are taken over the random choice of j and η, conditioned upon the

realization of θk.
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Proof. We define g the vector (g1, . . . , gp) ∈ Rp with gj = 1
γj

(θk+1
j − θkj ) when coordinate j is chosen in Algorithm 1.

We also denote by Γ = diag(γ1, . . . , γp) the diagonal matrix having the step sizes as its coefficients.

From Lemma C.1 with θ = θk, w = w and g = g as defined above we obtain

Ej
[
F (θk − γjgjej)− F (w)

∣∣θk]− p− 1

p
(F (θk)− F (w))

≤ 1

p

(
f(θk)− f(w) +

〈
∇f(θk),−Γg

〉
+

1

2
‖Γg‖2M + ψ(θk − Γg)− ψ(w)

)
. (32)

We can upper bound the right hand term of (32) using the convexity of f and ψ:

f(θk)− f(w) +
〈
∇f(θk),−Γg

〉
+

1

2
‖Γg‖2M + ψ(θk − Γg)− ψ(w) (33)

≤
〈
∇f(θk), θk − w

〉
+
〈
∇f(θk),−Γg

〉
+

1

2
‖Γg‖2M +

〈
∂ψ(θk − Γg), θk − Γg − w

〉
(34)

=
〈
∇f(θk) + ∂ψ(θk − Γg), θk − Γg − w

〉
+

1

2
‖Γg‖2M , (35)

where we use the slight abuse of notation ∂ψ(θk − Γg) to denote any vector in the subdifferential of ψ at the point θk − Γg.
We now rewrite the dot product:

〈
∇f(θk) + ∂ψ(θk − Γg), θk − Γg − w

〉
+

1

2
‖Γg‖2M (36)

=
〈
g, θk − Γg − w

〉
+

1

2
‖Γg‖2M +

〈
∇f(θk) + ∂ψ(θk − Γg)− g, θk − Γg − w

〉
(37)

=
〈
g, θk − w

〉
− ‖g‖2Γ +

1

2
‖g‖2Γ2M︸ ︷︷ ︸

“descent” term

+
〈
∇f(θk) + ∂ψ(θk − Γg)− g, θk − Γg − w

〉︸ ︷︷ ︸
“noise” term

, (38)

where the second equality follows from 〈g,−Γg〉 = −‖g‖2Γ and ‖Γg‖2M = ‖g‖2Γ2M . We split (38) into two terms: a
“descent” term and a “noise” term.

Rewriting the “descent” term. We first focus on the “descent” term. As γj = 1
Mj

for all j ∈ [p], it holds that γ2
jMj = γj

which gives −‖g‖2Γ + 1
2 ‖g‖

2
Γ2M = −‖g‖2Γ + 1

2 ‖g‖
2
Γ = − 1

2 ‖g‖
2
Γ. We can now rewrite the “descent” term as a difference

of two norms, materializing the distance to w, weighted by the inverse of the step sizes Γ−1:

“descent” term =
〈
g, θk − w

〉
− 1

2
‖g‖2Γ (39)

=
〈
Γg, θk − w

〉
Γ−1 −

1

2
‖Γg‖2Γ−1 (40)

=
1

2

∥∥θk − w∥∥2

Γ−1 −
1

2

∥∥θk − w∥∥2

Γ−1 +
〈
Γg, θk − w

〉
Γ−1 −

1

2
‖Γg‖2Γ−1 (41)

=
1

2

∥∥θk − w∥∥2

Γ−1 −
1

2

∥∥θk − Γg − w
∥∥2

Γ−1 , (42)

where we factorized the norm to obtain the last inequality. We can rewrite (42) as an expectation over the random choice of
the coordinate j (drawn uniformly in [p]), given the realizations of θk and of the noise η (which determines g):

1

2

∥∥θk − w∥∥2

Γ−1 −
1

2

∥∥θk − Γg − w
∥∥2

Γ−1 =
p

2
×

1

p

p∑
j=1

γ−1
j

∣∣θkj − wj∣∣2 − γ−1
j

∣∣θkj − γjgj − wj∣∣2
 (43)

=
p

2
× Ej

[
γ−1
j

∣∣θkj − wj∣∣2 − γ−1
j

∣∣θkj − γjgj − wj∣∣2∣∣∣θk, η] . (44)

Finally, we remark that γ−1
j

∣∣θkj − wj∣∣2 − γ−1
j

∣∣θkj − γjgj − wj∣∣2 =
∥∥θk − w∥∥2

Γ−1 −
∥∥θk − γjgj − w∥∥2

Γ−1 , as only one
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coordinate changes between the two vectors, and the squared norm ‖·‖2Γ−1 is separable. We thus obtain

“descent” term = Ej
[p

2

∥∥θk − w∥∥2

Γ−1 −
p

2

∥∥θk − γjgj − w∥∥2

Γ−1

∣∣∣θk, η] (45)

=
p

2

∥∥θk − w∥∥2

Γ−1 −
p

2
Ej
[∥∥θk+1 − w

∥∥2

Γ−1

∣∣∣θk, η] . (46)

Upper bounding the “noise” term. We now upper bound the “noise” term in (38). We first recall the definition of the noisy
proximal update gj (line 7 of Algorithm 1), and define its non-noisy counterpart g̃j :

gj = γ−1
j

(
proxγjψj (θ

k
j − γj(∇jf(θk) + ηj))− θkj

)
(47)

g̃j = γ−1
j

(
proxγjψj (θ

k
j − γj(∇jf(θk))− θkj

)
. (48)

For an update of the coordinate j ∈ [p], the optimality condition of the proximal operator gives, for ηj the realization of the
noise drawn at the current iteration when coordinate j is chosen:

0 ∈ θk+1
j − θkj + γj(∇jf(θk) + ηj)) +

1

Mj
∂ψj(θ

k
j − γjgj) (49)

= γj ×
(

1

γj
(θk+1
j − θkj ) +∇jf(θk) + ηj + ∂ψj(θ

k
j − γjgj)

)
. (50)

As such, there exists a real number vj ∈ ∂ψj(θkj − γjgj) such that gj = − 1
γj

(θk+1
j − θkj ) = ∇jf(θk) + ηj + vj . We denote

by v ∈ Rp the vector having this vj as j-th coordinate. Recall that ψ is separable, therefore v ∈ ∂ψ(θk − Γg). The “noise”
term of (38) can be thus be rewritten using v:

“noise” term =
〈
∇f(θk) + v − g, θk − Γg − w

〉
=
〈
η, θk − Γg − w

〉
, (51)

and we now separate this term in two using g̃:

“noise” term =

p∑
j=1

ηj(θ
k
j − γjgj − wj) =

p∑
j=1

ηj(θ
k
j − γj g̃j − wj) +

p∑
j=1

ηj(γj g̃j − γjgj) . (52)

It is now time to consider the expectation with respect to the noise of these terms. First, as g̃j is not dependent on the noise
anymore, it simply holds that

Eη
[ p∑
j=1

ηj(θ
k
j − γj g̃j − wj) | θk

]
=

p∑
j=1

Eη[ηj ] (θkj − γj g̃j − wj) = 0 . (53)

The last step of our proof now takes care of the following term:

Eη
[ p∑
j=1

ηj(γj g̃j − γjgj) | θk
]
≤ Eη

[
γj

∣∣∣ p∑
j=1

ηj(g̃j − gj)
∣∣∣ | θk] ≤ p∑

j=1

γjEη
[
|ηj | |g̃j − gj |

∣∣ θk] , (54)

where each inequality comes from the triangle inequality. The non-expansiveness property of the proximal operator (see
Parikh & Boyd (2014), Section 2.3) is now key to our result, as it yields

|g̃j − gj | = γ−1
j

∣∣∣proxγjψj (θ
k
j − γj(∇jf(θk)))− proxγjψj (θ

k
j − γj(∇jf(θk) + ηj))

∣∣∣ ≤ |ηj | , (55)

which directly gives, as Eη
[
η2
j

]
= σ2

j (and ‖σ‖2Γ =
∑p
j=1 γjσ

2
j ),

p∑
j=1

γjEη
[
|ηj | |g̃j − gj |

∣∣θk] ≤ p∑
j=1

γjEη[|ηj | |ηj |] =

p∑
j=1

γjEη
[
η2
j

]
= ‖σ‖2Γ . (56)
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We now have everything to prove the lemma by plugging (56) and (53) into expected value of (52), and then (52) and (42)
back into (38) to obtain, after using the Tower property of conditional expectations:

1

p
Ej,η

[
f(θk)− f(w) +

〈
∇f(θk),−Γg

〉
+

1

2
‖Γg‖2M + ψ(θk − Γg)− ψ(w)

∣∣∣∣θk] (57)

≤ 1

p
(“descent” term + “noise” term) (58)

≤ 1

2

∥∥θk − w∥∥2

Γ−1 −
1

2
Ej,η

[∥∥θk+1 − w
∥∥2

Γ−1

∣∣∣θk]+
1

p
‖σ‖2Γ , (59)

which is the result of the lemma.

C.2.2 CONVERGENCE LEMMA

Lemma C.3 allows us to prove a result on the mean of K consecutive noisy coordinate-wise gradient updates, by simply
summing it and rewriting the terms. This gives Lemma C.4, which is the key lemma of our proof.
Lemma C.4. Assume `(·, d) is convex, L-component-Lipschitz and M -component-smooth for all d ∈ X , ψ is convex and
separable, such that F = f + ψ and w∗ is a minimizer of F . For t ∈ [T ], consider the K successive iterates θ1, . . . , θK

computed from the inner loop of Algorithm 1 starting from the point w̄t, with step sizes γj = 1
Mj

and noise scales σj .

Letting w̄t+1 = 1
K

∑K
k=1 θ

k, it holds that

E
[
F (w̄t+1)− F (w∗)

]
≤
p(‖w̄t − w∗‖2M + 2(F (w̄t)− F (w∗)))

2K
+ ‖σ‖2M−1 . (60)

Remark C.5. The term F (w̄t) − F (w∗) essentially remains in the inequality due to the composite nature of F . When
ψ = 0, M -component-smoothness of f(·; d) (for d ∈ X ) gives

f(w̄t) ≤ f(w∗) +
〈
∇f(w∗), w̄t − w∗

〉
+

1

2

∥∥w̄t − w∗∥∥2

M
= f(w∗) +

1

2

∥∥w̄t − w∗∥∥2

M
, (61)

and the result of Lemma C.4 further simplifies as:

E
[
F (w̄t+1)− F (w∗)

]
≤
p ‖w̄t − w∗‖2M

K
+ ‖σ‖2M−1 . (62)

Proof. Summing Lemma C.3 for k = 0 to k = K and w = w∗, taking expectation with respect to all choices of coordinate
and random noise and using the tower property gives:

K−1∑
k=0

E
[
F (θk+1)− F (w∗)

]
− p− 1

p

K−1∑
k=0

E
[
(F (θk)− F (w∗))

]
≤
K−1∑
k=0

1

2
E
[∥∥θk − w∗∥∥2

Γ−1

]
− 1

2
E
[∥∥θk+1 − w∗

∥∥2

Γ−1

]
+

1

p
‖σ‖2Γ (63)

=
1

2
E
[∥∥w̄0 − w∗

∥∥2

Γ−1

]
− 1

2
E
[∥∥θK − w∗∥∥2

Γ−1

]
+
K

p
‖σ‖2Γ . (64)

Remark that
∑K−1
k=0 E

[
F (θk)− F (w∗)

]
=
∑K
k=1 E

[
F (θk)− F (w∗)

]
+ (F (w̄0)− F (w∗))− E

[
F (θK)− F (w∗)

]
, then

as E
[
F (θK)− F (w∗)

]
≥ 0, we obtain a lower bound on the left hand side of (64):

K−1∑
k=0

E
[
F (θk+1)− F (w∗)

]
− p−1

p

K−1∑
k=0

E
[
(F (θk)− F (w∗))

]
≥ 1

p

K∑
k=1

E
[
F (θk)− F (w∗)

]
− (F (w̄0)− F (w∗)) . (65)

As w̄t+1 = 1
K

∑K
k=1 θ

k, the convexity of F gives F (w̄t+1) ≤ 1
K

∑K
k=1 F (θk)− F (w∗). Plugging this inequality into (65)

and combining the result with (64) gives

F (w̄t+1)− F (w∗) ≤
p( 1

2

∥∥w̄0 − w∗
∥∥2

Γ−1 + F (w̄0)− F (w∗))

K
+ ‖σ‖2Γ . (66)
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We conclude the proof by using the fact that Γj = M−1
j for all j ∈ [p], thus ‖·‖Γ = ‖·‖M−1 and ‖·‖Γ−1 = ‖·‖M .

C.2.3 CONVEX CASE

Theorem 3.3 (Convex case). Let w∗ be a minimizer of F and R2
M = max(

∥∥w̄0 − w∗
∥∥2

M
, F (w̄0)− F (w∗)). The output

wpriv of DP-CD (Algorithm 1), starting from w̄0 ∈ Rp with T = 1, K > 0 and the σj’s as in Theorem 3.1, satisfies:

F (wpriv)− F (w∗) ≤ 3pR2
M

2K
+

12 ‖L‖2M−1 K log(1/δ)

n2ε2
. (67)

Setting K =
RM
√
pnε

‖L‖M−1

√
8 log(1/δ)

yields:

F (wpriv)− F (w∗) ≤
9
√
p ‖L‖M−1 RM

√
log(1/δ)

nε
= Õ

(√
pRM ‖L‖M−1

nε

)
. (68)

Proof. In the convex case, we iterate only once in the inner loop (since T = 1). As such, wpriv = w̄1, and applying
Lemma C.4 with w̄t+1 = w̄1, wt = w̄0 and σj chosen as in Theorem 3.1 gives the result. Taking K =

RM
√
pnε

‖L‖M−1

√
8 log(1/δ)

then gives

F (w̄t+1
1 )− F (w∗) ≤

2
√

8p log(1/δ) ‖L‖M−1 RM
nε

+
12
√
p log(1/δ) ‖L‖M−1 RM√

8nε
, (69)

and the result follows from 2
√

8 + 12√
8
≈ 8.48 < 9.

C.2.4 STRONGLY CONVEX CASE

Theorem 3.3 (Strongly-convex case). Let F be µM -strongly convex w.r.t. ‖·‖M and w∗ be the minimizer of F . The output
wpriv of DP-CD (Algorithm 1), starting from w̄0 ∈ Rp with T > 0, K = 2p(1 + 1/µM ) and the σj’s as in Theorem 3.1,
satisfies:

F (wpriv)− F (w∗) ≤ F (w̄0)− F (w∗)

2T
+

24p(1 + 1/µM )T ‖L‖2M−1 log(1/δ)

n2ε2
. (70)

Setting T = log2

(
32n2ε2(F (w̄0)−F (w∗))

p(1+1/µM )‖L‖2
M−1 log(1/δ)

)
yields:

E
[
F (wpriv)− F (w∗)

]
≤

(
1 + log2

(
(F (w̄0)− F (w∗))n2ε2

24p(1 + 1/µM ) ‖L‖2M−1 log(1/δ)

))
24p(1 + 1/µM ) ‖L‖2M−1 log(1/δ)

n2ε2
(71)

= O

(
p ‖L‖2M−1 log(1/δ)

µMn2ε2
log2

(
(F (w̄0)− F (w∗))nεµM
p ‖L‖M−1 log(1/δ)

))
. (72)

Proof. As F is µM -strongly-convex with respect to norm ‖·‖M , we obtain for any w ∈ Rp, that F (w) ≥ F (w∗) +
µM
2 ‖w − w

∗‖2M . Therefore, F (w̄0)− F (w∗) ≤ 2
µM

∥∥w̄0 − w∗
∥∥2

M
and Lemma C.4 gives, for 1 ≤ t ≤ T − 1,

F (w̄t+1)− F (w∗) ≤ (1 + 1/µM )p(F (w̄t)− F (w∗))

K
+ ‖σ‖2M . (73)

It remains to set K = 2p(1 + 1/µM ) to obtain

F (w̄t+1)− F (w∗) ≤ F (w̄t)− F (w∗)

2
+ ‖σ‖2M . (74)
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Recursive application of this inequality gives

E
[
F (w̄T )− F (w∗)

]
≤ F (w̄0)− F (w∗)

2T
+

T−1∑
t=0

1

2t
‖σ‖2M ≤

F (w̄0)− F (w∗)

2T
+ 2 ‖σ‖2M , (75)

where we upper bound the sum by the value of the complete series. It remains to replace ‖σ‖2M by its value to obtain the

result. Taking T = log2

(
(F (w̄0)−F (w∗))n2ε2

24p(1+1/µM )‖L‖2
M−1 log(1/δ)

)
then gives

E
[
F (w̄T )− F (w∗)

]
≤

(
1 + log2

(
(F (w̄0)− F (w∗))n2ε2

24p(1 + 1/µM ) ‖L‖2M−1 log(1/δ)

))
24p(1 + 1/µM ) ‖L‖2M−1 log(1/δ)

n2ε2
(76)

= O

(
p ‖L‖2M−1 log(1/δ)

µMn2ε2
log2

(
(F (w̄0)− F (w∗))nεµM
p ‖L‖M−1 log(1/δ)

))
, (77)

which is the result of our theorem.

C.3 Proof of Remark 1

We recall the notations of Tappenden et al. (2016). For θ ∈ Rp, t ∈ R and j ∈ [p], let Vj(θ, t) = ∇j(θ)t +
Mj

2 |t|
2

+

ψj(θ
k
j + t). For η ∈ R, we also define its noisy counterpart, V ηj (θ, t) = (∇j(θ) + η)t+

Mj

2 |t|
2

+ ψj(θ
k
j + t). We aim at

finding δj such that for any θk ∈ Rp used in the inner loop of Algorithm 1:

Eηj
[
Vj(θ

k,−γjgj)
]
≤ min

g̃∈R
Vj(θ

k,−γj g̃) + δj , (78)

where the expectation is taken over the random noise ηj , and −γjgj = proxγjψj (θ
k
j − γj(∇jf(θk) + ηj))− θkj as defined

in the analysis of Algorithm 1. We need to link the proximal operator we use in DP-CD with the quantity V ηjj that we just
defined:

proxγjψj (θ
k
j − γj(∇jf(θk) + ηj)) = arg min

v∈R

1

2

∥∥v − θkj + γj(∇jf(θk) + ηj)
∥∥2

2
(79)

= arg min
v∈R

〈
γj(∇jf(θkj ) + ηj), v − θkj

〉
+

1

2

∥∥v − θkj ∥∥2

2
+ γjψj(v) (80)

= arg min
v∈R

〈
∇jf(θk) + ηj , v − θkj

〉
+
Mj

2

∥∥v − θkj ∥∥2

2
+ ψj(v) (81)

= θkj + arg min
t∈R

〈
∇jf(θk) + ηj , t

〉
+
Mj

2
‖t‖22 + ψj(θ

k
j + t) . (82)

Which means that−γjgj = proxγjψj (θ
k
j −γj(∇jf(θk)+ηj))−θkj ∈ arg mint∈R V

ηj
j (θk, t). Let−γjg∗j = proxγjψj (θ

k
j −

γj∇j(θk))− θkj be the non-noisy counterpart of −γjgj . Since −γjgj is a minimizer of V ηjj (θk, ·), it holds that

V
ηj
j (θk,−γjgj) ≤

〈
∇jf(θk) + ηj ,−γjg∗j

〉
+
Mj

2

∥∥−γjg∗j∥∥2

2
+ ψj(θ

k
j +−γjg∗j ) (83)

= min
t
Vj(θ

k, t) +
〈
ηj ,−γjg∗j

〉
, (84)

which can be rewritten as Vj(θk,−γjgj) ≤ mint Vj(θ
k, t) +

〈
ηj , γj(gj − g∗j )

〉
. Taking the expectation yields

Eηj
[
Vj(θ

k,−γjgj)
]
≤ min

t
Vj(θ

k, t) + Eηj
[〈
ηj , γj(gj − g∗j )

〉]
. (85)

Finally, we remark that
∣∣gj − g∗j ∣∣ ≤ |γjηj | and the non-expansiveness of the proximal operator gives

Eηj
[
Vj(θ

k,−γjgj)
]
≤ min

t
Vj(θ

k, t) + γjσ
2
j , (86)

which implies an upper bound on the expectation of δj : Ej,ηj[δj ] = 1
p

∑p
j=1 Eηj[δj ] ≤

1
p

∑p
j=1 γjσ

2
j = 1

p

∑p
j=1 σ

2
j /Mj ,

when γj = 1/Mj . In the formalism of Tappenden et al. (2016), this amounts to setting α = 0 and β = 1
p ‖σ‖

2
M−1 .
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Convex functions. When the objective function F is convex, we use Lemma C.4 to obtain, since ‖σ‖2M−1 = βp,

F (w1)− F (w∗) ≤ 2pR2
M

K
+ ‖σ‖2M−1 =

2pR2
M

K
+ βp . (87)

Therefore, when F is convex, we get F (w1)− F (w∗) ≤ ξ, for ξ > βp, as long as 2pR2
M

K ≤ ξ − βp, that is K ≥ 2pR2
M

ξ−βp .

In comparison, Tappenden et al. (2016, Theorem 5.1 therein) gives convergence to ξ >
√

2pR2
Mβ when K ≥ 2pR2

M

ξ−
√

2pR2
Mβ

.

We thus gain a factor
√
βp/2R2

M in utility. Importantly, our utility upper bound does not depend on initialization in that
setting, whereas the one of Tappenden et al. (2016) does.

Strongly-convex functions. When the objective function F is µM -strongly-convex w.r.t. to ‖·‖M , then from (75) we obtain,
as long as K ≥ 4/µM , that

E
[
F (wT )− F (w∗)

]
≤ F (w0)− F (w∗)

2T
+ 2βp . (88)

This proves that E
[
F (wT )− F (w∗)

]
≤ ξ for ξ > 2βp when F (w0)−F (w∗)

2T
≤ ξ − 2βp that is T ≥ log F (w0)−F (w∗)

ξ−2βp and

TK ≥ 4p
µM

log F (w0)−F (w∗)
ξ−2βp . In comparison, Tappenden et al. (2016, Theorem 5.2 therein) shows convergence to ξ > βp

µM

for K ≥ p
µM

log
F (w0)−F (w∗)− βp

µM

ξ− βp
µM

. We thus gain a factor µM/2 in utility.

D Comparison with DP-SGD
In this section, we provide more details on the arguments of Section 3.4, where we suppose that ` is L-component-Lipschitz
and Λ-Lipschitz. To ease the comparison, we assume that RM =

∥∥w0 − w∗
∥∥
M

, which is notably the case in the smooth
setting with ψ = 0 (see Remark C.2).

Balanced. We start by the scenario where coordinate-wise smoothness constants are balanced and all equal to M = M1 =
· · · = Mp. We observe that

‖L‖M−1 =

√√√√ p∑
j=1

1

Mj
L2
j =

√√√√ 1

M

p∑
j=1

L2
j =

1√
M
‖L‖2 . (89)

We then consider the convex and strongly-convex functions separately:

• Convex functions: it holds that RM =
√
MRI , which yields the equality ‖L‖M−1 RM = ‖L‖2RI .

• Strongly convex functions: if f is µM -strongly-convex with respect to ‖·‖M , then for any x, y ∈ Rp,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µM
2
‖y − x‖2M = f(x) + 〈∇f(x), y − x〉+

MµM
2
‖y − x‖22 , (90)

which means that f is MµM -strongly-convex with respect to ‖·‖2. This gives
‖L‖2

M−1

µM
=
‖L‖22/M
µI/M

=
‖L‖22
µI

.

In light of the results summarized in Table 1, it remains to compare ‖L‖2 =
√∑p

j=1 L
2
j with Λ, for which it holds that

Λ ≤
√∑p

j=1 L
2
j ≤
√
pΛ, which is our result.

Unbalanced. When smoothness constants are disparate, we discuss the case where

• one coordinate of the gradient dominates the others: we assume without loss of generality that the dominating
coordinate is the first one. It holds that M1 =: Mmax �Mmin =: Mj , for all j 6= 1 and L1 =: Lmax � Lmin =: Lj ,

for all j 6= 1 such that L2
1

M1
�
∑
j 6=1

L2
j

Mj
. As L1 dominates the other component-Lipschitz constants, most of the
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variation of the loss comes from its first coordinate. This implies that L1 is close to the global Lipschitz constant Λ of `.
As such, it holds that

‖L‖2M−1 =

p∑
j=1

L2
j

Mj
≈ L2

1

M1
≈ Λ2

Mmax
. (91)

• the first coordinate of w̄0 is already very close to its optimal value so that M1

∣∣w̄0
1 − w∗1

∣∣ � ∑
j 6=1Mj

∣∣w̄0
j − w∗j

∣∣.
Under this hypothesis,

R2
M ≈

∑
j 6=1

Mj

∣∣w0
j − w∗j

∣∣2 = Mmin

∑
j 6=1

∣∣w0
j − w∗j

∣∣2 ≈MminR
2
I . (92)

We can now easily compare DP-CD with DP-SGD in this scenario. First, if ` is convex, then ‖L‖M−1 RM ≈
√

Mmin

Mmax
ΛRI .

Second, when ` is strongly-convex, we observe that for x, y ∈ Rp,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µM
2
‖y − x‖2M ≥ f(x) + 〈∇f(x), y − x〉+

MminµM
2

‖y − x‖22 , (93)

which implies that when f is µM strongly-convex with respect to ‖·‖M , it is MminµM strongly-convex with respect to ‖·‖2.

This yields, under our hypotheses,
‖L‖2

M−1

µM
≈ Λ2/Mmax

µI/Mmin
= Mmin

Mmax

Λ2

µI
. In both cases, DP-CD can get arbitrarily better than

DP-SGD, and gets better as the ratio Mmax/Mmin increases.

The two hypotheses we describe above are of course very restrictive. However, it gives some insight about when and why
DP-CD can outperform DP-SGD. Our numerical experiments in Section 6 confirm this analysis, even in less favorable cases.

E Proof of Lower Bounds
To prove lower bounds on the utility of L-component-Lipschitz functions, we extend the proof of Bassily et al. (2014) to
our setting (that is, L-component-Lipschitz functions and unconstrained composite optimization). There are three main
difficulties in adapting their proof:

• First, the optimization problem (1) is not constrained. We stress that while convex constraints can be enforced using
the regularizer ψ (using the characteristic function of a convex set), its separable nature only allows box constraints. In
contrast, Bassily et al. (2014) rely on an `2-norm constraint to obtain their lower bounds.

• Second, Lemma 5.1 of Bassily et al. (2014) must be extended to our L-component-Lipschitz setting. To do so, we
consider datasets with points in

∏p
j=1{−Lj , Lj} rather than {−1/

√
p, 1/
√
p}p, and carefully adapt the construction

of the dataset D so that ‖
∑n
i=1 di‖2 = Ω(min(n ‖L‖2 ,

√
p ‖L‖2/ε)), which is essential to prove our lower bounds.

• Third, the lower bounds of Bassily et al. (2014) rely on fingerprinting codes, and in particular on the result of Bun et al.
(2014) which uses such codes to prove that (when n is smaller than some n∗ we describe later) differential privacy
is incompatible with precisely and simultaneously estimating all p counting queries defined over the columns of the
dataset D. In our construction, since all columns of D now have different scales, we need an additional hypothesis on
the repartition of the Lj’s, (i.e., that

∑
j∈J L

2
j = Ω(‖L‖2) for all J ⊆ [p] of a given size), which is not required in

existing lower bounds (where all columns have equal scale).

E.1 Counting Queries and Accuracy

We start our proof by recalling and extending to our setting the notions of counting queries (Definition E.1) and accuracy
(Definition E.2), as described by Bun et al. (2014). The main feature of our definitions is that we allow the set X to have
different scales for each of its coordinates, and that we account for this scale in the definition of accuracy. We denote by
conv(X ) the convex hull of a set X .
Definition E.1 (Counting query). Let n > 0. A counting query on X is a function q : Xn → conv(X ) defined using a
predicate q : X → X . The evaluation of the query q over a dataset D ∈ Xn is defined as the arithmetic mean of q on D:

q(D) =
1

n

n∑
i=1

q(di) . (94)
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Definition E.2 (Accuracy). Let n, p ∈ N, α, β ∈ [0, 1], L1, . . . , Lp > 0, and X =
∏p
j=1{−Lj ;Lj} or X = {0, Lj}p.

Let Q = {q1, . . . , qp} be a set of p counting queries on X and D ∈ Xn a dataset of n elements. A sequence of answers
a = (a1, . . . , ap) is said (α, β)-accurate for Q if |qj(D)− aj | ≤ Ljα for at least a 1 − β fraction of indices j ∈ [p]. A
randomized algorithm A : Xn → R|Q| is said (α, β)-accurate for Q on X if for every D ∈ Xn,

Pr [A(D) is (α, β)-accurate for Q] ≥ 2/3 . (95)

In our proof, we will use a specific class of queries: one-way marginals (Definition E.3), that compute the arithmetic mean
of a dataset along one of its column.

Definition E.3 (One-way marginals). Let X =
∏p
j=1{−Lj ;Lj} or X = {0, Lj}p. The family of one-way marginals

on X is defined by queries with predicates qj(x) = xj for x ∈ X . For a dataset D ∈ Xn of size n, we thus have
qj(D) = 1

n

∑n
i=1 di,j .

E.2 Lower Bound for One-Way Marginals

We can now restate a key result from Bun et al. (2014), which shows that there exists a minimal number n∗ of records
needed in a dataset to allow achieving both accuracy and privacy on the estimation of one-way marginals on X = ({0, 1}p)n.
This lemma relies on the construction of re-identifiable distribution (see Bun et al. 2014, Definition 2.10). One can then use
this distribution to find a dataset on which a private algorithm can not be accurate (see Bun et al. 2014, Lemma 2.11).

Lemma E.4 (Bun et al. 2014, Corollary 3.6). For ε > 0 and p > 0, there exists a number n∗ = Ω(
√
p

ε ) such that for all
n ≤ n∗, there exists no algorithm that is both (1/3, 1/75)-accurate and (ε, o

(
1
n

)
)-differentially private for the estimation

of one-way marginals on ({0, 1}p)n.

To leverage this result in our setting of private empirical risk minimization, we start by extending it to queries on X =∏p
j=1{−Lj ;Lj}. Before stating the main theorem of this section (Theorem E.5), we describe a procedure χL : ({0, 1}p)n →
X 3n (with L1, . . . , Lp > 0), that takes as input a dataset D ∈ ({0, 1}p)n and outputs an augmented and rescaled version.
This procedure is crucial to our proof and is defined as follows. First, it adds 2n rows filled with 1’s to D, which ensures
that the sum of each column of D is Θ(n) (which gives the lower bound on M in Theorem E.5). Then it rescales each of
these columns by subtracting 1/2 to each coefficient and multiplying the j-th column of D (j ∈ [p]) by 2Lj . The resulting
dataset Daug

L = χL(D) is a set of 3n points with values in X =
∏p
j=1{−Lj , Lj}, with the property that, for all j ∈ [p],

3nLj ≥
∑n
i=1(Daug

L )i,j ≥ nLj . For D ∈ ({0, 1}p)n, we show how to reconstruct qj(χL(D)) from qj(D) in Claim 1.

Claim 1. Let n ∈ N, j ∈ [p], Lj > 0 and qj the j-th one-way marginal on datasets D with p columns such that for di ∈ D,
qj(di) = di,j . Let Daug

L = χL(D). It holds that

qj(D
aug
L ) =

2Lj
3
qj(D) +

Lj
3

, (96)

where we use the slight abuse of notation by denoting the one-way marginals qj : X 3n → conv(X ) and qj : ({0, 1}p)n →
[0, 1]p in the same way.

Proof. Let D ∈ ({0, 1}p)n, and let Daug ∈ ({0, 1}p)3n constructed by adding 2n rows of 1’s at the end of D. Let
Daug
L = χL(D). We remark that

qj(D
aug) =

1

3n

3n∑
i=1

Daug
i,j =

1

3

(
1

n

n∑
i=1

Daug
i,j

)
+

1

3n

3n∑
i=n+1

1 =
1

3
qj(D) +

2

3
∈ [0, 1] . (97)

Then, we link qj(Daug) with qj(D
aug
L ):

qj(D
aug
L ) =

1

3n

3n∑
i=1

(Daug
L )i,j =

1

3n

3n∑
i=1

2Lj((D
aug)i,j − 1/2) = 2Lj(qj(D

aug)− 1/2) ∈ [−Lj , Lj ] , (98)

combining (97) and (98) gives the result.
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Theorem E.5. Let n, p ∈ N, and L1, . . . , Lp > 0. Assume that for all subsets J ⊆ [p] of size at least d p75e,
√∑

j∈J L
2
j =

Ω(‖L‖2). DefineX =
∏p
j=1{−Lj ; +Lj}, and let qj : X → {−Lj , Lj} be the predicate of the j-th one-way marginal onX .

Take ε > 0 and δ = o( 1
n ). There exists a number M = Ω

(
min

(
n ‖L‖2 ,

√
p‖L‖2
ε

))
such that for every (ε, δ)-differentially

private algorithm A, there exists a dataset D = {d1, . . . , dn} ∈ Xn with ‖
∑n
i=1 di‖2 ∈ [M − 1,M + 1] such that, with

probability at least 1/3 over the randomness of A:

‖A(D)− q(D)‖2 = Ω

(
min

(
‖L‖2 ,

√
p ‖L‖2
nε

))
. (99)

Proof. LetM = Ω
(

min
(
n ‖L‖2 ,

√
p‖L‖2
ε

))
, and define the set of queriesQ composed of p queries qj(D) = 1

n

∑n
i=1 di,j

for j ∈ [p]. Let A be a (ε, δ)-differentially-private randomized algorithm. Let α, β ∈ [0, 1]. We will show that there exists a
dataset D such that ‖

∑n
i=1 di‖2 ∈ [M − 1,M + 1] for which A(D) is not (α, β)-accurate.

When n ≤ n∗. Assume, for the sake of contradiction, that A : X 3n → conv(X ) is ( 1
3α, β)-accurate for Q. Then, for

each dataset D′ ∈ X 3n, we have

Pr
[
∃J ⊆ [p] such that |J | ≥ (1− β)p and ∀j ∈ J , |Aj(D′)− qj(D′)| <

2Lj
3
α

]
≥ 2/3 . (100)

Importantly, for all D ∈ ({0, 1})p)n, the randomized algorithm A satisfies (100) for the dataset Daug
L = χL(D) ∈ X 3n.

We now construct the mechanism Ã : ({0, 1}p)n → [0, 1]p that takes a dataset D ∈ ({0, 1}p)n, constructs Daug
L = χL(D)

and runs A on it. It then outputs Ã(D) such that, for j ∈ [p], Ãj(D) = 3
2Lj
Aj(Daug

L )− Lj
3 . Using Claim 1, the results of

Ã and be linked to the ones of A, as∣∣∣Ã(D)− qj(D)
∣∣∣ =

∣∣∣∣ 3

2Lj
Aj(Daug

L )− Lj
3
− 3

2Lj
qj(D

aug
L ) +

Lj
3

∣∣∣∣ =
3

2Lj
|Aj(Daug

L )− qj(Daug
L )| . (101)

Therefore, if A satisfies (100) and (101), then Ã : ({0, 1}p)n → [0, 1]p satisfies, for all D ∈ ({0, 1}p)n,

Pr
[
∃J ⊆ [p] such that |J | ≥ (1− β)p and ∀j ∈ J ,

∣∣∣Ãj(D)− qj(D)
∣∣∣ < α

]
≥ 2/3 , (102)

which is exactly the definition of (α, β)-accuracy for Ã. Remark that since Ã is only a post-processing of A, without
additional access to the dataset itself, Ã is itself (ε, δ)-differentially-private. We have thus constructed an algorithm that is
both accurate and private for n ≤ n∗, which contradicts the result of Lemma E.4 when β = 1

75 . This proves the existence
of a dataset D ∈ ({0, 1}p)n such that for Daug

L = χL(D), A(Daug
L ) is not ( 1

3α, β)-accurate on Q, which means that with
probability at least 1/3, there exists a subset J ⊆ [p] of cardinal |J | ≥ dβpe such that

‖A(Daug
L )− q(Daug

L )‖2
(100)
≥

√√√√∑
j∈J

4L2
j

9
≥ Ω(‖L‖2) , (103)

where the second inequality comes from the fact that |J | ≥ dβpe = d p75e and our hypothesis on
∑
j∈J L

2
j . Notice that

when L1 = · · · = Lp = 1√
p , we recover the result of Bassily et al. (2014), since ‖L‖2 = 1 it holds with probability at least

1/3 that

‖A(Daug
L )− q(Daug

L )‖2
(100)
≥

√√√√∑
j∈J

4L2
j

9
≥
√

4

9× 75
‖L‖2 ≥

2

27
, (104)

and in that case, since all Lj’s are equal, it indeed holds that
√∑

j∈J L
2
j = Ω(‖L‖2). Finally, we remark that the sum of

each column of Daug
L is

∑n
i=1 di,j ≥ nLj , and as such, we have ‖

∑n
i=1 di‖2 =

√∑p
j=1(

∑n
i=1 di,j)

2 ≥
√∑p

j=1 n
2L2

j =

n ‖L‖2.
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When n > n∗. We get the result in that case by augmenting the datasetD∗ that we constructed in the first part of this proof.
To do so, we follow the steps described by Bassily et al. (2014) in the proof of their Lemma 5.1. The construction consists in
choosing a vector c ∈ X , and adding dn−n

∗

2 e rows with c, and bn−n
∗

2 c rows with −c to the dataset D∗. This results in a

dataset D′ such that ‖
∑n
i=1 di‖ = Ω(n∗ ‖L‖2) = Ω(

√
p‖L‖2
ε ), since the contributions of rows −c and c (almost) cancel

out. The theorem follows from observing that (n
∗

n α, β)-accuracy on this augmented dataset implies (α, β)-accuracy on the
original dataset. As such, if an algorithm is both private and (n

∗

n α, β)-accurate on the dataset D′, we get a contradiction,
which gives the theorem as n∗

n =
√
p

nε .

Remark E.6. Without the assumption on the distribution of the Lj’s, we can still get an inequality that resembles (103):

‖A(Daug
L )− q(Daug

L )‖2
(100)
≥
√∑

j∈J
4L2

j

9 ≥
2
27

Lmin

Lmax
‖L‖2, with probability at least 1/3, and we get a result similar to

Theorem E.5, except with an additional multiplicative factor Lmin/Lmax.

E.3 Lower Bound for Convex Functions

To prove a lower bound for our problem in the convex case, we let L1, · · · , Lp > 0 and define a dataset D = {d1, . . . , dn}
taking its values in a set X =

∏p
j=1{±Lj}. For β > 0, we consider the problem (1) with the convex, smooth and

L-component-Lipschitz loss function `(w; d) = −〈w, d〉 and the convex, separable regularizer ψ(w) =
‖∑n

i=1 di‖2
βn ‖w‖22:

w∗ = arg min
w∈Rp

{
F (w;D) = − 1

n
〈w,
∑n
i=1 di〉+

‖
∑n
i=1 di‖2
βn

‖w‖22

}
, (105)

To find the solution of (105), we look for w∗ so that the objective’s gradient is zero, that is

w∗ =
β

‖
∑n
i=1 di‖2

n∑
i=1

di , (106)

so that ‖w∗‖2 = β

‖∑n
i=1 di‖2

‖
∑n
i=1 di‖2 = β. To prove the lower bound, we remark that

F (w;D)− F (w∗;D) = − 1

n
〈w − w∗,

∑n
i=1 di〉+

‖
∑n
i=1 di‖
2βn

(‖w‖22 − ‖w
∗‖22) (107)

= − 1

n

〈
w − w∗,

‖
∑n
i=1 di‖
β

w∗
〉

+
‖
∑n
i=1 di‖
2βn

(‖w‖22 − ‖w
∗‖22) (108)

=
‖
∑n
i=1 di‖
βn

(
〈w∗ − w,w∗〉+

1

2
‖w‖22 −

1

2
‖w∗‖22

)
(109)

=
‖
∑n
i=1 di‖
βn

(
−〈w,w∗〉+

1

2
‖w‖22 +

1

2
‖w∗‖22

)
(110)

=
‖
∑n
i=1 di‖
2βn

‖w − w∗‖22 . (111)

At this point, we can proceed similarly to Bassily et al. (2014) to relate this quantity to private estimation of one-way
marginals. We let M = Ω(min(n ‖L‖2 , ‖L‖2

√
p/ε)) and A be an (ε, δ)-differentially private mechanism that outputs

a private solution wpriv to (105). Suppose, for the sake of contradiction, that for every dataset D with ‖
∑n
i=1 di‖2 ∈

[M − 1;M + 1], it holds with probability at least 2/3 that∥∥wpriv − w∗∥∥ 6= Ω(β) . (112)

We now derive from A a mechanism Ã to estimate one-way marginals. To do this, Ã runs A to obtain wpriv and outputs
M
nβw

priv. We obtain that with probability at least 2/3,∥∥∥Ã(D)− q(D)
∥∥∥

2
=
M

nβ

∥∥∥∥wpriv − β

M

∑n
i=1 di

∥∥∥∥
2

6= Ω

(
M

n

)
= Ω

(
min

(
‖L‖2 ,

‖L‖2
√
p

nε

))
. (113)
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where q(D) = 1
n

∑n
i=1 di. This is in contradiction with Theorem E.5. We thus proved that

∥∥wpriv − w∗∥∥ = Ω(β), with
probability at least 1/3. As a consequence, we now obtain that with probability at least 1/3,

F (wpriv;D)− F (w∗;D) =
‖
∑n
i=1 di‖
2βn

∥∥wpriv − w∗∥∥2

2
= Ω

(
min

(
‖L‖2 β,

β ‖L‖2
√
p

nε

))
, (114)

which gives the desired result on the expectation of F (wpriv;D)− F (w∗;D).

Finally, if we do not make any hypothesis on the Lj’s distribution, we can directly use the non-augmented dataset constructed
by Bun et al. (2014) to prove Lemma E.4 (that is the dataset from Theorem E.5, rescaled but not augmented). The `2-norm
of the sum of this dataset is ‖

∑n
i=1 dj‖2 = [M ′ − 1,M ′ + 1] with M ′ = Ω

(
min

(
Lmin

Lmax
n ‖L‖2 ,

Lmin

Lmax

√
p‖L‖2
ε

))
. This

holds since four columns of this dataset out of five have sum of ±nLj (for some j’s), but no lower bound on the sum of the
remaining columns can be derived. Thus, assuming (112) holds, then (113) can be rewritten as∥∥∥Ã(D)− q(D)

∥∥∥
2

=
M ′

nβ

∥∥∥∥wpriv − β

M

∑n
i=1 di

∥∥∥∥
2

6= Ω

(
M ′

n

)
= Ω

(
min

(
Lmin

Lmax
‖L‖2 ,

Lmin

Lmax

‖L‖2
√
p

nε

))
, (115)

with probability at least 1/3, which is in contradiction with Remark E.6. We thus get an additional factor of Lmin/Lmax in
the lower bound:

F (wpriv;D)− F (w∗;D) =
‖
∑n
i=1 di‖
2βn

∥∥wpriv − w∗∥∥2

2
= Ω

(
min

(
Lmin

Lmax
‖L‖2 β,

Lmin

Lmax

β ‖L‖2
√
p

nε

))
. (116)

E.4 Lower Bound for Strongly-Convex Functions

To prove a lower bound for strongly-convex functions, we let µI > 0, L1, . . . , Lp > 0, W =
∏p
j=1[− Lj

2µI
,+

Lj
2µI

] and

D = {d1, . . . , dn} ∈
∏p
j=1{±

Lj
2µI
}. We consider the following problem, which fits in our setting:

w∗ = arg min
w∈Rp

{
F (w;D) =

µI
2n

n∑
i=1

‖w − di‖22 + iW(w)

}
. (117)

where iW is the (separable) characteristic function of the set W . Since ψ = iW is the characteristic function of a
box-set, the proximal operator is equal to the projection on W and DP-CD iterates are thus guaranteed to remain in
W . Therefore, regularity assumptions on f only need to hold on W , as pointed out in Remark 2.1. The loss function
`(w; di) = µI

2 ‖w − di‖
2
2 is L-component-Lipschitz onW since, for w ∈ W and j ∈ [p], the triangle inequality gives:

|∇j`(w; di)| ≤ µI(|wj |+ |di,j |) ≤ µI
(
Lj
2µI

+
Lj
2µI

)
≤ Lj . (118)

This loss is also µI -strongly convex w.r.t. `2-norm since for w,w′ ∈ W ,

`(w; di) =
µI
2
‖w − di‖22 =

µI
2
‖w′ − di + w − w′‖22 =

µI
2

(
‖w′ − di‖

2
2 + 2 〈w′ − di, w − w′〉+ ‖w − w′‖22

)
,

(119)

which is exactly µI -strong convexity since `(w′; di) = µI
2 ‖w

′ − di‖22 and∇`(w′; di) = µI(w − di). The minimum of the
objective function in (117) is attained at w∗ = 1

n

∑n
i=1 di = q(D) ∈ W . The excess risk of F is thus

F (w;D)− F (w∗) =
µI
2n

n∑
i=1

‖w − di‖22 − ‖w
∗ − di‖22 (120)

=
µI
2n

n∑
i=1

‖w‖2 − ‖w∗‖2 + 2 〈di, w∗ − w〉 (121)

=
µI
2
‖w‖2 − 1

2
‖w∗‖2 + 〈w∗, w∗ − w〉 (122)

=
µI
2
‖w − q(D)‖22 . (123)
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It remains to apply Theorem E.5 to obtain that, with probability at least 1/3,

F (wpriv;D)− F (w∗) = Ω

(
min

(
‖L‖22
µI

,
‖L‖22 p
µIn2ε2

))
, (124)

which gives the lower bound on the expected value of F (wpriv;D)− F (w∗). Note that without the additional assumption
on the distribution of the Lj’s, Remark E.6 directly gives the result with an additional multiplicative factor (Lmin/Lmax)2:

F (wpriv;D)− F (w∗) = Ω

(
min

(
L2

min

L2
max

‖L‖22
µI

,
L2

min

L2
max

‖L‖22 p
µIn2ε2

))
, (125)

with probability at least 1/3.

F Private Estimation of Smoothness Constants
In this section, we explain how a fraction ε′ of the ε budget of DP can be used to estimate the coordinate-wise smoothness
constants, which are essential to the good performance of DP-CD on imbalanced problems. Let f be defined as the
average loss over the dataset D as in problem (1). We denote by M (i)

j the j-th component-smoothness constant of `(·, di),
where di is the i-th point in D. The j-th smoothness constant of the function f is thus the average of all these constants:
Mj = 1

n

∑n
i=1M

(i)
j .

Assuming that the practitioner knows an approximate upper bound bj over the M (i)
j ’s, they can enforce it by clipping M (i)

j

to bj for each i ∈ [n]. The sensitivity of the average of the clipped M (i)
j ’s is thus 2bj/n. One can then compute an estimate

of M1, . . . ,Mp under ε-DP using the Laplace mechanism as follows:

Mpriv
j =

1

n

n∑
i=1

clip(M
(i)
j , bj) + Lap

(
2bjp

nε′

)
, for each j ∈ [p] , (126)

where the factor p in noise scale comes from using the simple composition theorem (Dwork & Roth, 2014), and Lap(λ) is
a sample drawn in a Laplace distribution of mean zero and scale λ. The computed constant can then directly be used in
DP-CD, allocating the remaining budget ε− ε′ to the optimization procedure.

G Additional Experimental Details and Results

G.1 Hyperparameter Tuning

DP-SGD and DP-CD both depend on three hyperparameters: step size, clipping threshold and number of passes on data. For
DP-CD, step sizes are adapted from a parameter as described in Section 6, and clipping thresholds as well (see Section 5.1).
For DP-SGD, the step size is given by γ/β, where γ is the hyperparameter and β is the problem’s global smoothness
constant (which we consider given), and the clipping threshold is used directly to clip gradients along their `2-norm.

We simultaneously tune these three hyperparameters for each algorithm across the following grid:

• step size: 10 logarithmically-spaced values between 10−6 and 1 for DP-SGD, and between 10−2 and 10 for DP-CD.7

• clipping threshold: 100 logarithmically-spaced values, between 10−3 and 106.

• number of passes: 5 values (2, 5, 10, 20 and 50).

We run each algorithm on each dataset 5 times on each combination of hyperparameter values. We then keep the set of
hyperparameters that yield the lowest value of the objective at the last iterate, averaged across the 5 runs.

In Table 2, we report the best relative error (in comparison to optimal objective value) at the last iterate, averaged over five
runs, for each dataset, algorithm, and total number of passes on the data. As such, each cell of this table corresponds to the
best value obtained after tuning the step size and clipping hyperparameters for a given number of passes.

7Recall that step sizes for CD algorithms are coordinate-wise, and thus larger than in SGD algorithms. We empirically verify that the
best step size always lies strictly inside the considered interval for both DP-CD and DP-SGD.
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Table 2. Relative error to non-private optimal value of the objective function for different number of passes on the data. Results are
reported for each dataset and for DP-CD and DP-SGD, after tuning step size and clipping hyperparameters. A star indicates the lowest
error in each row.

Passes on data 2 5 10 20 50

Electricity (imbalanced) DP-CD 0.1458± 6e-04 0.0842± 1e-03 0.0436± 2e-03 0.0147± 2e-03 0.0020± 1e-03*
ε = 1, δ = 1/n2 DP-SGD 0.2047± 2e-02 0.1804± 2e-02 0.1766± 2e-02 0.1644± 2e-02 0.1484± 1e-02*

Electricity (balanced) DP-CD 0.0186± 4e-04 0.0023± 4e-04 0.0013± 6e-04* 0.0013± 4e-04 0.0019± 8e-04
ε = 1, δ = 1/n2 DP-SGD 0.0391± 1e-02 0.0189± 5e-03 0.0123± 4e-03 0.0106± 3e-03 0.0040± 2e-03*

California (imbalanced) DP-CD 0.1708± 7e-03 0.1232± 1e-02 0.0598± 1e-02 0.0287± 5e-03 0.0124± 7e-03*
ε = 1, δ = 1/n2 DP-SGD 0.2799± 9e-02 0.1863± 2e-02 0.1476± 2e-02 0.1094± 2e-02 0.1068± 2e-02*

California (balanced) DP-CD 0.0007± 3e-04* 0.0011± 6e-04 0.0012± 5e-04 0.0010± 1e-04 0.0017± 1e-03
ε = 1, δ = 1/n2 DP-SGD 0.0351± 2e-02 0.0226± 8e-03 0.0125± 3e-03 0.0087± 2e-03 0.0042± 1e-03*

Sparse LASSO DP-CD 0.2498± 4e-02* 0.4702± 9e-02 0.5982± 4e-02 0.7160± 2e-02 0.7551± 0e+00
ε = 10, δ = 1/n2 DP-SGD 0.7551± 0e+00 0.7551± 3e-09* 0.7551± 0e+00 0.7551± 0e+00 0.7551± 0e+00

G.2 Running Time

In this section, we report the running times of DP-CD and DP-SGD. We implemented DP-CD and DP-SGD in C++, with
Python bindings8. The design matrix and the labels are kept in memory as dense matrices of the Eigen library. No special
code optimization nor tricks is applied to the algorithms, except for the update of residuals at each iteration of DP-CD,
which prevents from accessing the complete dataset at each step. All experiments were run on a laptop with 16GB of RAM
and an Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz.

Figure 3 shows the same experiments as in Figure 1 and Figure 2, but as a function of the running time. In our implementation,
DP-CD runs about 4 times as fast as DP-SGD for a given number of iterations (see Figure 3a and Figure 3b for 50 iterations).
On the three other plots, Figure 3c, Figure 3d and Figure 3e, DP-CD yields better results in less iterations. DP-CD is thus
particularly valuable in these scenarios: combined with its faster running time, it provides accurate results extremely fast.
For completeness, we provide in Table 3 the full table of running time, corresponding to Table 2 and Figure 3. These results
show that, for a given number of passes on the data, DP-CD consistently runs about 5 times faster than DP-SGD.

Table 3. Time of execution (in seconds) for different number of passes on the data (averaged over 10 runs). Results are reported for each
dataset and for DP-CD and DP-SGD, after tuning step size and clipping hyperparameters.

Passes on data 2 5 10 20 50

Electricity (imbalanced) DP-CD 0.0128± 1e-03 0.0274± 1e-03 0.0500± 1e-03 0.0980± 7e-04 0.2457± 2e-03
ε = 1, δ = 1/n2 DP-SGD 0.0663± 2e-03 0.1722± 1e-02 0.3321± 1e-02 0.6729± 1e-02 1.8588± 2e-01

Electricity (balanced) DP-CD 0.0121± 7e-04 0.0281± 3e-03 0.0529± 2e-03 0.1062± 6e-03 0.2577± 2e-03
ε = 1, δ = 1/n2 DP-SGD 0.0686± 4e-03 0.1768± 1e-02 0.3578± 2e-02 0.6787± 2e-02 1.6766± 2e-02

California (imbalanced) DP-CD 0.0029± 9e-05 0.0065± 8e-05 0.0130± 1e-04 0.0258± 1e-04 0.0647± 2e-04
ε = 1, δ = 1/n2 DP-SGD 0.0269± 1e-03 0.0665± 1e-03 0.1318± 2e-03 0.2628± 3e-03 0.6476± 8e-03

California (balanced) DP-CD 0.0031± 2e-04 0.0065± 2e-04 0.0132± 1e-04 0.0262± 2e-04 0.0649± 3e-04
ε = 1, δ = 1/n2 DP-SGD 0.0261± 7e-04 0.0641± 5e-04 0.1295± 2e-03 0.2592± 4e-03 0.6469± 7e-03

Sparse LASSO DP-CD 0.0244± 6e-04 0.0760± 6e-04 0.1614± 4e-03 0.3213± 5e-04 0.6598± 1e-02
ε = 10, δ = 1/n2 DP-SGD 0.0718± 3e-03 0.1788± 4e-03 0.3654± 7e-03 0.7292± 2e-02 1.8110± 3e-02

8The code is available at https://gitlab.inria.fr/pmangold1/private-coordinate-descent/.

https://gitlab.inria.fr/pmangold1/private-coordinate-descent/
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Figure 3. Relative error to non-private optimal for DP-CD (blue, round marks), DP-CD with privately estimated coordinate-wise
smoothness constants (green, + marks) and DP-SGD (orange, triangle marks) on five problems. We report average, minimum and
maximum values over 10 runs for each algorithm, as a function of the algorithm running time (in seconds).


