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Abstract. Heterogeneity of left ventricular (LV) myocardium infarction
scar plays an important role as anatomical substrate in ventricular ar-
rhythmia (VA) mechanism. LV myocardium thinning, as observed on
cardiac computed tomography (CT), has been shown to correlate with
LV myocardial scar and with abnormal electrical activity. In this project,
we propose an automatic pipeline for VA prediction, based on CT images,
using a Graph Convolutional Network (GCN). The pipeline includes the
segmentation of LV masks from the input CT image, the short-axis ori-
entation reformatting, LV myocardium thickness computation and mid-
wall surface mesh generation. An average LV mesh was computed and
fitted to every patient in order to use the same number of vertices with
point-to-point correspondence. The GCN model was trained using the
thickness value as the node feature and the atlas edges as the adjacency
matrix. This allows the model to process the data on the 3D patient
anatomy and bypass the “grid” structure limitation of the traditional
convolutional neural network. The model was trained and evaluated on
a dataset of 600 patients (27% VA), using 451 (3/4) and 149 (1/4) pa-
tients as training and testing data, respectively. The evaluation results
showed that the graph model (81% accuracy) outperformed the clinical
baseline (67%), the left ventricular ejection fraction, and the scar size
(73%). We further studied the interpretability of the trained model us-
ing LIME and integrated gradients and found promising results on the
personalised discovering of the specific regions within the infarct area
related to the arrhythmogenesis.

Keywords: Graph Neural Network, Ventricular Arrhythmia, Interpretable
AI, Cardiac CT

1 Introduction

VA is the an abnormal heart rhythm most observed leading to the sudden car-
diac death (SCD), ranking among the highest causes of mortality in the devel-
oped countries [6]. The current gold standard predictor of SCD is still the left
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ventricular ejection fraction (LVEF), despite a majority of SCDs occurred in
patients with preserved LVEF (> 35%). The post-infarction scar on the LV my-
ocardium (LVMYO) is recognised as the anatomical substrate of the VA mech-
anism. Nonetheless, identifying the precise arrhythmogenesis characteristics of
the scar regions is still challenging, thus limiting its application in the clinical
practice. Recent study has shown that the LVMYO scar can be located through
the analysis of the LV wall thinning in CT imaging [5], as the alternative to the
late gadolinium enhancement (LGE) MRI. CT imaging is generally more accessi-
ble in terms of machine availability and patient compatibility (i.e. patients with
metallic device) compared to MRI. For image processing, CT imaging also have
higher image resolution and quantitative image intensity consistency between
manufacturers, thus reducing the potential error in the automatic processing
pipeline.

In recent years, Deep Learning (DL), notably the convolution neural network
(CNN), has made a remarkable impact in medical image processing, ranging from
semantic segmentation to diagnosis and outcome prediction. Although, the grid-
like property of the CNN can limit its efficacy on the organs with specific 3D
anatomy, such as the LVMYO. Our previous work proposed transforming the CT
input image into the 2D bullseye representation of the LV thickness to remove
the blank voxels of the endocardium [4]. However, the flattening of the 3D led to
the distortion of the 3D heterogeneity of the thickness map, impacting the sub-
sequent fitting of the DL model. On the other hand, graph neural networks have
gained more applications in medical image processing and bioinformatics [16],
thanks to its adaptability to the specific data geometry.

In this study, we investigated the graph-level classification task using a model
built with graph convolutional network (GCN) layers [3], and the LV thickness
map as input. Moreover, we studied the interpretability of the graph model using
LIME [8] and integrated gradients [11] to locate the specific regions contributed
to the VA prediction and to gain better insight of the explicit arrhythmogenic
regions from the model perspective.

2 Method

Our image processing pipeline formulates the 3D CT scan into a graph input.
The processing steps were image segmentation, short-axis (SAX) reorientation,
LVMYO thickness calculation, LV mid-wall meshing and average mesh fitting.
From there, a graph classification network was built using the atlas mesh and
the thickness value as input. The image processing pipeline and the model ar-
chitecture are described in section 2.1 and section 2.2.

2.1 Image Processing

The 3D ventricular masks were segmented from the input CT image using a
Dual-UNet segmentation model, composing of a “coarse” UNet [9] for ROI seg-
mentation and a “refine” UNet for the cropped input segmentation. The required
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masks included the epicardium and endocardium of the LV and the epicardium
of the RV. Using the LV and RV mask as landmarks, automatic SAX view re-
orientation was done using the method described in [7]. The SAX ventricular
masks were then resampled isotropically at 0.5mm. The LV wall thickness and
the mid-wall points were calculated using the Eulerian partial differential method
as proposed by [15]. The thickness value was normalised by clipping at 10mm
then divided by 10. Then, the surface mid-wall mesh was generated from the
mid-wall points using marching cube algorithm and uniformly remeshed using
appoximated centroid voronoi diagrams (ACVD) method[13]. Finally, an average
mid-wall mesh was generated and fitted to every patient based on the large defor-
mation diffeomorphic metric mapping (LDDMM) framework. The atlas fitting
was done using the deterministic atlas function provided by the Deformetrica
software [1]. Rigid registration of the meshes was done prior to atlas fitting. As
the mesh rotation and size were already registered in the SAX reorientation step,
we translated the centre of mass of all the meshes toward a reference from a ran-
domly selected mesh. At inference, the atlas mesh could be directly registered
to the new mesh using affine registration. The image process steps are shown in
Fig. 1.I.

2.2 Graph Convolutional Network Model

We built the model using the GCN layer [3], which used the following convolu-
tional operation:

X ′ = D̂−
1
2 ÂD̂

1
2XW + b , (1)

where X ′ ∈ RN×F is the output of N nodes and F filters, X ∈ RN×C is the
input of C features, W ∈ RC×F is the weights, b is the bias, D̂ ∈ RN×N the
degree matrix, and Â ∈ RN×N is the self-loop adjacency matrix (Â = IN +A).

We considered the LV mid-wall mesh as an indirect graph G = (V, E) with N
nodes vi ∈ V and edges (vi, vj) ∈ E . We used the thickness value of each node
vi as the input feature X ∈ RN×1. Since the input were uniformly remeshed,
no edge feature was use. The adjacency matrix A was extracted from the atlas
mesh edges and used for every inputs. The LV mesh could then be represented
as a graph G = (X,A).

Index Pooling. We employed the pooling method as proposed by [10], where
a coarse graph was generated to pre-define the corresponding pooling index
and the new adjacency matrix during the model construction. In our case, the
coarse graph was generated using the ACVD uniform meshing, with reduced
number of points, and the corresponding pooling indexes were defined using k-
dimensional tree nearest neighbour search (KD-tree NN). In this project, we
built the index pooling layer using max pooling method. The graph coarsening
and pooling indexes searching are computationally expensive, which is unfit for
online processing. This pooling method is more suitable with a point-to-point
corespondent graph input, as the pooling indexes of the atlas mesh can be applied
to all the input graphs. The index pooling steps are shown in Fig. 1.III.
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Model Architecture. The model architecture is shown in Fig. 1.II. Starting
with an input graph of N nodes, the model was built using two consecutive
GCN layers, followed by an index pooling layer, reducing the aggregated graph
to Ndwn nodes. The pooling output was then passed through three more GCN
layers, before feeding to the fully-connected network (FCN) classification block.
We set the filter size to 64 for all the GCNs, except the last GCN, where the filter
was set to 1. The classification block was built with 4 fully-connected layers with
[128, 64, 32, 2] units, respectively. We applied linear rectifier activation the first
3 layers and the softmax activation for the output layer. The model was trained
using the binary cross-entropy loss. The model was built using tools provided
by Spektral 1 (GCN layer) and Tensorflow 2.

    II. GCN-Pooling Model

    I. Image Processing Pipeline
Original Input Segmentation Short-Axis View Mid-wall Mesh Atlas Mesh

GCN; 
5000; 

64

GCN; 
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64
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500; 
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1
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GCN Layer; Nb of nodes; Nb of filters

(Dense + ReLU); Nb of units

Flatten layer 

Softmax Activation

Thickness Input
    III. Index Pooling
a)

b) c)

 KD-Tree Nearest Neighbour 

d) ACVD Uniform Remeshing 

Fig. 1. Image processing pipeline, GCN-Pooling architecture and Index Pooling layer.
The thickness input mesh was the result after fitting the average mesh to the mid-wall
mesh, ensuring the point-to-point correspondence of every input. Index Pooling: a).
pooling patches (from KD-tree NN); b). original (smaller spheres) and pooling nodes
(bigger spheres); c & d). coarse graph.

1 https://github.com/danielegrattarola/spektral
2 https://www.tensorflow.org/
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https://www.tensorflow.org/
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2.3 Interpretability Study

We studied the interpretability of the graph neural network by adapting to our
context two existing methods: Local Interpretable Model-agnostic Explanation
(LIME, [8]), and integrated gradients [11].

LIME. To summarize briefly, in the case of image data LIME computes a local
surrogate linear model based on the absence or presence of superpixels. Our use-
case is similar if we consider the input graph G = (X,A) as an image with pixel
values defined as the thickness. Following [2], our method can be described as:

1. segment the mesh into d patches;
2. randomly turn on/off the patches to create new inputs G1 = (X1, A),. . . ,
Gn = (Xn, A);

3. run the model prediction on all the new inputs yi = f(Gi);
4. compute β̂n by fitting the yis to a local weighted surrogate model.

We used two segmentation methods in step 1. The first is quick shift [14], as is
default for the image version of LIME, which bases the segmentation on both
the nodes 3D coordinates and the thickness value3. We scaled the magnitude
of the node coordinates and thickness value using scikit-learn standard feature
scaler4. The quickshift algorithm was then applied with the distance threshold
of 0.2. The second is grid segmentation with KD-tree NN, which is based only
on the nodes 3D coordinates. The mesh was first downsampled to 30 mm radius
using voxel downsampling, before running the KD-Tree search, which generated
a quasi uniform grid segmentation of the input mesh. Turning the patches i on
meant replacing the original value of patch with the replacement value, and vice
versa. To study the case of VA+ classification, the replacement value was set
to 1 to represent the normalised healthy LVMYO, under the hypothesis that the
completely healthy LV would be classified as VA-.

Integrated gradients. Integrated gradients is computed as the integral of back-
propagated gradients of the straightline path from the baseline input x′ to the
original input x. To adapt the method to the graph network, the integrated gra-
dients along the dimension ith for a model f(G) with the input graph G = (X,A)
and baseline graph G′ = (X ′, A) was calculated as:

IGi(G = (X,A)) := (Xi −X ′i)×
∫ 1

α=0

∂f(X ′ + α(X −X ′), A)

∂Xi
dα , (2)

where α ∈ [0, 1] denotes the step coefficients between the baseline input (α = 0)
to the input (α = 1). We set the number of step to 50. We set the baseline
feature X ′ the same way as the replacement input in LIME by changing the
thickness feature value to 1.

3 https://github.com/Nick-Ol/MedoidShift-and-QuickShift
4 https://scikit-learn.org/

https://github.com/Nick-Ol/MedoidShift-and-QuickShift
https://scikit-learn.org/


6 Authors Suppressed Due to Excessive Length

3 Experimental Setup

We studied our method using a retrospective dataset of 600 patients, collected
between 2010 and 2020. The dataset included the CT images captured at dias-
tolic of patients with history myocardial infarction (MI) at least 1 month before
the scan date and without any history of LV surgery. The dataset included
27.5% of patients labelled as VA+. The VA inclusion criteria were any episode
of ventricular tachycardia (VT) or fibrillation (VF), and aborted cardiac arrest.

The total population was randomly divided at 1 : 4 ratio, resulting in 451 and
149 patients for training and testing, respectively. Two-sample t-test was used
on all the available clinical characteristics to ensure that there was no significant
difference between the training and testing population. The available charac-
teristics in the dataset were age, gender, hypertension, diabetes, dyslipidaemia,
smoking, LVEF, scar size and scar age. The scar size was calculated as the area
on the LV surface with < 5cm thickness, and the scar age was calculated as the
delay between the MI and the scan date.

3.1 Baseline Models

DL Model. We studied the performance of the GCN-Pooling model against
the baseline DL models using 10-fold cross-validation on the training dataset.

Using the 2D thickness bullseye prediction pipeline proposed by [4], we tested
two models: the conditional variational autoencoder classification (CVAE-Class)
model and the direct CNN classification model (using the same layers as the
CVAE-Class without the decoder). To test the performance of the traditional
CNNs, we also run the cross-validation test with the 3D LV wall mask as input,
using the 3D variant of the VAE-Class (without the condition) and direct CNN
model. We used the SAX oriented LV wall masks to ensured the rotation and
the voxel spacing consistency between inputs.

For the graph input, we generated two sets of LV mid-wall meshes at 500
and 5000 nodes using the pipeline described in section 2.1. With the atlas-fitted
inputs, we run cross-validation on the GCN-Pooling, GCN (without index pool-
ing) and FCN model. The baseline GCN model was built with the same layers
as the GCN-Pooling, and the FCN model was built the same layers as the classi-
fier block (4-consecutive fully-connected layers). As ablation study, we also run
cross-validation on the GCN and FCN model using the rigid registered remesh
inputs without the atlas fitting.

Clinical Baseline. Finally, we compared the best DL model against the clinical
characteristics. With training dataset, we trained the best DL model and run
univariate analysis to find the significant variables associated with VA. Then, the
optimal cut-off values were calculated with the receiver operator curve (ROC)
analysis [12] using the following equation:

CutoffOptimal = min(|AUC− Spec|+ |AUC− Senc|) . (3)
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We then compared the generalisability of the DL model and the cutoff values on
the testing dataset.

4 Results

The Tab. 1 shows the cross-validation results of the DL models. The GCN-
Pooling model outperformed the baselines models with the cross-validate ac-
curacy of 0.818 ± 0.06. It outperformed the 2D and 3D input models (both
CVAE-Class and CNN-Class), thus proving that the LV wall thickness could be
formulated as graph to accurately predict the presence/absence of VA. The 3D
models also underperformed compared to the 2D model, which further demon-
strated the limit of the 3D CNNs in the classification task of the 3D anatomy
such as the LV wall.

For the FCN and GCN models, the point-to-point correspondence was crucial
for the models optimisation, as proven by the plummet in the accuracy of the
models trained with non atlas fitting inputs. Without the index pooling, the
500-node models (FCN and GCN) outperformed the 5000-node models, however
their accuracy could only reach 0.78. The prediction accuracy was increased
for the 500-node models with additional node coordinates as the input feature.
By adding the index pooling layer, the GCN-Pooling was able to properly learn
the more complex heterogeneity of the 5000-node inputs and achieved higher
prediction accuracy.

The univariate analysis on the training population clinical characteristics
resulted in 4 significant variables (p < 0.01): LVEF, gender, scar size and scar
age. The optimal cutoff values calculated from the dataset were 43%, 65cm2 and
132months for the LVEF, scar size and scar age, respectively.

The evaluation results on the testing dataset are shown in Tab. 2. The 5000-
node GCN-Pooling model achieved the highest prediction accuracy at 0.812,
followed by the scar-based markers at 0.725 (scar size) and 0.689 (scar age). The
LVEF had the lowest performance at 0.671 accuracy.

4.1 Model Interpretability

The Fig. 2 shows the output coefficients of LIME and integrated gradients on a
true positive prediction from the testing population. We could note the consis-
tency of the high coefficient (blue) regions between the two methods. The high
coefficient regions were also faithful among LIME outputs when the different
segmentation methods were used.

We observed that the regions with prominent coefficient correlated strongly
with the thinning regions of the LVMYO. This validates the hypothesis that
the post-infarction LV thinning is associated with the presence of VA. On top
of that, a closer inspection of the top coefficient patches showed that the GCN-
Pooling model did not base its VA+ prediction on the entire thinning regions.
Rather, higher coefficients were focused on smaller distinctive regions within or
adjacent to the scar regions, as indicates by the yellow ellipsoids in the Fig. 2.
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Table 1. 10-fold cross-validation of the DL baseline models. The results were diplayed
as mean (±std). (*) Non average fitted input, (**) Non average fitted input with
position and thickness features. Bold row: best accuracy model.

Model Input Shape Accuracy Sensitivity Specificity

CNN-class 256 × 256 0.775 (±0.05) 0.616 (±0.10) 0.834 (±0.06)
240 × 240 × 288 0.759 (±0.06) 0.508 (±0.19) 0.853 (±0.05)

(C)VAE-Class 256 × 256 0.788 (±0.06) 0.691 (±0.18) 0.825 (±0.05)
240 × 240 × 288 0.775 (±0.06) 0.457 (±0.18) 0.875 (±0.03)

FCN N = 500* 0.604 (±0.04) 0.525 (±0.15) 0.643 (±0.09)
N = 500** 0.700 (±0.06) 0.266 (±0.17) 0.862 (±0.05)
N = 500 0.770 (±0.06) 0.716 (±0.18) 0.790 (±0.07)
N = 5000* 0.706 (±0.07) 0.250 (±0.11) 0.878 (±0.09)
N = 5000** 0.743 (±0.03) 0.120 (±0.09) 0.975 (±0.03)
N = 5000 0.761 (±0.12) 0.775 (±0.17) 0.756 (±0.17)

GCN N = 500* 0.701 (±0.05) 0.626 (±0.09) 0.742 (±0.11)
N = 500** 0.718 (±0.07) 0.766 (±0.17) 0.700 (±0.09)
N = 500 0.784 (±0.08) 0.716 (±0.17) 0.809 (±0.09)
N = 5000* 0.679 (±0.12) 0.633 (±0.17) 0.696 (±0.21)
N = 5000** 0.677 (±0.09) 0.566 (±0.20) 0.718 (±0.16)
N = 5000 0.779 (±0.08) 0.716 (±0.19) 0.803 (±0.10)

GCN-Pooling N = 500 0.784 (±0.05) 0.808 (±0.07) 0.775 (±0.06)
N = 5000 0.818 (±0.06) 0.766 (±0.10) 0.837 (±0.07)

Table 2. Evaluation results on the testing population of the GCN-Pooling model and
the clinical baselines.

Accuracy Sensitivity Specificity

GCN-Pooling (N = 5000) 0.812 0.780 0.824
Scar Size > 65.49cm2 0.725 0.683 0.741
Scar Age > 132months 0.698 0.839 0.640
LVEF < 43% 0.671 0.707 0.657

5 Discussion

Although, the testing dataset were not used during the designing and tuning
of the model, the cross-validation and evaluation results were still based on
mono-centre dataset. The retrospective nature of dataset could also introduce
additional biases relating to the center imaging guideline, which skewed toward
a selected population. Therefore, the current study population might not be the
realistic representation of the general public.

The interpretablity analysis only provided a perspective into the relation be-
tween the model prediction and the input. The high coefficient regions could be
read as highly arrhythmogenic, simply because they were the regions allowing
the model to classify the input as VA+. While the choice of the segmentation
method in LIME is not trivial, we focused the analysis only on two segmen-
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Normalised Coefficient

A). Thickness Map D). Integrated GradientsC). LIME (Grid Segment.)B). LIME (Quick Shift)

Fig. 2. Interpretability studies of the GCN-Pooling model on a true positive prediction
case from testing population. The yellow ellipsoids highlight the regions with consis-
tently high coefficient among different methods. First row: inferior LV view; second
row: apex view.

tation methods, to limit the scope of this study. The quick shift method was
chosen as it incorporates both physical coordinates and the thickness values of
the node and was parameterised to generate small segments (by setting smaller
threshold). On contrast, the grid segmentation method does not consider the
thickness value and was parameterised to generate larger segments (using larger
neighbour searching radius). Therefore, the consistency of the two LIME meth-
ods, as well as the integrated gradients, further solidify the tolerance of our
interpretability approaches toward superpixel segmentation bias. Nevertheless,
limiting by the retrospective aspect of the available data, the current analysis of
the interpretability outputs were restricted to hypothesising.

A prospective and multi-centre dataset is necessary to confirm the generalis-
ability of the prediction pipeline and the validity of the detected arrhythmogenic
site.

6 Conclusion

We proposed a novel automatic pipeline for VA prediction using the cardiac CT
images. Formulating the LV thickness map into a graph input allowed the model
to perform an accurate prediction of VA based on the 3D anatomy of the LV and
achieved a better score then the model trained on the 2D input. The evaluation
on the testing dataset showed that the GCN-Pooling model outperformed the
clinical markers, especially comparing to the current gold standard predictor
(LVEF). The interpretabiliy studies proved that the model derived its prediction
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from the very specific regions within the greater scar regions, an encouraging
evidence for the future work on the personalised identification of arrhythmogenic
site of the LV.

References
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