Overlap Graph for Assembling and Scaffolding Algorithms: Paradigm Review and Implementation Proposals

Victor Epain

- To cite this version:

Victor Epain. Overlap Graph for Assembling and Scaffolding Algorithms: Paradigm Review and Implementation Proposals. 2022. hal-03815190v3

HAL Id: hal-03815190 https://hal.inria.fr/hal-03815190v3

Preprint submitted on 26 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Overlap Graph for Assembling and Scaffolding AIgorithms: Paradigm Review and Implementation Proposals

Victor Epain
Univ. Rennes, IRISA/CNRS, Inria, F-35000 Rennes, France

26th October 2022

Abstract

Assembling Deoxyribonucleic Acid (DNA) fragments based on their overlaps remains the main assembly paradigm with long DNA fragments sequencing technologies, independently of the aim to resolve only one or several haplotypes. Since an overlap can be seen as a succession relationship between two oriented fragments, the directed graph structure has emerged as the more appropriate data structure for handling overlaps. However, this graph paradigm did not appear to take benefit of the reverse symmetry of the orientated fragments and their overlaps, which is a result of blind DNA doublestrand sequencing. Thus, the bi-directed graph paradigm was introduced to be the one that reduces the graph size by handling the reverse symmetry, and since becomes the mainly used graph paradigm. Nevertheless, graph paradigms have never been contrasted before, and no implementations were described. Here we make a complete review on the existing overlap graph paradigms. Furthermore, we present different implementations that are theoretically compared in terms of memory, and their impact on the design and on the time of some basic graph algorithms. We also show that by adapting close logic implementations, a graph paradigm can be switched to another.

Keywords
Directed graph • Overlaps

Contents

1 Introduction 5
1.1 Reads 5
1.2 Overlaps 7
2 Storing Overlaps in a Graph Structure 9
2.1 Directed Graph: Oriented Fragments Based 11
2.2 Bi-directed Graph: Oriented Walk Based 14
2.3 Undirected Graph: Tail-Head Fragments Based 18
3 Overlap Graph Implementations 22
3.1 Directed Graph: Oriented Fragments Based 22
3.1.1 All Oriented Fragments Directed Graph (DGA) 22
3.1.2 Only Oriented Fragments' Successors Directed Graph (DGS) 25
3.1.3 Forward Fragments Directed Graph (DGF) 27
3.2 Bi-directed Graph: Oriented Walk Based 31
3.2.1 Forward Fragments Bi-directed Graph (BG) 31
3.2.2 Forward Fragments Directed Graph (DGF) 33
3.3 Undirected Graph: Tail-Head Fragments Based 33
3.3.1 All Oriented Fragments Undirected Graph (UGA) 33
3.3.2 Read-edges Jump Directed Graph (DGS) 35
4 Memory and Time Costs 35
4.1 Algorithms 35
4.1.1 Subfunctions 35
4.1.2 Iterating Over the Predecessors 36
4.1.3 Iterating Over the Successors 37
4.1.4 Adding a Vertex 39
4.1.5 Adding an Edge 40
4.1.6 Deleting a Vertex 41
4.1.7 Deleting an Edge 45
4.2 Time Complexities 48
4.2.1 Complexities Calculus Details 48
4.2.2 Costs for Subfunctions 48
4.2.3 Iterating Over the Neighbours 48
4.2.4 Costs for Dynamics 49
References 53
V. Epain3
Acronyms i
Symbols i
Glossary ii

1 Introduction

What is complementary strands?

Double-stranded Deoxyribonucleic Acid (DNA) molecules still cannot be entirely sequenced. In fact, every sequencing technology (sequencer) generates numerous overlapping genomic fragments.

1.1 Reads

A DNA fragment obtained from a sequencing stage is denoted by read.

- Definition 1.1: Raw reads

Let $\mathcal{R}_{a w}$ be the set of raw reads. $\forall r \in \mathcal{R}_{a w}$, let define the following attributes:

- $r_{\text {rid }} \in \mathbb{N}$, the read's integer identifier (index)
- $r_{\text {seq }} \in \Sigma^{+}$the read's sequence, where $\Sigma=\{A, T, G, C\}$ is nucleotide alphabet

A read can be sequenced from one strand or from its complement.

- Axiom 1.1: Double-stranded DNA sequencing

i. The two DNA strands are both sequenced.
ii. A strand is read in reverse order to the order of its complementary strand.
iii. Given two reads, it is not possible to know a priori it they have been sequenced from the same strand.

The Definition 1.2 formalises Axiom 1.1 point iii.:

- Definition 1.2: Strand identifier

Let strand_iid: $\mathcal{R}_{a w} \rightarrow\{0 ; 1\}$ be the function which returns the DNA strand identifier for a read.

Then Axiom 1.1 point iii. can be mathematically formalised:

$$
\exists(q, r) \in \mathcal{R}_{a w}{ }^{2}, q \neq r \mid \text { strand_iid }(q) \neq \operatorname{strand_ iid}(r)
$$

Axiom 1.1 suggests that combining two reads may result in a chimaera mix of the two strands because all the reads have not been sequenced from the same strand. Furthermore, only keeping the original sequence of the reads can result in the loss of strand parts during the assembly stage that aims to reconstruct the longest true parts of one strand. To solve these issues, it is sometimes necessary to consider the complementary sequence of some reads (i.e. the sequences on the complementary strand). For this, the sequence of the concerned reads are reversed (the end becomes the beginning, and vice versa) and each of its nucleotides is complemented $(A \rightleftarrows T, G \rightleftarrows C)$. Arbitrarily, the original sequence of a read is denoted as the forward, while the reverse denotes the reverse-complement. In the following, determining what sequence is taken for a read is defined as orienting it. Finally, it is necessary to consider both the forward and the reverse orientation for all the reads. Figure 1 explains the meaning of forward and reverse orientations in the context of sequencing technology.

- Definition 1.3: Reversed reads

Let $\mathcal{R}_{e v}=\left\{u_{r} \mid u_{f} \in \mathcal{R}_{a w}\right\}$ denote the set of reversed reads. Thus $\mathcal{R}=$ $\mathcal{R}_{a w} \cup \mathcal{R}_{e v}$. Let $u \in \mathcal{R}_{a w}$ be a read. Subscript is added to u to precise its orientation:

- u_{f} means that u is read in forward orientation (i.e. the original sequence of u, hence $u_{f} \in \mathcal{R}_{a w}$)
- u_{r} means that u is read in reverse orientation (i.e. the reversecomplemented sequence of u, hence $u_{r} \in \mathcal{R}_{e v}$)

Now the set of all oriented reads \mathcal{R} was built, the reverse operation can be defined:

- Definition 1.4: The reverse operation for reads

For a given read $u \in \mathcal{R}, \bar{u}$ denotes its reverse, where:

- $\bar{u}_{\text {rid }}=u_{\text {rid }}$ (i.e. a read u and its reverse \bar{u} have the same identifier)
- $\bar{u}_{\text {seq }}=\overline{u_{\text {seq }}}=\overline{b_{1} b_{2} \cdots b_{n}}=\overline{b_{n-1}} \cdots \overline{b_{1}}$ where $n \in \mathbb{N}$ is the length of the nucleotides sequence, and $\forall i \in \llbracket 1 ; n \rrbracket, b_{i}$ is the $i^{\text {th }}$ nucleotide base and
$\overline{b_{i}}$ its complementary nucleotide base.
Note that $\overline{u_{f}}=u_{r}$ and $\overline{u_{r}}=u_{f}$.

Figure 1 - Double-stranded DNA sequencing.
u_{f}, v_{f} are two reads from the raw reads set $\mathcal{R}_{a w}$ obtained from a double-stranded DNA sequencing stage. By default, f (forward) denotes the reading orientation of the raw reads' sequence that gives their sequence, while r (reverse) denotes the reading orientation of the raw reads' sequence that gives their reversed complemented sequence. In this illustration case, u_{f} was sequenced from strand $\operatorname{strand}_{0}$ (strand_iid $\left(u_{f}\right)=0$) while v_{f} was sequenced from strand $\operatorname{strand}_{1}$ (strand_iid $\left(v_{f}\right)=1$).

- Axiom 1.2: Belonging to one strand

The definition of \mathcal{R} set and Axiom 1.1 point ii. give the following statement:

$$
\forall r \in \mathcal{R}, \text { strand_iid }(r)=1-\text { strand_iid }(\bar{r})
$$

1.2 Overlaps

Reads must be assembled to reconstruct the entire genome since they are shorter than the length of the strand from which they have been sequenced (see Axiom 1.1). To assemble the reads means to find the original order of the (oriented) reads. Thus, the assembly stage is at least based on oriented reads alignments that define a succession relationship between them. One alignment type that answers this issue is overlap.

- Definition 1.5: Overlap
- An overlap between two nucleotides sequences (u, v) is a semi-global alignment or a close mapping between the end of sequence $u_{\text {seq }}$ and the beginning of sequence $v_{\text {seq }}$.
- Let define \mathcal{O} the set of overlaps.

All four scenarios for sequence overlap are depicted in Figure 2.

- Property 1.1: Overlap reverse symmetry

One overlap between two sequences always implies one overlap between the reversed sequences:

$$
\forall(q, r) \in \mathcal{R}^{2},(q, r) \in \mathcal{O} \Longleftrightarrow(\bar{r}, \bar{q}) \in \mathcal{O}
$$

\triangleright Proof
From Definition 1.3, it is sufficient to take one alignment between two sequences u and v, evaluated by an alignment score, that represents an overlap (hence succession relationship), and remark that:
i. the alignment score remains the same if the alignment is (reversely) read from v to u,
ii. the score remains the same if each nucleotide is transformed to its complement,
iii. combining points i. and ii. results in an alignment between \bar{v} and \bar{u} with the same alignment score as alignment $u v$

Figure 2 - Overlap cases between two sequences
u and v are two sequences, represented by an arrow that shows the forward orientation. Each subfigure illustrates one overlap case: (a) u_{f} overlaps v_{f} (hence v_{r} overlaps u_{r}) (b) v_{f} overlaps u_{f} (hence u_{r} overlaps v_{r}) (c) u_{f} overlaps v_{r} (hence v_{f} overlaps u_{r}) (d) v_{r} overlaps u_{f} (hence u_{r} overlaps v_{f}).

Analogously with Definition 1.4, Definition 1.6 extends the reverse operation to overlaps:

- Definition 1.6: The reverse operation for overlaps

For a given overlap $(q, r) \in \mathcal{O}, \overline{(q, r)}$ denotes its reverse i.e. (\bar{r}, \bar{q}).

2 Storing Overlaps in a Graph Structure

Overlaps between the reads can be represented in a graph structure. A graph is a mathematical object composed of vertices connected by edges. This graph structure would respect the following requirements:

1. Querying requirements

- given an oriented read, getting every overlapping oriented reads
- given two oriented reads, answering true if and only if they overlap

2. Dynamic requirements

- adding a read/overlap
- removing a read/overlap

Given all reads, the overlaps between them could be represented in a squared sparse matrix (of size \mathcal{R}^{2}). Sparse matrix compression as Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC) are known for efficiently storing the matrix and enable fast overlap existence querying. Finally, they enable fast edges iteration, but suffer from requirements 2 and can not be immediately adapted for handling overlaps reverse symmetry.

Thus, adjacency list structure seems to be adapted to dynamically add vertices and edges.

Sections 2.1 to 2.3 below offer a complete review of graph paradigms, while Sections 3.1 to 3.3 propose graph implementations for each graph paradigm in the way of its philosophy. Figure 3 summarises the different graph paradigms and their implementations.

LEGEND

Figure 3 - Graph paradigms and their implementations respectively ordered chronologically and by logical adaptation.
Blue boxes: they correspond to graph paradigms. They are described by the type of graph they represent, the number of vertices and edges if they have to be drawn.
Green boxes: they correspond to discussed graph implementations. After their name, the second line gives the adjacency list(s) definition set(s), following by the description of the type it (they) contain(s), finally the last line give the length of the adjacency list(s) (i.e. the number of vertices for which the neighbours are given). Ungraph, digraph, and bigraph respectively stand for undirected graph, directed graph and bidirected graph.

Fix Oriented FragmentS Based and Tail-head FragmentS based

2.1 Directed Graph: Oriented Fragments Based

The directed graph structure was the first idea to represent oriented reads and their overlaps, as overlaps are succession relationships. As far as we know, this structure was first mentioned in 1991 by Kececioglu [1]. Later, it was also described by Chin et al. [2], Kamath et al. [3], Andonov et al. [4], Shafin et al. [5] and Cheng et al. [6] in their respective assembly method.

- Definition 2.1: Oriented fragment based directed graph

Let $G=(V, E)$ a directed graph such that:

- V is the set of vertices, where each $v \in V$ represents an oriented read. For each read, there are two vertices (one for the forward orientation, and one for the reverse orientation). Thus, each $v \in V$ has the following attributes:
$-v_{\text {rid }} \in \mathbb{N}$ the identifier of the read it represents
- $v_{o r} \in\{0 ; 1\}$ the orientation of the read it represents (equals to 0 if forward, else equals to 1 if reverse)
- E is the set of edges, where each $(u, v) \in E$ represents oriented read u overlapping oriented read v.

Figure 4 shows how each overlap case is represented in the directed graph.

(a) $\left(u_{f}, v_{f}\right) \in \mathcal{O}$

(b) $\left(v_{f}, u_{f}\right) \in \mathcal{O}$

(c) $\left(u_{f}, v_{r}\right) \in \mathcal{O}$

(d) $\left(v_{r}, u_{f}\right) \in \mathcal{O}$

Figure 4 - Overlap cases in the directed graph. u and v are two sequences represented by two vertices each (u_{f}, u_{r} and v_{f}, v_{r}). Each subfigure illustrates one overlap impact on the directed graph: (a) $\left(u_{f}, v_{f}\right) \in E$ (hence $\left(v_{r}, u_{r}\right) \in E$) (b) $\left(v_{f}, u_{f}\right) \in E$ (hence $\left(u_{r}, v_{r}\right) \in E$) (c) $\left(u_{f}, v_{r}\right) \in E$ (hence $\left.\left(v_{f}, u_{r}\right) \in E\right)(\mathrm{d})\left(v_{r}, u_{f}\right) \in E$ (hence $\left(u_{r}, v_{f}\right) \in E$).

- Property 2.1: Sizes of the oriented fragment based directed graph

Let $G=(V, E)$ be an oriented fragment based directed graph:

$$
\begin{aligned}
& -|V|=2 \times\left|\mathcal{R}_{a w}\right|=|\mathcal{R}| \\
& -|E|=|\mathcal{O}|
\end{aligned}
$$

Because there are two vertices for each read, such that one of them represents the reverse of the other one, it is possible to define a reverse operation for this graph. Definition 2.2 extends Definitions 1.4 and 1.6:

- Definition 2.2: The reverse operation for vertices and edges in the oriented fragment based directed graph

Vertices For a given vertex $v \in V, \bar{v}$ denotes its reverse, where:
$-\bar{v}_{\text {rid }}=v_{\text {rid }}$

- $\bar{v}_{\text {or }}=1-v_{\text {or }}$

Edges For a given edge $e=(u, v) \in E, \bar{e}=(\bar{v}, \bar{u})$ denotes its reverse.

Definition 2.3 specifies what a valid walk (and a valid path) is in this graph:

- Definition 2.3: Walking in oriented fragment based directed graph

A valid walk results in a valid path $p=v_{0} v_{1} \cdots v_{n-1} \in V^{n} \mid n \in \mathbb{N}$ in the graph $G=(V, E)$ that respects the following criteria:

Contiguity Two consecutive vertices in the path must be connected by an edge in the graph:

$$
\forall i \mid 0 \leq i<n-1,\left(v_{i}, v_{i+1}\right) \in E
$$

Exclusive orientation There is at most one orientation for each vertex in path p :

$$
\forall v \in p, \bar{v} \notin p
$$

Note that walking in this graph is quite similar that walking in a classic directed graph, except that it is not possible to walk through a vertex and its reverse. Figure 5 gives an example of a valid walk in the directed graph.

Figure 5 - Valid walk example in the oriented fragment based directed graph.
A valid walk that begins from vertex v_{f} is coloured in red. This walk results in a path $p=v_{f} u_{f} x_{r}$.

Finally, Property 2.2 suggests that this directed graph inherits a reverse symmetry property analogous to Property 1.1:

- Property 2.2: Reverse symmetry for the vertices and the edges
$-\forall v \in V, \bar{v} \in V$.
$-\forall(u, v) \in E, \overline{(u, v)}=(\bar{v}, \bar{u}) \in E$.

\triangleright Proof

By construction (see Definition 2.1), the first point is immediate. Concerning the second point, it is sufficient to note that if $(r, q) \in \mathcal{O}$ (hence $(u, v) \in E$), then $(\bar{q}, \bar{r}) \in \mathcal{O}$ (hence $(\bar{v}, \bar{u}) \in E)$, where r and q are two oriented reads in \mathcal{R}, respectively represented by vertices u and v in V.

Figure 4 also illustrates Property 2.2.

2.2 Bi-directed Graph: Oriented Walk Based

In order to avoid creating two vertices for each read (and thus creating two edges for each overlap), the bi-directed graph structure to store overlaps was introduced by E. W. Myers in 1995 [7]. The key idea is to represent each read with only one vertex and keep the strict necessary overlap information between two reads on the edge connecting two vertices. Definition 2.4 provides a formal description. It was also described by Sommer et al. [8], Hernandez et al. [9] and Salmela et al. [10] in their respective assembly method.

- Definition 2.4: Oriented walk based bi-directed graph

Let $G=\left(V, E, o r_{E}\right.$, rel $\left._{E}\right)$ a bi-directed graph such that:

- V is the set of vertices, where each $v \in V$ represents a non-oriented read. For each read, there are only one vertex. Thus, each vertex $v \in V$ has an identifier of the read it represents $v_{\text {rid }} \in \mathbb{N}$.
- E is the set of edges, where each $(u, v) \in E$ represents an overlap between oriented read u and oriented read v. The overlap information are given by $o r_{u v}$ and $r e l_{u v}$:
- the orientation of u relatively to this of v is given by edge attribute $o r_{E}$: if the orientations are the same, then $o r_{u v}=0$, else $o r_{u v}=1$
- given that u identifier is lexicographically less that this of v, $r e l_{u v}=0$ if u in forward orientation overlaps v (in orientation given by $o r_{u v}$), else, $r e l_{u v}=1$ if v (in orientation given by $o r_{u v}$) overlaps u in forward orientation

While visually each edge has two extremities in the bi-directed graph, in memory the graph is undirected. Figure 6 shows how visually and how internally each overlap is stored in the bi-directed graph.

Figure 6 - Overlap cases in the bi-directed graph.
u and v are two unoriented sequences. Each subfigure illustrates one overlap impact on the bi-directed graph. For each, the first subfigure corresponds to the visualisation of a bi-directed edge, and the second shows the same information but with an undirected edge with $o r_{u v}$ and $r e l_{u v}$ attributes. (a) u and v have the same orientation in the overlap hence $o r_{u v}=0, u$ in forward orientation overlaps v hence $r e l_{u v}=0$ (b) u and v have the same orientation in the overlap hence $o r_{u v}=0, u$ in forward orientation is overlapped by v hence $r e l_{u v}=1$ (c) u and v do not have the same orientation in the overlap hence $o r_{u v}=1, u$ in forward orientation overlaps v hence $r e l_{u v}=0(\mathrm{~d})$ u and v do not have the same orientation in the overlap hence $o r_{u v}=1, u$ in forward orientation is overlapped by v hence $r e l_{u v}=1$

- Property 2.3: Sizes of the oriented walks based bi-directed graph

Let $G=(V, E)$ be an oriented walks based bi-directed graph:

$$
\begin{aligned}
& -|V|=\left|\mathcal{R}_{a w}\right|=\frac{1}{2} \times|\mathcal{R}| \\
& -|E|=\frac{1}{2} \times|\mathcal{O}|
\end{aligned}
$$

As the vertices represent unoriented reads and the overlaps are succession relationships between two oriented reads, it is necessary to define a variable for each vertex that gives its orientation:

- Definition 2.5: Vertex orientation variable

At each vertex $v \in V$ is associated a variable $v_{o r}$ that gives its orientation.
Given an overlap between two oriented reads, the variables of the two vertices that correspond to them (but unoriented) must respect their orientation. Definition 2.6 formalises this constraint that named co-validity constraint:

- Definition 2.6: Co-validity for the orientation variables of the edge' extremities

Let $(u, v) \in E$ be an edge. The orientation variables $u_{o r}$ and $v_{o r}$ are co-valid according the edge's attributes when:

- they are co-valid for $o r_{u v}$ attribute:

$$
\left|u_{o r}-v_{o r}\right|=o r_{u v}
$$

- they are co-valid for $r e l_{u v}$ attribute:

$$
u_{o r}= \begin{cases}r e l_{u v} & \text { if } u_{r i d}<v_{r i d} \\ \left|\left(1-o r_{u v}\right)-r e l_{u v}\right| & \text { if } u_{r i d}>v_{r i d}\end{cases}
$$

To know if the orientation variables are co-valid, the identifiers of the two consecutive vertices have to be compared. To avoid this verification, one may remark that the attribute $r e l_{u v}$ equals to $1-r e l_{v u}$, and can suggest a change in the attribute value, depending on the vertex u or v from which the edge (u, v) is considered. But this would contradict the bi-directed graph paradigm philosophy (which is a undirected graph paradigm) since having two different edge attributes $r e l_{u v}$ and $r e l_{v u}$ implies that the graph is directed.

As the graph is bi-directed, it is possible to define a reverse operation. Analogously to Definition 2.2, Definition 2.7 formalises the reverse operation in the bi-directed graph.

- Definition 2.7: The reverse operation for vertices and edges in the oriented walk based bi-directed graph

Vertices For a given vertex $v \in V$ and a fixed orientation variable $v_{o r}, \bar{v}$ denotes its reverse, where:

$$
\begin{aligned}
& -\bar{v}_{r i d}=v_{r i d} \\
& -\bar{v}_{o r}=1-v_{o r}
\end{aligned}
$$

Edges For a given edge $e=(u, v) \in E$ and fix co-valid orientation variables $u_{o r}$ and $v_{o r}, \bar{e}=(\bar{v}, \bar{u})$ denotes its reverse.

According to Definition 2.4, given $(u, v) \in E$ and one orientation for u or for v, it is necessary to check $r e l_{u v}$ value to determine the succession relationship between oriented u and oriented v. This particularity makes the bi-directed graph oriented
walk dependent. Definition 2.8 specifies what a valid walk is in this graph.

- Definition 2.8: Walking in oriented walk based bi-directed graph

A valid walk results in a path $p=v_{0} v_{1} \cdots v_{n-1} \in V^{n} \mid n \in \mathbb{N}$ in the graph $G=\left(V, E, o r_{E}\right.$, rel $\left._{E}\right)$ that respects the following criteria:

Contiguity

- Two consecutive vertices in the path must be connected by an edge in the graph:

$$
\forall i \mid 0 \leq i<n-1,\left(v_{i}, v_{i+1}\right) \in E
$$

- Given the vertices' orientation $v_{i_{o r}}$ and $v_{i+1_{o r}}$, they must be covalid.

Exclusive orientation At most one orientation is chosen for each vertex:

$$
\forall v_{i}, v_{j} \in p, v_{i}=v_{j} \Longrightarrow i=j
$$

Figure 7 gives an example of a valid walk in the bi-directed graph. Note that walking in this graph is not similar to walking in a classical undirected graph because the orientation variables must be co-valid.

(a) bi-directed graph view

(b) undirected graph view

Figure 7 - Valid walk example in the oriented walks based bi-directed graph. A valid walk is coloured in red. As the graph is undirected, the resulting path can be read in two possible ways: from vertex v or from vertex x. Let $p_{v}=v u x$ the one that begins from v such that $v_{\text {or }}=0, u_{o r}=0, x_{o r}=1$. Thus, $p_{x}=x u v$ is the one that begins from x such that $x_{o r}=0, u_{o r}=1, v_{o r}=1$. Note that $p_{x}=\overline{p_{v}}$. In (a) edges are drawn bidirected while in (b) they are drawn undirected.

Thanks to edges attributes $o r_{E}$ and rel_{E}, the bi-directed graph inherits a reverse symmetry property analogous to Property 1.1:

- Property 2.4: Reverse symmetry for the edges

Given an edge $(u, v) \in E$ and its attributes $o r_{u v}$ and $r e l_{u v}$, an overlap and its reverse are encoded in the graph.
\triangleright Proof
Without any loss of generality, let suppose that u identifier is lexicographically less that this of v.

- If or $r_{u v}=0$:
- if rel ${ }_{u v}=0$, then: if u orientation is fixed forward, then overlap $\left(u_{f}, v_{f}\right)$ is obtained; while if u orientation is fixed reverse, then $\left(v_{r}, u_{r}\right)$ is obtained (because rel $l_{u v}$ determines if oriented v is after or before u in forward orientation)
- else: if u orientation is fixed forward, then overlap $\left(v_{f}, u_{f}\right)$ is obtained; while if u orientation is fixed reverse, then $\left(u_{r}, v_{r}\right)$ is obtained.
- Else:
- if rel ${ }_{u v}=0$, then: if u orientation is fixed forward, then overlap $\left(u_{f}, v_{r}\right)$ is obtained; while if u orientation is fixed reverse, then $\left(v_{f}, u_{r}\right)$ is obtained.
- else: if u orientation is fixed forward, then overlap $\left(v_{r}, u_{f}\right)$ is obtained; while if u orientation is fixed reverse, then $\left(u_{r}, v_{f}\right)$ is obtained.

2.3 Undirected Graph: Tail-Head Fragments Based

A new undirected graph structure was presented by E. W. Myers in 2005 [11]: one read is represented by its tail and its head. Both the tail and the head are vertices, and there is one edge from the tail to the head. Passing through first the tail and then the head corresponds to choose the read in forward orientation, while passing through first the head and then the tail corresponds to choose it in reverse orientation. This new type of edges are called read-edges, at the opposite of overlap-edges that correspond to overlaps. A walk in the graph must alternate between read-edges and overlap-edges. This representation was also described in
the Mäkinen et al.'s book [12] and by Li [13] for its assembly method.

- Definition 2.9: Tail-head Fragments Based undirected graph

Let $G=(V, E)$ a undirected graph such that:

- V is the set of vertices, where each $v \in V$ represents one of the extremity of one read. For each read, there are two vertices v_{t}, v_{h} (respectively for the tail of the read, and for its head). Thus, each $v \in V$ has the following attributes:
$-v_{\text {rid }} \in \mathbb{N}$ the identifier of the read it represents
$-v_{\text {ext }} \in\{0 ; 1\}$ the extremity of the read it represents (equals to 0 if it is the head, else equals to 1 if it is the tail ${ }^{a}$)
- $E=E^{\mathcal{R}} \cup E^{\mathcal{O}}$ is the set of edges, such that:
- each undirected read-edge $\left(v_{t}, v_{h}\right) \in E^{\mathcal{R}}$ encodes the two possible read orientations (forward if from v_{t} to v_{h}, else reverse)
- each undirected overlap-edge $(u, v) \in E^{\mathcal{O}}$ represents which extremity of read u is overlapping which extremity of read v
${ }^{a}$ The values for the extremities are arbitrary: while selecting 0 for the tail and 1 for the head appears more natural, switching the values will be interesting later.

Figure 8 shows for all the overlap cases how they are represented in the undirected graph.

(b) $\left(v_{f}, u_{f}\right) \in \mathcal{O}$

(c) $\left(u_{f}, v_{r}\right) \in \mathcal{O}$

Figure 8 - Overlap cases in the undirected graph.
u_{t}, u_{h} and v_{t}, v_{h} are respectively the tail and the head of reads u and v. Dashed edges correspond to read-edges while plain edges correspond to overlap-edges. Each subfigure illustrates one overlap impact on the undirected graph: (a) $\left(u_{h}, v_{t}\right) \in E$ (b) $\left(v_{h}, u_{t}\right) \in E$ (c) $\left(u_{h}, v_{h}\right) \in E$ (d) $\left(v_{t}, u_{t}\right) \in E$.

- Property 2.5: Sizes of the tail-head fragment based undirected graph

Let $G=(V, E)$ be an oriented walks based bi-directed graph:
$-|V|=2 \times\left|\mathcal{R}_{a w}\right|=|\mathcal{R}|$
$-|E|=\frac{1}{2} \times|\mathcal{O}|+\left|\mathcal{R}_{a w}\right|$
As for each read there are two vertices that represent their two extremities, it is possible to define a reverse operation. Analogously to Definitions 2.2 and 2.7, Definition 2.10 formalises the reverse operation in the undirected graph.

- Definition 2.10: The reverse operation for vertices and edges in the tail-head fragment based undirected graph

Vertices For a given vertex $v \in V, \bar{v}$ denotes its reverse, where:

$$
\begin{aligned}
& -\bar{v}_{r i d}=v_{r i d} \\
& -\bar{v}_{o r}=1-v_{o r}
\end{aligned}
$$

Edges For a given edge $e=(u, v) \in E, \bar{e}=(v, u)$ denotes its reverse.

Because of the partition of edges set E in two subsets, walking in this graph does not correspond to a traditional undirected graph walk. Definition 2.11 specifies what a valid walk is in this graph.

- Definition 2.11: Walking in tail-head fragments based undirected graph

A valid walk results in a path $p=v_{0} v_{1} \cdots v_{2 k-1} \in V^{2 k} \mid k \in \mathbb{N}$ in the graph $G=\left(V, E^{\mathcal{R}} \cup E^{\mathcal{O}}\right)$ that respects the following criteria:
Contiguity Read-edges and overlap-edges alternate in the path:

- odd-numbered edges in the path are read-edges:

$$
\forall i \mid 0 \leq i<k,\left(v_{2 i}, v_{2 i+1}\right) \in E^{\mathcal{R}}
$$

- even-numbered edges in the path are overlap-edges:

$$
\forall i \mid 1 \leq i<k,\left(v_{2 i-1}, v_{2 i}\right) \in E^{\mathcal{O}}
$$

Exclusive orientation At most one orientation is chosen for each vertex:

$$
\forall v_{i}, v_{j} \in p, v_{i}=v_{j} \Longrightarrow i=j
$$

Note that walking in this graph is not similar that walking in a classic undirected graph, because a valid walk must alternate between read-edges and over-lap-edges. Figure 5 gives an example of a valid walk in the undirected graph.

Figure 9 - Valid walk example in the tail-head fragment based undirected graph.
A valid walk is coloured in red. As the graph is undirected, the resulting path can be read in two possible ways: from vertex v_{t} or from vertex x_{t}. Let $p_{v}=v_{t} v_{h} u_{t} u_{h} x_{h} x_{t}$ the one that begins from v_{t}, thus $p_{x}=x_{t} x_{h} u_{h} u_{t} v_{h} v_{t}$ is the one that begins from x_{t}. Note that $p_{x}=\overline{p_{v}}$.

Because the set of vertices contains the two extremities of each read, the undirected graph inherits a reverse symmetry property analogous to Property 1.1:

- Property 2.6: Reverse symmetry for the read-edges and the over-lap-edges

Given one overlap-edge $(u, v) \in E^{\mathcal{O}}$ and the two read-edges $\left(u_{t}, u_{h}\right) \in E^{\mathcal{R}}$ and $\left(v_{t}, v_{h}\right) \in E^{\mathcal{R}}$, one overlap and its reverse are encoded in the graph.

- $\forall\left(v_{t}, v_{h}\right) \in E,\left(v_{h}, v_{t}\right) \in E$, where v_{t} corresponds to the tail of read v and v_{h} corresponds to its head.
- $\forall(u, v) \in E,(v, u) \in E$.
\triangle Proof
- Read-edge $\left(v_{t}, v_{h}\right)$ corresponds to reading read v in forward orientation, hence $\left(v_{h}, v_{t}\right)$ correspond to reading it in reverse orientation.
- Let $(u, v) \in E^{\mathcal{O}}$ be an overlap-edge, hence read-edges (\bar{u}, u) and (v, \bar{v}) are considered. Moreover, overlap-edge (v, u) is also in $E^{\mathcal{O}}$, hence read-edges (u, \bar{u}) and (\bar{v}, v) are considered, and they correspond to the
reverse of the previous read-edges.

Figure 8 also illustrates Property 2.6.

3 Overlap Graph Implementations

For each graph paradigm in Section 2 at least one implementation is proposed in Sections 3.1 to 3.3. A map of all implementations and the graph paradigms they follow is illustrated in Figure 3.

In the following, let consider that all the overlaps in overlaps set \mathcal{O} are kept, and reads in reads set $\mathcal{R}_{\text {aw }}$ participate in at least one overlap. Also let suppose that $\min _{r \in \mathcal{R}_{a w}} r_{\text {rid }}=0$ and $\max _{r \in \mathcal{R}_{a w}} r_{r i d}=\left|\mathcal{R}_{a w}\right|-1$. The previous assertions permit to easily build an index on read identifiers rid. Also, mathematical terms as $G=(V, E)$ remain the same as in Section 2.

3.1 Directed Graph: Oriented Fragments Based

Section 3.1.1 describes the first implementation idea for the oriented fragment based directed graph, while Sections 3.1.2 and 3.1.3 takes the benefits of reverse symmetry to build a more clever implementation.

3.1.1 All Oriented Fragments Directed Graph (DGA)

For each read, there are two vertices in the directed graph. Remind that each read identifier $r_{\text {rid }}$ corresponds to a unique integer identifier (it is an index, see Definition 1.1).

The All Oriented Fragments Directed Graph (DGA) implementation is the first and the simplest idea that follows a classical directed graph implementation. Thus, for each read $r \in \mathcal{R}_{\text {aw }}$ there are two vertices $v_{f}, v_{r} \in V$ such that the index of v_{f} is equal to $2 \times r_{r i d}$ and the index of v_{r} is equal to $2 \times r_{r i d}+1$. Definition 3.1 formalises indices sets.

- Definition 3.1: Graph indices set for DGA

Let Vind $=\llbracket 0 ; 2 \times\left|\mathcal{R}_{a w}\right| \llbracket$ be the set of indices for the vertices:
$-\mid$ Vind $\left|=2 \times\left|\mathcal{R}_{a w}\right|\right.$
$-\forall v_{i n d} \in$ Vind, $v_{\text {ind }}=2 \times v_{\text {rid }}+v_{\text {or }}$, where $v_{\text {rid }}$ corresponds to the read's identifier and $v_{o r} \in\{0 ; 1\}$ its orientation

Let Eind $=\llbracket 0 ;|\mathcal{O}| \llbracket$ be the set of indices for the edges:
$-\mid$ Eind $|=|\mathcal{O}|$

- $\forall e_{i n d} \in$ Eind, $e_{\text {ind }}$ corresponds to the index of edge e, such that $\left|e_{\text {ind }}-\bar{e}_{\text {ind }}\right|=1$

It is possible now to build the two adjacency lists: the first one for the predecessors, the second one for the successors. They both contain respectively the index of each predecessor, resp. of each successor vertices as the same way as a classic directed graph implementation. They also contain the index of the edge. Definition 3.2 details the way the implementation is built.

```
add edge index
```


- Definition 3.2: DGA implementation

DGA graph implementation is built by:
Predecessor list $N_{V}^{-} \forall v \in V, \forall u \in N_{v}^{-}, u_{\text {ind }}$ is the index of a predecessor of vertex v

Successor list $N_{V}^{+} \forall v \in V, \forall w \in N_{v}^{+}, w_{\text {ind }}$ is the index of a successor of vertex v

Figure 10 illustrates the impact of overlap cases on the structure. For clarity's sake, only the indices of the predecessors (successors) are written.

Proposition 3.1 gives the amount of octet DGA implementation consumes.

- Proposition 3.1: DGA memory consumption

The memory size of the graph $\operatorname{Mem}(D G A)$ (in octets) is equals to:

$$
\begin{aligned}
\operatorname{Mem}(D G A) & =2 \times\left(2 \times\left|\mathcal{R}_{a w}\right|+1\right) \times P \\
& +2 \times|\mathcal{O}| \times\left(\left\lceil\frac{1+\log _{2}\left|\mathcal{R}_{a w}\right|}{8}\right\rceil+\left\lceil\frac{\log _{2}|\mathcal{O}|}{8}\right\rceil\right)
\end{aligned}
$$

where P is the memory size of a memory address.

$$
\begin{aligned}
& G=(V, E) \\
& \forall v_{f} \in V, v_{f_{\text {ind }}}=2 \times r_{r i d} \\
& \forall v_{r} \in V, v_{r_{\text {ind }}}=2 \times r_{r i d}+1 \\
&(u, v) \in E \Longleftrightarrow(u, v) \in \mathcal{O} \\
& \Longleftrightarrow(\bar{v}, \bar{u}) \in E
\end{aligned}
$$

Figure 10 - All oriented fragments directed graph implementation.
At the top left, the dot lined box corresponds to the legend for each of the four overlap cases. The grey mathematical formula above provides the overlap and its reverse symmetric overlap, under parenthesis, for the illustrated case. Under, there are the two adjacency lists (the first one contains the predecessors, the second one contains the successors): they both contain the indices of the predecessors/successors. At the top right, the grey box gives some graph properties.
\triangle Proof

proof here

3.1.2 Only Oriented Fragments' Successors Directed Graph (DGS)

DGA implementation suffer from redundancies in the data because it does not take benefits from the reverse symmetry. Only Oriented Fragments' Successors Directed Graph (DGS) implementation takes benefits from the symmetry hence while the structure follows the one of DGA, only the successor list is kept. Definition 3.3 details how it is built in memory.

add edge index

- Definition 3.3: DGS implementation

DGS graph implementation is built by the successor list N_{V}^{+}such that $\forall v \in$ $V, \forall w \in N_{v}^{+}, w_{i n d}$ is the index of a successor of vertex v. Also, for each successor w of vertex v

Figure 11 illustrates the impact of each overlap type on DGS implementation. For clarity's sake, only the indices of the successors are written, but not the edge indices.

Proposition 3.2 gives the amount of octet DGS implementation consumes.

- Proposition 3.2: DGS memory consumption

The memory size of the graph $\operatorname{Mem}(D G S)$ (in octets) is equals to:

$$
\begin{aligned}
\operatorname{Mem}(D G S) & =\left(2 \times\left|\mathcal{R}_{a w}\right|+1\right) \times P \\
& +|\mathcal{O}| \times\left(\left\lceil\frac{1+\log _{2}\left|\mathcal{R}_{a w}\right|}{8}\right\rceil+\left\lceil\frac{\log _{2}|\mathcal{O}|}{8}\right\rceil\right)
\end{aligned}
$$

where P is the memory size of a memory address.

\triangleright Proof

For each vertex there is a pointer to its successor list, hence $2 \times\left|\mathcal{R}_{\text {aw }}\right|$ pointers, and there is one pointer to the vertices' successor list. Then, for each successor, its index is provided ($\left\lceil\log _{2} 2 \times\left|\mathcal{R}_{\text {aw }}\right|\right\rceil$ bits), and the edge index is provided too ($\left\lceil\log _{2}|\mathcal{O}|\right\rceil$ bits). These numbers are divided by eight and rounded up to the nearest integer to get the number of octets. Then the sum is multiplied by the number of overlaps (|O|).

verify if same with commented

Figure 11 - Only oriented fragments successors directed graph implementation.
At the top left, the dot lined square corresponds to the legend for each of the four overlap cases. The grey mathematical formula above provides the overlap and its reverse symmetric overlap, under parenthesis, for the illustrated case. Under, there is the successor list: it contains the indices of the successors. At the top right, the grey square gives some graph properties.

Proposition 3.3 answer the issue of getting the predecessors.

- Proposition 3.3: DGS reverse symmetry to retrieve predecessors

For each vertex $v \in V$:
i. its predecessors are the reverse of its reverse' successors
ii. the edge index of $(u, v) \in E$ is the reverse of this of $(\bar{v}, \bar{u}) \in E$
\triangleright Proof
Let $v \in V$ be a vertex. Let $u \in V$ such that $(u, v) \in E$. Thus:
i. $(\bar{v}, \bar{u}) \in E$, hence \bar{u} is the successor of \bar{v} that is the reverse of v. Finally, $\overline{\bar{u}}=u$, that is the predecessor of v.
ii. If $\bar{e}_{\text {ind }}$ is the edge index of edge (\bar{v}, \bar{u}), then $e_{\text {ind }}=\bar{e}_{\text {ind }}+c$ (where $c=1$ if $\bar{e}_{\text {ind }}$ is even, else $c=-1$) corresponds to the edge index of the reverse of (\bar{v}, \bar{u}) hence the edge index of (u, v).

3.1.3 Forward Fragments Directed Graph (DGF)

As for DGS implementation, the last implementation of the directed graph structure, Forward Fragments Directed Graph (DGF), takes benefits from the reverse symmetry. DGF focuses only on the neighbours of the vertices that represent the reads in forward orientation (hence the reads in raw reads set $\mathcal{R}_{\text {aw }}$). Therefore, the vertices indices set is not build as previously. Hence for each read $r \in \mathcal{R}_{a w}$, let $v_{\text {ind }}=r_{\text {rid }}$ be the index of the vertex that represents it. Because an overlap involves two oriented reads, the neighbours' orientation must be included to the adjacency lists. Hence for each neighbour $v \in V$ in the predecessors/successor lists of a forward vertex, let $v_{\text {indor }}=\left(v_{\text {ind }, v_{o r}}\right)$ be its oriented neighbour. Definition 3.4 describes the different sets, and Definition 3.5 details the DGF implementation. For clarity's sake, only the indices of the predecessors/successors are written, but not the edge indices.

- Definition 3.4: Graph indices set for DGA

Let Vind $=\llbracket 0 ;\left|\mathcal{R}_{a w}\right| \llbracket$ be the set of indices for the vertices:
$-\mid$ Vind $\left|=\left|\mathcal{R}_{a w}\right|\right.$

- $\forall v_{\text {ind }} \in \operatorname{Vind}, v_{\text {ind }}=v_{\text {rid }}$, where $v_{\text {rid }}$ corresponds to the read's identifier

Let Vindor $=\llbracket 0 ;\left|\mathcal{R}_{\text {aw }}\right| \llbracket \times\{0 ; 1\}$ be the set of indices enriched by a boolean value for the oriented vertices:
$-\mid$ Vindor $\left|=2 \times\left|\mathcal{R}_{a w}\right|\right.$
$-\forall v_{\text {indor }} \in$ Vindor,$v_{\text {indor }}=\left(v_{\text {rid }}, v_{o r}\right)$, where $v_{\text {rid }}$ corresponds to the read's identifier and $v_{\text {or }}$ to its orientation

Let Eind $=\llbracket 0 ;|\mathcal{O}| \llbracket$ be the set of indices for the edges:
$-\mid$ Eind $|=|\mathcal{O}|$

- $\forall e_{i n d} \in$ Eind, $e_{\text {ind }}$ corresponds to the index of edge e, such that $\left|e_{\text {ind }}-\bar{e}_{\text {ind }}\right|=1$

add edge index

- Definition 3.5: DGF implementation

DGF graph implementation is built by:
Predecessor list for the forward $N_{V_{f}}^{-} \forall v \in V_{f}, \forall u \in N_{v}^{-}, u_{\text {ind }}$ is the index of a predecessor of vertex v, and $u_{o r}$ gives its orientation

Successor list for the forward $N_{V_{f}}^{+} \forall v \in V_{f}, \forall w \in N_{v}^{+}, w_{\text {ind }}$ is the index of a successor of vertex v, and $w_{\text {or }}$ gives its orientation

- Proposition 3.4: DGF memory consumption

The memory size of the graph $\operatorname{Mem}(D G F)$ (in octets) is equals to:

$$
\begin{aligned}
\operatorname{Mem}(D G F) & =2 \times\left(\left|\mathcal{R}_{a w}\right|+1\right) \times P \\
& +|\mathcal{O}| \times\left(\left\lceil\frac{1+\log _{2}\left|\mathcal{R}_{a w}\right|}{8}\right\rceil+\left\lceil\frac{\log _{2}|\mathcal{O}|}{8}\right\rceil\right)
\end{aligned}
$$

where P is the memory size of a memory address.
\triangleright Proof
For each (forward) vertex there is a pointer to its predecessor and successor lists, hence $2 \times\left|\mathcal{R}_{a w}\right|$ pointers, and there is one pointer to the vertices' predecessor and successor lists (hence +2). Then, for each predecessor/successor, its index and a boolean orientation value are provided ($\left\lceil\log _{2} 2 \times\left|\mathcal{R}_{\text {aw }}\right|\right\rceil$ bits), and the edge index is provided too $\left(\left\lceil\log _{2}|\mathcal{O}|\right\rceil\right.$ bits). These numbers are divided by eight and rounded up to the nearest integer to get the number of

$$
\begin{aligned}
G & =(V, E) \\
\forall v \in V, v_{\text {indor }}=\left(v_{\text {ind }}, v_{\text {or }}\right) \in \text { IndOr } & f_{\mathbb{B}}=0 \\
\bar{v}_{\text {indor }}=\left(v_{\text {ind }}, 1-v_{\text {or }}\right) & r_{\mathbb{B}}=1 \\
(u, v) \in E & \Longleftrightarrow(u, v) \in \mathcal{O} \\
& \Longleftrightarrow(\bar{v}, \bar{u}) \in E
\end{aligned}
$$

Figure 12 - Forward fragments directed graph implementation.
At the top left, the dot lined square corresponds to the legend for each of the four overlap cases. The grey mathematical formula above provides the overlap and its reverse symmetric overlap, under parenthesis, for the illustrated case. Under, there are the two adjacency lists for the forward (the first one contains the predecessors, the second one contains the successors): they both contain the couples index-orientation of the predecessors/successors. At the top right, the grey square gives some graph properties.
octets. Then the sum is multiplied by the number of overlaps $(|\mathcal{O}|)$.

verify if same with commented

Note that in contrast to Proposition 3.2, the memory consumption of adjacency lists pointers is equals to $2 \times\left(\left|\mathcal{R}_{a w}\right|+1\right)$ (versus $\left(2 \times\left|\mathcal{R}_{a w}\right|+1\right)$). In fact, the extra P is due to an extra adjacency list.

Proposition 3.5 answer the issue of getting the predecessors/successors of the reverse.

- Proposition 3.5: DGF reverse symmetry to retrieve predecessors

For each vertex $v \in V_{r}$:
i. its predecessors are the reverse of its reverse' successors
ii. its successors are the reverse of its reverse' predecessors
iii. the edge index of $(u, v) \in E$ is the reverse of this of $(\bar{v}, \bar{u}) \in E$

\triangle Proof

Let $v \in V_{[r]}$ be a vertex that represents a reverse read.

- Let $u \in V$ such that $(u, v) \in E$. Thus:
i. $(\bar{v}, \bar{u}) \in E$, hence \bar{u} is the successor of \bar{v} that is the reverse of v. Finally, $\overline{\bar{u}}=u$, that is the predecessor of v.
ii. If $\bar{e}_{\text {ind }}$ is the edge index of edge (\bar{v}, \bar{u}), then $e_{\text {ind }}=\bar{e}_{\text {ind }}+c$ (where $c=1$ if $\bar{e}_{\text {ind }}$ is even, else $c=-1$) corresponds to the edge index of the reverse of (\bar{v}, \bar{u}) hence the edge index of (u, v).
- Let $w \in V$ such that $(v, w) \in E$. Thus:
i. $(\bar{w}, \bar{v}) \in E$, hence \bar{w} is the predecessor of \bar{v} that is the reverse of v. Finally, $\overline{\bar{w}}=w$, that is the successor of v.
ii. If $\bar{e}_{\text {ind }}$ is the edge index of edge (\bar{w}, \bar{v}), then $e_{\text {ind }}=\bar{e}_{\text {ind }}+c$ (where $c=1$ if $\bar{e}_{\text {ind }}$ is even, else $c=-1$) corresponds to the edge index of the reverse of (\bar{w}, \bar{v}) hence the edge index of (v, w).

3.2 Bi-directed Graph: Oriented Walk Based

3.2.1 Forward Fragments Bi-directed Graph (BG)

In the bi-directed graph, there is one vertex for each raw read in $\mathcal{R}_{\text {aw }}$. Hence for each vertex v is associated an index $v_{\text {ind }}=v_{\text {rid }}$. An overlap and its reverse are represented by only one edge that carries strictly necessary overlap attributes, as described in Definition 2.4. Remind that the bi-directed graph is equivalent to a undirected graph: that's implemented by Unoriented Fragments Bi-directed Graph (BG) implementation. Definition 3.4 describes the different sets, and Definition 3.5 details the DGF implementation. For clarity's sake, only the indices of the predecessors/successors are written, but not the edge indices.

- Definition 3.6: Graph indices set for BG

Let Vind $=\llbracket 0 ;\left|\mathcal{R}_{a w}\right| \llbracket$ be the set of indices for the vertices:
$-\mid$ Vind $\left|=\left|\mathcal{R}_{\text {aw }}\right|\right.$
$-\forall v_{\text {ind }} \in$ Vind,$v_{\text {ind }}=v_{\text {rid }}$, where $v_{\text {rid }}$ corresponds to the read's identifier
Let Eind $=\llbracket 0 ; \frac{1}{2} \times|\mathcal{O}| \llbracket$ be the set of indices for the edges:

- \mid Eind $\left|=\frac{1}{2} \times|\mathcal{O}|\right.$
- $\forall e_{\text {ind }} \in$ Eind, $e_{\text {ind }}$ corresponds to the index of edge e

put paragraph in definition

Concerning the edge indices $e_{\text {ind }}$, it is possible to use their euclidean quotient by two $e_{\text {ind }}^{\prime}$ in memory and retrieving them thanks to the orientation of the fewer vertex index (let say u). In fact, if the considered overlap uses u_{f}, then $e_{\text {ind }}=$ $2 \times e_{\text {ind }}^{\prime}$, else $e_{\text {ind }}=2 \times e_{\text {ind }}^{\prime}+1$

- Definition 3.7: BG implementation

BG graph implementation is built by:
Neighbours list for the forward $N_{V} \forall v \in V, \forall w \in N_{v}, w_{\text {ind }}$ is the index of a neighbour of vertex v

Edges attributes for each neighbour w of a vertex v two boolean values are provided: $o r_{v w}$ and $r e l_{v w}$ (see Definition 2.4)

Figure 13 - caption title All four overlap cases structured in the bidirected graph.
At the top, the dot lined square corresponds to the legend for the four overlap cases. The mathematical formula above the line is the overlap such that u is in forward orientation, and the reverse symmetric overlap is under parenthesis. Under the line, there is the one list that contains, in order, the index of the neighbour, the value of $o r_{u v}$ and the value of $r e l_{u v}$.

- Proposition 3.6: BG memory consumption

The memory size of the graph $\operatorname{Mem}(B G)$ (in octets) equals:

$$
\begin{aligned}
\operatorname{Mem}(B G) & =\left(\left|\mathcal{R}_{a w}\right|+2\right) \times P \\
& +|\mathcal{O}| \times\left(\left\lceil\frac{\log _{2}\left|\mathcal{R}_{a w}\right|}{8}\right\rceil+\left\lceil\frac{\log _{2}|\mathcal{O}|-1}{8}\right\rceil\right)
\end{aligned}
$$

where P is the memory size of a memory address.
\triangleright Proof
For each (unoriented) vertex there is a pointer to its neighbour list, hence $\left|\mathcal{R}_{\text {aw }}\right|$ pointers, and there is one pointer to the vertices' neighbour list and one to the edges attribute list (hence +2). Then, for each neighbour, its index is provided ($\left\lceil\log _{2}\left|\mathcal{R}_{a w}\right|\right\rceil$ bits), and the edge index is provided too $\left(\left\lceil\log _{2}\left(\frac{1}{2} \times|\mathcal{O}|\right)\right\rceil\right.$ bits). These numbers are divided by eight and rounded up to the nearest integer to get the number of octets. Then the sum is multiplied by the number of overlaps $(|\mathcal{O}|)$. Finally, for each edge index $\left(\frac{1}{2} \times|\mathcal{O}|\right)$, there are two boolean edge attributes. $\frac{1}{2} \times|\mathcal{O}| \times 2$ is divided by eight and rounded up to get the number of octets.

verify if same as comments

The four combinations of edges' attributes or and rel let representing all the overlap cases and their reverse without any redundancy. To verify the reverse symmetry, it is sufficient (and easier) to choose an orientation of u and calculate the overlap case with the edges' attributes.

3.2.2 Forward Fragments Directed Graph (DGF)

description

ref figure from digraph implementation revsymg
memory

3.3 Undirected Graph: Tail-Head Fragments Based

3.3.1 All Oriented Fragments Undirected Graph (UGA)

fix for ungraph

For each read, there are two vertices in the directed graph. Remind that each read identifier $r_{\text {rid }}$ correspond to a unique integer identifier (it is an index,
see Definition 1.1). Thus, for each read $r \in \mathcal{R}_{a w}$ there are two vertices $v_{f}, v_{r} \in V$ such that the index of v_{f} is equal to $2 \times r_{r i d}$ and the index of v_{r} is equal to $2 \times r_{r i d}+1$.

It is possible now to build the adjacency lists (one list for the predecessors, and another one for the successors).

Figure 14 - caption title All four overlap cases structured in the directed graph.
At the top left, the dot lined square corresponds to the legend for the four overlap cases. The grey mathematical formula above is the overlap such that u is in forward orientation, and the reverse symmetric overlap is under parenthesis. Under, there are the two adjacency lists (the first one contains the neighbours for overlap-edges, the second one contains the neighbours for read-edge): they both contain the indices of the neighbours. Top right grey square gives some graph properties.

memory

3.3.2 Read-edges Jump Directed Graph (DGS)

description

Cref figure only oriented frag succs digraph

memory

remarque que l'on peut arriver visuellement au digraph

4 Memory and Time Costs

4.1 Algorithms

4.1.1 Subfunctions

Algorithm 1: Reverse operation on index

Require: Vertex/edge index ind.
Ensure: Returns index of the reverse vertex/edge.
function REV (ind)

$$
\text { if } \text { ind } \mid 2 \text { then }
$$

return ind +1
return ind - 1

For clarity's sake, $\operatorname{REV}($ ind $)=\overline{i n d}$.
Algorithm 2: Find place of edge index in the neighbour list. Cost: worst $3 \times \mid$ list \mid, best 3 , average $3 \times\left\lceil\frac{\mid \text { list } \mid}{2}\right\rceil$

```
Require: List of tuple list, edge index \(e_{\text {ind }}\), index \(t_{\text {ind }}\) of the place of edge index in the tuple contained in list. The edge index must be in a tuple.
Ensure: Returns the index of the tuple containing \(e_{\text {ind }}\) in list.
1: function GET__INDEX \(\left(l i s t, e_{i n d}, t_{\text {ind }}\right)\)
2: \(\quad\) list \(_{\text {ind }} \leftarrow 0\)
```

3: \quad while list $\left[\right.$ list $\left.t_{\text {ind }}\right]\left[t_{\text {ind }}\right] \neq e_{\text {ind }}$ and list $_{\text {ind }}<|l i s t|-1$ do
4: \quad list $_{\text {ind }} \leftarrow$ list $_{\text {ind }}+1$
5: return list $_{\text {ind }}$

4.1.2 Iterating Over the Predecessors

Algorithm 3: Iterate over the predecessors for DGS

Require: Graph $G=(V, E)$, vertex $v \in V$, empty list preds.
Ensure: The returned list contains the predecessors of v in graph G and the corresponding edge index.
function DGS_PREDS $(G, v$, preds $)$
for $\left(u, e_{\text {ind }}\right) \in N_{\bar{v}}^{+}$do preds.APPEND $\left(\bar{u}, \overline{e_{\text {ind }}}\right)$
return preds

Algorithm 4: Iterate over the predecessors for DGF

Require: Graph $G=(V, E)$, vertex $v \in V$, orientation of $v v_{\text {or }} \in\{0 ; 1\}$, empty list preds.
Ensure: The returned list contains the predecessors of v in graph G and the corresponding edge index.
function DGF_Preds $\left(G, v, v_{o r}\right.$, preds $)$
if $v_{o r}=0$ then $\quad \triangleright v$ forward
for $\left(u, e_{i n d}\right) \in N_{v}^{-}$do preds. $\operatorname{APPEND}\left(u, e_{i n d}\right)$
else
for $\left(u, u_{\text {or }}, e_{\text {ind }}\right) \in N_{\bar{v}}^{+}$do
preds.APPEND $\left(u, 1-u_{o r}, \overline{e_{i n d}}\right)$
return preds

Algorithm 5: Iterate over the predecessors for BGU

Require: Graph $G=(V, E)$, vertex $v \in V$, orientation of $v v_{\text {or }} \in\{0 ; 1\}$, empty list preds.
Ensure: The returned list contains the predecessors of v in graph G and the corresponding edge index.

```
function BGU_PREDS( \(G, v, v_{o r}\), preds \()\)
    orientations \(\leftarrow(0,1) \quad \triangleright\) forward/reverse orientations
    for \(\left(u, e_{\text {ind }}^{\prime}\right) \in N_{v}\) do
        if \(v<u\) then
            if \(v_{\text {or }}=0\) then
                if \(r e l_{u v}=1\) then \(\quad \triangleright u_{f} \rightarrow v_{f}\) or \(u_{r} \rightarrow v_{f}\)
                preds. \(\operatorname{APPEND}\left(u\right.\),orientations \(\left.\left[o r_{u v}\right], 2 \times e_{\text {ind }}^{\prime}\right)\)
            else if \(r e l_{u v}=0\) then \(\quad \triangleright u_{f} \rightarrow v_{r}\) or \(u_{r} \rightarrow v_{r}\)
                preds.APPEND \(\left(u\right.\), orientations \(\left.\left[1-o r_{u v}\right], 2 \times e_{\text {ind }}^{\prime}+1\right)\)
        else if \(v_{o r}=0\) then
            if \(o r_{u v}=0\) then
                if \(r e l_{u v}=0\) then \(\quad \triangleright u_{f} \rightarrow v_{f}\)
                preds. \(\operatorname{APPEND}\left(u, 0,2 \times e_{\text {ind }}^{\prime}\right)\)
            else if rel \(_{u v}=1\) then \(\quad \triangleright u_{r} \rightarrow v_{f}\)
                preds. \(\operatorname{Append}\left(u, 1,2 \times e_{\text {ind }}^{\prime}+1\right)\)
        else if \(o r_{u v}=0\) then
            if \(r e l_{u v}=1\) then \(\quad \triangleright u_{r} \rightarrow v_{r}\)
                preds. \(\operatorname{APPEND}\left(u, 1,2 \times e_{\text {ind }}^{\prime}+1\right)\)
        else if \(r e l_{u v}=0\) then \(\quad \triangleright u_{f} \rightarrow v_{r}\)
            preds. \(\operatorname{APPEND}\left(u, 0,2 \times e_{\text {ind }}^{\prime}\right)\)
        return preds
```


4.1.3 Iterating Over the Successors

Algorithm 6: Iterate over the successors for DGS

Require: Graph $G=(V, E)$, vertex $v \in V$, empty list succs.
Ensure: The returned list contains the successors of v in graph G.
function DGS_SUCCS(G, v, succs $)$
2: \quad for $\left(w, e_{i n d}\right) \in N_{v}^{+}$do
3: \quad succs.APPEND $\left(w, e_{i n d}\right)$
4: return succs

Algorithm 7: Iterate over the successors for DGF

Require: Graph $G=(V, E)$, vertex $v \in V$, orientation of $v v_{\text {or }} \in\{0 ; 1\}$, empty list succs.
Ensure: The returned list contains the successors of v in graph G.

```
function DGF__SUCCS( \(G, v, v_{o r}\), succs \()\)
    if \(v_{o r}=0\) then \(\quad \triangleright v\) forward
        for \(\left(w, e_{\text {ind }}\right) \in N_{v}^{+}\)do
            \(\operatorname{succs.APPEND}\left(w, e_{i n d}\right)\)
    else
        for \(\left(w, w_{o r}, e_{i n d}\right) \in N_{\bar{v}}^{-}\)do
        \(\operatorname{succs.APPEND}\left(w, 1-w_{o r}, \overline{e_{i n d}}\right)\)
    return succs
```


Algorithm 8: Iterate over the successors for BGU

Require: Graph $G=(V, E)$, vertex $v \in V$, orientation of $v v_{\text {or }} \in\{0 ; 1\}$, empty list succs.
Ensure: The returned list contains the successors of v in graph G.
function BGU_SUCCS($G, v, v_{o r}$, succs)

```
orientations \(\leftarrow(0,1)\)
                                    \(\triangleright\) forward/reverse orientations
        for \(\left(w, e_{i n d}^{\prime}\right) \in N_{v}\) do
        if \(v<w\) then
            if \(v_{\text {or }}=0\) then
                        if \(r e l_{v w}=0\) then \(\quad \triangleright v_{f} \rightarrow w_{f}\) or \(v_{f} \rightarrow w_{r}\)
                    succs. \(\operatorname{APPEND}\left(w\right.\), orientations \(\left.\left[o r_{v w}\right], 2 \times e_{\text {ind }}^{\prime}\right)\)
            else if \(r e l_{u v}=1\) then \(\quad \triangleright v_{r} \rightarrow w_{f}\) or \(v_{r} \rightarrow w_{r}\)
                        succs.APPEND \(\left(u\right.\), orientations \(\left.\left[1-o r_{u v}\right], 2 \times e_{\text {ind }}^{\prime}+1\right)\)
        else if \(v_{o r}=0\) then
            if \(o r_{u v}=0\) then
                        if \(r e l_{u v}=1\) then \(\quad \triangleright v_{f} \rightarrow w_{f}\)
                            \(\operatorname{succs} . \operatorname{APPEND}\left(w, 0,2 \times e_{\text {ind }}^{\prime}\right)\)
            else if rel \(_{u v}=0\) then \(\quad \triangleright v_{f} \rightarrow w_{r}\)
                    \(\operatorname{succs} . \operatorname{APPEND}\left(w, 1,2 \times e_{i n d}^{\prime}+1\right)\)
        else if \(o r_{u v}=0\) then
            if rel \(_{u v}=0\) then \(\quad \triangleright v_{r} \rightarrow w_{r}\)
                        \(\operatorname{succs.\operatorname {APPEND}(w,1,2\times e_{\text {ind}}^{\prime }+1)}\)
        else if \(\mathrm{rel}_{u v}=1\) then \(\quad \triangleright v_{r} \rightarrow w_{f}\)
            \(\operatorname{succs} . \operatorname{APPEND}\left(w, 0,2 \times e_{\text {ind }}^{\prime}\right)\)
        return succs
```


4.1.4 Adding a Vertex

Algorithm 9: Add a new vertex in the graph for DGS

Require: Graph $G=(V, E)$.
Ensure: Returns the new vertex' index (in forward orientation if there is the choice).
function DGS__ADD__VERTEX (G) $N_{V}^{+} . \operatorname{APPEND}\left(E M P T Y _\right.$LIST ()$)$ N_{V}^{+}.APPEND (EMPTY__LIST()) return $\left|N_{V}^{+}\right|-2$

\rightarrow Algorithm 10: Add a new vertex in the graph for DGF

Require: Graph $G=(V, E)$.
Ensure: Returns the new vertex' index (in forward orientation if there is the choice).
1: function DGF__ADD__VERTEX(G)
2: $\quad N_{V}^{-} \cdot \operatorname{APPEND}\left(E M P T Y ~ __L I S T()\right)$
3: $\quad N_{V}^{+} \cdot \operatorname{APPEND}\left(E M P T Y _\right.$LIST ())
4: \quad return $\left|N_{V}^{+}\right|-1$

Algorithm 11: Add a new vertex in the graph for BGU

Require: Graph $G=(V, E)$.
Ensure: Returns the new vertex' index (in forward orientation if there is the choice).
1: function BGU__ADD__VERTEX (G)
2: $\quad N_{V} \cdot \operatorname{APPEND}\left(E M P T Y _\right.$LIST ()$)$
3: \quad return $\left|N_{V}\right|-1$

4.1.5 Adding an Edge

- Algorithm 12: Add a new edge and its reverse in the graph for DGS

Require: Graph $G=(V, E),(u, v) \in V^{2}$. Note that the vertices are already in the graph.
Ensure: Returns the new edge's index (in forward orientation if there is the choice).

function DGS_ADD__EDGE (G, u, v)

\triangleright ind_edges is the number of edges. It is always even.
$N_{u}^{+} \cdot \operatorname{APPEND}(v$, ind_edges $)$
$N_{\bar{v}}^{+} \cdot \operatorname{APPEND}(\bar{u}$, ind_edges +1$)$
ind_edges \leftarrow ind_edges +2
card_edges \leftarrow card_edges +2
return ind_edges - 2

- Algorithm 13: Add a new edge and its reverse in the graph for DGF

Require: Graph $G=(V, E),(u, v) \in V^{2}$, with their orientation $\left(u_{o r}, v_{o r}\right) \in$ $\{0 ; 1\}^{2}$. Note that the vertices are already in the graph.
Ensure: Returns the new edge's index (in forward orientation if there is the choice).
function DGF_ADD__EDGE $\left(G, u, u_{o r}, v, v_{o r}\right)$
\triangleright ind_edges is the number of edges. It is always even.
if $u_{o r}=0$ then $\quad \triangleright u_{f} \rightarrow v_{f}$ or $u_{f} \rightarrow v_{r}$
$N_{u}^{+} \cdot \operatorname{APPEND}\left(v, v_{o r}\right.$, ind_edges $)$
else $\quad \triangleright u_{f} \leftarrow v_{f}$ or $u_{f} \leftarrow v_{r}$
$N_{u}^{-} \cdot \operatorname{APPEND}\left(v, 1-v_{\text {or }}\right.$, ind_edges +1$)$
if $v_{o r}=0$ then $\quad \triangleright u_{f} \rightarrow v_{f}$ or $u_{r} \rightarrow v_{f}$
$N_{v}^{-} \cdot \operatorname{APPEND}\left(u, u_{o r}, i n d _e d g e s\right)$
else $\quad \triangleright u_{f} \leftarrow v_{f}$ or $u_{r} \leftarrow v_{f}$
$N_{v}^{+} \cdot \operatorname{APPEND}\left(u, 1-u_{o r}\right.$, ind_edges +1$)$
ind_edges \leftarrow ind_edges +2
card_edges \leftarrow card_edges +2
return ind_edges - 2

Algorithm 14: Add a new edge and its reverse in the graph for BGU

Require: Graph $G=(V, E),(u, v) \in V^{2}$, with their orientation $\left(u_{o r}, v_{o r}\right) \in$ $\{0 ; 1\}^{2}$. Note that the vertices are already in the graph.
Ensure: Returns the new edge's index (in forward orientation if there is the choice).
function BGU__ADD__EDGE $\left(G, u, u_{o r}, v, v_{o r}\right)$
\triangleright ind_edges is the number of edges. $E_{\text {attr }}$ is a list of edges attributes. \triangleleft
or $\leftarrow\left|u_{o r}-v_{o r}\right|$
if $u<v$ then rel $\leftarrow u_{\text {or }}$ else
$r e l \leftarrow 1-v_{\text {or }}$ $N_{u} \cdot \operatorname{APPEND}\left(v, i n d _e d g e s\right)$
N_{v}.APPEND (u,ind_edges)
$E_{\text {attr }}$.APPEND (or, rel)
ind_edges $\leftarrow i n d _e d g e s+1$ card_edges \leftarrow card_edges +1
return $2 \times($ ind_edges -1$)$

4.1.6 Deleting a Vertex

- Algorithm 15: Delete a vertex for DGS

Require: Graph $G=(V, E)$, vertex $v \in V$ (in forward orientation).
Ensure: Delete the vertex and its reverse such that $V^{\prime}=V \backslash^{\prime}\{v, \bar{v}\}$, and $\forall v \in V^{\prime}, 0 \leq v_{\text {ind }} \leq\left|V^{\prime}\right|-2$.
function DGS__DELETE__VERTEX (G, v)
\triangleright Delete it from its predecessors
$v _r e v \leftarrow v+1$
for $\left(u, e_{i n d}\right) \in N_{v_{-} r e v}^{+}$do
$u _r e v \leftarrow \bar{u}$
$a d j _i n d \leftarrow G E T _\operatorname{INDEX}\left(N_{u _r e v}^{+}, \overline{e_{i n d}}, 1\right)$
if $a d j _i n d=\left|N_{u_{_} \text {rev }}^{+}\right|-1$ then
\triangleright Just delete the last element
$N_{u _r e v}^{+} \cdot \operatorname{POP}()$
else
\triangleright Replace the edge by the last in the neighbour list

```
        \(N_{u_{-} r e v}^{+}\left[a d j \_i n d\right] \leftarrow N_{u_{-} r e v}^{+} \cdot \operatorname{POP}()\)
    card_edges \(\leftarrow\) card_edges - 2
DELETE \(\left(N_{v_{-} \text {rev }}^{+}\right)\)
\(\triangleright\) Delete it from its successors
for \(\left(w, e_{\text {ind }}\right) \in N_{v}^{+}\)do
    \(w \_r e v \leftarrow \bar{w}\)
    adj_ind \(\leftarrow\) GET_INDEX \(\left(N_{w-r e v}^{+}, \overline{e_{i n d}}, 1\right)\)
    if \(a d j \_i n d=\left|N_{w_{-} \text {rev }}^{+}\right|-1\) then
        \(\triangleright\) Just delete the last element \(\triangleleft\)
        \(N_{w \_r e v}^{+} \cdot \operatorname{POP}()\)
    else
        \(\triangleright\) Replace the edge by the last in the neighbour list
        \(N_{w_{-} \text {rev }}^{+}\left[a d j \_i n d\right] \leftarrow N_{w_{-} \text {rev }}^{+} \cdot \operatorname{POP}()\)
    card_edges \(\leftarrow\) card_edges -2
delete \(\left(N_{v}^{+}\right)\)
\(\triangleright\) Delete the whole vertex
if \(v=\left|N_{V}^{+}\right|-2\) then
    \(\triangleright\) It is the last, just pop it and its reverse
    \(N_{V}^{+} \cdot \operatorname{POP}()\)
    \(N_{V}^{+} \cdot \operatorname{POP}()\)
else
    \(\triangleright\) Replace it and its reverse by the last and its reverse
    \(N_{v_{-}}^{+}\)rev \(\leftarrow N_{V}^{+} \cdot \operatorname{POP}()\)
    \(N_{v}^{+} \leftarrow N_{V}^{+} \cdot \operatorname{POP}()\)
    \(\triangleright\) Update the vertex index
    for \(\left(w, e_{i n d}\right) \in N_{v}^{+}\)do
        \(w \_r e v \leftarrow \bar{w}\)
        \(e_{\text {ind_}} \_r e v \leftarrow \overline{e_{\text {ind }}}\)
        adj_ind \(\leftarrow\) GET_INDEX \(\left(N_{w_{-}}^{+}\right.\)rev,\(e_{\left.i n d \_r e v, 1\right)}\)
        \(N_{w \_r e v}^{+}\left[a d j \_i n d\right] \leftarrow\left(v \_r e v, e_{i n d \_r e v}\right)\)
    for \(\left(w, e_{\text {ind }}\right) \in N_{v_{r} r e v}^{+}\)do
        \(w \_r e v \leftarrow \bar{w}\)
        \(e_{\text {ind_}} r e v \leftarrow \overline{e_{\text {ind }}}\)
        \(a d j \_i n d \leftarrow G E T \_I N D E X\left(N_{w_{-}}^{+}\right.\)rev,\(e_{\left.i n d \_r e v, 1\right)}\)
        \(N_{w \_r e v}^{+}\left[a d j \_i n d\right] \leftarrow\left(v, e_{\text {ind_}} r e v\right)\)
```


Algorithm 16: Delete a vertex for DGF

Require: Graph $G=(V, E)$, vertex $v \in V$ (in forward orientation).
Ensure: Delete the vertex and its reverse such that $V^{\prime}=V \backslash^{\prime}\{v, \bar{v}\}$, and
$\forall v \in V^{\prime}, 0 \leq v_{\text {ind }} \leq\left|V^{\prime}\right|-2$.

function DGF__DELETE__VERTEX (G, v)

\triangleright Delete it from its predecessors
for $\left(u, u_{o r}, e_{i n d}\right) \in N_{v}^{-}$do
if $u_{o r}=0$ then
adj_ind $\leftarrow \operatorname{GET}$ _INDEX $\left(N_{u}^{+}, e_{i n d}, 1\right)$
if adj_ind $=\left|N_{u}^{+}\right|-1$ then
\triangleright Just delete the last element
$N_{u}^{+} . \operatorname{POP}()$
else
\triangleright Replace the edge by the last in the neighbour list

$$
N_{u}^{+}[\text {adj_ind }] \leftarrow N_{u}^{+} . \operatorname{POP}()
$$

else
adj_ind $\leftarrow \operatorname{GET}$ _INDEX $\left(N_{u}^{-}, \overline{e_{\text {ind }}}, 1\right)$ if adj_ind $=\left|N_{u}^{-}\right|-1$ then
\triangleright Just delete the last element

$$
N_{u}^{-} \cdot \operatorname{POP}()
$$

else
\triangleright Replace the edge by the last in the neighbour list $N_{u}^{-}[$adj_ind $] \leftarrow N_{u}^{-} \cdot \operatorname{POP}()$
card_edges \leftarrow card_edges -2
DELETE $\left(N_{v}^{-}\right)$
\triangleright Delete it from its successors
for $\left(w, w_{o r}, e_{i n d}\right) \in N_{v}^{+}$do
if $w_{\text {or }}=0$ then
adj_ind $\leftarrow \operatorname{GET}$ _INDEX $\left(N_{w}^{-}, e_{i n d}, 1\right)$
if adj_ind $=\left|N_{w}^{-}\right|-1$ then
\triangleright Just delete the last element
$N_{w}^{-} . \operatorname{POP}()$
else
\triangleright Replace the edge by the last in the neighbour list
$N_{w}^{-}\left[a d j _i n d\right] \leftarrow N_{w}^{-} \cdot \operatorname{POP}()$
else
adj_ind $\leftarrow \operatorname{GET} _\operatorname{INDEX}\left(N_{w}^{+}, \overline{e_{i n d}}, 1\right)$
if adj_ind $=\left|N_{w}^{+}\right|-1$ then
$>$ Just delete the last element

```
\(N_{w}^{+} \cdot \operatorname{POP}()\)
        else
            \(\triangleright\) Replace the edge by the last in the neighbour list
            \(N_{w}^{+}[\)adj_ind \(] \leftarrow N_{w}^{+} . \operatorname{POP}()\)
        card_edges \(\leftarrow\) card_edges - 2
DELETE \(\left(N_{v}^{+}\right)\)
\(\triangleright\) Delete the whole vertex
if \(v=\left|N_{V}^{+}\right|-1\) then
    \(\triangleright\) It is the last, just pop it and its reverse
    \(N_{V}^{-} \cdot \operatorname{POP}()\)
    \(N_{V}^{+} \cdot \operatorname{POP}()\)
else
    \(>\) Replace it and its reverse by the last and its reverse
    \(N_{v}^{-} \leftarrow N_{V}^{-} \cdot \operatorname{POP}()\)
    \(N_{v}^{+} \leftarrow N_{V}^{+} \cdot \operatorname{POP}()\)
    \(\triangleright\) Update the vertex index
    for \(\left(u, u_{o r}, e_{i n d}\right) \in N_{v}^{-}\)do
        if \(u_{\text {or }}=0\) then
            adj_ind \(\leftarrow \operatorname{GET} \_\operatorname{INDEX}\left(N_{u}^{+}, e_{i n d}, 1\right)\)
            \(N_{u}^{+}\left[a d j \_i n d\right] \leftarrow\left(v, 0, e_{\text {ind }}\right)\)
        else
            \(u \_r e v \leftarrow \bar{u}\)
            \(e_{\text {ind_r }}\) rev \(\leftarrow \overline{e_{\text {ind }}}\)
            \(a d j \_i n d \leftarrow \operatorname{GET} \_\operatorname{INDEX}\left(N_{u_{-} r e v}^{-}, e_{i n d \_} r e v, 1\right)\)
            \(N_{u_{-} r e v}^{-}\left[a d j \_i n d\right] \leftarrow\left(v, 1, e_{\text {ind }} \_r e v\right)\)
        for \(\left(w, w_{o r}^{-}, e_{i n d}\right) \in N_{v}^{+}\)do
        if \(w_{\text {or }}=0\) then
            adj_ind \(\leftarrow \operatorname{GET}\) _INDEX \(\left(N_{w}^{-}, e_{i n d}, 1\right)\)
            \(N_{w}^{-}\left[a d j \_i n d\right] \leftarrow\left(v, 0, e_{i n d}\right)\)
        else
            \(w \_r e v \leftarrow \bar{w}\)
            \(e_{\text {ind_r }} r e v \leftarrow \overline{e_{\text {ind }}}\)
            \(a d j \_i n d \leftarrow G E T \_\operatorname{INDEX}\left(N_{w_{-}}^{+}\right.\)rev,\(e_{\left.i n d \_r e v, 1\right)}\)
            \(N_{w_{-}}^{+}\)rev \([\)adj_ind \(] \leftarrow\left(v, 1, e_{\text {ind_}}^{-} r e v\right)\)
```


- Algorithm 17: Delete a vertex for BGU

Require: Graph $G=(V, E)$, vertex $v \in V$ (in forward orientation).

Ensure: Delete the vertex and its reverse such that $V^{\prime}=V \bigvee^{\prime}\{v, \bar{v}\}$, and $\forall v \in V^{\prime}, 0 \leq v_{\text {ind }} \leq\left|V^{\prime}\right|-2$.

```
function BGU__DELETE__VERTEX(G,v)
    for (w, eind})\in\mp@subsup{N}{v}{}\mathrm{ do
        adj_ind \leftarrowGET__INDEX ( }\mp@subsup{N}{w}{},\mp@subsup{e}{ind}{},1
        if adj_ind = |Nw |-1 then
```

 \(\triangleright\) Just delete the last element
 \(N_{w} . \operatorname{POP}()\)
 else
 \(\triangleright\) Replace the edge by the last in the neighbour list
 \(N_{w}[\) adj_ind \(] \leftarrow N_{w} \cdot \operatorname{POP}()\)
 DElete \(\left(N_{v}\right)\)
 \(\triangleright\) Delete the whole vertex
 if \(v=\left|N_{V}\right|-1\) then
 \(\triangleright\) It is the last, just pop it
 \(N_{V} . \operatorname{POP}()\)
 else
 \(\triangleright\) Replace it by the last
 \(N_{v} \leftarrow N_{V} \cdot \operatorname{POP}()\)
 \(\triangleright\) Update the vertex index
 for \(\left(w, e_{i n d}\right) \in N_{v}\) do
 adj_ind \(\leftarrow\) GET__INDEX \(\left(N_{w}, e_{i n d}, 1\right)\)
 \(N_{w}\left[a d j _i n d\right] \leftarrow\left(v, e_{i n d}\right)\)
 if \(w>v\) then
 \(\triangleright\) The last (the greatest) identifier becomes a fewer and
 breaks the identifier order
 \(E_{\text {attr }}\left[e_{\text {ind }}\right] \leftarrow\left(E_{\text {attr }}\left[e_{\text {ind }}\right][0], 1-E_{\text {attr }}\left[e_{\text {ind }}\right][1]\right)\)

4.1.7 Deleting an Edge

Algorithm 18: Delete an edge for DGS

Require: Graph $G=(V, E)$, edge $(u, v) \in E$ and the edge's index $e_{i n d}$.
Ensure: $\left|N_{u}^{+} \backslash e d g e\right|=\left|N_{u}^{+}\right|-1$ and $\mid N_{v}^{-} \backslash$ edge $\left|=\left|N_{v}^{-}\right|-1\right.$.
function DGS_DELETE__EDGE $\left(G, u, v, e_{i n d}\right)$
\triangleright Remove v from u 's successors
$a d j _i n d \leftarrow \operatorname{GET} _$INDEX $\left(N_{u}^{+}, e_{i n d}, 1\right)$
if adj_ind $=\left|N_{u}^{+}\right|-1$ then

```
    \(\triangleright\) Just delete the last element
        \(N_{u}^{+} . \operatorname{POP}()\)
        else
            \(\triangleright\) Replace the edge by the last in the neighbour list
    \(N_{u}^{+}[\)adj_ind \(] \leftarrow N_{u}^{+}\). POP ()
\(\triangleright\) Remove \(u\) from v's predecessors.
    \(v \_r e v \leftarrow \bar{v}\)
    adj_ind \(\leftarrow\) GET_INDEX \(\left(N_{v_{-}}^{+}\right.\)rev \(\left., \overline{e_{i n d}}, 1\right)\)
    if \(a d j \_i n d=\left|N_{v_{-} r e v}^{+}\right|-1\) then
            \(\triangleright\) Just delete the last element \(\triangleleft\)
            \(N_{v_{-}+r e v}^{+} \cdot \operatorname{POP}()\)
        else
            \(>\) Replace the edge by the last in the neighbour list
            \(N_{v_{-} r e v}^{+}\left[a d j \_i n d\right] \leftarrow N_{v_{-} r e v}^{+} \cdot \operatorname{POP}()\)
    card_édges \(\leftarrow\) card_edges -2
```


- Algorithm 19: Delete an edge for DGF

Require: Graph $G=(V, E)$, edge $(u, v) \in E$, with their orientation $\left(u_{o r}, v_{o r}\right) \in$ $\{0 ; 1\}^{2}$, and the edge's index $e_{\text {ind }}$.
Ensure: $\mid N_{u}^{+} \backslash$ edge $\left|=\left|N_{u}^{+}\right|-1\right.$ and $| N_{v}^{-} \backslash$ edge $\left|=\left|N_{v}^{-}\right|-1\right.$.
function DGF_DELETE_EDGE $\left(G, u, u_{o r}, v, v_{o r}, e_{i n d}\right)$
\triangleright Remove v from u 's successors
if $u _$or $=0$ then
list_succs $\leftarrow N_{u}^{+}$
adj_ind \leftarrow GET_INDEX $\left(l i s t _s u c c s, e_{i n d}, 2\right)$

else

list_succs $\leftarrow N_{u}^{-}$
adj_ind \leftarrow GET__INDEX $\left(\right.$ list_succs, $\left.\overline{e_{i n d}}, 2\right)$
if adj_ind $=\mid l i s t _$succs $\mid-1$ then
\triangleright Just delete the last element
list_succs.POP()
else
\triangleright Replace the edge by the last in the neighbour list \triangleleft
list_succs $[$ adj_ind] \leftarrow list_succs. $\operatorname{POP}()$
\triangleright Remove u from v's predecessors.
if v _or $=0$ then
list_preds $\leftarrow N_{v}^{-}$
$a d j _i n d \leftarrow G E T _I N D E X\left(l i s t _p r e d s, e_{i n d}, 2\right)$

19: else

list_preds $\leftarrow N_{v}^{+}$
$a d j _i n d \leftarrow G E T _$INDEX $\left(l i s t _p r e d s, \overline{e_{i n d}}, 2\right)$
if adj_ind $=\mid$ list_preds $\mid-1$ then
\triangleright Just delete the last element
list_preds.POP()
else
\triangleright Replace the edge by the last in the neighbour list
list_preds[adj_ind] \leftarrow list_preds.POP()
card_edges \leftarrow card_edges -2

Algorithm 20: Delete an edge for BGU

Require: Graph $G=(V, E)$, edge $(u, v) \in E$, with their orientation $\left(u_{o r}, v_{o r}\right) \in$ $\{0 ; 1\}^{2}$, and the edge's index $e_{\text {ind }}$.
Ensure: $\left|N_{u}^{+} \backslash e d g e\right|=\left|N_{u}^{+}\right|-1$ and $\left|N_{v}^{-} \backslash e d g e\right|=\left|N_{v}^{-}\right|-1$.
function BGU__DELETE__EDGE $\left(G, u, u_{o r}, v, v_{o r}, e_{i n d}\right)$
$e_{\text {ind }}^{\prime} \leftarrow e_{\text {ind }} \div 2 \quad \triangleright$ Euclidian division
\triangleright Remove v from u's neighbours.
$a d j _i n d \leftarrow \operatorname{GET} _\operatorname{INDEX}\left(N_{u}, e_{\text {ind }}^{\prime}, 1\right)$
if $a d j _i n d=\left|N_{u}\right|-1$ then
\triangleright Just delete the last element \triangleleft $N_{u} \cdot \operatorname{POP}()$
else
\triangleright Replace the edge by the last in the neighbour list
$N_{u}\left[a d j _i n d\right] \leftarrow N_{u} . \operatorname{POP}()$
\triangleright Remove u from v's neighbours.
$a d j _i n d \leftarrow \operatorname{GET} _$INDEX $\left(N_{v}, e_{i n d}^{\prime}, 1\right)$
if adj_ind $=\left|N_{v}\right|-1$ then
\triangleright Just delete the last element
$N_{v} \cdot \operatorname{POP}()$
else
\triangleright Replace the edge by the last in the neighbour list
\triangleleft
$N_{v}\left[a d j _i n d\right] \leftarrow N_{v} \cdot \operatorname{POP}()$
card_edges $\leftarrow c a r d _e d g e s-1$

4.2 Time Complexities

4.2.1 Complexities Calculus Details

Table 1 details the calculus of algorithmic costs.
Table 1 - Calculus detail of basic operations costs. $c(x)$ is the cost of element x.

Operation	Cost	Description
x	0	Memory access
$x \pm y$	$1+c(x)+c(y)$	Basic operation
$x \leftarrow y$	$c(y)$	Affectation
$\|x\|$	$1+c(x)$	Absolute value or element's length
if $x \lesseqgtr y$	$1+c(x)+c(y)$	Conditional
EMPTY_LIST ()	1	Empty list constructor
list.APPEND (x)	$1+c(x)$	Add x to the end of the list list
list.POP ()	1	Delete the last element of the list list
DELETE $(l i s t)$	$\|l i s t\|$	Delete all the list
for $i \in \llbracket a ; b \rrbracket$ do x	$(b-a+1) \times c(x)$	For loop

best, worst and average cases are respectively rather lower and upper bounds, and equiprobable independent event's costs

4.2.2 Costs for Subfunctions

Table 2 gives the algorithmic costs of subfunctions in Algorithms 1 and 2.
Table 2 - Algorithmic costs for subfunctions.

	Best	Worst	Average
REV	2		
GET_INDEX	3	$3 \times \mid$ list \mid	$3 \times\left\lceil\frac{\mid \text { list } \mid}{2}\right\rceil$

4.2.3 Iterating Over the Neighbours

Table 3 gives the algorithmic costs of Algorithms 3 to 8 .

Table 3 - Algorithmic costs of iterating over the neighbours for DGS, DGF and BGU
(a) Iterate over the predecessors

	Best	Worst	Average
DGS	$5 \times o_{v}^{-}+2$		
DGF	$o_{v}^{-}+1$	$4 \times o_{v}^{-}+3$	$2.5 \times o_{v}^{-}+2$
BGU	$3 \times o_{v}$	$6 \times o_{v}$	$4.75 \times o_{v}$

(b) Iterate over the successors

	Best	Worst	Average
DGS		o_{v}^{+}	
DGF	$o_{v}^{+}+1$	$4 \times o_{v}^{+}+3$	$2.5 \times o_{v}^{+}+2$
BGU	$3 \times o_{v}$	$6 \times o_{v}$	$4.75 \times o_{v}$

4.2.4 Costs for Dynamics

Table 4 gives the algorithmic costs of Algorithms 9 to 14 . Table 5 gives the algorithmic costs of Algorithms 18 to 20. Table 6 gives the algorithmic costs of Algorithms 15 to 17.

Table 4 - Algorithmic costs of adding a vertex or an edge for DGS, DGF and BGU.

	Add a vertex			Add an edge		
	Best	Worst	Average		Best	Worst

Table 5 - Algorithmic costs of deleting an edge for DGS, DGF and BGU.
(a) Best and Worst cases

	Best	Worst
DGS	17	$3 \times\left(o_{u}^{+}+o_{v}^{-}\right)+13$
DGF	17	$3 \times\left(o_{u}^{-}+o_{v}^{+}\right)+17$
BGU	14	$3 \times\left(o_{u}+o_{v}\right)+10$

(b) Average case

$3 \times\left(\left\lceil\frac{o_{u}^{+}}{2}\right\rceil+\left\lceil\frac{o_{v}^{-}}{2}\right\rceil\right)+13-\frac{1}{o_{u}^{+}}-\frac{1}{o_{v}^{-}}$
DGS
DGF $\frac{3}{2} \times\left(\left\lceil\frac{o_{u}^{-}}{2}\right\rceil+\left\lceil\frac{o_{u}^{+}}{2}\right\rceil+\left\lceil\frac{o_{v}^{-}}{2}\right\rceil+\left\lceil\frac{o_{v}^{+}}{2}\right\rceil\right)+13-2 \times\left(\frac{1}{o_{u}}+\frac{1}{o_{v}}\right)$
BGU

Table 6 - Algorithmic costs of deleting a vertex for DGS, DGF and BGU.

(a) Best cases

DGS	DGF	BGU
5	4	3

(b) Worst cases

DGS $9 \times o_{v}+3 \times\left(\sum_{u \in N_{v}^{-}} o_{u}^{+}+\sum_{w \in N_{v}^{+}} o_{w}^{-}+\sum_{x \in N_{z}^{-}} o_{x}^{+}+\sum_{y \in N_{z}^{+}} o_{y}^{-}\right)+5 \times\left(o_{z}+1\right)$
DGF $9 \times o_{v}+4 \times o_{z}+3 \times\left(\sum_{u \in N_{v}^{-}} o_{u}^{-}+\sum_{w \in N_{v}^{+}} o_{w}^{+}+\sum_{x \in N_{z}^{-}} o_{x}^{-}+\sum_{y \in N_{z}^{+}} o_{y}^{+}\right)+4$
BGU

$$
5 \times o_{v}+3 \times o_{z}+3 \times\left(\sum_{w \in N_{v}} o_{w}+\sum_{y \in N_{z}} o_{y}\right)+4
$$

(c) Average cases (DGS, DGF and BGU)

$$
\begin{array}{r}
10 \times o_{v}+\frac{10 \times \mathcal{R}_{a w}-5}{2 \times \mathcal{R}_{a w}} \times o_{z}+3 \times\left(\sum_{u \in N_{v}^{-}}\left\lceil\frac{o_{u}^{+}}{2}\right\rceil+\sum_{w \in N_{v}^{+}}\left\lceil\frac{o_{w}^{-}}{2}\right\rceil\right) \\
+\frac{6 \times \mathcal{R}_{a w}-3}{2 \times \mathcal{R}_{a w}} \times\left(\sum_{x \in N_{z}^{-}}\left\lceil\frac{o_{x}^{+}}{2}\right\rceil+\sum_{y \in N_{z}^{+}}\left\lceil\frac{o_{y}^{-}}{2}\right\rceil\right)-\left(\sum_{u \in N_{v}^{-}} \frac{1}{o_{u}^{+}}+\sum_{w \in N_{v}^{+}} \frac{1}{o_{w}^{-}}\right)+5 \\
\frac{15}{2} \times o_{v}+\frac{6 \times \mathcal{R}_{a w}-3}{2 \times \mathcal{R}_{a w}} \times o_{z}+\frac{3}{2} \times \sum_{u \in N_{v}^{-} \cup N_{v}^{+}}\left(\left\lceil\frac{o_{u}^{-}}{2}\right\rceil+\left\lceil\frac{o_{u}^{+}}{2}\right\rceil\right) \\
+\frac{6 \times \mathcal{R}_{a w}-3}{4 \times \mathcal{R}_{a w}} \times \sum_{x \in N_{z}^{-} \cup N_{z}^{+}}\left(\left\lceil\frac{o_{x}^{-}}{2}\right\rceil+\left\lceil\frac{o_{x}^{+}}{2}\right\rceil\right) \\
-\frac{1}{2} \times\left(\sum_{u \in N_{v}^{-}} \frac{1}{o_{u}^{+}}+\sum_{w \in N_{v}^{+}} \frac{1}{o_{w}^{-}}\right)+\frac{6 \times \mathcal{R}_{a w}-1}{\mathcal{R}_{a w}} \\
5 \times o_{v}+\frac{3 \times \mathcal{R}_{a w}-3}{\mathcal{R}_{a w}} \times o_{z}+3 \times \sum_{w \in N_{v}}\left\lceil\frac{o_{w}}{2}\right\rceil+\frac{3 \times \mathcal{R}_{a w}+3}{2 \times \mathcal{R}_{a w}} \times \sum_{y \in N_{z}}\left\lceil\frac{o_{y}}{2}\right\rceil \\
-\sum_{w \in N_{v}} \frac{1}{o_{w}}+\frac{4 \times \mathcal{R}_{a w}-1}{\mathcal{R}_{a w}}
\end{array}
$$

References

[1] John Dimitri Kececioglu. Exact and Approximation Algorithms for DNA Sequence Reconstruction. The University of Arizona, 1991.
[2] Chen-Shan Chin, Paul Peluso, Fritz J. Sedlazeck, Maria Nattestad, Gregory T. Concepcion, Alicia Clum, Christopher Dunn, Ronan O'Malley, Rosa Figueroa-Balderas, Abraham Morales-Cruz, Grant R. Cramer, Massimo Delledonne, Chongyuan Luo, Joseph R. Ecker, Dario Cantu, David R. Rank, and Michael C. Schatz. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 13(12):1050-1054, December 2016.
[3] Govinda M. Kamath, Ilan Shomorony, Fei Xia, Thomas A. Courtade, and David N. Tse. HINGE: Long-read assembly achieves optimal repeat resolution. Genome Research, 27(5):747-756, January 2017.
[4] Rumen Andonov, Hristo Djidjev, Sebastien François, and Dominique Lavenier. Complete assembly of circular and chloroplast genomes based on global optimization. Journal of Bioinformatics and Computational Biology, 17(3):1950014, June 2019.
[5] Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E. Olsen, Colleen Bosworth, Joel Armstrong, Kristof Tigyi, Nicholas Maurer, Sergey Koren, Fritz J. Sedlazeck, Tobias Marschall, Simon Mayes, Vania Costa, Justin M. Zook, Kelvin J. Liu, Duncan Kilburn, Melanie Sorensen, Katy M. Munson, Mitchell R. Vollger, Jean Monlong, Erik Garrison, Evan E. Eichler, Sofie Salama, David Haussler, Richard E. Green, Mark Akeson, Adam Phillippy, Karen H. Miga, Paolo Carnevali, Miten Jain, and Benedict Paten. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology, 38(9):1044-1053, September 2020.
[6] Haoyu Cheng, Gregory T. Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18(2):170-175, February 2021.
[7] E. W. Myers. Toward simplifying and accurately formulating fragment assembly. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 2(2):275-290, 1995.
[8] Daniel D. Sommer, Arthur L. Delcher, Steven L. Salzberg, and Mihai Pop. Minimus: A fast, lightweight genome assembler. BMC bioinformatics, 8:64, February 2007.
[9] David Hernandez, Patrice François, Laurent Farinelli, Magne Østerås, and Jacques Schrenzel. De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome Research, 18(5):802-809, January 2008.
[10] Leena Salmela, Veli Mäkinen, Niko Välimäki, Johannes Ylinen, and Esko Ukkonen. Fast scaffolding with small independent mixed integer programs. Bioinformatics, 27(23):3259-3265, December 2011.
[11] Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl_2):ii79-ii85, January 2005.
[12] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale Algorithm Design. Cambridge University Press, May 2015.
[13] Heng Li. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics, 32(14):2103-2110, July 2016.

Acronyms

B | C | D
B
BG Unoriented Fragments Bi-directed Graph 31, 32

C

CSC Compressed Sparse Column 9
CSR Compressed Sparse Row 9
D
DGA All Oriented Fragments Directed Graph 22, 23, 25, 27
DGF Forward Fragments Directed Graph 27, 28, 30, 31
DGS Only Oriented Fragments' Successors Directed Graph 25-27
DNA Deoxyribonucleic Acid 1, 5, 7

Symbols

Attributes | Functions | Graph | Operations | Sets

Attributes

f Forward orientation 6-8, 12, 13, 15, 18, 19, 22, 28, 34, 37, 38, 40, see forward ind Index 22, 23, 25, 27, 28, 30, 31, 35-38, 41-47
indor Index with boolean orientation 27, 28
or Orientation 11, 12, 15-17, 20, 22, 23, 27, 28, 36-38, 40, 41, 43, 44, 46, 47, see forward \& reverse
r Reverse orientation 6-8, 12, 13, 15, 18, 19, 22, 30, 34, 37, 38, 40, see reverse rid Read identifier $5,6,11,12,14,16,19,20,22,27,28,31,33,34$
seq Nucleotide sequence 5-7
V. Epain

Functions

strand_iid Read identifier function 5-7

Graph

G Graph object $11-13,15,17,20,22,36-41,43-47$, see undirected graph, directed graph, bi-directed graph, vertex \& edge
V Vertices set $11-17,19,20,22,23,25-28,30,31,34,36-47$, see vertex
E Edges set 11-23, 27, 28, 30, 31, 36-41, 43-47, see edge
N Neighbours set 31, 37-39, 41, 45, 47, 51, see edge
N^{-}Predecesors set $23,28,36,38-40,43-47,51$, see edge, $N \& N^{+}$
N^{+}Successors set $23,25,28,36-47,51$, see edge, $N \& N^{-}$

Operations

- Reverse operation 6-9, 12-14, 16, 17, 20, 21, 23, 27, 28, 30, 35, 36, 38, 40-47, see reverse \& rev

Sets

\mathbb{N} The set of natural (positive) integer 5, 6, 11, 13, 14, 17, 19, 20
\mathcal{O} Set of overlaps $8,9,12,14,15,19-23,25,28,29,31-33$
$\mathcal{R}_{a w}$ Set of raw reads 5-7, 12, 15, 20, 22, 23, 25, 27, 28, 30-34, 51
\mathcal{R} Set of reads 6-9, 12, 14, 15, 19-21
$\mathcal{R}_{e v}$ Set of reversed raw reads 6
Σ Alphabet set 5
ii

Glossary

$A|B| C|D| E|F| G|N| O|P| R|S| U|V| W$
A
alignment Nucleotide comparison between at least two sequences 7, 8
assembly Method used to reconstruct genomes from fragments 1, 6, 7, 11, 14
assembly graph One of the output of genome assembly method see assembler

B
bi-directed graph Graph that contains 3 edge types 1, 11, 14-17, 20, 31, 32
C
contig Merge, consensus of reads obtain by assembly method(s) see assembler

D
directed graph Graph where the edges are directed 1, 11-13, 22-24, 26, 27, 29, 33, 34

E

edge Component of a graph that connects two vertices $9,11-23,25,27,28,30,31$, 33,34 , see graph \& vertex

F

forward Original sequence orientation $6-8,11,14,15,18,19,21,27-29,31,32,34$, see reverse
fragment Generic nucleotide fragment 1,5,11-13, 20-22, 24, 26, 29

G

genome Entire set of DNA instructions found in a cell 7
graph Object composed of vertices connected by edges 1, 9, 11-14, 16-18, 20-29, 31, 34, see vertex \& edge

N

neighbour Vertex connected to a given one 11, 27, 31-34
nucleotide Basic building block of nucleic acids (RNA and DNA) 5-8, see DNA

0

overlap Suffix-prefix alignment type between two sequences $1,7-9,11,12,14,15$, 18-27, 29, 31-34, see alignment

P

path A sequence of vertices such that two consecutive vertices are connected by an edge in the graph $12,13,17,20,21$, see walk, graph, vertex \& edge
predecessor In-vertex of one edge of one given vertex 23, 24, 26-31, 34, see successor

R

read DNA fragment from one DNA's strand, output by a sequencer 5-7, 9, 11, 12, $14,15,18-22,27,28,30,31,33,34$, see sequencer
reverse Reverse-complement sequence orientation $1,6,7,9,11-13,16,18-22,25-27$, 30, 31, see forward

S

sequencer Sequencing technology machine 5
sequencing Method to generate nucleotide fragments 5-7
strand The DNA molecule is made up of two strands, each of which has a complementary sequence to the other 5-7
string graph Graph structure that stores overlaps between reads see overlap
succession relationship When moving from one to the other is feasible, two things have a succession relationship $1,7,8,11,15,16$
successor Out-vertex of one edge of one given vertex 23-31, 34, see predecessor

U

undirected graph Graph where the edges are undirected 11, 16-21, 31

V

vertex Component of a graph $9,11-23,25-28,30,31,33,34$, see graph \& edge

W
walk A sequence of vertices such that two consecutive vertices are connected by an edge in the graph 12, 13, 15-18, 20, 21, see path, graph, vertex \& edge

