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Abstract—The subject of this paper is to study con-
formance checking for timed models, that is, process
models that consider both the sequence of events in a
process as well as the timestamps at which each event
is recorded. Time-aware process mining is a growing
subfield of research, and as tools that seek to discover
timing related properties in processes develop, so does
the need for conformance checking techniques that can
tackle time constraints and provide insightful quality
measures for time-aware process models. In particular,
one of the most useful conformance artefacts is the
alignment, that is, finding the minimal changes nec-
essary to correct a new observation to conform to a
process model. This paper follows a previous one, where
we have set our problem of timed alignment. In the
present paper, we solve the case where the metrics used
to compare timed processes allows mixed moves, i.e. an
error on the timestamp of an event may or may not have
propagated to its successors, and provide linear time
algorithms for distance computation and alignment on
models with sequential causal processes.

Index Terms—Conformance checking, Alignments,
Timestamps, Time Petri nets

I. Introduction

A. Conformance Checking and Alignments

Process mining studies vast systems through their event
logs, and seeks to extract meaningful ways to model the
underlying patterns or processes that govern the behaviour
of the system in order to better understand it, or predict
future behaviour [1]. Once such a process model is ob-
tained, it is natural to ask how one is sure the obtained
model is a reasonable approximation of the system’s be-
haviour at all, especially given the lack of explainability in
the blackbox approach ML takes to producing solutions.
This is where conformance checking comes into the pic-
ture, as it is the art of judging the performance of a process
model by relating modelled and observed behaviour of a
process to each other, without depending on the origin of
the model [2]. Observed behaviour comes in the form of
traces in an event log, as a sequence of events occurring
during the functioning of the system, while process models
are blueprints that describe what the underlying processes
of any given system are supposed to look like. We often do
not want the system to always precisely generate any and
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all possible future system behaviour, but neither should
they simply regurgitate the event log and accept no new
system behaviours. What is much more useful is a process
model that can, up to some small error factor, approximate
any reasonable future system behaviour.

In Arya Adriansyah’s seminal thesis [3], we obtain the
notion of an alignment, that is, the minimal series of
corrections needed to transform an observed event trace
into the execution of the process model that most closely
mimics it. This is given as a series of edits, usually
insertions or deletions, that transform the observed trace
into a process trace. Alignments thereby help pinpoint ex-
actly where inevitable deviations from expected behaviour
occur, and the more distant the aligning word of a model
is to its observed trace, the worse the model is at reflecting
real system behaviour.

In the untimed case, process models can be represented
using a variety of formal objects, such as Petri nets.
Assuming the event logs are a list of words over a finite
alphabet (the set of possible discrete events), the problem
of calculating the alignment has been extensively studied
[3] [4]. The notion of distance used on these words used
is usually either Hamming distance or Levenshtein’s edit
distance. It is natural to want to study explicitly timed sys-
tems, as by considering events along with their timestamps
when mining processes, we can glean information about
the minimum delay between two events, the maximum du-
ration the system takes to converge upon a state, or check
deadlines, all of which are highly relevant in real world
applications [5] [6] [7]. Time-aware process mining seeks
to study both what sort of underlying processes govern
system behaviour, and what sort of time constraints they
can impose on when certain events can occur [8] [9] [10].
In addition, one may want to predict the timestamps of
processes [11]. In the process mining community, there are
ways to use existing process model notation in order to
denote time constraints. BPMN 2.0 comes equipped with
timer events and can record absolute, relative, and cyclical
time constraints. For our purposes, we use time Petri
nets, an extension of Petri nets equipped with the ability
to express constraints on the duration of time between
an action being enabled, and its actual occurrence. In
particular, in this paper, we restrict ourselves time Petri
nets with no branching points.
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As time-aware process mining grows popular, new qual-
ity measures and conformance checking techniques must
be developed that are sensitive to temporal constraints,
but so far in the study of alignments as a conformance
checking artefact, we notice that the process model used
is never time-aware. This paper seeks to investigate one of
the distance functions, dN , defined in [12] and solve the
alignment problem for the same.

B. Timed Alignments

Example 1. Consider a model of composing and sending
an email, where the intervals signify allowed durations
between the current event and its immediate predecessor,
depicted below with input and output places marked with
an i and an o :

©• i

[1,1]

dispatch ©

[5,5]

sent ©o

draft
[1,∞]

unsend
[0,4]

©•

One process trace is (draft, 5)(dispatch, 6)(sent, 11),
which depicts drafting the message in 5 units
and then dispatching it, and having it send
successfully. An example of an observed trace which
does not conform to the process above would be
(draft, 3)(draft, 5)(dispatch, 7)(dispatch, 7)(sent, 12).
Clearly, there is an extraneous letter here, as the same
message cannot be dispatched twice, and the timestamps
for dispatch and sending come too late. One possible
optimally close process trace for this observation is
(draft, 3)(draft, 6)(dispatch, 7)(sent, 12), which deletes
the extra dispatch, and extends the second draft event by
a unit, allowing the rest of the trace to thereby be in time.

In [12] we posed the general alignment problem, which
formalised the notion of aligning timed traces to timed
process models.

Definition 1 (The General Alignment Problem). Given
a process model N denoted by a Time Petri Net and
an observed timed trace σ we wish to find a timed word
γ ∈ L(N) such that d(σ, γ) = minx∈L(N) d(σ, x) for some
distance function d on timed words.

In this paper, we restrict ourselves to the study of the
alignment problem on a simpler model for time-aware pro-
cesses, ones that we define as sequential process models.
These essentially lose the ability to express parallel events
the way time Petri nets can, but retain the ability to reason
about time constraints on the durations between any two
consecutive events. In addition, we focus on the mixed
moves distance dN defined in [12], that is, a distance where
edits can either stay local to a given event or propagate
forward into the event’s causal future. The last assumption
we make is that the untimed part of the observed trace
conforms to the process, i.e, the only part that requires
aligning is the timestamps. This allows us to focus on

the timing aspect of the problem, although once this is
solved we can easily adapt existing untimed alignment
methods like those described in [3] or [4] to align words
with both action labels and timestamps that need editing.
This brings us to the following formal problem :

Definition 2 (The Purely Timed Alignment Problem for
Sequential Process Models). Given a sequential process
model N denoted by a Time Petri Net and an observed
timed trace (w, σ), such that w ∈ Untime(L(N)) we wish
to find a valid timestamp sequence γ such that d(σ, γ) =
minx∈L(N) d(σ, x).

We informally look at an instance of the purely timed
problem below :

Example 2. Consider the process model N1:

©• d © e © f ©f

[1,3] [1,4] [0,3]

Now, say we observed the trace (u1, σ1) = (d, 4)(e, 6)(f, 6)
that did not fit the model, and we wished to analyse
how best to modify them to fit them back into the model.
We note that the untimed part does match the model’s
specification, and in order to make the timestamps fit we
can simply edit the timestamp of d to give the following
process trace (v1, γ1) = (d, 4)(e, 6)(f, 6).

In sections II and III of this paper we will focus on the
problem of computing the distance function dN and in
section IV, we return to the problem of aligning sequen-
tial process models to observed traces. We present linear
time algorithms for both computing dN and solving the
alignment problem in this setting, but once again only for
linear timed words, and sequential process models.

II. Preliminaries : Edit Moves for Timed Words

Much like Levenshtein’s edit distance, popularly used
in the untimed case of the alignment problem, we view
the definition of these distances as an exercise in cost
minimisation over the set of all transformations between
two words. In order to formalise the same, we define what
the valid moves of such a transformation could be. We
define moves as functions that map one time sequence
to another. What sort of functions are useful notions of
transformation on a timed system?

Example 3. Say we sought to align the timed trace (4, 6, 6)
with (3, 6, 6). It feels reasonable to say the distance between
the two is 1. A way to arrive at this conclusion is that if
the first timestamp were just shifted to fire at 3 instead,
the whole process would match. This sort of local, almost
typographical error can often happen in systems, and it is
the simplest kind to fix.

Now consider aligning the timed traces (4, 8, 11) and
(3, 7, 10). Now, when trying to compare these firing se-



quences, we can view it just like we did for the previous pair,
as all of the timestamps firing later than they should, and so
moving each timestamp back once, giving an aligning cost
of 3. There is however, another way to see this deviation.
This cascading chain of errors can be fixed if the first event
is moved back to fire at 4, and all the relative relationships
between it and its successors are preserved. This views the
second and third tasks as only caring about when the first
ended, which makes sense, because they are causally linked
and hence do only start once their predecessor ends. This
means, the switch from the timestamp series (4, 8, 11) to
(3, 7, 10) can be viewed as only a cost 1 edit in this sense.
This is a slightly more complex error to conceive of, but it
is of natural practical use, as if a delay at the beginning
caused the whole process to occur too late, the important
thing to fix is just the delay at the beginning, and one can
sometimes assume with that sorted, the rest of the process
will now conform to the model as needed.

Based on the above example, we naturally arrived at
two types of moves in [12].

We define a stamp move as a move that translates the
timing function only at a point, i.e., that edits a particular
element of the timestamp series τ . Calculating dt between
two traces can be viewed as a cost minimization process
in aligning the traces using only stamp moves.

Definition 3 (Stamp Move). Given a timing function γ :
{1, . . . n} → R, formally, we define this as :
∀x ∈ R, i ≤ n : stamp(γ, x, i) = γ′ where

∀i ≤ n : γ′(j) =

{

γ(j) + x j = i

γ(j) otherwise

The next type of move we describe is the more novel
and interesting delay move. By formulating this type of
edit move, we seek to leverage the structure of the process
model itself, by reflecting the causal relationships between
events.

A stamp move is purely local, in that when a stamp
edit occurs at e its immediate successor events shift their
relationship with e, thereby ensuring that the change in
e’s timestamp does not derail the rest of the system. On
the other hand, any delay move at e will preserve relative
relationships in the future, at the cost of shifting the
timestamp of every causal descendent of e by the same
amount.

This brings us to the following definition :

Definition 4 (Delay Move). Given a timing function γ :
{1, . . . n} → R, formally, we define this as :
∀x ∈ R, i ≤ n : stamp(γ, x, i) = γ′ where

∀i ≤ n : γ′(j) =

{

γ(j) + x j ≥ i

γ(j) otherwise

The cost of a move is the magnitude |x| in the above
definitions, and the cost of a sequence of moves is the sum

of the costs of the moves. Armed with these definitions,
three natural notions of distance can be constructed.

Definition 5 (Stamp Only Distance : dt). Given any
two timing functions τ1, τ2 over the same causal process
(CN, p), we define the stamp-only distance dt as follows :

dt(τ1, τ2) = min{cost(m)|m ∈ Stamp
∗

, m(τ1) = τ2}

Definition 6 (Delay Only Distance : dθ). Given any
two timing functions τ1, τ2 over the same causal process
(CN, p), we define the delay-only distance dθ as follows :

dθ(τ1, τ2) = min{cost(m)|m ∈ Delay
∗

, m(τ1) = τ2}

Definition 7 (Mixed Moves Distance : dN ). Given any
two timing functions τ1, τ2 over the same causal process
(CN, p), we define the mixed move distance dN as follows

dN (τ1, τ2) = min{cost(m)|m ∈ (Stamp ∪ Delay)∗

, m(τ1) = τ2}

Example 4. Let us try to align the observed trace (0, 3, 4)
to the process trace (0.5, 2.5, 3.5)

The best dt alignment for the example is a cost 1.5, with
stamp moves editing each position.

The best dθ alignment for the above pair is cost 1.5, as
it requires a 0.5 delay edit at the first place to push the 0
forward to a 0.5, and then another 1 delay at the second
position to pull the rest of the trace from (3, 4) back to
(2, 3).

Now we consider the mixed setting. Intuitively, when
dealing with linear models where the ripple effect of a
delay is always to the right irrespective of the values of the
timestamps, moves can be applied in any order, so we can
assume a minimum cost run is chronological. So our first
move will have to incur a minimum cost of 0.5 as we try to
align (0, 3, 4) to our process trace at the first position. Now,
if any part of this initial move was a delay, we would push
the second component even further away from 2.5 than it
already was, and if any of the delay were negative, then the
mixed move seems counterproductive at the first component
as the delay and stamp moves work against each other, so
let us say the first move was pure stamp. Now we move
on to move two, which will again incur a minimum cost of
0.5. Now, if the stamp part of this move were positive, it
would leave the third component further off from the goal
3.5 than if all of the move was delay, and so a pure delay
move seems best here. Hence, the least cost alignment is
(0.5, 0, 1)(0, 0.5, 2), with total cost 1.

All the intuitive reasoning given above will be justified in
subsequent sections, and in fact distance 1 is the best we
can do here even in the mixed case.

III. Computing dN on traces

A. Notation and Setup

Given the nonconstructive nature of the definition of dN ,
it is not clear how one can efficiently calculate the distance
between two fixed timed traces, as a minimal cost sequence
of moves is not obvious. As before, we first study the
problem over sequential causal processes, as these make
analysing the effects of moves significantly simpler. Before



we propose an algorithm that does calculate minimal cost
for linear timed traces, we first define a few properties that
seem to characterise classes of well formed minimal cost
runs, and then prove that these properties both improve
cost, and are satisfied solely by the run calculated by the
algorithm we provide.

We start with some convenient notation for a common
combination of the previously defined moves.

Definition 8 (Mixed Move). We define mixed moves, that
denote doing a stamp move and a delay move at the same
position in the word. We define their effect as :

(s, d, e)(γ) = stamp(delay(γ, d, e), s, e)

Let the set of all mixed moves be Moves.

Given any move m ∈ Moves we define the function
cost : Moves → R

+ that returns the cost of the move.
The cost of a mixed move (s, d, e) is the sum of the cost
of the stamp and delay moves it’s made up of, |s|+ |d|.

We say a sequence of moves m1m2 . . . mn = m ∈
Moves∗ aligns τ1 to τ2 if

m(τ1) = mn(. . . (m2(m1(τ1)) . . . ) = τ2

Now, we look at a new way to represent timing func-
tions. With delay edits, which constitute a new way of
thinking about how a time-series can be transformed,
comes a new perspective with which we can view timing
functions over causal processes. There is of course the
standard definition, τ : {1, . . . n} → R

+ that assigns to
each event a timestamp that records exactly when the
event occurs.

Instead, thinking along the lines of delays and durations
between events occuring, we will often benefit from con-
sidering the following representation when speaking about
delay moves, and so we define a way by which to view a
timed word not in terms of its absolute timestamps, but
by the delays between relevant timestamps.

Definition 9 (Flow Function). Given a (not necessarily
valid) time sequence, τ : {1, . . . n} → R

+, we first define
the flow function of τ , fτ : {1, . . . n} → R

+ such that

fτ (i) =

{

τ(i) i = 1

τ(i)− τ(i− 1) i > 1

The flow function thereby is a dual representation
of timing functions, much like the relationship between
graphs and line graphs, as if a timing function tradition-
ally labels its transition nodes with timestamps, the flow
function labels edges leading up to transitions with the
duration since said transition was enabled.

Example 5. Consider the word w = (abc)(1, 5, 9). For
this linear timed trace, the flow function measuring its
successive delays is (1, 4, 4).

As defined, fτ as defined produces exactly the time
durations that the guards of each transition in the model

checks, i.e. the clock function values during the run.
Hence, we see that if a word is in the language of the
model, then its f function maps events to values that
lie within the constraint that the event’s corresponding
transition demands, that is, it is perfectly aligned with the
model with distance 0. This condition is unfortunately not
sufficient though, due to urgency concerns, but it is quite
close to the exact condition necessary for a word to be in
the language of a time Petri net.

Also note that given the underlying causal process and
the resulting fτ , we can reconstruct τ quite straightfor-
wardly as

∀i ≤ n : τ(i) =
∑

j≤i

fτ (j)

With a new representation, it is natural to study how
the transformations we have defined earlier on timing func-
tions transform their respective flow functions. A stamp
move at an event e of value +x will increase the dura-
tion between e and its immediate enabling predecessor,
while shrinking the duration between e and its immediate
enabled successor by an equal amount, thereby moving
e by x and compensating appropriately so none of the
future timestamps change at all. On the other hand, a
delay move at e will increase the duration between e

and its immediate enabling predecessor, keeping all other
durations constant, thereby ensuring e and all of its causal
descendents have their timestamps shifted by x. So both
these moves are much more local as seen by the flow
function, effectively perturbing only the duration attached
to e or its immediate enabled successor, while in the timing
function representation moves at a position could have
consequences well beyond its immediate neighbours. This
observation is summarised by the following lemma :

Lemma 1. Given a flow function fτ1
and a mixed move

(s, d, i), the consequence of performing the move is the flow
function defined below, where τ2 = (s, d, i)τ1.

fτ2
(j) =

{

fτ1
(j) + s + d j = i

fτ1
(j)− s j = i− 1

In order to compute the distance dN between two timed
traces, we wish to cull down the space of possible sequences
of moves that transform the two words to each other to
smaller, equivalent possibility spaces that still capture all
the behaviours we’re interested in, while being a little
more well behaved. Hence, we introduce the following
properties, which are designed intuitively to be sequences
of moves that still perform the same effective transforma-
tions, and generally lower the cost of the transformation
too by choosing moves wisely to avoid inefficiency. These
properties (order, co-operation, and stability) have been
chosen specifically to uniquely characterise the runs of
the algorithm we devise to compute dN on pairs of linear
traces.



B. Chronology

The first property captures the order in which moves in
a sequence target the positions in a linear trace. It would
be good to be able to focus our attention on sequences of
moves that proceed in an orderly fashion from one end of
the word to another, doing exactly one mixed move at each
position. This is intuitively reasonable as doing multiple
mixed moves at the same position can only worsen the
cost if it at all changes it, and assuming that mixed moves
commute on linear words, it would be all the same to
arrange them in order of the position it takes effect at.
This gives us the following two properties.

Definition 10 (Chronology). A sequence of moves align-
ing γ to σ is said to be chronological if for all positions
i < j ≤ n = |γ|, all the moves at position i are performed
before any move at position j and exactly one mixed move
(where one or both components may be zero) takes place at
each position, that is ρ ∈Moves∗ is chronological iff

∀i ∈ {1, 2, . . . n}, ∃si, di ∈ R :

ρ = (s1, d1, 1)(s2, d2, 2) . . . (sn, dn, n)

Such that ∀i ∈ {1, 2, . . . n} : σi = γi + si +
∑i

j=1 dj.

Definition 11 (Reverse Chronology). A sequence of
moves aligning γ to σ is said to be reverse chronological if
for all positions i < j ≤ n = |γ|, all the moves at position
i are performed after any move at position j and exactly
one mixed move (where one or both components may be
zero) takes place at each position, that is ρ ∈ Moves∗ is
chronological iff

∀i ∈ {1, 2, . . . n}, ∃si, di ∈ R :

ρ = (sn, dn, n)(sn−1, dn−1, n− 1) . . . (s1, d1, 1)

Such that ∀i ∈ {1, 2, . . . n} : σi = γi + si +
∑i

j=1 dj.

Clearly, all chronological sequences have a one to one
correspondence with reverse chronological sequences with
exactly the same cost, the map between the two being
simply reversing the sequence of moves. In addition, in the
flow function representation, the notions of chronology and
reverse chronology are still somewhat preserved. A mixed
move affects both the duration before and all those after
the event the move is applied at, so the order in which
they happen does indeed stay chronological or reverse
chronological as the case may be. The only point of nuance
here is that of course, a prefix of a sequence of say
chronological moves no longer has the property of having
completely aligned the word up to the i-th element of the
flow vector while leaving the rest unchanged, as the last
edit move may have perturbed the (i+1)st element.

But the upshot is, in a reverse chronological sequence
of moves, the prefix of the sequence that stops at the ith
event, combined with the stamp component of the mixed
move at position (i-1), completely aligns the flow function
for the suffix starting at position i. Reverse chronological

runs do not have an equivalent partial completion property
in the timing function setting, but due to how local the
moves end up being in the flow function setting, we obtain
it here.

Note : For simplicity, we always assume the move
played on the last position of a trace henceforth is a pure
delay. Even if part of it were stamp, it would not affect
the flow or timing representation any differently, so this is
safe to assume.

Example 6. Given γ = (1, 1, 2, 4, 5) and σ =
(1, 2, 2.5, 4.2, 5), an example of a cost 5.3 non-chronological
sequence of moves aligning them is as shown below.

γ
(−1,0,1)
7−−−−−→ (0, 1, 2, 4, 5)

(0,2,1)
7−−−−→ (2, 3, 4, 6, 7)

(0,−1,1)
7−−−−−→

(1, 2, 3, 5, 6)
(0.3,−0.8,3)
7−−−−−−−→ (1, 2, 2.5, 4.2, 5.2)

(0,−0.2,5)
7−−−−−−→ σ

There is an improved cost 3.3 chronological sequence of
moves obtained by reordering the above sequence and com-
bining moves at the same position :

γ
(−1,1,1)
7−−−−−→ (1, 2, 3, 5, 6)

(0,0,2)
7−−−−→ (1, 2, 3, 5, 6)

(0.3,−0.8,3)
7−−−−−−−→

(1, 2, 2.5, 4.2, 5.2)
(0,0,4)
7−−−−→ (1, 2, 2.5, 4.2, 5.2)

(0,−0.2,5)
7−−−−−−→ σ

There corresponding reverse chronological sequence of
moves is of course :

γ
(0,−0.2,5)
7−−−−−−→ (1, 1, 2, 4, 4.8)

(0,0,4)
7−−−−→ (1, 1, 2, 4, 4.8)

(0.3,−0.8,3)
7−−−−−−−→

(1, 1, 1.5, 3.2, 4)
(0,0,2)
7−−−−→ (1, 1, 1.5, 3.2, 4)

(−1,1,1)
7−−−−−→ σ

As the above example suggests, we claim :

Lemma 2. There is a minimal cost sequence of moves
aligning any two linear timed traces that is chronologi-
cal/reverse chronological.

C. Co-operation

Definition 12 (Co-operation). A mixed move is said to
be co-operative if its delay edit and stamp edit are in the
same direction, that is,

(s, d, i) is co-operative iff sd ≥ 0

A chronological (or reverse chronological) sequence of
moves m = m0m1 . . . mn−1 aligning γ to σ is said to be
co-operative if each of its moves is co-operative.

This property has nothing to do with the words it is
trying to align, and so, is largely unaffected by whether
we’re viewing the words in timing or flow representation.

Example 7. The previous example (that was a cost 3.3
run, recall) can hence be further improved to become co-
operative cost 1.7 run as follows :

γ
(0,0,1)
7−−−−→ (1, 1, 2, 4, 5)

(1,0,2)
7−−−−→ (1, 2, 2, 4, 5)

(0.5,0,3)
7−−−−−→

(1, 2, 2.5, 4, 5)
(0.2,0,4)
7−−−−−→ (1, 2, 2.5, 4.2, 5)

(0,0,5)
7−−−−→ σ



With a reverse chronological counterpart on the flow
vector:

fγ
(0,0,5)
7−−−−→ (1, 0, 1, 2, 1)

(0.2,0,4)
7−−−−−→ (1, 0, 1, 2.2, 0.8)

(0.5,0,3)
7−−−−−→

(1, 0, 1.5, 1.7, 0.8)
(1,0,2)
7−−−−→ (1, 1, 1.5, 1.7, 0.8)

(0,0,1)
7−−−−→ fσ

Once again, as the example suggests, one can always
convert a non-cooperative run into an equivalent cooper-
ative one with cheaper cost.

Lemma 3. There is a cooperative minimal cost chronolog-
ical (or reverse chronological) sequence of moves aligning
any two linear timed traces.

Very similar to co-operation is the notion of cross co-
operation. Much like how mixed moves at a position should
work together instead of against each other, a stamp move
s at a location should ideally have opposite sign to the
delay d at the next position, as its contribution to the
next flow component is going to be −s. This leads us to
the following definition :

Definition 13 (Cross Co-operation). A reverse chrono-
logical run m = (0, dn, n) . . . (s1, d1, 1) is said to be cross
co-operative if no stamp component has the same sign as
the delay component of the move played at the next position,
that is,

∀i < n : si · di+1 ≤ 0

Much like co-operation above, cross co-operation can be
used to improve the cost of a run, as seen in the next
lemma.

Lemma 4. For every reverse chronological co-operative
run m′ aligning γ to σ, there is a reverse chronological,
co-operative and cross co-operative run m aligning γ to σ

such that

cost(m) ≤ cost(m′)

D. Stability

The final property we define will be largely used for re-
verse chronological runs on flow function representations,
and it is the last improvement one can make on the cost of
a sequence of moves as after enforcing this property, the
sequence of moves that results is unique. We prefer the flow
representation for our current needs because when dealing
with reverse chronological models, the flow function still
retains the notion of partially aligning suffixes of the
traces as we go along, provides a very useful constraint.
Moreover, we define stability in terms of flow values rather
than timestamp values because the effects of mixed moves
on flow vectors can be studied locally, while timestamp
series get perturbed throughout their length by individual
moves, and hence trying to optimise for the effect of a sin-
gle mixed move involves too many variables. Hence, until
further notice, consider any co-operative run to be reverse
chronological, and definitions and algorithms will favour
aligning flow functions rather than timing functions. It is

quite clear to see that completely aligning a flow function
is equivalent to completely aligning its timing function, so
this is acceptable.

The notion of co-operation and reverse chronology
leaves only one degree of freedom so to speak in our choice
of aligning moves, that is, the ratio of stamp to delay
at any given position. Once the stamp components of a
sequence of moves has been decided, the delay components
are predetermined to align the flow function from right
to left. Now, at any point, a delay move only affects one
flow component, and adds to the cost of one mixed move.
A stamp move also only adds to the cost of one mixed
move, but it has the ability to affect two flow components,
hence it is natural to want to choose stamp moves in a
manner that corrects both the flow components it belongs
to to the best of its abilities, thereby extracting as much
use as possible from as little cost, and leaving the rest
up to the delay component to correct. It is this reasoning
that brings us to the property we define below as stability,
which denotes this prudent choice of s.

Definition 14 (Stability). In a reverse chronological, co-
operative sequence of moves, let mi = (s, d, i) be a co-
operative move seeking to correct the partially aligned flow
function

fγ = (fγ(1), . . . fγ(i), fγ(i + 1), fσ(i + 2) . . . fσ(n)) (the
result of the run of m all the way up to and including the
last stamp move) to fσ = (fσ(1), fσ(2), . . . fσ(n)).

Let ei = fσ(i)− fγ(i), and ei+1 = fσ(i + 1)− fγ(i + 1).
We say mi is stable if

s =











0 ei · ei+1 ≥ 0

ei Else If |ei| < |ei+1|

−ei+1 Otherwise

A co-operative sequence of moves is said to be stable if
each of its moves is stable. Note that any stable run is also
cross co-operative.

Example 8. The earlier cost 1.7 example can be even
further improved to be stable and have cost 1.5, thereby
giving us the following :

fγ
(0,−0.2,5)
7−−−−−−→ (1, 0, 1, 2, 0.8)

(0,−0.3,4)
7−−−−−−→ (1, 0, 1, 1.7, 0.8)

(0,0,3)
7−−−−→ (1, 0, 1, 1.7, 0.8)

(0.5,0.5,2)
7−−−−−−→ (1, 1, 1.5, 1.7, 0.8)

(0,0,1)
7−−−−→ σ

Once again, as the example suggests, a stable chrono-
logical run (or reverse chronological run) is unique , but
moreover, we claim that stability improves the cost of the
sequence of moves.

Lemma 5. The stable, co-operative, reverse chronological
sequence of moves aligning any two linear timed traces is
unique.

Proof. This is clear, as given a partially aligned flow trace
the choice of s to make the next move stable as defined
above is deterministic, and the corresponding delay moves



Algorithm 1 dN Computation Algorithm

Input : σ, γ

Output : dN (γ, σ)
cost← 0
i← n

while i > 1 do

a← fσ(i)− fγ(i)
b← fσ(i− 1)− fγ(i− 1)
if a · b ≥ 0 then ⊲ (0, a, i)

γ ← (0, a, i)γ
else if |a| < |b| then ⊲ (−a, 0, i− 1)(0, 0, i)

γ ← (−a, 0, i− 1)γ
else ⊲ (b, 0, i− 1)(0, a− b, i)

γ ← (b, 0, i− 1)(0, a− b, i)γ
end if

cost← cost + |a|
i← i− 1

end while

cost← cost + |γ1 − σ1| ⊲ (0, |σ1 − γ1|, 1)

are determined by reverse chronology and co-operation.

Lemma 6. There is a stable minimal cost sequence of
moves aligning any two linear timed traces.

E. Computing dN

Lemma 7. Given two time sequences σ = (σ1, σ2, . . . σn)
and γ = (γ1, γ2, . . . , γn) with linear underlying causal pro-
cesses, the sequence of moves the above algorithm calculates
(m) corresponds to the unique stable sequence of moves that
aligns σ to γ.

Proof. This is clear by the definition of stability.

Theorem 8. Algorithm 1 is correct, that is, its result
(cost) = dN (γ, σ)

Proof. This holds as by Lemma 7 the algorithm calculates
the unique stable sequence of aligning moves, and by
Lemma 6 this must be the minimal cost sequence.

IV. Purely Timed Alignment for Linear Models

Definition 15 (Sequential Process Models). We define a
sequential process model N of length n to be a sequence of
intervals {[ai, bi]|ai ∈ R, bi ∈ R ∪ {∞}, i ≤ n}.

In addition, we define its language L(N) as follows :

{(t1, . . . tn)|∀i ≤ n : ti − ti−1 ∈ [ai, bi]}

Where t0 = 0.
We depict them as follows :

©• −→ �
[a1,b1]

−→© −→ �
[a2,b2]

−→ · · · −→ �
[an,bn]

−→©

Algorithm 2 dN Alignment Algorithm

Input : σ, N

Output : γ = argminx∈L(N) dN (x, σ)
for i <∈ {1, . . . , n} do

(a, b)← (Eft(ti), Lft(ti))
fγ(i) = argminx∈[a,b] |x− fσ(i)|
i + +

end for

Example 9. Consider the below underlying sequential pro-
cess model, and a new observed trace σ = (3, 4, 5) 6∈ L(N).

©• −→ �
[0,1]
−→© −→ �

[2,2]
−→ © −→ �

[1,1]
−→©

The best dt alignment for the example in the diagram below
is γ = (1, 3, 4) with minimum cost dt(σ, γ) = 4.

The best dt = θ alignment for the example in the
diagram below is also γ = (1, 3, 4), but this time with
minimum cost dθ(σ, γ) = 3, evidenced by the move sequence
(delay(−2, 1)delay(+1, 2)).

And lastly, the best dN alignment for the example in the
diagram below is also γ = (1, 3, 4), the sequence of moves
being simply one stamp and one delay move at the start,
m = stamp(−1, 1)delay(−1, 1), and now with minimum
cost dN (σ, γ) = 2 < min{dt(σ, γ), dθ(σ, γ)}.

Theorem 9. Given a sequential process model N of a time
Petri Net N and a linear observed trace σ, the word γ ∈
L(N) such that fγ(i) = argmin

x∈[Eft(ti),Lft(ti)]

|x− fσ(i)| also

has the property γ = argmin
x∈L(N)

dN (x, σ).

This of course means that we have a linear time al-
gorithm for aligning sequential processes under dN , by
locally choosing the best flow vector as shown in Algorithm
2. This, incidentally, is exactly the aligning word obtained
by the algorithm developed for delay-only distance, dθ in
[12].

V. Implementation

We have implemented the dN computation
algorithm and the dN alignment algorithm for
sequential process models in python, available at
https://github.com/NehaRino/TimedAlignments. Both
algorithms have linear time complexity, and so, they have
efficient running times, as evidenced by the table below :

Trace Length Running Time (seconds)
10 0.00003
100 0.00024
1000 0.00259
10000 0.02811
100000 0.33131
1000000 3.44314

https://github.com/NehaRino/TimedAlignments


VI. Perspectives and Conclusion

In this paper, we studied the alignment problem for
timed processes using the mixed moves distance dN , and
solved both distance computation and the purely timed
alignment problem for the same. As far as we know, this
(along with [12]) is the first step in conformance checking
for time-aware process mining, and much further work can
be inspired from this point. Firstly, we have only solved
the alignment problem for dN over sequential process
models, which are rather structurally restricted and it
would be interesting to see how to broaden the scope of
these methods to larger classes of process models, such
as branching process models or even general time Petri
nets. Secondly, further investigation in the general timed
alignment problem is necessary, as our proposed approach
here is rather rudimentary and can certainly be improved.
Lastly, there are a number of other conformance artefacts
that can be set and studied in the timed setting, such as
anti-alignments [13], and it would be very interesting to
better develop all such conformance checking methods in
a manner that accounts for timed process models.
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Appendix

We will detail the proofs of the theorems and lemmas
stated above.

A. Chronology

We start with the proof of Lemma 2.

Lemma. There is a minimal cost sequence of moves align-
ing any two linear timed traces that is chronological/reverse
chronological.

Proof. We assume that there is at least one mixed move
at each position, adding zero moves as needed. We first
observe the following:

∀i < j : (s, d, i)(s′, d′, j)(γ) = γ′ = (s′, d′, j)(s, d, i)(γ)

Where

∀1 ≤ k ≤ n : γ′
k =































γk k < i

γk + s + d k = i

γk + d i < k < j

γk + s′ + d + d′ k = j

γk + d + d′ k > j

That is, on linear timed traces, mixed moves are commuta-
tive. Clearly permuting the moves of a run does not change
its cost, so we can assume any sequence of moves to be in
increasing order of positions without loss of generality.

Now we can write m′ as follows :

m′ = (s11, d11, 1) . . . (sij , dij , i) . . . (snkn
, dnkn

, n)

Where for each i, ki ≥ 1 is the number of mixed moves
at position i.

cost(m′) =

n
∑

i=i

(

ki
∑

j=1

|sij |+ |dij |)

Define si =
∑ki

j=1 sij , di =
∑ki

j=1 dij , giving us the
chronological run

m = (s1, d1, 1) . . . (si, di, i) . . . (sn, dn, n)

Now, by the triangle inequality we know that :

∀i :

ki
∑

j=1

|sij |+ |dij | ≥ |

ki
∑

j=1

sij |+ |

ki
∑

j=1

dij | = cost(si, di, i)

Thereby giving us that

cost(m) ≤ cost(m′)

As for the reverse chronological sequence, by commuta-
tivity we can simply reverse m and obtain mR, a reverse
chronological sequence of moves that does the same trans-
formation and as reversing the sequence preserves cost,

cost(mR) = cost(m) ≤ cost(m′)

B. Co-operation

Now we prove Lemma 3

Lemma. There is a cooperative minimal cost chronological
(or reverse chronological) sequence of moves aligning any
two linear timed traces.

Proof. We first prove that there is a co-operative and
chronological minimal cost sequence of moves aligning any
two linear timed traces. Given any minimal cost sequence
of moves aligning γ to σ, by Lemma 2 we know that there
is a chronological sequence that is also minimal cost, call
it m′.

Assume |γ| = |σ| = n.
We proceed by induction on the first index k at which

m′ = (s1, d1, 1) . . . (sn, dn, n) uses a non co-operative
move.

Base case : k = n.
This gives us

sndn < 0 =⇒ |sn + dn| < |sn|+ |dn|

=⇒ m = m′|n−1(0, sn + dn, n)

costs less than m′, aligns the words and is co-operative.
Induction hypothesis : Suppose we’ve demonstrated

that there is a sequence of moves m′′ that aligns γ to σ,
is co-operative for the first k − 1 < n − 1 steps, is non
co-operative at step k and cost(m′′) ≤ cost(m)

Claim : There is a sequence of moves m that aligns γ

to σ, is co-operative for at least the first k steps and

cost(m) ≤ cost(m′′) ≤ cost(m′)

Proof : Let m′′ = (s1, d1, 1) . . . (sn, dn, n).
We first define mi = m′′|k−1, mf = (sk2

, dk+2, k +
2) . . . (sn, dn, n), thereby giving us

m′′ = mi(sk, dk, k)(sk+1, dk+1, k + 1)mf

We know that skdk < 0. This can be split into the
following cases :

Case 1 : |dk + sk| = |dk| − |sk|
We define the following aligning, chronological run that

is co-operative up to (and including) the kth step :

m = mi(0, dk + sk, k)(sk+1, dk+1 − sk, k + 1)mf

cost(m′′)− cost(m)

= |sk+1|+|dk+1|+|sk|+|dk|−(|dk+sk|+|sk+1|+|dk+1−sk|)

≥ (|sk+1|+|dk+1|−|sk+1|+|dk+1|)+(|sk|+|dk|−|dk+sk|−|sk|) ≥ 0

Case 2 : |dk + sk| = |sk| − |dk|
We define the following aligning, chronological run that

is co-operative up to (and including) the kth step :

m = mi(dk + sk, 0, k)(sk+1, dk + dk+1, k + 1)mf

cost(m′′)− cost(m)

= |sk+1|+|dk+1|+|sk|+|dk|−(|sk+dk|+|sk+1|+|dk+1+dk|)



≥ |dk+1|+ |sk|+ |dk| − (|sk + dk|+ |dk+1|+ |dk|) ≥ 0

By induction we can hence conclude that there is a
chronological sequence of moves m that is co-operative
throughout and has lower cost than m′, i.e., if m′ is
minimal cost so is m.

Now, mR is also co-operative throughout as co-
operation is a property of the individual moves constitut-
ing the sequence, and mR has exactly the same moves just
in the reverse order, so there is also a reverse chronological
minimal cost sequence of moves aligning γ to σ.

We proceed to the proof of Lemma 4.

Lemma. For every reverse chronological co-operative run
m′ aligning γ to σ, there is a reverse chronological, co-
operative and cross co-operative run m aligning γ to σ such
that

cost(m) ≤ cost(m′)

Proof. Say m′ = (0, d′
n, n) . . . (s′

1, d′
1, 1). Let i be an index

at which the stamp move is not cross co-operative, i.e.,
si · di+1 > 0.

Consider a run m′′ that is identical to m′, except for the
moves it plays at positions i and i + 1.

Let m′′ perform the move (0, di +si, i) at position i and
(si+1, di+1 − si, i + 1) for the move at position i + 1 if
|si| < |di| and (si − di−1, di + di+1, i) at position i and
(si+1, 0, i + 1) for the move at position i + 1 otherwise.

Clearly, the appropriate one of either of these is cross
co-operative at position i, while also staying co-operative
and reverse chronologically aligning γ to σ, and costs
min(|si|, |di−1|) less that m′.

Doing this procedure for at most n times will result in
a run with every stamp move being cross co-operative and
with lower cost than m′, that is, our required m.

C. Stability

Before we proceed with the proof of this result, we
prove a small technical lemma that will help us in the
proof of Lemma 6. The motivation behind the following
result is essentially that the mixed distance dN respect an
intuitive notion of closeness, once two words have been
aligned up till the penultimate place, the one whose last
duration since firing lands it closer to the desired target
will naturally be the easier one to align. Put another way,
if two words, aligning to a target word, are identical to
each other in all respects but the last timestamp, then the
one whose last flow value is closer to the desired target
flow value, is the word that is over closer to the target
under dN between the two.

Lemma 10. Given two timing functions

γx = (γ1, γ2, . . . γn−1, γn−1 + x)

γy = (γ1, γ2, . . . γn−1, γn−1 + y)

Both aligning to σ = (σ1, . . . , σn), such that |x − (σn −
σn−1)| ≤ |y − (σn − σn−1)| then

dN (σ, γx) ≤ dN (σ, γy)

Proof. Consider any run my aligning γy to σ. We claim
there is a run mx aligning γx to σ such that cost(mx) ≤
cost(my).

This proves the above lemma as then the minimal
cost run aligning γx to σ would have cost at most mx

corresponding to the minimal cost run aligning γy to σ,
so

dN (σ, γx) ≤ dN (σ, γy)

Now, we can assume without loss of generality by
Lemmas 2 and 3 that my is chronological and co-operative,
say my = (s1, d1, 1) . . . (0, dn, n).

We construct mx = (s1, d1, 1)(s2, d2, 2) . . . (s′
n−1, d′

n−1, n−
1)(0, d′

n, n) differing at most at the last two
mixed moves. As mx|n−2 = my|n−2 we can also
conclude that sn−1 + dn−1 = s′

n−1 + d′
n−1 by

chronology, so with co-operation we can conclude
that cost(my)− cost(mx) = |dn| − |d

′
n|.

Hence, the problem is reduced to proving that whatever
the choice of dn, there is a choice of d′

n that fully aligns
γx and has atmost equal magnitude.

Now, |dn| = |σn−1 +y−σn| as my|n−1 fully corrected up
till the penultimate place, and similarly |d′

n| = |σn−1 +x−
σn|, hence, by definitions of x and y, we have the result.

Now, we can proceed with the proof of Lemma 6.

Lemma. There is a stable, co-operative, reverse chrono-
logical minimal cost sequence of moves aligning any two
linear timed traces.

Proof. Suppose we seek to align the linear timed trace γ to
σ, and consider a minimal cost, reverse chronological, co-
operative and cross co-operative sequence of moves m′ that
aligns γ to σ. We know m′ exists by Lemmas 3 and 4. On
the other hand, consider the unique stable, co-operative,
reverse chronological sequence of moves m that aligns γ

to σ, that exists by Lemma 5.
We proceed by way of induction. In the base case of

words of length 1, the claim is clearly true as the minimal
cost aligning move would just be the minimum delay move,
which is also the unique stable run. For words of length
2, i.e., γ1γ2 aligning to σ1σ2, a reverse chronological co-
operative run on the flow function is of the following form
:

m′ : fγ
(0,d2)
7−−−−→ (fγ(1), fγ(2) + d2)

(s1,d1)
7−−−−→ (fγ(1) + s1 + d1, fγ(2)− s1 + d1) = fσ

By reverse chronology and co-operation, we have the
following equation :

cost(m′) = |d2|+|s1+d1| = |fσ(2)−fγ(2)+s1|+|fσ(1)−fγ(1)|



Clearly the only variable in the cost is the value of
s1, and the stable run m is the run that precisely min-
imises the value |fσ(2)− fγ(2) + s1| while maintaining co-
operation, so the claim holds.

Now, let the length of γ be n > 2, and suppose the claim
holds for all words of length less than n. We claim that
cost(m) ≤ cost(m′).

The two runs must diverge at some point, as otherwise
their cost is equal and the claim is obvious. There are only
two main cases of interest :

Case 1. The first move is the same, but the second
moves are different (i.e the mixed move played at the
second right-most position of the trace).

Case 2. The first moves of the two sequences m and
m′ (i.e the delay played on the right-most position of the
trace) are different.

If the first move where the sequences diverge are later,
say at some position i in the trace, then we can restrict
our attention to the i + 1 length prefix of the word and
the appropriate truncations of m and m′, and by induction
hypothesis we are done. So, we focus on the above cases
henceforth.

Case 1. Let m = (0, dn, n)(sn−1, dn−1, n −
1) . . . (s1, d1, 1) and

m′ = (0, d′
n, n)(s′

n−1, d′
n−1, n− 1) . . . (s′

1, d′
1, 1)

As both these runs are reverse chronological, we obtain
the following equalities:

∀i > 1 : si + di − si−1 = fσ(i)− fγ(i) = s′
i + d′

i + s′
i−1

Setting i to n gives dn−sn−1 = d′
n−s′

n−1 = fσ(n)−fγ(n),
which implies that since dn = d′

n, sn−1 = s′
n−1.

Now consider γs = (sn−1, 0, n− 1)γ|n−1, and
ms = (0, dn−1, n−1)(sn−2, dn−2, n−2) . . . (s1, d1, 1) and
m′

s = (0, d′
n−1, n− 1)(s′

n−2, d′
n−2, n− 2) . . . (s1, d1, 1).

Clearly ms is the stable run aligning γs to σ|n−1 and
m′

s is another reverse chronological co-operative aligning
sequence, and

cost(m) = |dn|+ |sn−1|+ cost(ms)

cost(m′) = |d′
n|+ |s

′
n−1|+ cost(m′

s)|

and by triangle inequality and the stability of m,

|dn|+ |sn−1| = |dn − sn−1| = |d
′
n − s′

n−1| ≤ |d
′
n|+ |sn−1|

Now, by induction hypothesis on γs, ms, m′
s (they’re an

instance of length n − 1 words, case 2), we deduce
cost(ms) ≤ cost(m′

s), by which we can conclude that

cost(m) ≤ cost(m′)

Case 2. Let m = (0, dn, n)(sn−1, dn−1, n− 1) . . . (s1, d1, 1)
and m′ = (0, d′

n, n)(s′
n−1, d′

n−1, n− 1) . . . (s′
1, d′

1, 1)
As both these runs are reverse chronological, we obtain

the following equalities:

∀i > 1 : si + di − si−1 = fσ(i)− fγ(i) = s′
i + d′

i + s′
i−1

Setting i to n gives dn−sn−1 = d′
n−s′

n−1 = fσ(n)−fγ(n),
which implies that having performed the first delay and
stamp move of each run, one gets the following :

fγ
(0,d,n)(s,0,n−1)
7−−−−−−−−−−→ (fγ(1), . . . fγ(n− 1) + s, fσ(n))

fγ

(0,d′,n)(s′,0,n−1)
7−−−−−−−−−−−→ (fγ(1), . . . fγ(n− 1) + s′, fσ(n))

Where s = sn−1, d = dn, s′ = s′
n−1, and d′ = d′

n.
Now, let en = fσ(n) − fγ(n), and en−1 = fσ(n − 1) −

fγ(n − 1) Now, by stability of m, we have the following
definition of s :

s =











0 en · en−1 ≥ 0

en−1 Else If |en−1| < |en|

−en Otherwise

By the above definition, we see that s =
argminx·(en−x)≥0 |en−1 − x|.

Now by cross co-operation, we know that s′·(en−s′) ≥ 0,
so this means

|en−1 − s| ≤ |en−1 − s′|

=⇒ |fσ(n−1)−(fγ(n−1)+s)| ≤ |fσ(n−1)−(fγ(n−1)+s′)|

Now, consider the words γs = (γ1, . . . γn−2, γn−1 + s)
and γ′

s = (γ1, . . . γn−2, γn−1 + s′) both aligning to σ|n−1.
We can apply Lemma 10 to these, and deduce that

dN (γs, σ|n−1) ≤ dN (γ′
s, σ|n−1)

Now, by the induction hypothesis, as the rest of m would
have been the stable minimal cost run aligning γs to σ|n−1,
along with stability of m, we have the following :

cost(m) = |s|+ |d|+ dN (γs, σ|n−1)

≤ |d− s|+ dN (γ′
s, σ|n−1) ≤ cost(m′)

And hence we are done.

D. Purely Timed Alignment for Sequential Process Models

We can now look at the proof of Theorem 9.

Theorem. Given a sequential process model (CN, p) of a
time Petri Net N and a linear observed trace σ, the word
γ ∈ L(N) such that fγ(i) = argmin

x∈[Eft(ti),Lft(ti)]

|x− fσ(i)|

also has the property γ = argmin
x∈L(N)

dN (x, σ).

Proof. As (CN, p) is linear, we can consider the event
set E to be totally ordered by G, giving us the list
{e1, e2, . . . en} and their respective static interval con-
straints ∀i ≤ n : SI(p(ei)) = [ai, bi]. In this setting, clearly,

fγ(i) = argmin
x∈[ai,bi]

|x− fσ(i)|

We claim that for all α ∈ L(N) i.e ∀α : fα(i) ∈ [ai, bi],

dN (σ, γ) ≤ dN (σ, α)



By Theorem 8 we shall henceforth implicitly equate the
cost of the stable run aligning a word to the mixed moves
distance to the word. Let m, m′ be the stable runs aligning
γ, α respectively to σ, where:

m = (0, dn, n)(sn−1, dn−1, n− 1) . . . (s1, d1, 1)

m′ = (0, d′
n, n)(s′

n−1, d′
n−1, n− 1) . . . (s′

1, d′
1, 1)

In addition, we know that cost(m) =
∑n

i=1(|si| + |di|),
and cost(m′) =

∑n
i=1(|s′

i|+ |d
′
i|).

We break the run up after each stamp move, but not
delay move, at a particular position has been performed,
as below:

∀i > 0 : ci = |si−1 + |di|, c′
i = |s′

i−1|+ |d
′
i|

Where we let s0 = s′
0 = 0 for notation’s sake. Clearly

cost(m) =
∑n

i=1 ci and cost(m′) =
∑n

i=1 c′
i

We wish to prove that

cost(m) ≤ cost(m′)

In fact, we shall prove something stronger. We define the
notion of the disadvantage of m, which denotes in effect the
amount of distance it might have to catch up in aligning
due to m′ having done a costlier move just prior.

dis(i) = max(0, c′
i − ci)

Note of course, that each ci, c′
i and dis(i) is nonnegative.

Now, we claim the following :

∀k > 0 :

n
∑

i=k

ci + dis(k) ≤

n
∑

i=k

c′
i

If we prove this, we will be done, as the equation for k = 1
proves that m has overall lower cost than m′.

Let us proceed by induction on n− k.
For the base case, k = n, so the equation we seek is that

cn+dis(n) ≤ c′
n, which is clear as dis(n) = max(0, c′

n−cn).
Now, say the claim holds for all k > K for some K < n.

We seek to now prove that

cK +
n

∑

i=K+1

ci + dis(K) ≤ c′
K +

n
∑

i=K+1

c′
i

Now, if cK ≤ c′
K this is clear as cK + dis(K) =

max(cK , c′
K). On the other hand, suppose cK > c′

K .
By the induction hypothesis, we know that

n
∑

i=K+1

ci + dis(K + 1) ≤

n
∑

i=K+1

c′
i

So if we show that cK − c′
K ≤ dis(K + 1), we are done.

Now, by reverse chronology, co-operation and cross co-
operation of m and m′, and the definition of γ, we know
the following inequality holds :

|sK |+ cK = |sK + dK − sK−1| = |fσ(K)− fγ(K)|

≤ |fσ(K)− fα(K)| = |s′
K + d′

K − s′
K−1| = |s

′
K |+ c′

K

So, cK > c′
K =⇒ |sK | < |s

′
K |, and moreover,

cK − c′
K ≤ |s

′
K − sK |

Now, by stability of m, we know that sK was defined as
below :

sK =











0 eK · eK+1 ≥ 0

eK Else If |eK | < |eK+1|

eK+1 Otherwise

Where eK = (fσ(K)− fγ(K)) and eK+1 = fσ(K + 1)−
fγ(K + 1)− sK+1.

We proceed to analyse the possibilities based on the
various possible stable choices of sK depending on the
state of the run so far.

Suppose firstly that sK = 0. There are a number of ways
this could hold. By choice of γ,

(fσ(K)− fγ(K)) · (fσ(K + 1)− fγ(K + 1)) > 0

=⇒ (fσ(K)−fα(K))·(fσ(K+1)−fα(K+1)) > 0 =⇒ s′
K = 0

But |s′
K | > |sK | ≥ 0 so this first subcase is not possible.

Secondly, if

(fσ(K)− fγ(K)) = 0 =⇒ cK = 0 > c′
K

Which is also not possible.
Thirdly, if

(fσ(K + 1)− fγ(K + 1)− sK+1 = 0 =⇒ dK+1 = 0

Now, dK+1 = 0 and |s′
K | > |sK | implies

dis(K +1) = |s′
K |+ |d

′
K+1|− |sK | ≥ |s

′
K |− |sK | ≥ cK− c′

K

So in this case the claim holds as needed.
Otherwise, suppose sK = fσ(K) − fγ(K). In this case,

cK is once again equal to zero, which is not possible as by
assumption cK > c′

K ≥ 0.
Now, the last possibility is that sK = fγ(K+1)−fσ(K+

1)− sK+1. This means that once sK is played, the K + 1
position is perfectly aligned, so dK+1 = 0. Once again, this
means

dis(K +1) = |s′
K |+ |d

′
K+1|− |sK | ≥ |s

′
K |− |sK | ≥ cK− c′

K

So in this case also, the claim holds as needed.
Hence, we see that in every possible case, the claim holds

for k = K as well, so by induction we see that

n
∑

i=1

ci + dis(K + 1) ≤

n
∑

i=1

c′
i

From which we can conclude that

cost(m) =

n
∑

i=1

ci) ≤

n
∑

i=1

c′
i = cost(m′)

Hence, the result holds, and γ is an optimal word of
L(N) to align σ to.
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