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Abstract

Lewis signaling games are a class of simple communication games for simulating
the emergence of language. In these games, two agents must agree on a commu-
nication protocol in order to solve a cooperative task. Previous work has shown
that agents trained to play this game with reinforcement learning tend to develop
languages that display undesirable properties from a linguistic point of view (lack
of generalization, lack of compositionality, etc). In this paper, we aim to provide
better understanding of this phenomenon by analytically studying the learning
problem in Lewis games. As a core contribution, we demonstrate that the standard
objective in Lewis games can be decomposed in two components: a co-adaptation
loss and an information loss. This decomposition enables us to surface two po-
tential sources of overfitting, which we show may undermine the emergence of a
structured communication protocol. In particular, when we control for overfitting
on the co-adaptation loss, we recover desired properties in the emergent languages:
they are more compositional and generalize better.

1 Introduction

Understanding the dynamics of language evolution has been a challenging if not controversial research
topic in the language sciences [32, 13]. Given that the very first human language cannot be unearthed
from fossils [5], computational models have been designed to simulate the emergence of a structured
language within a controlled environment. In this line of work, Lewis signaling games [55] are among
the most widespread playground environments to model language emergence: they are inherently
simple, yet they exhibit a rich set of communication behaviors [17, 70]. Therefore, understanding
Lewis games dynamics may shed light on the prerequisites of language emergence.

In their original form, Lewis signaling games involve two agents: a speaker and a listener. The speaker
observes a random state from its environment, e.g. an image, and sends a signal to the listener. The
listener then undertakes an action based on this signal. Finally, both agents are equally rewarded based
on the outcome of the listener’s action. The resolution of this cooperative two-player game requires
the emergence of a shared protocol between the agents [55, 17]. One way to model the emergence of
such protocol is to give the agents the capacity to learn. The agents, and therefore, the communication
protocol, are shaped by a sequence of trials and errors over multiple games [81, 44, 75, 70]. This
learning-centric approach allows for a fine analysis of the language emergence dynamics [70, 36]. It
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also raises challenging learning-specific questions: What are the inductive biases present in the agent
architecture and loss function that shape the emergent language [43]? How do agents generalize from
their training set? Is the resulting language compositional [8]? What is the impact of overfitting [53]?

Recently, there has been a resurgence of interest for such learning-based approaches following
advances in machine learning [51]. In these approaches, the speakers and listeners are modeled as deep
reinforcement learning agents optimized to solve instances of the Lewis games [53, 33, 65, 56, 28].
The vast majority of these works explore Lewis games from an empirical perspective. However,
some of the recent experimental results are at odds with experimental findings from the linguistics
literature. For instance, the emergent protocols lack interpretability [48], generalization does not
always correlate with language compositionality [10], successful strategies are not naturally adopted
in populations [68, 12], and anti-efficient communication may even emerge [9]. It is unclear whether
those empirical observations result from a learning failure, e.g. optimization problems, overfitting,
or whether they are symptomatic of more fundamental limitations of Lewis games for modeling
language emergence, e.g. lack of embodiment [31, 4, 63, 37]. Overall, it is crucial to establish new
analytical insight to analyze Lewis games in the learning setting.

In this paper, we introduce such an analytical framework to diagnose the learning dynamics of deep
reinforcement learning agents in Lewis signaling games. As a core contribution, we demonstrate under
mild assumptions that the loss of the speaker and listener can be decomposed into two components
when resolving Lewis signaling games: (i) an information loss that maximizes the mutual information
between the observed states and speaker messages; (ii) a co-adaptation loss that aligns the speaker
and listener’s interpretation of the messages (Section 2). Based on this decomposition, we empirically
examine the evolution of these two losses during the learning process (Section 5). In particular,
we identify an overfitting problem in the co-adaptation loss between the agents which undermines
the emergence of structured language. We then show that the standard setup used in the deep
language emergence literature consistently suffers from this overfitting issue (Section 5.1). This
realization explains some of the contradictory observations [10] and experimental choices from
past works [65, 56, 68]. Finally, we explore regularization methods to tackle this co-adaptation
overfitting. We observe that reducing the co-adaptation overfitting allows for developing a more
structured communication protocol (Section 5.2).

All in all, our contributions are three-fold: (i) we provide a formal description of Lewis games from a
learning standpoint (Section 2.3); (ii) we apply this framework in experiments to show that degenerate
results are primarily due to overfitting in the co-adaptation component of the game (Section 5.1) ;
(iii) we propose natural ways of tackling this overfitting issue and show that, when we control the
receiver’s level of convergence, we obtain a well-structured emergent protocol (Section 5.2).

2 Analyzing Lewis Games

We show that Lewis games’ objective decomposes into two terms: (i) an information loss that
measures whether each message refers to a unique input; (ii) a co-adaptation loss that quantifies the
alignment of the speaker’s and listener’s interpretation of the messages.

For simplicity and to ease the reader’s intuition, we focus on the reconstruction variant of Lewis
games with agents optimizing the reconstruction log-likelihood in the main paper. In Appendix A,
we show that our analysis extends to a broader of Lewis signaling games, e.g. discrimination
games [12, 60, 21, 30, 65, 53, 52, 33, 56, 58], and to a general form of reward that covers the rewards
commonly used in emergent communication, e.g. log-likelihood [9, 10, 40, 68, 67, 11], accuracy
reward [65, 53, 52, 48, 56, 28, 23].

2.1 Background: Lewis Reconstruction Games

Game formalism In reconstruction Lewis games, a speaker observes a random object of its envi-
ronment. The speaker then sends a descriptive message, which a second agent, the listener, uses
to reconstruct the object. The success of the game is quantified by how well the original object
is reconstructed [40, 9, 67, 68]. Formally, the speaker is parameterized by θ and the listener is
parameterized by φ. The observed object denoted by x is selected from a set of objects denoted by X .
We denote by X the random variable characterizing x, sampled from distribution p. The intermediate
message sent by the speaker m belongs to the set of all potential messagesM. The speaker follows
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a policy πθ which samples a message m with probability πθ(m|x) conditioned on object x. We
denote by Mθ the random variable characterizing the message m, sampled from πθ(·|X). We denote
by πθ(m) =

∑
x πθ(m|x)p(x) the marginal probability of a message given policy πθ. Given a

message m, the listener outputs a probability distribution over inputs ρφ(·|m), and the probability of
reconstructing the entire object x given m is thus ρφ(x|m).

Game objectives In reconstruction games, the speaker and listener minimize the negative log
likelihood of the reconstructed object. Both agents thus optimize the objective:

Lθ,φ = −Ex∼p,m∼πθ(·|x)[log ρφ(x|m)], (1)
where optimizing the speaker is a reinforcement learning problem whose parameters θ are optimized
using policy gradient [76] and optimizing the listener is a supervised learning problem whose
parameters φ are optimized with gradient descent. In our theoretical analysis, we consider that agents
are not regularized. In practice, regularizations, e.g. entropy regularization [59], may be added to the
game objective but it does not alter our main conclusions.

2.2 Building Intuition on the Lewis Reconstruction Game Learning Dynamics

To get a better intuition of the dynamic of Lewis reconstruction games, we can analyze the form
taken by the optimal listener, given speaker πθ. In what follows, we use sub-script θ to denote an
explicit dependency of the policy on parameters θ, e.g. a policy parameterized with a neural network.
Conversely, the use of super-script ∗(θ) corresponds to an implicit dependency of the policy on
parameters θ. As shown in Appendix A.1.1, given a message m, the optimal listener’s distribution
ρ∗(θ)(·|m) can be written in closed-form:

ρ∗(θ)(x|m) :=
p(x)πθ(m|x)∑

x′∈X p(x
′)πθ(m|x′)

· (2)

Here, ρ∗(θ) does not depend on φ, but implicitly depends on θ, as it is the optimal listener given a
policy parameterized by θ. At each update, the listener ρφ gets closer to its optimum ρ∗(θ)(·|m) . If
we suppose that the listener perfectly fits ρ∗(θ)(·|m) at any moment, the loss becomes:

Lθ,φ = −Ex∼p,m∼πθ(·|x)[log ρ∗(θ)(x|m)] = H(X|Mθ) = −I(X;Mθ) +H(X) (3)

where H(X|Mθ) is the conditional entropy of X conditioned on Mθ and I(X;Mθ) is the mutual
information between X and Mθ. Thus, if the listener is optimal at every point in time, the speaker’s
task merely becomes the construction of a message protocol that maximizes the mutual information
between objects and messages, i.e. the construction of an unambiguous message protocol.

In practice, the listener never perfectly fits the optimum. In the following, we elucidate the effect of
this gap between the listener and its optimum on the dynamics of the game.

2.3 Analytical Result: The Lewis Games Loss Decomposition

In cooperative Lewis games, the agents’ loss can be decomposed into two terms:

Lθ,φ = Linfo + Ladapt, (4)

• An information term Linfo quantifies the degree of ambiguity of the language protocol. It
is minimal when each message refers to a unique object;

• A co-adaptation term Ladapt quantifies the gap between the listener and its optimum: the
speaker’s posterior distribution. This co-adaptive term is optimized both by the speaker
and the listener. When the listener is optimal, this co-adaptation objective is zeroed.

In particular, the decomposition takes the following form in the Lewis reconstruction game:

Lθ,φ = H(X|Mθ)︸ ︷︷ ︸
Linfo

+Em∼πθDKL(ρ∗(θ)(·|m)||ρφ(·|m))︸ ︷︷ ︸
Ladapt

, (5)
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The proof of the decomposition is provided in Appendix A. Appendix A provides the proof for the
reconstruction log-likelihood reward and extends to a broader class of Lewis signaling games, e.g.
discrimination games, and general cooperative rewards covering usual emergent communication
rewards, e.g. the accuracy reward. This decomposition gives us insights on the game dynamics and
the constraints that shape languages in the game with neural agents:

The information loss Linfo captures the speaker’s intrinsic objective: to develop an unambiguous
protocol. Linfo is minimal, equals to 0, when the communication protocol is unambiguous, i.e. every
message from the speaker’s policy πθ refers to a unique object. Conversely, Linfo is maximal, equal
toH(X), when the message protocol is fully ambiguous, and X and Mθ are independent variables.

The co-adaptation loss Ladapt is specific to learning agents. This loss measures how far the listener
ρφ is from its optimum ρ∗(θ). If Ladapt = 0, the listener and its optimum coincide. Ladapt has the
particularity to be optimized by the two agents. From the listener’s side, it merely corresponds to the
optimization of its supervised task. From the speaker’s side, it brings out that the speaker must adapt
its language to the listener in addition to build an unambiguous message protocol. In other words, the
co-adaptation loss pushes the speaker to develop a language that can be easily recognized by listeners.
This pressure diminishes as the listener approaches its optimum.

From a practical perspective, Equation (5) yields the following individual gradients:{
∇θLθ = −∇θI(X,Mθ) +∇θEm∼πθDKL(ρ∗(θ)(·|m)||ρφ(·|m))
∇φLφ = ∇φEm∼πθDKL(ρ∗(θ)(·|m)||ρφ(·|m)),

(6)

where the listener only receives gradients from the co-adaptation term, and the speaker receives
gradients from both terms.

This loss decomposition also finds echoes in the cognitive science literature in the form of an
expressivity vs. learnability trade-off [72]; see Section 6 for a detailed discussion.

2.4 Generalization Gaps in Lewis Reconstruction Games

We explore another facet of the loss decomposition that arises from learning. As agents are trained
on partial views of their environment, it opens questions of overfitting and generalization to unseen
objects. As is customary in machine learning, we consider agents trained on a fixed, finite sample
from the data distribution: the training set. Let us denote by ptrain the empirical object distribution
over the training set and Xtrain an object sampled from ptrain. Similarly let M train

θ denote a
message sampled from πθ(.|Xtrain), πtrain

θ (m) =
∑
x πθ(m|x)ptrain(x) the marginal probability

of a message on the training set, and ρ∗(θ)train(x|m) = ptrain(x)πθ(m|x)∑
x∈X ptrain(x)πθ(m|x) the speaker’s posterior

distribution with respect to the prior distribution ptrain. The training loss can be written as follow:

Ltrain
θ,φ = −Ex∼ptrain,m∼πθ(·|x)[log ρφ(x|m)]

= H(Xtrain|M train
θ )︸ ︷︷ ︸

Ltrain
info

+Em∼πtrain
θ

DKL(ρ
∗(θ)
train(·|m)||ρφ(·|m))·︸ ︷︷ ︸
Ltrain

adapt

Decomposing the gap between Ltrain
θ,φ and Lθ,φ uncovers two sources of overfitting:

Ltrain
θ,φ = Lθ,φ + Ltrain

info − Linfo︸ ︷︷ ︸
information overfitting

+ Ltrain
adapt − Ladapt︸ ︷︷ ︸

co-adaptation overfitting

· (7)

Intuitively, information overfitting occurs when the speaker only develops an unambiguous language
on the training set, but ambiguities remain on the total dataset. Co-adaptation overfitting occurs when
the two agents agree on a common communication protocol on the training data, but not on all data.

3 Method

This section gathers the methodological tools required to empirically study the loss decomposition.
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Figure 1: Probing method: (1) the speaker and listener are frozen and the probe listener is initialized.
(2) the probe listener is trained on ptrain (resp. p) with the speaker’s messages until convergence; (3)
The speaker takes inputs from ptrain (resp. ptest) and messages the probe listener and the listener.
The resulting loss of the probe listener is L̂info, and the loss of the listener is used to estimate L̂adapt.

3.1 Probing the Information and Co-adaptation Losses

Computing Linfo and Ladapt directly necessitates estimating the posterior distribution of the speaker,
ρ∗(θ)(. | m). Doing so requires summing over all X which is intractable. Fortunately, deep models
are large enough so that they can perfectly solve their task on their train set. We can leverage this
fact to compute empirical estimates L̂info and L̂adapt of Linfo and Ladapt respectively by using an
auxiliary listener trained to optimality.

We here detail an empirical probing mechanism to obtain estimates L̂info and L̂adapt given speaker
πθ and listener ρφ. As noted in Equation 2, the posterior ρ∗(θ) also corresponds to the optimal listener.
Therefore, we obtain an estimate of the posterior by training a listener to optimality, and use this
optimal listener to decompose the loss. In practice, to obtain this optimal listener, we freeze speaker
πθ and listener ρφ and initialize a new, auxiliary listener from scratch, which we refer to as the probe
listener. As illustrated in Figure 1, the probe listener is trained to reconstruct object x from message
m, with x drawn from distribution p or ptrain and m sampled according to the frozen speaker policy
πθ(.|x), until a stopping criterion is met. We then distinguish between the train and test estimates:

L̂train
info = −Ex∼ptrain,m∼πθ(·|x)[log ρtrain

ω∗ (x|m)]

L̂train
adapt = −Ex∼ptrain,m∼πθ(·|x)[log ρφ(x|m)]− L̂train

info

(8)

and,

L̂test
info = −Ex∼ptest,m∼πθ(·|x)[log ρω∗(x|m)]

L̂test
adapt = −Ex∼ptest,m∼πθ(·|x)[log ρφ(x|m)]− L̂test

info

(9)

where ρtrain
ω∗ and ρω∗ are the probe listeners trained over distributions ptrain and p respectively.2 Note

that this probing mechanism, while tractable, is computationally costly as it necessitates training a
new probe listener to convergence, and so we only use it as a valuable diagnosis tool.

3.2 Balancing the Information and Co-adaptation Terms

As explained in Section 2.3, the information loss alone is sufficient for the speaker to develop an
unambiguous language. This begets the question: does the co-adaptation loss have any bearing on
the emergent language at all? We elucidate this question by balancing the weight of the co-adaptation
term in the decomposition. By using the probing method described above, we build the following
training loss:

Lθ(α) = (1− α)× L̂train
info + α× L̂train

adapt where α ∈ [0; 0.5] (10)

2The estimate is trained on p, the full distribution of objects, and not ptest. Training on ptest would result in
an optimal listener overfitting on the test set, which would results in bad estimates of the mutual information.
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Hence, α balances the two speaker objectives (up to an approximation error). When α = 0.5, the
loss falls back to the classic setting. When α = 0, the co-adaptation term is removed on the speaker
side; note that the Lewis game can still be solved since the listener still optimizes the co-adaptation
term. We experimentally analyse the effect of α on resulting languages in Section 5.1. In Appendix
B, we describe how we build the balanced loss and explain why α should be bounded by 0.5.

3.3 Controlling the Listener’s Co-adaptation Loss Level of Convergence

As mentioned in 2.2, the influence of Ladapt on the co-adaptation term in the speaker’s loss is
modulated by the listener’s level of convergence to its optimum. To understand the effect of this
co-adaptation, we decouple the speaker and listener training and train the listener via three procedures:

Continuous listener The listener is continuously trained, jointly with the speaker. This is the standard
setting in the emergent communication literature, and serves to report the baseline behavior.

Partial listener The listener is re-initialized after each of the speaker’s update and trained on the
training set for Nstep before updating the speaker again. This baseline enables fine-grained analysis
of the influence of under-training (low Nstep) and over-training (large Nstep) the listener.

Early stopping listener The listener is also re-initialized after each of the speaker’s update but is
now trained until an early stopping criterion is met on the validation set. This allows us to get the
best estimate of the posterior ρ∗(θ)(.|m) at each update. This can be seen as a variant of the partial
listener with an adaptive number of steps Nstep.

4 Experimental settings

4.1 Game description
Unless specified, all our experiments are run on the reconstruction game defined in Section 2.1.
Experiments are run over 6 seeds and reach > 99% training reconstruction scores unless otherwise
stated. Our implementation is based on the EGG toolkit [39] and the code is available at https:
//github.com/MathieuRita/Population.

Environment We consider objects x =: (x1, ..., xK) ∈ X =: X1 × ... × XK characterized by K
attributes where attribute imay take |Xi| different values. By design, this synthetic environment allows
us to test the ability of agents to refer to unseen objects by communicating their attributes [3, 48].
Each object is the concatenation of one-hot representations of the attributes (xi)1≤i≤K . Objects have
K = 6 attributes, each taking 10 different values, for a total of 1 million objects. Training, validation
and test sets are randomly drawn from this pool of objects (uniformly and without overlap), and are
respectively composed of 4000, 1000 and 1000 elements. Thus, the agents only have access to a
small fraction (< 1%) of the environment, making the generalization problem challenging.

Communication channel Messages m =: (mj)
T
j=1 ∈M =: VT are sequences of T tokens where

each token is taken from a finite vocabulary V , finishing by a hard-coded end-of-sentence token
EoS. In our experiments, messages have maximum length T = 10 and symbols are taken from a
vocabulary of size |V| = 10 to prevent a bottleneck in the communication channel.

Speaker model The speaker follows a recurrent policy: given an input object x, it samples for all
t ∈ [1, T ] a token mt with probability πθ(mt|m<t, x). The speaker takes in the object x as a vector
of size K × |X.| and passes it through a linear layer of size 128 to obtain an object embedding, used
to initialize a LSTM [35] of size 128 with layer normalization [2]. At each time step, the LSTM’s
output is fed into a linear layer of size |V|, followed by a softmax, to produce πθ(mt|m<t, x)

Listener model Given a message m = (m1, ...,mT ), the listener outputs for each attribute k a
probability distribution over the |Xk| values: ρkφ(·|m). The probability of reconstructing the entire
object x given m is then ρφ(x|m) :=

∏
k ρ

k
φ(xk|m). The listener passes each message mt through

an embedding layer of dimension 128 followed by a LSTM with layernorm of size 128. The final
recurrent state hl

T is passed through K linear projections of size |X.|, each followed by a softmax,
providing K independent probability distributions of sizes |X.| to predict each attribute of x.

Optimization The agents are optimized using Adam [42] with a learning rate of 5 · 10−4, β1 = 0.9
and β2 = 0.999 and a batch size of 1024. For the speaker we use policy gradient [76], with a baseline
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computed as the average reward within the minibatch, and an entropy regularization of 0.01 to the
speaker’s loss [82]. In all experiments, we select the best models by early stopping.

4.2 Evaluating emergent languages properties
Generalization We measure generalization by computing the average test reconstruction score over
all the attributes of a probe listener trained on the training set using an early stopping criterion on
the validation set. Indeed, the trained listener ρφ may overfit to the training set, and so using it may
under-estimate. Using a separate listener removes this bias.

Compositionality Compositionality is a fundamental feature of natural language often seen as a
precondition to generalize [6, 77, 79]. We assess the compositionality by computing the topographic
similarity [8, 53]. It is defined as the Spearman correlation [47, 80] between the distance in input
space, i.e. the average number of common attributes, and the distance in message space, i.e. the
edit-distance between the corresponding messages [54]. As we here deal with large object space and
stochastic policies, we use a bootstrapped estimate of topographic similarity as in [46] to get reliable
numbers. We sub-sample 1000 elements x from the object space X , and sample the corresponding
messagem from the speaker’s policy πθ(·|x). We compute the topographic similarity for this batch of
1000 pairs (x,m). We repeat this protocol 100 times and take the mean to measure compositionality.

5 Empirical results

5.1 Visualizing the loss decomposition dynamics
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Figure 2: (a)Training dynamics (α = 0.5). (b,c)Agents score as a function of co-adaptation weight α.

We here visualize the loss decomposition dynamics. Following the protocol of 3.2, we control Ltrain
adapt

in speaker’s loss with weight α to understand the influence of the co-adaptation term on the language.

The co-adaptation task overfits rapidly We plot information and co-adaptation training dynamics
in the standard setting (α = 0.5). Note that both train and test information losses quickly converge
to 0, in other words the speaker succeeds in developing a protocol that is unambiguous on both the
training set and the overall distribution. On the other hand, the test co-adaptation loss diverges while
the train co-adaptation keeps disminishing, highlighting a clear overfitting problem.

The co-adaptation task promotes generalization We then display in Figure 2 the evolution of
the information and co-adaptation losses for different co-adaptation weight α. We observe that
down-weighting Ltrain

adapt tends to enforce both information and co-adaptation overfitting. Thus, even
though the co-adaptation loss is not inherently necessary for the speaker to develop an unambiguous
language, it is important to encourage the speaker to build a better language. This is confirmed
when looking at generalization accuracies. From α = 0 to α = 0.5, there is a gain of 15 points of
generalization. In conclusion, we note that (i) balancing the loss in favor of Ltrain

info has a negative
impact on generalization, (ii) the co-adaptation loss Ltrain

adapt pushes the speaker to develop a language
that generalizes better.

These experiments highlight two key findings: (i) co-adaptation is crucial for generalization ; (ii) in
standard settings, the co-adaptation loss overfits substantially, whereas the information loss does not.

5.2 Countering co-adaptation overfitting

We here investigate whether limiting overfitting in the co-adaptation loss may push towards languages
that generalize better and are more stuctured. As described in 3.3, we compare three control baselines:
Continuous listener, Partial listener with varying levels of convergence, and Early stopping listener.
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5 700

Figure 3: (a,b) Evolution of generalization and top.sim with Partial listener’s number of learning
steps Nstep ; (c) Top. sim VS. generalization. The color level of orange dots increases with Nstep.
Blue (resp. green) lines and points refer to the Continuous listener (resp. Early stopping listener).

Countering co-adaptation overfitting improves generalization In Figure 3, we observe that the
level of convergence of the Partial listener between each speaker’s update (controlled by Nstep)
has a strong impact on the generalization of the emergent protocol. Overall, we recover classic
machine learning trends when varying Nstep: when Nstep < 50, both train and test accuracy are low
— the agents underfit. When 50 < Nstep < 250, the train and test accuracy are almost optimal —
the agents are in good training regime. Finally, when Nstep > 250, the train accuracy is maximal
while the test accuracy collapses — the agents overfit. These observations reveal that the level
of convergence of the listener has a substantial impact on the final emergent language capacity to
generalize. Recall that, in these experiments, the direct effect of the listener’s overfitting is mitigated,
as we measure generalization using an auxiliary listener that is early stopped, and should therefore
not overfit as noted in Section 4. The listener’s overfitting impacts the speaker’s update through the
co-adaptation loss, which, by inducing a poorer final language leads to a degradation in generalization.
Additionally, Figure 3 shows that the continuous listener, standard in the Lewis games literature,
provides generalization performance similar to the worst overfitting listeners.

Controlling the listener’s co-adaptation level appears crucial to let the speaker develop a language that
generalizes well; this effect may have been underestimated in the standard Lewis learning dynamic.

Countering co-adaptation overfitting improves compositionality Figure 3 reveals that composi-
tionality follows the same pattern. In the underfitting regime, the topographic similarity is low but still
outperforms the Continuous listener. Similarly, it is also low in the overfitting regime. In-between
the two — which corresponds to high generalization in Figure 3 — the topographic similarity reaches
high values, which suggests that more compositional languages emerge. This indicates that the
listener’s lack of co-adaptation overfitting promotes structured languages.

Compositionality correlates with generalization In Figure 3, we plot the correlation between
generalization and compositionality. As opposed to [10], we observe a strong correlation between
generalization and topographic similarity when varying the Partial listener’s level of convergence.
In particular, we identify two correlation branches: one belonging to the underfitting regime and
the second to the overfitting regime. Together, they retrace the evolution of generalization and
compositionality with respect to Nstep. We see that Continuous listeners belong to the end of this
trajectory, in the overfitting regime. Note that the blue rectangle — which delineates the range of
values reached with the Continuous listener — corresponds to the classic learning setting in the
literature. As this range is tight, it may explain the initial negative results reported by [10].

In conclusion, the listener exerts a necessary pressure on the speaker to develop a structured language
that generalizes better. This pressure can be controlled by limiting the listener’s level of overfitting,
which is inevitably too high when the listener is trained continuously as is usually done.

Comparison with standard regularization methods In practice, re-initializing the listener as done
with the Partial or Early stopping listener is costly. We thus test whether performances comparable to
Figure 3 can be obtained by controlling the listener’s level of overfitting with standard regularization
methods. In Table 1, we report the influence of applying common regularization methods to the
listener on various metrics of the language. We find that regularization consistently results in
noticeable improvements. Moreover, once again, gains of generalization correlate with gains of
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Gen. ↑ Compo. ↑ L̂test
adapt ↓

Continuous 0.58±0.05 0.22±0.02 4.64±1.22

Dropout 0.64±0.03 0.24±0.01 4.86±0.52

No LN. 0.70±0.03 0.24±0.02 4.68±0.38

Weight decay 0.72±0.03 0.25±0.03 4.29±0.56

No LN. + WD 0.87±0.07 0.30±0.03 2.12±0.67

Early stopping 0.95±0.04 0.39±0.04 1.10±0.69

Top Partial 0.95±0.03 0.42±0.02 0.97±0.55

Generalization ↑

CelebA 1/1 1/20 1/100

Continuous 0.94±0.01 0.67±0.02 0.39±0.07

Early stopping 0.97±0.01 0.80±0.03 0.69±0.04

ImageNet 1/1 1/20 1/100

Continuous 0.96±0.01 0.77±0.01 0.51±0.03

Early stopping 0.98±0.01 0.81±0.01 0.64±0.01

Table 1: (left) Performance comparisons between Continuous listener, Partial listener, Early stopping
listener and classic listener regularization, e.g. weight decay [34, 49], Dropout [74] and layernorm [2].
Regularization parameters were tuned and are detailed in Appendix C.1 ; (right) Generalization scores
for continuous baselines and Early stopping listener on visual Lewis Games. 1/1, 1/20 and 1/100

refer to the subset ratios of the dataset.

compositionality. These trends corroborate our hypothesis that controlling the listener’s learning is
key to encourage the speaker to develop more structured languages. However, those methods remain
under the upper bound reached by the Early stopping listener, which suggests that further research
on regularization in cooperative games is warranted.

We complement this analysis in Appendix C.2 by studying the impact of regularization on the
speaker’s side, and show that such regularization does not result in similar improvements. This
indicates that the listener is the main contributor to the co-adaptation overfitting.

5.3 Scaling to the Image Discrimination Games

To validate our empirical findings beyond synthetic games, we scale our approach to complex games
with natural images as advocated by [12]. We thus train our agents on a discriminative game on top
of the CelebA [57] and ImageNet [69, 19] datasets while applying previous protocol. We work on
3 sizes of training set with increasing generalization difficulty. We provide all the training details
and game settings in Appendix D.1 and report our results in Table 1. While agents generalize well
when trained on the entire training set, generalization issues occur on smaller training sets and
performances can indeed be improved by controlling the listener’s level of convergence. However,
Appendix D.2 shows that gain of generalization does not correlate with gain of topographic similarity,
supporting that agents’ language structure is not captured by the topographic similarity in image
based settings [12, 1].

6 Related work
The decomposition of the loss function in the Lewis Game that we introduced finds echos in the
cognitive science literature. According to Skyrms [70], communicative organisms or systems are
confronted with two types of information: about the environmental states shared by the agents
(called objective information), and about how an agent would react to a signal (called subjective
information). Communication protocols emerge as a trade-off between constraints related to those
two types of information [44, 45]: the sender should be expressive [25, 24] and transcribe the
information available in the world with as little ambiguity as possible, which has been described as a
bias against ambiguity [73] ; sender and receiver should agree on the same referring system, which
has been described as a conceptual pact [7]. The latter has been shown to impose compressibility
and learnability pressures promoting structure [78, 72, 84]. This analysis resonates well with our
analytical decomposition of the loss function in the Lewis game.

The first term of the decomposition, which we called the information loss, has been addressed by
previous work that assumed that linguistic structure and generalization emerge from the requirement
of creating an unambiguous language. In this line of work, studies have either manipulated the
complexity of the environment [12, 30, 71, 60], restricted the bandwidth of the communication
channel [48, 66], or added noise to the message [50, 85]. In our main experiment, we do not
apply such information constraints to better focus on the second term of the decomposition, the
co-adaptation constraint, less studied within a machine learning approach. Previous work have
assumed that the co-adaptive dynamics encourage speakers to develop a more structured language for
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learnability reasons [56]. Support for this hypothesis can be found directly via the implementation of
a neural variant of Iterated Learning [65] or the introduction of learning speed heterogeneities [68]
and indirectly via the restriction of agents capacity [66], the variation of the communication-graph in
populations [28, 41] or the addition of newborn agents [15]. In our paper, we demonstrate that a co-
adaptation term is always present in standard agents optimization protocols and show that controlling
co-adaptation overfitting enhances language properties. The existence of an overfitting regime found
under the default setting (continuous training) may explain the counter-intuitive lack of relationship
between compositionality and generalization previously reported with neural agents [51, 10, 38, 20].

7 Conclusion
In this paper, we propose a methodological approach to better understand the dynamics in Lewis
signaling games for language emergence. It allows us to surface two components of the training:
(i) an information loss, (ii) a co-adaptation loss. We shed light that the agents tend to overfit this
co-adaptation term during training, which hinders the learning dynamic and degrades the resulting
language. As soon as this overfitting is controlled, agents develop compositional languages that better
generalize. Remarkably, this emergent compositionality does not result from environmental factors,
e.g. communication bottleneck [43], under-parametrization [48, 26], population dynamics [12, 68],
memory restriction [15, 16] or inductive biases [67], but only through a trial-and-error process.
Therefore, we advocate for a better comprehension of the optimization and machine learning issues.
As illustrated in this paper, such understanding may unveil contradictions between computational
models and language empirical observations and better expose the existing synergies between learning
dynamics and environmental factors [27, 83, 64, 14, 18, 22].
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A Lewis Games Loss Decomposition : proofs

We provide all the proofs of the Lewis Games Loss Decomposition. We organize the proofs as
follows:

• Appendix A.1 - Reconstruction game, we provide the proofs of the Decomposition for
the reconstruction game.

– Appendix A.1.1 - log-likelihood reward, we first prove the loss decomposition when
the reward is the reconstruction log-likelihood (case of the main paper).

– Appendix A.1.2 - general reward, we then extend the decomposition to a more
general reward

• Appendix A.2 - Extension to Lewis games, we extend the Loss Decomposition to a more
general class of Lewis games. We first describe the additional formalism (Appendix A.2.1),
then we prove the decomposition when the reward is the listener’s log-likelihood (Ap-
pendix A.2.2) and when the reward is more general (Appendix A.2.3). Eventually, we
show how the classic discrimination game can be expressed under this formalism in Ap-
pendix A.2.4.

• Appendix A.3 - Extension to agents optimizing different rewards, we discuss how the
decomposition is affected when the agents optimize different rewards.

A.1 Proof of the Lewis Reconstruction Game Loss Decompositon

Let’s first recall some notations that we will use throughout the proofs. We consider two agents:
a speaker parameterized by θ and a listener parameterized by φ. In the reconstruction game, the
speaker observes objects denoted by x and taken from a set X . The random variable characterizing
the object is denoted by X and its distribution is denoted by p. Based on object x, the speaker then
sends a message m from a message spaceM according to its policy πθ(.|x). The random variable
Mθ characterizes the message that is sampled from the speaker’s policy πθ. Eventually, the listener
should reconstruct the original object x based on the message m. The probability that the listener
predicts the input x given a message m is denoted by ρφ(x|m).

For any probability distribution, we denote by Supp the support of the distribution.

In the reconstruction game, the two agents optimize the same loss:

Lθ,φ = −Ex∼p,m∼πθ(·|x)[rφ(x,m)]

We will first prove the decomposition in the case where rφ(x,m) = log ρφ(x|m) (reconstruction
log-likelihood) for all x and m and then for a more general form of reward.

A.1.1 Proof of the Decomposition when rφ(x,m) = log ρφ(x|m)

We first prove the decomposition in the case described in the main paper: rφ(x,m) = log ρφ(x|m)
for all x and m.

Optimal listener For completeness, we recall the proof of Equation 2 of the expression of the listener
that is optimal with respect to Lθ,φ.

In the case rφ(x,m) = log ρφ(x|m), the listener is optimizing a cross-entropy loss with respect to
the joint variable (X,M) where X follows p and M follows speaker’s policy πθ. The loss can be
rewritten as:

Lθ,φ = −Ex∼p,m∼πθ(.|x)[log ρφ(x|m)]

Lθ,φ = −Em∼πθ,x∼ρ∗(θ)(.|m)[log ρφ(x|m)]

According to Gibbs inequality, the optimal distribution ρφ∗(·|m) for all m is ρφ∗(.|m) = ρ∗(θ)(.|m)

where ρ∗(θ)(.|m) is the speaker’s posterior distribution with respect to the prior p and the conditional
distribution πθ(·|x):
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ρ∗(θ)(x|m) :=
p(x)πθ(m|x)

Ex′∼p[p(x′)πθ(m|x′)]
for all x ∈ Supp(p),m ∈ Supp(πθ(·|x))

This concludes the proof of Equation 2.

Loss Decomposition The idea of the proof is to decompose the reward into the optimal reward (when
the listener is optimal), denoted by r∗(θ)(x,m), and the residual that measures the optimality gap,
denoted by rφ(x,m)− rθ(x,m):

rφ(x,m) = r∗(θ)(x,m) + (rφ(x,m)− r∗(θ)(x,m)) for all x ∈ Supp(p),m ∈ Supp(πθ(.|x))

Due to the linearity of the expectation, it follows that:

Lθ,φ = −Ex∼p,m∼πθ(.|x)[r
∗(θ)(x,m)]− Ex∼p,m∼πθ(.|x)[rφ(x,m)− r∗(θ)(x,m)]

In the case where the reward is taken as the listener’s log-likelihood, we have:

Lθ,φ = −Ex∼p,m∼πθ(.|x)[r
∗(θ)(x,m)]− Ex∼p,m∼πθ(.|x)[rφ(x,m)− r∗(θ)(x,m)]

= −Ex∼p,m∼πθ(.|x)[log ρ∗(θ)(x|m)]− Ex∼p,m∼πθ(.|x)

[
log

ρφ(x|m)

ρ∗(θ)(x|m)

]
= −Ex∼p,m∼πθ(.|x)[log ρ∗(θ)(x|m)]− Em∼πθEx∼ρ∗(θ)(.|m)

[
log

ρφ(x|m)

ρ∗(θ)(x|m)

]
Lθ,φ = H(X|Mθ)︸ ︷︷ ︸

Linfo

+Em∼πθDKL(ρ∗(θ)(·|m)||ρφ(·|m))︸ ︷︷ ︸
Ladapt

whereH(X|Mθ) is the conditional entropy of X conditioned on Mθ and DKL(p||q) is the Kullback-
Leiber divergence between two distributions p and q.

This last computation concludes the proof of Equation 5.

Remarks The key ingredients of the loss decomposition are:

1. We isolate two sub losses: Linfo, independent from the listener ; Ladapt optimized both by
the speaker and the listener.

2. Linfo measures the degree of ambiguity in the communication protocol. If Linfo is optimal,
ie. Linfo = 0, messages are unambiguous: each message refers to a unique input. Otherwise,
Linfo > 0 and ambiguities remain.

3. Ladapt measures the gap between the listener and its optimum (here the speaker’s posterior
distribution). When the listener is optimal, Ladapt = 0 and the main loss is limited to its
information part, otherwise Ladapt > 0 and the speaker and listener should adapt to reduce
the optimality gap.

A.1.2 Decomposition with a General Reward

In order to generalize the loss decomposition to more general rewards, we adopt the following
strategy:

• Construction of the reward: we first need to build a general expression of the communica-
tion reward. To do so, we describe the conditions that the cooperative reward should fulfill
in the reconstruction game and then propose a general reward expression. For the sake of
generality, we consider that the environment X and message spaceM may be continuous
spaces and that all the probability distribution may not be discrete.
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• Examples of usual cases: we show that our proposed general expression covers the rewards
used in most emergent communication papers, e.g. log-likelihood and accuracy.

• Loss decomposition in the general case: we write the loss decomposition with this general
form of reward, showing that the key properties of the loss decomposition still hold.

Construction of the reward The Lewis reconstruction game is a cooperative game: the more the
listener is able to reconstruct the objects seen by the speaker, the better the task is solved both by the
speaker and the listener. Therefore the reward of the Lewis reconstruction game should respect the
following conditions:

• C1: For x ∈ Supp(p) and m ∈ Supp(πθ(.|x)), the expected reward rφ(x,m) is maximum
when ρφ(.|m) = 1x, where ie. 1x denotes the indicator function on X taken on x: the
listener predicts x with probability 1 when it receives m.

• C2: For x ∈ Supp(p) and m ∈ Supp(πθ(.|x)), the expected reward rφ(x,m) is sub-
optimal when ρφ(.|m) 6= 1x, ie., the listener has a non-negative probability to predict the
wrong object x′ 6= x.

Given these assumptions, we propose the following general reward expression:

rφ(x,m) = −D(1x||ρφ(.|m)) +K (11)

where D is such that D(p||q) = 0 iff p = q,D(p||q) > 0 otherwise. 1x is the indicator function on
X taken in x and K is a real number that fixes the highest value of the reward. Note that D(p||q) is
close to a divergence, but has less assumptions.

Usual rewards as special instances of the general expression

We show that Equation 11 recovers most rewards used in the emergent communication literature,
specifically:

• Reconstruction log-likelihood [9, 10, 40, 68, 67, 11] This case is the one used in the main
paper and which is standarly used in reconstruction settings. With the following parameters

– D(p||q) = DKL(p||q),
– K = 0·

we have:

rφ(x,m) = −DKL(1x||ρφ(.|m)) = log ρφ(x|m)

• Accuracy [65, 53, 52, 48, 56, 28, 23] Accuracy is the most commonly used reward in
the emergent communication literature. It corresponds to agents receiving reward 1 if
the prediction sampled according to the listener’s output probability ρφ(·|m) matches the
original object x. The pointwise accuracy depends on the specific sample drawn from the
listener’s distribution. We are interested in how good the listener’s prediction is on average,
and thus in the expected accuracy, which is expressed as in Equation 11 with:

– D(p||q) = 1− Ep[q]
– K = 1

The expected accuracy is then defined as:

rφ(x,m) = D(1x||ρφ(.|m)) = ρφ(x|m)·

Loss Decomposition

With this definition of the reward, the speaker and listener loss can be written:

Lθ,φ = −Ex∼p,m∼πθ(·|x)[rφ(x|m)]

= −K + Ex∼p,m∼πθ(·|x)[D(1x||ρφ(.|m))]
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We first need to define the optimal listener. Note that the expectation can be re-formulated:

Lθ,φ = −K + Em∼πθ,x∼ρ∗(θ)(·|m)[D(1x||ρφ(.|m))]

The optimal listener is the listener ρφ that minimizes Ex∼ρ∗(θ)(·|m)[D(1x, ρφ(.|m))] for all m. In the
general case, there is no close-formed expression of the optimal listener. The optimal listener policy
is dependent of the function D and the posterior distribution ρ∗(θ)(·|m). We next denote the optimal
listener policy ρφ∗(·|m) that is fully characterized by ρ∗(θ)(·|m) and D and is independent of φ.

As in Appendix A.1.1, we denote r∗(θ)(x,m) the reward of the optimal listener. We can then apply
the same reward decomposition as in Appendix A.1.1:

rφ(x,m) = r∗(θ)(x,m) + (rφ(x,m)− r∗(θ)(x,m)) for all x ∈ Supp(p),m ∈ Supp(πθ(.|x))

which is equal to:

rφ(x,m) = −D(1x||ρφ∗(.|m))− [D(1x||ρφ(.|m))−D(1x||ρφ∗(.|m))]−K

where ρφ∗(.|m) is the optimal listener distribution that is independent of φ.

We can then rewrite the loss by taking the expectation of this reward and isolate an information and
co-adaptation component:

Lθ,φ = −Ex∼p,m∼πθ(.|x)[r
∗(θ)(x,m)]− Ex∼p,m∼πθ(.|x)[rφ(x,m)− r∗(θ)(x,m)]

= Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρφ∗(·|m))]︸ ︷︷ ︸
Linfo

+ Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρφ(.|m))−D(1x||ρφ∗(·|m))]︸ ︷︷ ︸
Ladapt

−K

To be an information/co-adaptation decomposition, this loss decomposition should fulfill the following
conditions:

1. Linfo should be independent from the listener’s weight φ; Ladapt should be optimized both
by the speaker and the listener.

2. Linfo should be optimal (Linfo = 0) when the communication protocol is unambiguous, ie.
each message refers to a unique input, sub-optimal (Linfo > 0) otherwise.

3. Ladapt should be 0 when the listener matches its optimum value with respect to the current
object-message joint distribution, otherwise Linfo > 0 and the speaker and listener should
adapt to reduce the optimality gap.

Let’s prove that all those conditions hold:

1. The optimal listener policy ρφ∗(·|m) is independent of φ. It turns out that Linfo is indepen-
dent from the listener. On the contrary, Ladapt is dependent both on θ and φ and therefore is
optimized both by the speaker and listener.

2. Let first show that when Linfo = 0, the speaker language is unambiguous. The language is
considered unambiguous iff each message refers to a unique input. Formally, let x be in the
support of p and

Mx = {m ∈M | ρ∗(θ)(x|m) > 0},

be the set of messages referring to x.
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This set is non empty because Em∼πθ [ρ∗(θ)(x|m)] = p(x) > 0. The emergent language is
considered unambiguous iff for all x and x′ in the support of p:

x 6= x′ ⇒Mx ∩Mx′ = ∅,

This property is equivalent of having a speaker posterior distribution ρ∗(θ)(.|m) being a
Dirac distribution for all m (otherwise, there is at least one message that refers to more than
one object).
Let’s demonstrate that Linfo = 0 iff ρ∗(θ)(.|m) is a Dirac distribution for all m.
First, when the speaker’s posterior distribution is not a Dirac distribution, we have: Linfo > 0.
Let m be a message in the support of πθ. If ρ∗(θ)(·|m) is not a Dirac distribution, there
exists x such that ρ∗(θ)(x|m) > 0 and D(1x||ρφ∗(·|m)) > 0. Indeed, if there exists x′
such that D(1x′ ||ρφ∗(·|m)) = 0, we have ρφ∗(·|m) = 1x′ by definition of D and thus: if
x 6= x′ ⇒ D(1x||ρφ∗(·|m)) = D(1x||1x′) > 0 by definition of D. It implies that
when ρ∗(θ)(·|m) is not a Dirac distribution : Ex∼ρ∗(θ)(.|m)[D(1x||ρφ∗(·|m))] > 0.

Reciprocally, if for all m ∈ Supp(πθ), ρ∗(θ)(·|m) is a Dirac distribution: ρ∗(θ)(·|m) =
1xm (with m referring to xm and all x ∈ Supp(p) covered by the messages) and the
corresponding optimal listener is also the Dirac distribution ρφ∗(·|m) = 1xm , we have:

Linfo = Em∼πθ [D(1xm ||ρφ∗(·|m))] = Em∼πθ [D(1xm ||1xm)] = 0

Therefore, Linfo is equal to 0, ie. is minimum, if and only if the speaker has a posterior
which is Dirac distribution, ie. the speaker develops an unambiguous language.

3. When the listener is optimal with respect to its loss, ρφ(.|m) = ρφ∗(.|m) for all m and
as a direct consequence, Ladapt = 0. When the listener is not optimal with respect to its
loss, Ladapt > 0 by definition of the optimal listener which is the listener that minimizes
Em∼πθ,x∼ρ∗(θ)(·|m)[D(1x||ρφ(.|m))].

In conclusion, in the case of a general reward, we keep the main ingredients of the information/co-
adaptation decomposition.

A.2 General Proof of the Lewis Games Loss Decomposition

In the previous section, we provided a proof of the loss decomposition for the Lewis Reconstruction
Game with a general cooperative reward. The goal of this Section is to extend this decomposition to
a more general definition of Lewis Games:

• Appendix A.2.1 - Formalism: We first describe the additional formalism.

• Appendix A.2.2 - Log-likelihood reward: We prove the decomposition for the general
Lewis Game when the reward is the listener’s log-likelihood.

• Appendix A.2.4 - General cooperative reward We prove the decomposition for the general
Lewis Game with a general cooperative reward.

• Appendix A.2.4 - Discrimination game : Eventually, we show how the widely studied
discrimination game [12, 60, 21, 30, 65, 53, 52, 33, 56, 58] can be expressed under this
formalism.

A.2.1 Formalism

In the general form, we consider inputs x from a set X where x is drawn from pX . We consider a
random feature F of X (in the reconstruction game F = X) that is distributed following pF (.|X).
A draw of F is denoted f and the set of potential features F . We here consider that the listener
may have access to an auxiliary input y. We denote Y the random variable of this auxiliary input
and pY (·|X,F ) its probability distribution. The task is here the communication of the feature f .
To this end, the speaker still sends messages m from the message spaceM. The random variable
Mθ characterizes the messages that are sampled from the speaker’s policy πθ(·|X). Eventually, the
probability that the listener predicts the correct feature f , given message m and auxiliary features y
is denoted by ρφ(f |m, y).
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A.2.2 Proof with the log-likelihood reward: rφ(f,m, y) = log ρφ(f |m, y)

We first prove the decomposition in the case: rφ(f,m, y) = log ρφ(f |m, y) for all f ,m and y, ie. the
reward is the listener’s log-likelihood of predicting the good feature. The agents’ loss becomes

Lθ,φ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[log ρφ(f |m, y)]·

Optimal listener The optimal listener is the listener that optimally minimizes Lθ,φ for a fixed speaker
policy πθ. It is obtained by noting that:

Lθ,φ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[log ρφ(f |m, y)]

Lθ,φ = −E(m,y)∼pMθ,Y Ef∼ρ∗(θ)(·|m,y)[log ρφ(f |m, y)]·

where ρ∗(θ)(f |m, y) =
Ex∼pX [πθ(m|x)pF (f |x)pY (y|f,x)]

Ex∼pX,f∼pF (.|x)[πθ(m|x)pY (y|f,x)] for all f , m and y and pMθ,Y (m, y) =

Ex∼pX ,f∼pF (.|x)[πθ(m|x)pY (y|f, x)].

It follows from Gibbs inequality that the optimal listener is ρ∗(θ)(·|m, y) for all m and y.

We can apply the reward decomposition of Appendix A.1.1:

rφ(x,m) = r∗(θ)(f,m, y) + (rφ(f,m, y)− r∗(θ)(f,m, y)) for all f ∈ F ,m ∈M, y ∈ Y·

Plugging this decomposed reward in our loss, and applying the exact same steps as in Appendix A.1.1,
we get

Lθ,φ = H(F |Mθ, Y )︸ ︷︷ ︸
Linfo

+E(m,y)∼pMθ,YDKL(ρ∗(θ)(·|m, y)||ρφ(·|m, y))︸ ︷︷ ︸
Ladapt

(12)

which is the Loss Decomposition for a general game.

Remarks You note that the decomposition is close to the Loss Decomposition in the reconstruction
case (Equation 5). Indeed, since the listener should predict a given feature F , the information task
is to build an unambiguous message protocol with respect to this feature and the optimal listener
becomes the posterior distribution of the speaker with respect to this feature. The co-adaptation loss
is once again a Kullback-Leiber distribution between the listener and the speaker’s posterior. Linfo

and Ladapt respects the conditions states in Appendix A.1.1.

A.2.3 Proof with the general reward rφ(f,m, y) = −D(1f ||ρφ(.|m, y)) +K

To study the general case, we use the reward definition provided in Appendix A.1.2:

rφ(f,m, y) = −D(1f ||ρφ(.|m, y)) +K

where D(p||q) is a function that is null when p = q, greater than 0 otherwise, 1f the indicator
function on F taken in f and K is a real number that fixes the highest value of the reward.

Agents’ loss becomes:

Lθ,φ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[rφ(f,m, y)]

Lθ,φ = Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[D(1f ||ρφ(.|m, y))]−K

Denoting ρφ∗(.|m, y) the listener that optimally minimises Lθ,φ and rθ(f,m, y) the reward of the
optimal listener, the loss can be decomposed:
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Lθ,φ = −Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[r
∗(θ)(f,m, y)]

− Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[rφ(f,m, y)− r∗(θ)(f,m, y)]

Lθ,φ = Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[D(1f ||ρφ∗(.|m, y))]︸ ︷︷ ︸
Linfo

+ Ex∼pX ,f∼pF (·|x),y∼pY (·|x,f),m∼πθ(·|x)[D(1f ||ρφ(.|m, y))−D(1f ||ρφ∗(.|m, y))]︸ ︷︷ ︸
Ladapt

−K

For the same arguments as in Appendix A.1.2, Linfo is only optimized by the speaker and is optimal
when the speaker develops an unambiguous message protocol with respect to F given Y , Ladapt is
null when the listener is optimal, otherwise it is > 0, ie. sub-optimal. Therefore, we recover the key
ingredients of the Loss Decomposition: when the listener is optimal, speaker’s loss is limited to Linfo,
when the listener is not optimal, the speaker has the additional task to help the listener matching its
optimum.

A.2.4 Case of the Discrimination Game

Recall that in a discrimination game, as in a reconstruction game, the speaker observes an input, x
and sends a message m to the listener. The listener is then provided with both the message m, and a
list of N + 1 candidate inputs, containing input x, along with N other inputs, or distractors. The
goal of the listener is then to give the index of the candidate that corresponds to the actual input.

To formally define discrimination games as instances of the general Lewis game described above, we
defineX1, . . . , XN to be i.i.d. samples from the inputs distribution p. These inputs will be used as the
distractors. We additionally set X0 = X . We then define a random permutation Σ, drawn uniformly
from the set of N + 1 element permutations, and independently from all other random variables. We
then set our auxiliary input Y = (XΣ(0), . . . , XΣ(N)), which provides the listener with a permuted
list, containing both the correct input at a random position, as well as the distractors. Finally, we set
the feature to be predicted as F = Σ−1(0). The task of the listener becomes to identify the index of
the correct input among all distractors, and we recover a discrimination game.

A.3 Speaker and Listener Optimizing Different Rewards

In this paper, we only discuss the case where the agents are fully cooperative, ie. they are optimizing
exactly the same reward. When the agents are not aligned on the same objective, the system
should be decoupled and an additional alignement bias is added to the loss of the speaker. For
example, in the reconstruction game where the speaker is optimizing a general reward rφ(x,m) =
−D(1x, ρφ(·|m)) +K and the listener a cross-entropy loss, the system becomes:

{
Lθ = Ex∼p,m∼πθ(·|x)[D(1x, ρφ(·|m))]−K
Lφ = −Ex∼p,m∼πθ(·|x)[log ρφ(x|m)]· (13)

where Lθ is the speaker’s loss and Lφ the listener’s loss.

By denoting ρφ∗(·|m) the optimal listener for all m with respect to Lθ (which is fully determined by
the speaker’s posterior and D) and ρ∗(θ)(·|m) the optimal listener for all m with respect to Lφ (in
this case, the speaker posterior), the speaker loss now decomposes into:

Lθ = Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρ∗(θ)(·|m))]︸ ︷︷ ︸
Linfo

+Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρφ(.|m))−D(1x||ρφ∗(·|m))]︸ ︷︷ ︸
Ladapt

+ Em∼πθ,x∼ρ∗(θ)(.|m)[D(1x||ρφ∗(.|m))−D(1x||ρ∗(θ)(·|m))]︸ ︷︷ ︸
alignment bias

−K

Compared to the standard decomposition, there is an additional term, that we name the alignment
bias, linked to the gap between the listener optimum of Lθ and the listener optimum of Lφ. If those
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optima are close, the amplitude of this term is negligible compared to Linfo and Ladapt. If those
optima are very different (eg. competitive game), the information and co-adaptation terms could
have a significantly smaller amplitude compared to the alignment bias. We leave to future work the
theoretical study of this alignment bias which echoes some empirical studies [61].

B Method: Additional Computations

In Section 3.2, we propose a protocol to balance the importance of the information and co-adaptation
losses in the speaker’s training loss. To do so, we use the probe listener’s estimate of the speaker’s
posterior on the train set ρtrain

ω∗ (x|m) = log ρtrain
ω∗ (x|m) and build the following reward:

rφ(x,m;α) = (1− 2α)× log ρtrain
ω∗ (x|m)︸ ︷︷ ︸

probe listener reward

+ α× log ρφ(x|m)︸ ︷︷ ︸
standard listener reward

where α is a weight in [0; 0.5].

The loss equality defined in Section 3.2 is then recovered with the following computations:

Lθ(α) = −Ex∼p,m∼πθ(.|x)[rφ(x,m;α)]

= −Ex∼p,m∼πθ(.|x)[(1− 2α)× log ρtrain
ω∗ (x|m) + α× log ρφ(x|m)]

= −(1− 2α)Ex∼p,m∼πθ(.|x)[log ρtrain
ω∗ (x|m)]− αEx∼p,m∼πθ(.|x)[log ρφ(x|m)]

= (1− 2α)L̂train
info + α(L̂train

info + L̂train
adapt)

Lθ(α) = (1− α)L̂train
info + αL̂train

adapt

Remark In the paper, we only consider the case α ∈ [0; 0.5] and do not explore larger values of α.
Indeed, controlling the co-adaptation rate α is made by re-weighting L̂train

info (estimated with a probe
listener). However, two issues occur when α > 0.5:

• First, the goal of computing L̂train
info is to indirectly balance the weight of the training

information loss Ltraininfo . By taking the loss of the probe listener close to optimality, we
get an upper bound estimate L̂train

info of the training information loss Ltrain
info . Therefore, it

theoretically ensures that we minimize Ltrain
info when optimizing L̂train

info . However, when
α > 0.5, the weight of L̂train

info is negative. In this case, since L̂train
info is an upper bound of

Ltrain
info , we do not have the guarantee that the speaker minimizes −Ltrain

info anymore.
• Second, we empirically experimented α > 0.5 even if theoretical conditions are not reached.

In practice, if the system converged for values of α closed to 0.5, the system quickly
became unstable for larger values of α. Our main hypothesis is that the speaker cannot start
structuring its messages when the weight of L̂train

adapt is too strong. Indeed, agents start with
random weights. It implies that, at the beginning of the training, if the weight of L̂train

adapt is
too strong, it pressures the speaker to have an almost uniform posterior, ie. to develop a
fully ambiguous language. In short, if α is too large, the speaker has too little pressure on
developing meaningful messages and therefore succeeding in the communication task.

C Regularization

We here provide:

• the parameters used for the listener’s regularization (Appendix C.1)
• the results obtained when regularizing the speaker (Appendix C.2)

C.1 Parameters of the Listener’s Regularization

Regularization parameters have been tuned in order to get the best average generalization scores
while having a convergence success rate greater or equal to 75%. When regularizing with the layer
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normalization (noted No LN. in Table 1), we remove the layer normalization applied of the listener’s
LSTM cell. Dropout rate is set to 0.2 and weight decay penalty is set to 0.01 both when layer
normalization is kept (noted Weight decay in Table 1) and when layer normalization is removed
(noted No LN. + WD in Table 1).

C.2 Comparison with Speaker’s Regularization

Parameters For the sake of completeness, we also study the impact of regularizing the speaker. Here,
we only report the results with the weight decay penalty. Indeed, removing the layer normalization
makes the training slow and unstable while results with dropout are worse than those with weight
decay. Weight decay penalty has been fine-tuned to 0.005 to get the best average generalization
performances while having > 75% successful experiments.

Results In Table 2, we compare the generalization and compositionality of emergent languages with
and without regularization applied on the speaker. First, when we regularize the speaker without any
regularization on the listener, we see that the gain of generalization and compositionality is negligible
and inferior to the gain obtained when regularizing the listener. Moreover, we note that when we
regularize both the speaker and the listener, scores of generalization and compositionality are similar
to those obtained when only regularizing the listener. It suggests that regularizing the speaker has
little impact on generalization and compositionality.

These results support the claim of Section 5.2: the listener is the main contributor of the co-adaptation
overfitting in the reconstruction game.

No Speaker reg. Gen. ↑ Compo. ↑

Continuous 0.58±0.05 0.22±0.02

No LN. 0.70±0.03 0.24±0.02

Weight decay 0.72±0.03 0.25±0.03

No LN. + WD 0.87±0.07 0.30±0.03

Speaker with WD Gen. ↑ Compo. ↑

Continuous 0.62±0.02 0.22±0.03

No LN. 0.68±0.07 0.23±0.01

Weight decay 0.74±0.05 0.26±0.04

No LN. + WD 0.82±0.07 0.32±0.04

Table 2: Performance comparison: (left) without speaker regularization ; (right) with speaker
regularization. Weight decay penalty on the speaker is set to 0.005. Parameters of regularization
methods for the listener are reported in Appendix C.1.

D Image Discrimination Games

We here complete Section 5.3 by presenting the rules and experimental settings of the image dis-
crimination game (Appendix D.1), reporting the results of compositionality (Appendix D.2) and
completing generalization results of Table 1 with regularization experiments (Appendix D.3).

D.1 Experimental Settings

For the implementation of the image discrimination game, we mostly follow the protocol proposed
by [12].

D.1.1 Game Rules and notations

In the Lewis image discrimination game, the speaker observes an image. Then, the speaker sends a
descriptive message to the listener. Based on this message, the listener should retrieve the correct
image among a set of candidates.

Formally, the image observed by the speaker is denoted by x and belongs to a set X . The intermediate
message sent by the speaker is denoted bym and belongs to a set a potential messagesM. The speaker
follows a policy πθ which samples a message m with probability πθ(m|x) conditioned on image
x. The listener encodes the message m into a representation tφ(m). The set of candidates received
by the listener are denoted C and the listener encodes each candidates x′ ∈ C by a representation
tφ(x′). The probability of a candidate x′ to be the correct image is : ρφ(x′|m, C). It is obtained by
comparing the message encoding tφ(m) with the image encoding tφ(x′) of all candidates.

25



D.1.2 Environment

Datasets We perform the discrimination game on ImageNet [19, 69] and CelebA [57]. We work with
image pre-processed encodings f(x) of size 2048 that have been open-sourced by [12]. In the two
datasets, each image has been center-cropped and processed by a ResNet-50 encoder pretrained on
ImageNet with the self-supervised method BYOL [29].

Train/val/test splits For building our custom training sets, we first considered the splits provided by
[12]. From the respective 1400k and 200k labelled images of ImageNet and CelebA, they slitted the
dataset in train, validation and test with the ratio 80/10/10.

To test agents generalization capacities, we also build subsets of the training set provided by [12]:
ImageNet 1

20 , ImageNet 1
100 , CelebA 1

20 and CelebA 1
100 . For each of those sub-training sets, we

randomly selected a small fraction of the training set, approximatively corresponding to 1/20-th and
1/100-th of the total training set. The corresponding number of samples are reported in Table 3.

Training samples

CelebA 1/20 1/100

8492 2123

Training samples

ImageNet 1/20 1/100

50732 12683

Table 3: Number of training samples for the four training subsets considered: ImageNet 1
20 , ImageNet

1
100 , CelebA 1

20 and CelebA 1
100

All our experiments on images are run with those 4 small training sets. We keep the original validation
and test sets from [12].

D.1.3 Agent Models

Speaker model The speaker is a neural network that takes the pre-processed representation of an
image f(x) as input of size 2048 and returns a message m = (mi)1≤i≤T of length T .

The speaker follows a recurrent policy: given the image representation f(x), it samples for all
t ∈ [1, T ] a token mt with probability πθ(mt|m<t, f(x)). The image representation f(x) is first
projected by a linear layer to get an object embedding of size 256 that is used to initialize a LSTM of
size 256 with layer normalization. At each time step, the LSTM’s output is fed into a linear layer of
size |V|, followed by a softmax, to produce πθ(mt|m<t, f(x)).

In our experiments, the following parameters have been chosen: T = 10, |V | = 10 meaning that the
message space is of size 1010 preventing any channel capacity bottleneck.

Listener model The listener is a neural network that takes the speaker’s message m and a set of
image candidates C containing the target image x and outputs the probability for each candidate
x′ ∈ C to be the target image x.

The listener is composed of two modules: one that encodes the message ; the other that encodes
images. For a message m = (m1, ...,mT ), the listener passes each symbol mt through an embedding
layer of dimension 256 followed by a LSTM of size 256 with layer normalization. The final recurrent
state h1

T is then passed to a linear layer that produces the image encoding tφ(m) of size 256. In
parallel, each candidate x′ is first pre-processed by f and then passed through a linear layer producing
an image encoding tφ(x′) of size 256.

The message representation tφ(m) is then compared to each candidate representation tφ(x′) with the
following score function: score(m,x′, φ) := tφ(m)tφ(x′)T . Note that contrary to [12], we rather
use a dot-product score function [53] instead of a cosine similarity because we empirically got better
results and more stable trainings. The probability distribution over the candidates C of being the target
image x is then obtained by normalizing the scores with a softmax. This probability distribution is
denoted by ρφ(·|m, C) and the listener guess is x̂ = argmax

x′
ρφ(x′|m, C).

In our experiments, the number of candidates is |C| = 1000.

26



D.1.4 Agents Training

We follow the same principle as in the reconstruction game: the listener is trained to best predict the
target image among the set of candidates, while the speaker takes the opposite of the listener’s loss as
reward:

Listener loss The listener is trained to predict the target image among the set of candidates C. When
receiving a batch of inputs x, a set of candidates C is sampled for each input x. The sampling is
uniform without replacement over X − {x} meaning that the target image x cannot be duplicated
into the candidates. The listener is then trained to optimized the average InfoNCE loss [62]:

Lφ =
∑

x∈batch

− log ρφ(x|m, C)

Speaker loss When the speaker observes an image x, sends a message m and the listener has to
choose among a set of candidates C, the speaker’s reward is defined as:

rφ,C(x,m) = log ρφ(x|m, C)

The speaker is trained to maximize its cumulative reward: Ex,m,C [log ρφ(x|m, C)] which means that
the speaker and the listener have the same loss.

Optimization The agents are optimized using Adam [42] with β1 = 0.9 and β2 = 0.999. The
speaker’s learning rate is 5 · 10−4 while the listener’s learning rate is 1 · 10−3. Agents are trained on
batches of size of 2048. For the speaker, we use policy gradient [76], with a baseline computed as the
average reward within the minibatch, and we add an entropy regularization of 0.01 to the speaker’s
loss [82].

D.2 Topographic Similarity Results

We report results of topographic similarity for experiments of Section 5.3. To be complete, we add
the scores when applying listener regularization (corresponding generalization performances are
reported in Appendix D.3).

Scores of topographic similarity are reported in Table 4. Here, the distance used to compare images
is the cosine distance between the vector representations of the ResNet-50 encoder pretrained on
ImageNet. The distance used to compare messages remains the edit-distance. As mentioned in the
main paper, we can see that there is not any compositionality trend when agents communicate about
images. Moreover, when comparing with Table 6 that reports generalization performances, we see
that gains of generalization do not correlate with gains of topographic similarity. It suggests that the
topographic similarity does not capture agents’ language structure in image based settings, as already
observed in previous work [12, 1].

Topographic similarity ↑

CelebA 1/20 1/100

Continuous 0.28±0.03 0.32±0.03
No LN. 0.26±0.04 0.29±0.03

No LN. + WD – 0.30±0.03

Weight decay 0.27±0.03 0.28±0.04

Early stopping 0.27±0.04 0.30±0.03

Topographic similarity ↑

ImageNet 1/20 1/100

Continuous 0.17±0.03 0.17±0.03

No LN. 0.18±0.01 0.16±0.02

No LN. + WD 0.19±0.03 0.21±0.03
Weight decay 0.17±0.02 0.15±0.02

Early stopping 0.18±0.04 0.20±0.03

Table 4: Topographic similarity of emergent languages in the image discrimination game where
images are compared with a cosine similarity. No LN. refers to the removal of the layernorm on
the listener’s LSTM cell ; Weight decay to the addition of weight decay on the listener with penalty
equal to 0.01 ; No LN. + WD refers to the removal of layernorm and addition of weight decay on
the listener. No result for No LN. + WD are reported with Celeba 1

20 because experiments did not
converge with the regularization parameters chosen.

In addition, we also test whether scores of topographic similarities are improved when using another
distance to compare images. In Table 5, we use the attributes provided in CelebA to compare the
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images. The distance between two images is computed as 1− (propotion of common attributes). For
the message comparison, we keep the edit-distance. Once again, no topographic similarity trends
emerge, sustaining results already observed in [12].

Topographic similarity (with attributes) ↑

CelebA 1/20 1/100

Continuous 0.13±0.02 0.15±0.03
No LN. 0.14±0.02 0.14±0.03

No LN. + WD – 0.15±0.04
Weight decay 0.14±0.02 0.15±0.01
Early stopping 0.13±0.02 0.15±0.02

Table 5: Topographic similarity of emergent languages in the image discrimination game where
images are compared with CelebA attributes. No LN. refers to the removal of the layer normalization
on the listener’s LSTM cell ; Weight decay to the addition of weight decay on the listener with penalty
equal to 0.01 ; No LN. + WD refers to the removal of layer normalization and addition of weight
decay on the listener. No result for No LN. + WD are reported with Celeba 1

20 because experiments
did not converge with the regularization parameters chosen.

D.3 More Results with Listener Regularization

To complete the generalization scores of Table 1 in the main paper, we report in Table 6 the
generalization scores in the image discrimination game for various regularization methods applied on
the listener. We observe the same trends as in the reconstruction game. Indeed, listener regularization
consistently improves the performances. It means, that a large gain of performance can be obtained
in those games by regularizing the listener. The Early stopping listener remains a top line in image
based experiments.

Generalization ↑

CelebA 1/20 1/100

Continuous 0.67±0.02 0.39±0.07

No LN. 0.67±0.03 0.44±0.02

No LN. + WD – 0.50±0.07

Weight decay 0.77±0.04 0.60±0.06

Early stopping 0.80±0.03 0.69±0.04

Generalization ↑

ImageNet 1/20 1/100

Continuous 0.77±0.01 0.51±0.03

No LN. 0.77±0.01 0.53±0.03

No LN. + WD 0.75±0.01 0.59±0.04

Weight decay 0.79±0.03 0.62±0.02

Early stopping 0.81±0.01 0.64±0.01
Table 6: Comparison of generalization performances between the Continuous listener, Early stopping
listener and listeners with regularization on the image discrimination game. No LN. refers to the
removal of the layer normalization on the listener’s LSTM cell ; Weight decay to the addition of
weight decay on the listener with penalty equal to 0.01 ; No LN. + WD refers to the removal of layer
normalization and addition of weight decay on the listener. No result for No LN. + WD are reported
with Celeba 1

20 because experiments did not converge with the regularization parameters chosen.
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