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dSorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inserm,
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ABSTRACT

Deep learning methods have achieved impressive results for 3D medical image segmentation. However, when the
network is only guided by voxel-level information, it may provide anatomically aberrant segmentations. When
performing manual segmentations, experts heavily rely on prior anatomical knowledge. Topology is an important
prior information due to its stability across patients. Recently, several losses based on persistent homology were
proposed to constrain topology. Persistent homology offers a principled way to control topology. However, it
is computationally expensive and complex to implement, in particular in 3D. In this paper, we propose a novel
loss function to introduce topological priors in deep learning-based segmentation, which is fast to compute and
easy to implement. The loss performs a projected pooling within two steps. We first focus on errors from a
global perspective by using 3D MaxPooling to obtain projections of 3D data onto three planes: axial, coronal
and sagittal. Then, 2D MaxPooling layers with different kernel sizes are used to extract topological features from
the multi-view projections. These two steps are combined using only MaxPooling, thus ensuring the efficiency of
the loss function. Our approach was evaluated in several medical image datasets (spleen, heart, hippocampus,
red nucleus). It allowed reducing topological errors and, in some cases, improving voxel-level accuracy.
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1. INTRODUCTION

Deep learning methods are the state of the art for medical image segmentation.1 The standard approach is to
supervise at the voxel level, using a voxel-wise loss (typically cross-entropy2 and Dice loss3). However, this may
generate anatomically aberrant segmentations.4 To overcome such problems, one can introduce prior anatomical
knowledge in the segmentation procedure. Indeed, medical experts extensively use their anatomical knowledge
to perform manual segmentations. In particular, prior knowledge can be introduced through new loss functions.
Many loss functions have been designed and we refer the reader to systematic surveys.5–7 The purpose of such
losses is very diverse but some aim at introducing prior information such as for instance shape8,9 position10

or size11,12 of the target region. Topological priors are important because they are usually very robust across
patients and because a topologically incorrect segmentation is generally anatomically aberrant. BennTaieb et
al.13 proposed a loss combining topological and geometric priors. However, it is not clear if it is applicable to 3D
data. He et al.14 introduced a cascaded network which preserves the topological relationships between the layers
of the retina. The most general approaches to constrain topology15–17 are based on persistent homology,18 an
algebraic method for characterizing the topology of shapes and functions. Persistent homology offers a principled
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way to control topology, such as connected components, holes, or voids. However, it is complex to implement
and computationally expensive in particular in 3D.

In this paper, we propose a fast loss function to constrain the topology in 3D medical image segmentation.
Unlike approaches based on persistent homology, it only provides an approximate control of topology but has
the advantage of being computationally efficient and easy to implement.

2. PROPOSED METHOD

Our approach has two components: we first project the 3D volume into 2D space according to three views; we
then characterize topological features using pooling layers with different kernel sizes (Figure 1). The topological
loss corresponds to the difference in topological features between the ground truth and the prediction.

Figure 1. Overview of the approach. The method contains two steps: 3D MaxPooling for projection and 2D MaxPooling
with different kernel sizes for topological features extraction. Due to space limitation, we do not show the 2D MaxPooling
step for sagittal and coronal planes but the specific steps remain the same as for axial plane.

2.1 Volume projection by 3D-MaxPooling

We propose to use 3D MaxPooling to project the volume onto three planes (axial, coronal, and sagittal) to create
a 2D representation of the 3D object. The projection can be easily obtained by using a MaxPooling operation.
The volume projections onto the axial, sagittal and coronal planes are denoted respectively as Paxial, Psagittal

and Pcoronal and computed as follows:

Paxial = MP3
kaxi(Vw,h,s);Psagittal = MP3

ksag (Vw,h,s);Pcoronal = MP3
kcor (Vw,h,s) (1)

where Vw,h,s denotes the 3D volume, w, h and s are the width, height and number of slices of the volume
respectively, MP k

3 denotes the 3D-MaxPooling with kernel k and kaxi = (1, 1, s), ksag = (w, 1, 1) and kcor =
(1, h, 1) are the kernels for projecting onto the axial, sagittal and coronal planes respectively. Note that Paxial

is of dimension (w, h), Psagittal is of dimension (h, s) and Pcoronal is of dimension (w, s).

The above procedure concentrates the target objects along each axis. The idea is to be able to magnify the
effect of small errors on the overall loss. Indeed, a small segmentation error (such as for example a small extra
connected component) has little effect on the overall loss. For example, the proportion of a voxel mispredicted
in the volume Vw,h,s is 1

w×h×s , while if we project it onto the axial plane, the error proportion is 1
w×h . Thus,

projecting the prediction into axial planes augments the weight of this error by s times.
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2.2 Topology feature extraction by 2D-MaxPooling

In a second step, we characterize the topology of the projected view by using two-dimensional MaxPooling with
different kernel sizes. The output can be roughly treated as connected components. Some small areas such as
noise in predictions are very common, and we don’t want to ignore them. We achieve this by using a set of
2D-MaxPooling with different kernel sizes. The topological characterization of the prediction and the ground
truth is then defined as follows:

P k
topo = MP k

2 (Paxial) +MP k
2 (Psagittal) +MP k

2 (Pcoronal)

Gk
topo = MP k

2 (Gaxial) +MP k
2 (Gsagittal) +MP k

2 (Gcoronal)
(2)

where MP k
2 denotes 3D-MaxPooling with square kernel of size k, Gplane (resp. Pplane) is the projection of the

ground truth (resp. of the prediction) onto a given plane. After 2D MaxPooling (MP k
2 ) under different kernels

k, the correct part of the prediction will occupy the same position as the label.

We then compute the absolute difference between P k
topo and P k

topo for each kernel size. The topology loss
Ltopo is obtained by averaging over all kernels and over the three projection planes:

Ltopo =
|
∑

k∈K Gk
topo − P k

topo|
3× |K|

. (3)

where K is the set of kernels and |K| is the number of kernels. regarded as geometric appreciation.

2.3 Final loss

The final loss function is a combination of the voxel-wise Dice loss and the proposed topological loss: Ltotal =
Ltopo + λLdice where λ is the trade-off parameter. In our experiments, we used a fixed value of λ = 1.

3. EXPERIMENTS AND RESULTS

3.1 Implementation

Our loss function is compatible with any convolutional neural network. In our experiments, we used the standard
3D-UNet.19 In some experiments, we used early stopping to avoid over-fitting. The early stopping was done
using only the validation set in order to obtain an unbiased performance on the test set. In all experiments, the
hyperparameters were identical. Because our approach needs to be pre-trained, each training involved two steps,
both using Adam:20 (1) pre-train for 150 epochs with learning rate 10−3; (2) fine tuning for the same number of
epochs with learning rate 10−4. Finally, we used the following sequence of kernels sizes: 4, 5, 8, 10, 20. We use
the open-source Python library TorchIO21 ∗ for medical dataset preprocessing that include: reshaping images to
the same size for each task, min-max normalization. Our code is developed based on the PyTorch framework.22

Table 1. Characteristics of the imaging datasets.

Dataset Task Train+val Test Image Size

Public
Spleen 25+7 9 160,160,128
Heart 12+4 4 160,160,128
Hippocampus 166+42 52 64, 64, 48

Local Red Nucleus 51+13 16 160,160,128

∗https://torchio.readthedocs.io/
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3.2 Datasets and evaluation framework

Our method was assessed using three public datasets from the Medical Segmentation Decathlon (MSD)23 and
one local dataset. The three tasks from MSD were segmentation of spleen, heart and hippocampus (see23 for
details). For the local dataset, the task is to segment the red nucleus from Quantitative Susceptibility Mapping
(QSM) brain images. The cohort included 18 healthy subjects, 46 patients with early Parkinson’s disease,
and 16 patients with prodromal parkinsonism (isolated rapid eye movement sleep behavior disorders) from the
ICEBERG study (NCT02305147). The institutional ethical committee approved the study (CPP Paris VI/RCB:
2014-A00725-42). All participants gave written informed consent. QSM images were manually segmented by a
trained neuroradiologist (L.C.).

Each dataset was split into training, validation and test sets. The splits were done at the participant level
to avoid any data leakage.24 The dataset distribution can be seen in the Table 1. For the local dataset, we also
explored the performance with a reduced training set size by randomly sampling 30% of the training set (15
MRIs).

We report performance at the voxel level and the topological level. We used the following seven classical
voxel-level evaluation metrics: Dice score, Precision, Recall, Volume error rate (VER), Absolute volume error
rate (AVER), Pearson’s r between predicted and ground-truth volume, 95 percentile Hausdorff distance (95HD).
Topological errors may have only a small impact on voxel-level metrics if they are of limited size. However,
topological errors make the predictions anatomically inconsistent. We thus used additional metrics for evaluation
of the topology, computing the 3D connected component error as well as the average 2D connected component
error. Topological metrics were the 3D connected component error (CCE) and the average 2D CCE.

3.3 Results

Results are displayed in Table 2. The proposed loss performs comparably with respect to the Dice loss baseline
in terms of voxel-level metrics. However, the proposed loss substantially decreases the topological errors both
in 2D and in 3D for the spleen, heart and red nucleus datasets. For the hippocampus dataset, results were
comparable. Furthermore, in the case of the red nucleus, when training on a smaller subset, the Dice score and
other voxel-level metrics were also improved. Figure 2 shows an example of result on the red nucleus task. One
can observe that only a few iterations of the topology loss are needed to improve topological correctness and
Dice score.

Table 2. Results with our loss and with the standard Dice loss (trained with either 150 or 150+150 epochs).

Task
Setting Voxel level Topology level

Loss Epoch Dice 95HD Precision Recall MVER MAVER Pearson’s r 2D CCE 3D CCE

Spleen
Dice 150 0.887 9.811 0.849 0.938 0.118 0.164 0.890 0.524 2
Dice 150+150 0.894 21.26 0.853 0.948 0.124 0.163 0.897 0.506 1.667
Ours 150+150 0.895 8.405 0.902 0.898 -0.001 0.098 0.894 0.289 0.222

Heart
Dice 150 0.872 6.923 0.821 0.930 0.136 0.136 0.873 0.543 2.75
Dice 150+150 0.872 5.722 0.844 0.902 0.072 0.074 0.872 0.403 0.75
Ours 150+150 0.864 7.104 0.861 0.870 -0.086 0.087 0.865 0.373 0.25

Hippocampus
Dice 150 0.861 1.368 0.864 0.861 0.001 0.053 0.877 0.2 0.019
Dice 150+150 0.861 1.339 0.869 0.858 -0.006 0.054 0.879 0.192 0.019
Ours 150+150 0.853 1.375 0.877 0.833 -0.048 0.067 0.872 0.203 0

Red Nucleus
(30%: 15 QSM)

Dice 150 0.725 7.646 0.595 0.948 0.645 0.645 0.748 0.601 1.025
Dice 150+150 0.738 5.493 0.610 0.954 0.616 0.616 0.76 0.568 1.125
Ours 150+150 0.808 3.612 0.783 0.849 0.107 0.184 0.812 0.349 0.375

Red Nucleus
(full: 51 QSM)

Dice 150 0.896 1.005 0.862 0.938 0.095 0.129 0.898 0.232 0.662
Dice 150+150 0.900 1.005 0.872 0.933 0.087 0.115 0.902 0.211 0.525
Ours 150+150 0.905 1.005 0.896 0.918 0.03 0.09 0.906 0.144 0.05

4. DISCUSSION AND CONCLUSION

We proposed a new loss function that integrates soft topological priors for 3D medical image segmentation. We
demonstrated that it allows reducing topological errors, without the need for subsequent postprocessing. In some
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Figure 2. An illustrative example of red nucleus segmentation. Dice is the result of the Dice loss. Topological ne denotes
correspond to n epochs using the proposed loss.

cases, it also allowed to improve voxel-level metrics. A limitation of our approach is that, unlike those based on
persistent homology,15–17 it does not strictly guarantee topological correctness. However, it is computationally
efficient and easy to implement. Another limitation is that the sequence of kernel sizes needs to be chosen.
However, we obtained suitable results for various anatomical structures without changing the kernel size.
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[19] Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O., “3D U-net: Learning dense
volumetric segmentation from sparse annotation,” in [International conference on medical image computing
and computer-assisted intervention ], 424–432, Springer (2016).

[20] Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization,” arXiv preprint 1412.6980
(2014).
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