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Motivated by the work on the domination number of directed de Bruijn graphs and some of its generalizations, in this
paper we introduce a natural generalization of de Bruijn graphs (directed and undirected), namely t-constrained de
Bruijn graphs, where t is a positive integer, and then study the domination number of these graphs.

Within the definition of t-constrained de Bruijn graphs, de Bruijn and Kautz graphs correspond to 1-constrained and
2-constrained de Bruijn graphs, respectively. This generalization inherits many structural properties of de Bruijn
graphs and may have similar applications in interconnection networks or bioinformatics.

We establish upper and lower bounds for the domination number on t-constrained de Bruijn graphs both in the directed
and in the undirected case. These bounds are often very close and in some cases we are able to find the exact value.

Keywords: domination number, de Bruijn graph, Kautz graph

1 Introduction
In graph theory, the study of domination and dominating sets plays a prominent role. This topic has been
extensively studied for more than 30 years Haynes et al. (1998); Hedetniemi and Laskar (1990) due to
its applications in several areas, e.g. wireless networks Dai and Wu (2004), protein-protein interaction
networks Milenković et al. (2011), social networks Bonato et al. (2015). For a comprehensive treatment
of domination and its variations, we refer to Haynes et al. (1998, 2020, 2021).

In an undirected graph, a vertex dominates itself and all its neighbors. The concept of domination
can be naturally transferred to directed graphs, where a vertex dominates itself and all of its outgoing
neighbors. A dominating set of a (directed or undirected) graph is a subset S of vertices such that every
vertex in the graph is dominated by at least one vertex in S. The domination number of a graph G is the
cardinality of a smallest dominating set of G, and is denoted by γ(G). Finding a minimum dominating
set for general graphs is widely know to be NP-hard Garey and Johnson (1979) and hence it is a challenge
to determine classes of graphs for which γ(G) can be exactly computed.

∗This work is partially supported by the following research projects: Sapienza University of Rome, projects: no.
RM120172A3F313FE ”Measuring the similarity of biological and medical structures through graph isomorphism”, no.
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sis of Phylogenies”.
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Indeed, finding a closed formula for the domination number is a well-studied problem and has been
solved for several classes of graphs such as directed de Bruijn graphs Blazsik and Kása (2002), directed
Kautz graphs Kikuchi and Shibata (2003), generalized Petersen graphs Yan et al. (2009), Cartesian product
of two directed paths Mollard (2014) and graphs defined by two levels of the n-cube Badakhshian et al.
(2019). Furthermore, close bounds are provided for some generalizations of the previous classes Balogh
et al. (2021); Dong et al. (2015).

In this paper we focus on the well-known de Bruijn graphs which have various applications in different
areas as for example bioinformatics Orenstein et al. (2017); Pevzner et al. (2001), interconnection net-
works Esfahanian and Hakimi (1985) and peer-to-peer systems Kaashoek and Karger (2003). De Bruijn
graphs are defined as follows:

Definition 1. Given an alphabet Σ and a positive integer n, the directed de Bruijn graph of dimension n
on Σ is defined by taking as vertices all the sequences in Σn and as edges the ordered pairs of the form(
(a1, . . . , an), (a2, . . . , an, an+1)

)
, where a1, . . . , an+1 are in Σ.
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Fig. 1: For Σ = {1, 2, 3} we show: (a) the directed de Bruijn graph cDB+(d, 1, 2); (b) the directed Kautz graph
cDB+(3, 2, 2); (c) the undirected Kautz graph cDB(3, 2, 2).

In Fig. 1.a we show a directed de Bruijn graph of dimension 2 on Σ = {1, 2, 3}. Particular induced
subgraphs of de Bruijn graphs have also been studied due to their applications related to both DNA assem-
bly and high-performance or fault-tolerant computing Li et al. (2004). These subgraphs can be defined by
choosing particular subsets of vertices. For instance, the subgraph induced by the sequences of Σn that
do not contain equal neighboring characters corresponds to the well-known directed Kautz graph Kautz
(1968) which has many properties that are desirable in computer networks Li et al. (2004); Bermond et al.
(1993). In Fig. 1.b we show a directed Kautz graph of dimension 2 on Σ = {1, 2, 3}. The undirected
version of de Bruijn and Kautz graphs can be easily obtained by simply ignoring the direction of the
edges and removing loops and multiple edges (see Fig. 1.c as the undirected version of the Kautz graph
in Fig. 1.b).

In this paper we propose a new natural generalization of the Kautz graphs, obtained by extending the
constraint on the sequences labeling the vertices, from neighboring positions to an arbitrary distance t.
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Definition 2. Given a sequence x = x1, . . . , xn ∈ Σn we say that x is t-constrained, for some integer t,
if for all 1 ≤ i < j ≤ n, whenever xi = xj it holds |i− j| ≥ t.

Notice that every sequence in Σn is trivially 1-constrained while the sequences labeling Kautz graphs
are 2-constrained. Moreover, the non trivial cases of Definition 2 are when 1 ≤ t ≤ min{d, n}. Indeed,
if t > min{d, n} = n then any sequence in Σn is trivially t-constrained, whereas if t > min{d, n} = d
none of the sequences of Σn is t-constrained.

We denote by V (d, t, n) the set of all t-constrained sequences from the set Σn. We now introduce
t-constrained de Bruijn graphs.

Definition 3. Given an alphabet Σ, with |Σ| = d, and two positive integers n and t, with 1 ≤ t ≤
min{d, n}, we define the directed t-constrained de Bruijn graph of dimension n on Σ as the subgraph of
the directed de Bruijn graph of dimension n on Σ induced by the set V (d, t, n).

We denote a t-constrained directed de Bruijn graph with cDB+(d, t, n) and its undirected version with
cDB(d, t, n). In Fig. 2, cDB(4, 3, 4) is depicted. Clearly, directed de Bruijn graphs and directed Kautz
graphs coincide with cDB+(d, 1, n) and cDB+(d, 2, n), respectively.

In addition to their theoretical interest, t-constrained de Bruijn graphs may also find applications in
interconnection networks where it is important to design network topologies offering a high-level of sym-
metries. Indeed, it is easier to balance the traffic load, and hence to minimize the congestion, on network
topologies with a high-level of symmetry.

In bioinformatics area, t-constrained de Bruijn graphs could be more suitable than de Bruijn graphs in
modelling problems. For example, in genome rearrangement, permutations of integers (i.e. n-constrained
sequences) are used to represent genomes Alekseyev and Pevzner (2007); Lin et al. (2014). However, it
is known that genes often undergo duplication, thus the genome may contain different copies of the same
gene. In this context t-constrained sequences for t < n may be used to model genomes where duplication
of genes is allowed only at a certain distance in the genome.

In this paper we provide a systematic study of the domination number of t-constrained de Bruijn graphs
in both directed and undirected case.

Although the domination numbers for the directed case of de Bruijn and Kautz graphs have been exactly
determined (see Kikuchi and Shibata (2003); Blazsik and Kása (2002); Araki (2007)), the exact values
in the undirected cases are still missing. Here we provide close upper and lower bounds on the value of
γ(cDB(d, 1, n)) and γ(cDB(d, 2, n)). Furthermore, in the particular case when the sequences labeling
the vertices are permutations (i.e. t = n), we determine the exact value of the domination number in both
the directed and undirected case.

We also consider the case where the sequences are partial n-permutations on the set of symbols when
|Σ| = d = n + c, for some integer c. In this case we provide close upper and lower bounds for
γ(cDB(n+ c, n, n)) and γ(cDB+(n+ c, n, n)).

Finally, we provide upper and lower bounds for the domination number of cDB+(d, t, n). Concerning
the value of γ(cDB(d, t, n)) it remains an open problem to find an upper bound that is asymptotically
better than the one trivially derived by the directed case. The results of this paper are summarized in
Table 1 and Table 2 for the directed and undirected cases, respectively.
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Fig. 2: For Σ = {1, 2, 3, 4} the constrained de Bruijn graph cDB(4, 3, 4).

Graph G γ(G) Ref.

cDB+(d, 1, n) γ(G) =
⌈

dn

d+1

⌉
Blazsik and Kása (2002)

cDB+(d, 2, n) γ(G) = (d− 1)n−1 Kikuchi and Shibata (2003)

cDB+(d, 3, n)
γ(G) = d(d− 2)n−2 if d even

d(d− 2)n−2 ≤ γ(G) ≤
(

1 + Θ
(

1
d2

))
d(d− 2)n−2 if d odd

Thm.9

cDB+(d, t, n) d!
(d−t)!

(d−t+1)n−t

(d−t+2)
≤ γ(G) ≤

(
1 + Θ

(
t

d(d−t+1)

))
d!

(d−t)!
(d−t+1)n−t

(d−t+2)
Thm.11

cDB+(n, n, n) γ(G) =
⌈
n
2

⌉
(n− 1)! Thm.12

cDB+(n+ c, n, n) 1
c+2

(n+c)!
c!
≤ γ(G) ≤

(
1 + Θ

(
1
c

))
1

c+2
(n+c)!

c!
Thm.13

Tab. 1: Summary of the results for directed t-constrained de Bruijn graphs.

2 Preliminaries
Let G be an undirected graph with V (G) and E(G) its vertex and edge set, respectively. Let v ∈ V (G);
N(v) denotes the neighborhood of v, i.e. the set of vertices that are adjacent to v. Similarly, for a directed
graph we denote by N+(v) and N−(v), the out- and in-neighborhood, respectively. We define ∆(G) as
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Graph G γ(G) Ref.

cDB(d, 1, 2) γ(G) = d− 1 Thm.2

cDB(d, 1, 3) γ(G) = d
⌈
d
2

⌉
Thm.3

cDB(d, 1, n), n ≥ 4 dn

2d+1
≤ γ(G) ≤

(
2−Θ

(
1
d

))
dn

2d+1
Thm.4

cDB(d, 2, 2) γ(G) = d− 1 Thm.6

cDB(d, 2, 3) d(d−1)
2
≤ γ(G) ≤

⌊
d2

2

⌋
Thm.7

cDB(d, 2, n), n ≥ 4 d(d−1)n−1

2d−1
≤ γ(G) ≤

(
2−Θ

(
1
d

)) d(d−1)n−1

2d−1
Thm.8

cDB(d, 3, n) d(d−1)(d−2)n−2

2d−3
≤ γ(G) ≤

(
2−Θ

(
1
d

)) d(d−1)(d−2)n−2

2d−3
Thm.10

cDB(n, n, n) γ(G) =
⌈
n
3

⌉
(n− 1)! Thm.14

cDB(n+ c, n, n) 1
2c+3

(n+c)!
c!
≤ γ(G) ≤

(
1 + Θ

(
1
c

+ 1
n

))
1

2c+3
(n+c)!

c!
Thm.15

Tab. 2: Summary of the results for undirected t-constrained de Bruijn graphs.

the maxv{|N(v)|} if G is undirected and the maxv{|N+(v)|} if G is directed.
Given an undirected graph G, a set of vertices S ⊆ V (G) is a dominating set if, for every vertex v,

either v ∈ S or N(v) ∩ S 6= ∅. Hence, we will say that v dominates N(v) ∪ {v}. The dominating set is
defined similarly for directed graphs by considering N+(v) instead of N(v).

The minimum over the cardinality of all dominating sets of (un)-directed G is denoted by γ(G).
For any graph G, a straightforward lower bound on γ(G), following by the definition of a dominating

set, is

γ(G) ≥
⌈
|V (G)|

∆(G) + 1

⌉
. (1)

The sequences representing the vertices of our graphs are on an alphabet Σ with d symbols; without loss
of generality we assume that Σ = {1, 2, . . . , d} = [d]. The concatenation of two strings x, y is denoted
x · y.

As already mentioned, de Bruijn and Kautz graphs coincide with cDB+(d, 1, n) and cDB+(d, 2, n),
respectively. More in general, we have the following hierarchy:

cDB+(d, n, n), cDB+(d, n− 1, n), . . . , cDB+(d, 1, n)

where each graph in the sequence is a proper subgraph of its successor. The same hierarchy holds also for
the undirected case.

From here on we assume that n ≥ 2 and d ≥ 2. Indeed, when d = 1 the corresponding graph contains
a single node, while if n = 1 both cDB+(d, 1, 1) and cDB(d, 1, 1) are complete graphs on d vertices and
hence their domination number is 1.

Fact 1. Given a directed t-constrained de Bruijn graph cDB+(d, t, n) and its undirected version cDB(d, t, n)
we have:
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• the cardinality of the vertex set for both graphs is:

|V (d, t, n)| = d!

(d− t)!
(d− t+ 1)n−t (2)

• ∆(cDB+(d, t, n)) = d− t+ 1 and ∆(cDB(d, t, n)) ≤ 2(d− t+ 1)

• from the previous two items and from Equation 1 we have:

γ(cDB+(d, t, n)) ≥
⌈

d!

(d− t+ 2)!
(d− t+ 1)n−t+1

⌉
(3)

and

γ(cDB(d, t, n)) ≥
⌈

d!(d− t+ 1)n−t

(d− t)!(2d− 2t+ 3)

⌉
. (4)

Note that, for t ≥ 2, the value in (3) is always an integer and thus, the ceiling can be removed.

3 Domination numbers of cDB+(d, 1, n) and cDB(d, 1, n)

In this section we consider 1-constrained de Bruijn graphs, which correspond to the well-known de Bruijn
graphs. The domination number in the directed case has been studied in Blazsik and Kása (2002) proving
that the exact value matches the lower bound in (3). For the sake of completeness we recall the result in
the next theorem.

Theorem 1. Blazsik and Kása (2002) For any two integers d ≥ 2 and n ≥ 2 it holds

γ(cDB+(d, 1, n)) =

⌈
dn

d+ 1

⌉
.

On the other hand the undirected case is still open. Indeed, to the best of our knowledge only the
perfect domination (i.e. the case when each vertex is dominated by exactly one vertex) has been studied
for undirected de Bruijn graphs Blazsik and Kása (2002); Livingston and Stout (1990).

Here we provide lower and upper bounds on γ(cDB(d, 1, n)) for any n ≥ 2. We start by considering
the special cases n = 2 and n = 3 for which we provide formulas.

Theorem 2. For any integer d ≥ 2, γ(cDB(d, 1, 2)) = d− 1.

Proof: Upper bound. Observe that the vertices of cDB(d, 1, 2) are all the sequences (x1, x2) ∈ [d]2.
Define the subset S = {(1, x) : x ∈ [d], x 6= 1} of cardinality d− 1. We show that S is a dominating set.
Let (x1, x2) ∈ [d]2 be any of the vertices of cDB(d, 1, 2). There are three possible cases to consider: (i)
x2 = 1, then any sequence of S dominates it, (ii) x2 6= 1 but x1 = 1, then the sequence (x1, x2) belongs
to S and thus is trivially dominated, (iii) x2 6= 1 and x1 6= 1, then (1, x1) is in S and dominates (x1, x2).
Thus, γ(cDB(d, 1, 2)) ≤ d− 1.

Lower bound. The lower bound deduced from (4) gives only
⌈

d2

2d+1

⌉
and thus we need to use a

different argument to prove our claim.
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Let S be a dominating set. Let P1, P2 the set of symbols that, in the sequences in S, appear in the first
and second coordinates, respectively. Let M1 = [d] − P1 and M2 = [d] − P2 be the sets of symbols
that, in the sequences in S, do not appear in the first and second coordinates, respectively. Observe that
M1 ∩ M2 = ∅, i.e. every symbol a ∈ [d] appears in some sequence in S, otherwise it would not be
possible to dominate sequence (a, a) where a ∈M1 ∩M2. For i = 1, 2, let |Pi| = pi and |Mi| = mi and
obviously p1 + m1 = p2 + m2 = d. Notice that for any i = 1, 2, it holds |S| ≥ |Pi| and thus if mi = 0
we are done.

Assume then mi ≥ 1 and observe that, for any two symbols a ∈M1 and b ∈M2, sequence (b, a) must
belong in S. Indeed the only sequences that can dominate (b, a) are:
(i) sequences of the form (x, b) which cannot be in S as b ∈M2,
(ii) sequences of the form (a, y) which cannot be in S as a ∈M1,
(iii) sequence (b, a) itself.

Thus, there are m1m2 pairs (b, a) in S, with a ∈ M1 and b ∈ M2. Clearly these sequences have
in the first position a symbol in M2 and thus contribute with exactly m2 symbols in P1. Hence, the
rest of the p1 − m2 symbols in P1 must appear as a first coordinate in |S| − m1m2 sequences. So
p1 −m2 ≤ |S| −m1m2. Since p1 = d−m1, we have:

|S| ≥ d+m1m2 −m1 −m2 = d+ (m1 − 1)(m2 − 1)− 1 ≥ d− 1

where the last inequality follows by observing that m1 and m2 are both positive integers.

Theorem 3. For any integer d ≥ 2, γ(cDB(d, 1, 3)) = d
⌈
d
2

⌉
.

Proof: Also in this case we handle separately upper and lower bounds.
Upper bound. Assume first d even and let S =

{
(2i, x, 2i − 1) : 1 ≤ i ≤ d

2 , x ∈ [d]
}

. Clearly,
|S| = d2

2 . To show that S is a dominating set observe that, given any sequence (a, b, c) ∈ [d]3, either b
is even (and then it is dominated by sequence (b, c, b − 1) ∈ S), or b is odd (and then it is dominated by
sequence (b+ 1, a, b) ∈ S).

When d is odd the argument is the same but in this case we consider set S =
{

(2i, x, 2i− 1) : 1 ≤ i ≤
d−1
2 , x ∈ [d]

}
∪
{

(d, x, d) : x ∈ [d]
}

. Clearly, |S| = d
⌈
d
2

⌉
. We now prove that S is a dominating set.

First, from the previous paragraph it is clear that S dominates all sequences (a, b, c) that do not contain d.
If (a, b, c) contains at least two symbols equal to d, then sequences (d, d, x) and (x, d, d) are dominated
by (d, d, d) ∈ S since all the sequences (d, x, d) are in S. If, finally, (a, b, c) contains only one d, we
distinguish three cases according to the position where d appears:
(i) (a, b, d) is dominated by (b, d, b− 1) when b is even or by (b+ 1, a, b) when b is odd;
(ii) (a, d, c) is dominated by (d, c, d);
(iii) (d, b, c) is dominated by (b+ 1, d, b) when b is odd or by (b, c, b− 1) when b is even.

Lower bound. The lower bound deduced from (4) gives only
⌈

d3

2d+1

⌉
≤ d

⌈
d
2

⌉
−
⌊
d
4

⌋
+ 1 and thus

we need to use a different argument to prove our claim. Let S be a dominating set and for any symbol a
we denote by Sa the sequences of S of the form (x, a, y) (i.e. those that have the symbol a in the second
position). Clearly, if for every symbol a it holds that |Sa| ≥

⌈
d
2

⌉
we are done as |S| =

∑
a∈[d] |Sa| ≥

d
⌈
d
2

⌉
. Then assume there exists a symbol a for which |Sa| ≤

⌈
d
2

⌉
− 1. We denote by P 1

a the set of
pairs (x, a) for which there exists a sequence (x, a, y) in Sa. Similarly we denote by P 2

a the set of
pairs (a, y) for which there exists a sequence (x, a, y) in Sa. By definition of P 1

a and P 2
a we have that



8 Tiziana Calamoneri, Angelo Monti, Blerina Sinaimeri

|P 1
a | ≤ |Sa| ≤

⌈
d
2

⌉
− 1 and |P 2

a | ≤ |Sa| ≤
⌈
d
2

⌉
− 1. Now, we show that it must necessarily hold that

(a, a) ∈ P 1
a ∪ P 2

a . Indeed, the triple (a, a, a) can be dominated only by the following triples: (a, a, a),
(z, a, a), (a, a, z) with z ∈ [d]. Thus, without loss of generality, we can assume (a, a) ∈ P 1

a (the proof is
identical if (a, a) ∈ P 2

a ).
Let M be the set of the pairs (x, a) that do not appear in the first two positions of the sequences in S.

We have |M | = d−|P 1
a | ≥ d−

⌈
d
2

⌉
+1 ≥

⌈
d
2

⌉
. We denote the pairs inM as (x1, a), (x2, a), . . . , (xm, a)

with m ≥
⌈
d
2

⌉
. Notice that (a, a) 6∈M , thus for any 1 ≤ i ≤ m, xi 6= a.

Fix an 1 ≤ i ≤ m and consider sequences (z, xi, a) for every z ∈ [d]. As these sequences are
dominated by S, for each z, at least one between (z, xi, a) and (b, z, xi) belongs to S (note that (xi, a, c)
does not belong to S as pair (xi, a) ∈ M ). Moreover as xi 6= a, these sequences are all distinct. We
deduce that, for any pair (xi, a), there are d different triples (one for each z) that belong to S. This holds
for any xi with 1 ≤ i ≤ m. Moreover for any i 6= j and symbols z, z′, b, b′ not necessary distinct among
them, it holds {(z, xi, a), (b, z, xi)} ∩ {(z′, xj , a), (b′, z′, xj)} = ∅. Thus, |S| ≥ dm ≥ d

⌈
d
2

⌉
.

We now prove a general result for any n ≥ 4.

Theorem 4. For any two integers d ≥ 2 and n ≥ 4 it holds:

dn

2d+ 1
≤ γ(cDB(d, 1, n)) ≤ (d− 1)dn−2 =

(
2−Θ

(1

d

)) dn

2d+ 1
.

Proof: Lower bound. The lower bound follows from (4).
Upper bound. To prove the upper bound, consider the following set:

S =
{

(x1, x2, . . . , xn) ∈ [d]n : xn−1 6= x1, xn = x2
}
.

Notice that S is well defined since n ≥ 4. Clearly, the cardinality of S is (d − 1)dn−2. Indeed,
once x1, x2, . . . , xn−2 are fixed, there are d − 1 possibilities for xn−1 and one possibility for xn. We
show that S is a dominating set for cDB(d, 1, n). Suppose, by contradiction, that there is a sequence
s = (x1, x2, . . . , xn−1, xn) that is not dominated by any vertex in S. Then s 6∈ S and both the following
conditions must occur:

1. For any y ∈ [d], sequence s′ = (y, x1, x2, . . . , xn−2, xn−1) 6∈ S, otherwise s′ dominates s. In
particular, the sequence (y, x1, x2, . . . , xn−2, xn−1) 6∈ S for y 6= xn−2. By the definition of S, we
must necessarily have x1 6= xn−1.

2. For any symbol y ∈ [d], sequence s′′ = (x2, x3, . . . , xn−1, xn, y) 6∈ S, otherwise s′′ would domi-
nate s. In particular if we set y = x3, the sequence (x2, x3, . . . , xn, x3) 6∈ S. By definition of S,
we must necessarily have x2 = xn.

From items 1. and 2. we have that x1 6= xn−1 and x2 = xn and thus s must have the form (x1, x2, . . . , z, x2)
with z 6= x1. Thus, s ∈ S by the definition of S, contradicting our initial hypothesis.
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Comparison with the directed case. We conclude this section by observing that a dominating set for a
directed graph is a fortiori also a dominating set for its underlying undirected graph. Thus, γ(cDB(d, 1, n)) ≤
γ(cDB+(d, 1, n)). However, in this section we improved this bound. Namely, for n = 2 and n = 3,
the upper bound deduced from Theorem 1 is not tight as shown by our formulas for γ(cDB(d, 1, 2)) and
γ(cDB(d, 1, 3)). For n ≥ 4 the upper bound provided by studying the directed case is

⌈
dn

d+1

⌉
and we

improved it in Theorem 4 to
⌈(

1− 1
d2

)
dn

d+1

⌉
.

4 Domination numbers of cDB+(d, 2, n) and cDB(d, 2, n)

Here we consider 2-constrained de Bruijn graphs which correspond to Kautz graphs. As for the de Bruijn
graphs the domination number of directed Kautz graphs has been exactly determined in Kikuchi and
Shibata (2003) as stated by the following theorem

Theorem 5. Kikuchi and Shibata (2003) For any two integers d ≥ 2 and n ≥ 1 it holds:

γ(cDB+(d, 2, n)) = (d− 1)n−1.

Notice that the lower bound in (3) for γ(cDB+(d, 2, n)) is tight.
We consider now the undirected case and similarly to the previous section, we start by proving exact

results for n = 2.

Theorem 6. For any integer d ≥ 2, γ(cDB(d, 2, 2)) = d− 1.

Proof: Upper bound. The upper bound follows from Theorem 2 observing that a dominating set for
cDB(d, 1, 2) is also a dominating set for cDB(d, 2, 2).
Lower bound. Concerning the lower bound, let S be a dominating set for cDB(d, 2, 2). Let C be the
set of symbols of Σ that do not appear in any sequence in S. Then necessarily |C| < 2; indeed, if by
contradiction there were a, b ∈ C, with a 6= b, S could not dominate the vertex corresponding to the
sequence (a, b), contradicting the hypothesis of S being a dominating set.

If |C| = 1, then let C = {a}. Then, for any x 6= a, S must dominate both (a, x) and (x, a), and so
there must exists y1, y2 ∈ Σ such that (x, y1) and (y2, x) are both in S. So every symbol x 6= a must
appear both in the first and in the second position in S, and thus |S| ≥ d− 1.

Finally, if |C| = 0, for any a ∈ Σ there is a sequence between (a, x) and (x, a) in S for some x 6= a.
This sequence dominates also (a, a) and thus S is also a dominating set for cDB(d, 1, 2). Thus, from
Theorem 2 we have |S| ≥ γ(cDB(d, 1, 2)) = d− 1 and this concludes the proof.

Theorem 7. For any integer d ≥ 2,

d(d− 1)

2
≤ γ(cDB(d, 2, 3)) ≤

⌊
d2

2

⌋
.

Proof: Upper bound: We prove first the upper bound by modifying the construction in the proof of
Theorem 3. Suppose first d even. We define the set S = S1 ∪ S2 ∪ S3 of 2-constrained sequences where:

S1 =
{

(b, x, b− 1) : b ∈ [d], b is even, x ∈ [d]
}

S2 = {(b, b− 1, 2) : b ∈ [d], b is even},
S3 = {(1, b+ 1, b) : b ∈ [d], b is odd}
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It holds that |S1| = (d − 2)d
2 , |S2| = |S3| = d

2 and the three sets are mutually disjoint, hence |S| =

dd
2 =

⌊
d2

2

⌋
. It remains to show that S is a dominating set. To this purpose we consider the following two

properties:

(P1) For any pair (x, y) with x even, there exists in S a sequence of the form (x, y, a) for some
a ∈ [d], a 6= y;

(P2) For any pair (x, y) with y odd, there exists in S a sequence of the form (a, x, y) for some a ∈ [d],
a 6= x.

Clearly, S satisfiesP1 andP2 due to the sequences in S1∪S2 and in S1∪S3, respectively. Now consider
an arbitrary 2-constrained sequence x = (x1, x2, x3) in cDB(d, 2, 3) and hence x1 6= x2, x2 6= x3. If
x2 is even then from P1 there is a sequence (x2, x3, a) in S which dominates x. Otherwise x2 is odd and
then from P2 there is a sequence (a, x1, x2) in S which dominates x. It follows that S is a dominating set.

When d is odd, the reasoning is slightly different although it follows the same idea. We define the set
S = S1 ∪ S2 ∪ S3 ∪ S4 of 2-constrained sequences where:

S1 =
{

(b, x, b− 1) : b ∈ [d], b is even, x ∈ [d]
}

S2 = {(b, b− 1, d) : b ∈ [d], b is even}
S3 = {(d, b+ 1, b) : b ∈ [d− 1], b is odd}
S4 = {(d, b+ 1, b) : b ∈ [d− 1], b is even}

It holds that |S1| = (d − 2)d−1
2 , |S2| = |S3| = |S4| = d−1

2 and the four sets are mutually disjoint,
hence |S| = (d−1)(d+1)

2 =
⌊
d2

2

⌋
. To show that S is a dominating set, note again that S satisfies both

properties P1 and P2 due to the sequences in S1 ∪ S2, in S1 ∪ S3 if the pair (x, y) does not contain the
symbol d. To handle the pairs containing d we define the following further property:

(P3) For any x ∈ [d− 1] there exists in S a sequence of the form (d, x, a) for some a ∈ [d], a 6= x;

Notice that S satisfies alsoP3 due to pairs in S3∪S4. Now consider an arbitrary 2-constrained sequence
x = (x1, x2, x3) in cDB(d, 2, 3) and hence x1 6= x2, x2 6= x3. If x2 is even then, from P1, there
is a sequence (x2, x3, a) in S which dominate x. If x2 is odd and x2 6= d then from P2 there is a
sequence (a, x1, x2) in S which dominates x. Otherwise x2 = d and then from P3 there is a sequence
(d, x3, a) = (x2, x3, a) in S which dominates x.

Lower bound: Consider the set R ⊂ V (d, 2, 3), defined as R = {(a, b, a) : a ∈ [d], b ∈ [d], a 6= b}.
Clearly, |R| = d(d− 1). Let S be a dominating set and notice that any sequence (x, y, z) ∈ S dominates
exactly two elements of R. Indeed, if z 6= x, (x, y, z) dominates (y, x, y) and (y, z, y), otherwise if
z = x, it dominates (x, y, x) and (y, x, y). Thus, as all the elements of R must be dominated we have that
|S| ≥ |R|2 = d(d−1)

2 .

This concludes the proof.

We now prove a general result for cDB(d, 2, n) with n ≥ 4.
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Theorem 8. For any two integers d ≥ 2 and n ≥ 4 it holds:

d(d− 1)n−1

2d− 1
≤ γ(cDB(d, 2, n)) ≤ (d− 1)n−1 − (d− 2)(d− 1)n−4

=

(
2−Θ

(1

d

))d(d− 1)n−1

2d− 1
.

Proof: Lower bound: It follows from (4).
Upper bound: We consider the set S = S1 ∪ S2 ∪ S3 of 2-constrained sequences where

S1 =
{

(1, i, x3, . . . , xn) ∈ [d]n : i 6= d
}

S2 =
{

(1, d, i, x4 . . . , xn) ∈ [d]n : i 6= 1
}

S3 =
{

(d, 1, d, 1, x5 . . . , xn) ∈ [d]n
}

Since S1, S2, S3 are pairwise disjoint, then,

|S| = (d− 2)(d− 1)n−2 + (d− 2)(d− 1)n−3 + (d− 1)n−4 = (d− 1)n−1 − (d− 2)(d− 1)n−4.

It remains to prove that S is a dominating set. When d = 2 we have S1 = S2 = ∅ and S3 contains
only the sequence (d, 1, d, 1, . . .); trivially S is a dominating set for cDB(2, 2, n) (which contains only
two vertices) and thus we assume d ≥ 3.

Given any 2-constrained sequence y = (y1, y2, . . . , yn) representing a vertex of cDB(d, 2, n), we
distinguish three cases according to the symbol y1:

• y1 = 1: if y2 6= d then y is a sequence in S1; if y2 = d, we consider the value of the third symbol
y3. If y3 6= 1 then y is in S2. Otherwise, y3 = 1 and y is dominated by a sequence in S3.

• 1 < y1 < d: y is dominated by sequence (1, y1, . . . , yn−1) in S1.

• y1 = d: if y2 6= 1 then y is dominated by a sequence in S2; if y2 = 1, again we distinguish two
cases according to the third symbol. If 1 < y3 < d then y is dominated by (1, y3, y4, . . . , yn, z) in
S1; if y3 = d we look at y4: if y4 = 1 then y = (d, 1, d, 1, . . . , yn) is a sequence in S3, otherwise
y = (d, 1, d, y4, . . . , yn) is dominated by a sequence (1, d, y4, . . . , yn, z) in S2.

Comparison with the directed case. We conclude this section by observing that Theorem 5 gives us
γ(cDB(d, 2, n)) ≤ γ(cDB+(d, 2, n)) = (d − 1)n−1. The results of this section show that, for n = 2,
γ(cDB(d, 2, n)) = γ(cDB+(d, 2, n)) = d− 1. For n ≥ 3 the upper bound of (d− 1)n−1 derived from
the directed case is improved to (d− 1)n−1 − (d− 2)(d− 1)n−4.

5 Domination numbers for cDB+(d, 3, n) and cDB(d, 3, n)

Here we consider the 3-constrained de Bruijn graphs. This class of graphs has not been studied in the
literature. Similar to the de Bruijn and Kautz graphs, finding the domination number in the undirected
case seems more difficult as shown by the next results.
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Theorem 9. For any two integers d ≥ 3 and n ≥ 4 it holds:

• For d even: γ(cDB+(d, 3, n)) = d(d− 2)n−2;

• For d odd:

d(d− 2)n−2 ≤ γ(cDB+(d, 3, n)) ≤ (d− 1)2(d− 2)n−3

=

(
1 + Θ

( 1

d2

))
d(d− 2)n−2.

Proof: Lower Bound. From (3) we have:

γ(cDB+(d, 3, n)) ≥
⌈
d(d− 1)(d− 2)n−2

d− 1

⌉
≥ d(d− 2)n−2.

Upper bound. We distinguish two cases, according to the parity of d.

If d is even, we define the following set of 3-constrained sequences:

S = {(i, i+ 1, x3, . . . , xn) : i is odd} ∪ {(i, i− 1, x3, . . . , xn) : i is even}.

Given any sequence s = (x1, . . . , xn), it is clearly dominated, indeed:

• if either x1 is even and x2 = x1 − 1 or x1 is odd and x2 = x1 + 1, then s ∈ S;

• if x1 is even but x2 6= x1 − 1, s is dominated by ((x1 − 1), x1, . . .) ∈ S and if x1 is odd but
x2 6= x1 + 11, s is dominated by ((x1 + 1), x1, . . .) ∈ S, regardless of the value of x3.

It is easy to see that |S| coincides with the lower bound.
If, on the contrary, d is odd, the previously defined S is not well defined when i = d. We hence define

S ⊆ V (d, 3, n) as S = {(i, i+ 1, x3, . . . , xn) : i is odd and i 6= d} ∪ {(i, i− 1, x3, . . . , xn) : i is even }
∪ {(x, d, x2, x3, . . . , xn) : x = min([d] \ {x2}}.

Let x = (x1, x2, . . . , xn) be a vertex in cDB+(d, 3, n). We show that x is dominated by considering
the following three cases:

• if x1 is even and x2 = x1 − 1 then s ∈ S; if instead x2 6= x1 − 1 then s is dominated by
((x1 − 1), x1, . . .) ∈ S;

• if x1 6= d is odd and x2 = x1 + 1, then s ∈ S; if, instead, x2 6= x1 + 1, s is dominated by
((x1 + 1), x1, . . .) ∈ S;

• if x1 = d then x is dominated by sequence (x, d, x2, x3, . . . , xn), that is in S.

For what concerns |S|, it is (d− 1)(d− 2)n−2 + (d− 1)(d− 2)n−3, that is equal to (d− 1)2(d− 2)n−3

as the stated upper bound.

We consider now the undirected case for which we provide lower and upper bounds.
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Theorem 10. For any two integers d ≥ 3 and n ≥ 4 it holds:

d(d− 1)(d− 2)n−2

2d− 3
≤ γ(cDB(d, 3, n)) ≤ (d− 1)(d− 2)n−2

=

(
2−Θ

(1

d

))d(d− 1)(d− 2)n−2

2d− 3
.

Proof: Lower bound. The lower bound follows from (4).
Upper bound. Let S be a set of 3-constrained sequences, and S = {(1, x2, . . . , xn)}.

To prove that S is a dominating set, consider any vertex x= (x1, x2, . . . , xn) in cDB(d, 3, n); we
distinguish some cases according to the position i of the first occurrence of 1, the first symbol of Σ:

• if i = 1 then x ∈ S;

• if i = 2 then sequence (1, x3, . . . , xn, y) for any y 6= xn, xn−1 is in S and dominates x;

• if 3 ≤ i ≤ n, then sequence (1, x1, . . . , xi−1, 1, xi+1, . . . , xn−1) is in S and dominates x;

• if x does not contain any 1, then (1, x1, . . . , xn−1) is in S and dominates x.

Moreover |S| = (d− 1)(d− 2)n−2.

Comparison with the directed case. Since γ(cDB(d, 3, n)) ≤ γ(cDB+(d, 3, n)), for d even Theo-
rem 9 gives an upper bound of d(d− 2)n−2 and Theorem 10 improves this result to (d− 1)(d− 2)n−2 =
d(d − 2)n−2 − (d − 2)n−2. For d odd, Theorem 9 gives (d − 1)2(d − 2)n−3 and Theorem 10 improves
this to (d− 1)(d− 2)n−2 = (d− 1)2(d− 2)n−3 − (d− 1)(d− 2)n−3.

6 Domination numbers of cDB+(d, t, n) and cDB(d, t, n)

In this section we consider the general case t ≥ 3 and we assume n > t. The case t = n, corresponding
to vertices labeled by (partial) permutations, will be studied in the next section. We start by the study of
the domination number in the directed case.
Theorem 11. For any three integers d, t, n such that 2 ≤ t ≤ d and t < n, it holds:

d!

(d− t)!
(d− t+ 1)n−t

(d− t+ 2)
≤ γ(cDB+(d, t, n)) ≤ (d− 1)(d− 1)!

(d− t)! (d− t+ 1)n−t−1

=

(
1 + Θ

( t

d(d− t+ 1)

)) d!

(d− t)!
(d− t+ 1)n−t

(d− t+ 2)

Proof: Lower bound. It follows from (3) and it is equal to |V (d,t,n)|
d−t+2 .

Upper bound. Consider the following t− 1 sets of t-constrained sequences:

• S1 = {x = (x1, x2, . . . , xn) : x1 = 1, x is t-constrained};

• Si =
{

x = (x1, x2, . . . , xn) : xi = 1, x1 = min([d] \ {x2, . . . , xt}), x is t-constrained
}

, for
3 ≤ i ≤ t.
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It turns out that |S1| = (d−1)!
(d−t)! (d − t + 1)n−t and |Si| = 1

(d−t+1)
(d−1)!
(d−t)! (d − t + 1)n−t for each i ≥ 3.

Calling S = S1 ∪
(
∪ti=3Si

)
, we have:

|S| =
(d− 1)!

(d− t)!
(d− t+ 1)n−t +

t− 2

(d− t+ 1)

(d− 1)!

(d− t)!
(d− t+ 1)n−t

=
(d− 1)(d− 1)!

(d− t)!
(d− t+ 1)n−t−1

=

(
1 +

t− 2

d(d− t+ 1)

)
d!

(d− t)!
(d− t+ 1)n−t

(d− t+ 2)

=

(
1 + Θ

( t

d(d− t+ 1)

)) d!

(d− t)!
(d− t+ 1)n−t

(d− t+ 2)
.

To conclude the proof, it remains to show that S is a dominating set for cDB+(d, t, n). To this aim,
consider a general vertex x = (x1, x2, . . . , xn). If symbol 1 does not occur in the first t coordinates, then
x is dominated by (1, x1, x2, . . . , xn−1) of S1. If, on the contrary, there exists 1 ≤ i ≤ t for which xi = 1
then i must be unique and we distinguish the following three cases:

• if i = 1 then x ∈ S1 and hence it is dominated;

• if 2 ≤ i < t then (x, x1, x2, . . . , xi−1, 1, xi+1, . . . , xn−1) ∈ Si+1 with x = min([d]−x1, x2 . . . , xt)
dominates x;

• if i = t then (1, x1, x2, . . . , xt−1, 1, xt+1, . . . , xn−1) ∈ S1 dominates x.

Notice then when t = 2 the upper bound converges to the lower bound and we obtain the result of
Theorem 5.

The domination number of the undirected t-constrained de Bruijn graphs seems more difficult and the
only bounds we have follow from (4) and Theorem 11. For the sake of completeness we state them in the
next corollary.
Corollary 1. For any three integers d ≥ 3, t ≥ 3 and n ≥ 4 it holds

d!

(d− t)!
(d− t+ 1)n−t

2d− 2t+ 3
≤ γ(cDB(d, t, n)) ≤ (d− 1)(d− 1)!

(d− t)! (d− t+ 1)n−t−1

=

(
2 + Θ

( 2t− d
d(d− t+ 1)

)) d!

(d− t)!
(d− t+ 1)n−t

2d− 2t+ 3

Notice that when d goes to infinity the upper bound converges to 2 times the lower bound unless d− t
is bounded above by a constant. Indeed, in the latter case the gap between the lower and upper bound can
be larger with the upper bound converging to 2 + Θ(1) times the lower bound.

7 Domination numbers of cDB+(d, n, n) and cDB(d, n, n)

Here we consider the case t = n. Notice that the set of sequences corresponding to the vertices of these
graphs is the set of partial n-permutations on the set of symbols [d]. Clearly, we must have d ≥ n and thus
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in this section we write d = n+c, for some integer c ≥ 0. Recall that, from (2) |V (n+c, n, n)| = (n+c)!
c! ;

moreover, the maximum degrees of cDB+(n+ c, n, n) and of cDB(n+ c, n, n) are c + 1 and 2c + 2,
respectively.

Given cDB+(n+ c, n, n) (or cDB(n+ c, n, n)) we define its A-partition as the tuple of n + 1 sets
(A0, A1, . . . , An) where A0 is the set of all vertices that do not contain symbol d whereas for any
1 ≤ i ≤ n, Ai is the set of all vertices that contain symbol d in position i. The cardinality of A0 and
Ai are given by the following equations:

|A0| =
(n+ c− 1)!

(c− 1)!
and |Ai| =

(n+ c− 1)!

c!
. (5)

7.1 Domination number of cDB+(n+ c, n, n)

We start by considering the special case d = n, (i.e. c = 0). The vertices of the graph cDB+(n, n, n)
correspond to the permutations of [n]. For this graph we exactly determine its domination number.

Theorem 12. For any integer n ≥ 2 it holds: γ(cDB+(n, n, n)) =
⌈
n
2

⌉
(n− 1)!

Proof: To prove the claim it is sufficient to notice that cDB+(n, n, n) is the disjoint union of (n − 1)!
directed cycles of length n. Clearly, from (3), to dominate each of these cycles we need at least

⌈
n
2

⌉
vertices. This number of vertices is also sufficient by taking alternately the vertices in each of the cycles
of the graph.

Consider the graph cDB+(n+ c, n, n) and notice that for any vertex v ∈ Ai, with 2 ≤ i ≤ n, it holds
N+(v) ⊆ Ai−1. For any 2 ≤ i ≤ n, we define a block of Ai, as the set of vertices in Ai that have the
same out-neighborhood, i.e. they differ only in the first position. As there are only d− (n− 1) = c+ 1
possibilities to choose the first symbol of each fixed sequence, each block has cardinality c+ 1. Further-
more, for any two blocksB andB′ ofAi, it must holdB∩B′ = ∅. Indeed, by definition, a block contains
all the sequences coinciding in the last n−1 positions, so a block can be uniquely identified by a sequence
of length n− 1. Hence, given a sequence x1, x2 . . . , xn, it will only belong to the block that contains the
sequences a, x2 . . . , xn with a ∈ [d]. Thus the blocks form a partition of the vertices in Ai. Finally, from
these arguments and Equation 5 we deduce that each Ai can be partitioned in exactly (n+c−1)!

(c+1)! blocks
(notice that for any n ≥ 2 this fraction is an integer).

We prove the following lemma.

Lemma 1. Let (A0, A1, . . . , An) be the A-partition of cDB+(n+ c, n, n), for any set Ai, 2 ≤ i ≤ n,
there exists a subset Si ⊂ Ai of |Ai|

c+1 = (n+c−1)!
(c+1)! vertices that dominate all the vertices in Ai−1.

Proof: Fix an integer i such that 2 ≤ i ≤ n and let B1, . . . , Br be the blocks of Ai. We define Si by
choosing any vertex from each block Bj , with 1 ≤ j ≤ r. Clearly, |Si| = r = (n+c−1)!

(c+1)! and it remains to
show that Si dominates Ai−1. Let x = (x1, . . . , xi−2, d, xi, . . . , xn) be a vertex in Ai−1; x is dominated
by any vertex of the type (a, x1, . . . , xi−2, d, xi, . . . , xn−1) where a is a symbol not occurring in the first
n−1 positions of x and d is in the position i. Hence, every vertex in Ai−1 is dominated by some vertex in
Ai. Any two vertices in the same block of Ai dominate the same vertices in Ai−1 and hence Si dominates
Ai−1.

The following theorem is the main result of this subsection.
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Theorem 13. For any integer c ≥ 1 and n ≥ 2 it holds:

1

c+ 2

(n+ c)!

c!
≤ γ(cDB+(n+ c, n, n))

≤ (n+ c− 1)(n+ c− 1)!

(c+ 1)!
=

(
1 + Θ

(1

c

)) 1

c+ 2

(n+ c)!

c!
.

Proof: Lower bound. It follows from (3).
Upper bound. To prove the upper bound, let (A0, A1, . . . , An) be the A-partition of the graph

cDB+(n+ c, n, n). For any 3 ≤ i ≤ n, we consider set Si ⊂ Ai as in Lemma 1. We define the
following set

S =
( ⋃

3≤i≤n

Si

)
∪A1.

We show that S is a dominating set. First, all the vertices in A2, . . . , An−1 are dominated by the vertices
in S3, . . . , Sn using Lemma 1. The vertices in A1 are dominated by themselves in S and the vertices
in A0 ∪ An are dominated by the vertices in A1. Indeed, every vertex (x1, x2, . . . , xn) ∈ A0 is domi-
nated by (d, x1, . . . , xn−1) that belongs in A1 and each vertex (x1, . . . , xn−1, d) in An is dominated by
(d, x1, . . . , xn−1) ∈ A1. From Lemma 1 and Equation 5 the number of vertices in S is given by the
following:

(n− 2)
(n+ c− 1)!

(c+ 1)!
+

(n+ c− 1)!

c!
=

(
n− 2

(n+ c)(c+ 1)
+

1

n+ c

)
(n+ c)!

c!

=

(
1 +

1

c+ 1
− c+ 2

(n+ c)(c+ 1)

)
(n+ c)!

(c+ 2)c!

=

(
1 + Θ

(1

c

)) 1

c+ 2

(n+ c)!

c!

7.2 Domination number of cDB(n+ c, n, n)

Similarly as in the previous section we start by considering the special case c = 0. For this graph we
exactly determine its domination number.

Theorem 14. For any integer n ≥ 2 it holds: γ(cDB(n, n, n)) =
⌈
n
3

⌉
(n− 1)!

Proof: To prove the claim it is sufficient to notice that cDB(n, n, n) is the disjoint union of (n − 1)!
undirected cycles of length n. From (1) to dominate a single cycle we need at least

⌈
n
3

⌉
vertices. A

dominating set of this cardinality can be obtained by choosing one vertex out of three in any traversal of
the cycle.

We consider now graph cDB(n+ c, n, n), c ≥ 1. Note that, for any vertex v ∈ Ai, with 2 ≤ i ≤ n−1, it
holdsN(v) ⊆ Ai−1∪Ai+1. We define now the blocks ofAi in the undirected case. For any 2 ≤ i ≤ n−1
a set B ⊂ Ai is called a u-block of Ai if any two vertices of it differ only in the first or last position. More
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formally, fixing a subsequence z ∈ [d]n−2, a u-block ofAi is a set of vertices of the type x1 ·z ·x2. Notice
that each block B of Ai can be identified by the (n − 2)-length substring that is shared among all the
sequences in B, and hence the u-blocks form a partition of Ai. Furthermore, once we fix the sequence z
that is shared among the sequences in B, x1, x2 must be chosen among the d− (n− 2) = c+ 2 elements
that do not appear in z and hence there are exactly (c + 2)(c + 1) possibilities to choose x1, x2. Thus,
each u-block has cardinality (c+ 2)(c+ 1) and for any 2 ≤ i ≤ n− 1, from Equation 5 there are exactly
|Ai|

(c+2)(c+1) = (n+c−1)!
(c+2)! blocks in Ai.

We now prove a result similar to Lemma 1 in the undirected case.

Lemma 2. Let (A0, A1, . . . , An) be the A-partition of cDB(n+ c, n, n), for any set Ai, 2 ≤ i ≤ n− 1

there exists a subset Si ⊂ Ai of (n+c−1)!
(c+1)! vertices that dominates all the vertices in Ai−1 ∪Ai+1.

Proof: Fix an 2 ≤ i ≤ n − 1 and let B1, . . . , Br be the u-block partition of Ai. Consider Bj with
1 ≤ j ≤ r, let z be the shared sequence in Bj and let y1 < y2 < . . . < ys be the s = c + 2 possible
symbols for the first and last position of the sequences in Bj . We define a set Cj ⊂ Bj as follows:

Cj = {y2 · z · y1, y3 · z · y2, . . . , ys · z · ys−1, y1 · z · ys}

We define
Si =

⋃
1≤j≤r

Cj .

Clearly, as |Cj | = s = c+ 2 and the u-blocks form a partition of Ai, we have |Si| = (c+ 2) (n+c−1)!
(c+2)! =

(n+c−1)!
(c+1)! . It remains to show that Si dominates all the vertices in Ai−1 ∪Ai+1.

• Si dominates Ai−1: Consider an arbitrary vertex x = (x1, . . . , xn) ∈ Ai−1 with xi−1 = d; it can
be dominated by any vertex (a, x1, . . . , xn−1) ∈ Ai for some symbol a that does not appear in
the (n − 1)-prefix of x. Sequence (a, x1, . . . , xn−1) can be written in the form a · z · xn−1 which
belongs to the u-block Bj whose sequences share subsequence z. Clearly, by construction of Cj ,
for any fixed z · xn−1 there always exists an a for which a · z · xn−1 ∈ Cj .

• Si dominates Ai+1: The argument is similar to the previous item. Let x = (x1, . . . , xn) ∈ Ai+1

with xi+1 = d; x can be dominated by any vertex (x2, . . . , xn, a) ∈ Ai for some symbol a that does
not appear in the (n− 1)-suffix of x. Sequence (x2, . . . , xn, a) can be written in the form x2 · z · a
which belongs to the block Bj whose sequences share the subsequence z. Again, by construction
of Cj , for any fixed x2 · z there always exists an a for which x2 · z · a ∈ Cj .

Since the case n = 2 is solved exactly by Theorem 6, in the following theorem we assume n ≥ 3.
Theorem 15. For any integer c ≥ 1 and n ≥ 3 it holds:

1

2c+ 3

(n+ c)!

c!
≤ γ(cDB(n+ c, n, n))

≤
(

1 +
1

2c+ 2
+

4

n
+

2

n(c+ 1)
− (2c+ 3)(n+ 6)(n− 1)!c!

2(n+ c)!

)
1

2c+ 3

(n+ c)!

c!

=

(
1 + Θ

(1

c
+

1

n

)) 1

2c+ 3

(n+ c)!

c!
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Proof:
Lower bound. It follows from (4).
Upper bound. To prove the upper bound let (A0, A1, . . . , An) be the A-partition of cDB(n+ c, n, n).

Using Lemma 2 for any 2 ≤ i ≤ n − 2, there exist Si ⊂ Ai and Si+1 ⊂ Ai+1 such that Si dominates
Ai−1 ∪ Ai+1 and Si+1 dominates Ai ∪ Ai+2. Hence, the vertices in Si ∪ Si+1 dominate all the vertices
in Ai−1 ∪ Ai ∪ Ai+1 ∪ Ai+2. We thus consider the sequence of sets (A1, . . . , An) and we subdivide it
in subsequences of exactly 4 sets except possibly the last one which may have less than 4 sets. For each
such subsequence (Ai, Ai+1, Ai+2, Ai+3), using the previous argument we can dominate its vertices by
taking set Si+1 ∪ Si+2 of 2 (n+c−1)!

(c+1)! of vertices. If n is not a multiple of 4, we can distinguish two cases
depending on the number of sets this subsequence contains:

(i) the last subsequence contains only setAn: it is sufficient to take Sn−1 ⊂ An−1 of (n+c−1)!
(c+1)! vertices

as indicated by Lemma 2.

(ii) the last subsequence contains two or three sets: we have (An−1, An) or (An−2, An−1, An), respec-
tively. In both cases, by Lemma 2, we can find Sn−1 ⊂ An−1 that dominates An−2 ∪ An and, by
Lemma 1, we can find Sn ⊂ An that dominates An−1. Thus, with 2 (n+c−1)!

(c+1)! vertices in Sn−1 ∪Sn

it is possible to dominate all the vertices in An−2 ∪An−1 ∪An.

So, all the vertices in A1 ∪A2 ∪ . . . , An can be dominated by a set of vertices S′ of cardinality:

|S′| =
⌈n

4

⌉
2

(n+ c− 1)!

(c+ 1)!
≤ n+ 4

2

(n+ c− 1)!

(c+ 1)!
.

It remains to show how to dominate the vertices of A0. Notice that the subgraph of cDB(n+ c, n, n)
with c ≥ 1 induced by the vertices in A0, is isomorphic to the graph cDB(n+ c− 1, n, n). Thus, to
dominate A0, we can iterate the previous argument. Let T (n + c, n, n) be the number of vertices in a
dominating set cDB(n+ c, n, n). We have:

T (n+ c, n, n) ≤

{ ⌈
n
3

⌉
(n− 1)! if c = 0

T (n+ c− 1, n, n) + n+4
2

(n+c−1)!
(c+1)! otherwise

where the case c = 0 follows from Theorem 14. Using substitution we have:

T (n+ c, n, n) ≤
⌈n

3

⌉
(n− 1)! +

n+ 4

2

c∑
i=1

(n+ i− 1)!

(i+ 1)!
(6)

We use now the following equality that can be proved by induction.

h∑
i=0

(n+ i− 1)!

(i+ 1)!
=

(h+ n)!

n(h+ 1)!

Using the above equation we can solve the recurrence for T (n+ c, n, n) as follows.
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T (n+ c, n, n) ≤ n+ 4

2

(n+ c)!

n(c+ 1)!
− n+ 4

2
(n− 1)! +

n+ 3

3
(n− 1)!

=

(
1 +

1

2c+ 2
+

4

n
+

2

n(c+ 1)
− (2c+ 3)(n+ 6)(n− 1)!c!

2(n+ c)!

)
1

2c+ 3

(n+ c)!

c!

=

(
1 + Θ

(1

c
+

1

n

)) 1

2c+ 3

(n+ c)!

c!

This concludes the proof.

We remark that, in the previous proof, we could have simply taken the whole set A0 to dominate the
vertices in A0. This leads to a dominating set of the following cardinality:

|S′|+ |A0| ≤
n+ 4

2

(n+ c− 1)!

(c+ 1)!
+

(n+ c− 1)!

(c− 1)!

=

(
1 +

2c2 + c+ 2

n+ c

)
1

2c+ 2

(n+ c)!

c!

For c not constant, this upper bound is worse than the one claimed by Theorem 15.

Comparison with the directed case. We conclude this section by observing that from Theorem 13
we have γ(cDB(n+ c, n, n)) ≤ (n+c−1)(n+c−1)!

(c+1)! = n+c−1
(n+c)(c+1)

(n+c)!
c! which is worse that the result of

Theorem 15 when n goes to infinity. Furthermore, for small values of n the results of this section show
that, while for n = 2, γ(cDB(d, 2, n)) = γ(cDB+(d, 2, n)) = d − 1, for n ≥ 3 the upper bound of
(d− 1)n−1 derived from the directed case can be already improved to (d− 1)n−1 − (d− 2)(d− 1)n−4.

8 Conclusions and open problems
In this paper we introduce a new class of graphs, namely the t-constrained graphs, which are a natural
generalization of de Bruijn and Kautz graphs and retain some of their structural properties. Under this
new framework, de Bruijn graphs and Kautz graphs correspond to the cases t = 1 and t = 2, respectively.
For these graphs we studied their domination number both in the directed and undirected case. Our work
was motivated by the fact that while the domination number can be easily determined in the directed
case for de Bruijn and Kautz graphs, the undirected case seems more difficult. Indeed, to the best of our
knowledge, for these graphs, only the trivial bounds, deriving from (4) and the directed case, were known.
While we were able to improve the bounds for these two classes of graphs, the domination number of the
t-constrained undirected de Bruijn graphs remains the main open problem of this paper. However, in the
special case when the sequences labeling vertices are required to be permutations (i.e. t = n), we were
able to exactly determine the domination number in both the directed and undirected case.

Finally, we believe the class of t-constrained de Bruijn graphs is worth being explored both in applied
and theoretical context.
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