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Mean-field BSDEs with jumps and dual representation

for global risk measures

Rui Chen ∗ Roxana Dumitrescu † Andreea Minca ‡ Agnès Sulem §

October 11, 2022

Abstract

We study mean-field BSDEs with jumps and a generalized mean-field operator that

can capture higher order interactions. We interpret the BSDE solution as a dynamic

risk measure for a representative bank whose risk attitude is influenced by the system.

This influence can come in a wide class of choices, including the average system state

or average intensity of system interactions. Using Fenchel-Legendre transforms, our

main result is a dual representation for the expectation of the risk measure in the

convex case. In particular we exhibit its dependence on the mean-field operator.

Keywords: Mean-field interactions, BSDEs, dynamic risk measures, system influ-

ence.

1 Introduction

We consider a mean-field BSDE with a mean-field operator which can accommodate several

types of interactions. The dynamics is

−dXt = f(t, ω, F (t,Xt−), Xt− , Zt, `t(·))dt− ZtdWt −
∫

E

`t(e)Ñ(dt, de); XT = ξ, (1.1)

where the mean-field operator F is a B([0, T ])×B(L2) measurable operator from [0, T ]×L2

to R. The precise conditions are given in the next sections.

Mean-field BSDEs of type (1.1) are studied in [1], where standard existence, uniqueness

and comparison results are provided for the special case where the mean field captures the

∗INRIA Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France, and Université Paris-Dauphine,
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average state in the system. We also refer to the papers [26, 27] in which the coefficient

of the BSDE depends in particular also on the law of the quadruplet of the solution of the

forward-backward SDE with jumps.

In our present work, we start from the observation that in many applications (and specif-

ically in interacting systems), it may be desirable to incorporate the intensity of system

interactions as well, and not only the average state. The driver of the BSDE may contain

in our case a “second order” mean-field interaction term of the form

F (t,Xt) =

∫
R×R

κ(x, x′)µt(dx)µt(dx
′) = E [κ(Xt, Xt

′)] , ((Xt, X
′
t) ∼ µt ⊗ µt) (1.2)

for a Lipschitz function κ : R × R → R. This can be viewed as a kernel that captures the

intensity of interactions. The process Xt
′ is an independent copy of the same distribution

µt as Xt. Note that setting the kernel κ constant in its first argument, we can recover the

expectation operator considered in [1] as a particular case. In Section 2.2, we provide an

example where the operator (1.2) represents the average intensity of interactions of nodes

of the inhomogeneous random graph introduced in [4].

We refer to [8] for convergence results of finite interacting particle systems with inhomo-

geneous interactions to mean-field Graphon BSDEs (1.1) and to [25] for convergence results

of interactive particle systems based on propagation of chaos involving BSDEs. See also [24]

and [23].

We explore how a solution to the mean-field the BSDE (2.8) with driver f , mean-field

operator F and terminal condition η ∈ L2(FT ) can be interpreted as a dynamic risk measure,

defined in the usual way

ρt(η, T ) := −Xt(η), 0 ≤ t ≤ T. (1.3)

We can think about this as a way to capture the risk of a representative bank subject to

system influence: a regulator imposes the capital or liquidity to be the random variable η at

time T, and the mean-field BSDE then tells us what are the acceptable levels of capital or

liquidity at time t, for a given driver capturing how a representative bank’s position evolves

with dependence on the mean-field term, where the mean-field term is meant to represent

the average intensity of interactions in the system.

Contributions and organization of the paper. Our stream of novel results starts

with the strict comparison result in Theorem 2.8, which is then used to verify the no arbitrage

condition of the dynamic risk measure. The other results in Section 2 are usual properties for

the mean-field BSDE of type (1.1), proven in the case of general mean-field operators. Under

Lipschitz conditions, the existence, uniqueness and the (non-strict) comparison results are

standard and are provided for completeness. Armed with the comparison results, Section

3.1 checks that suitable conditions for a dynamic risk measure are satisfied. We provide

properties for the global dynamic risk measures such as monotonicity, consistency, and

convexity under appropriate hypotheses.

Our mean-field operator is thought of as a model for the average intensity of interactions

of an inhomogeneous random graph (in the limit when the graph is large). While the distri-

bution of each banks’ risk process is the same (and in this sense the system is symmetric),
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at each point in time, the banks have different risk positions and interact according to this

inhomogeneity via the kernel function.

We introduce global dynamic risk measures induced by mean-field BSDEs. When the

mean-field operator captures the average intensity of system interactions, the interpretation

is that of a dynamic risk measure which can incorporate system influence for the represen-

tative bank.

Our main result is the dual representation for the expectation of the dynamic risk measure

in the convex case, provided in Section 3.2. New challenges for the proof strategy arise with

respect to the classical literature as we deal with the Fenchel-Legendre transform of the

mean-field functional F. We first need to establish bounds on the effective domain of this

transform (Lemma 3.2). Moreover, since the mean-field operator is inside the driver, we

have an additional dual variable with respect to the classical case and we need to establish

new bounds for it. In particular, we provide an explicit form to the conjugacy relation

of (F, F ∗) and rely on a new SDE of mean-field type. The presence of the mean-field

term in combination with the jumps poses additional challenges, in particular to ensure the

equivalence of the worst-case probability measure appearing in the representation and the

real-world probability measure.

We obtain a representation as the expectation under a worst-case discount factor and

the worst case probability measure of the final acceptable capital level plus a penalty func-

tion. The dependence on the mean-field operator (or its Fenchel-Legendre transform) of the

worst-case probability measure, discount factor and penalty distinguishes our results on past

literature on classical dynamic risk measures. Since the mean-field operator can capture the

influence of the system on the representative bank (for example via the average liquidity

position in the system or the average strength of interactions), using such a dynamic risk

measure can account for the system influence.

Our risk measure represents a complementary approach to systemic risk measurement,

whereby we consider a “representative bank” whose risk attitude is impacted not only by

its own practice but by the system as well, according to the mean-field operator. For

example, the risk attitude can be different in low vs. high average system liquidity/capital

or system lending intensity. To account for the impact of the system, the bank computes

its risk by assuming that other banks are exchangeable copies of itself. With wide modeling

choices, the driver enables risk measures that are compatible with the risk attitude of the

“representative bank” under system influence, be that the average state in the system or

the average intensity of interactions. This is a way to aggregate the influence of other banks

in the system, and allows for a dynamic risk assessment.

Related literature. Whereas our global risk measure is not a systemic risk measure, it

is related concept. Indeed, a first generation of systemic risk models were based on mean-

field interactions. For example, [9, 21, 22, 18], rely on interacting particle systems, with a

particle’s drift depending on the average state of the system. In [9], the authors define the

state of a particle i in a system of size N , X i,N
t , as monetary reserves. The drift of X i,N

t has
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a form

a

(
1

N

N∑
j=1

Xj,N
t −X i,N

t

)
dt. (1.4)

When the monetary reserve reaches zero, the bank defaults. The financial interpretation of

such drift is that parameter a captures the rate of interbank lending when the banks with

more liquidity than average lend to banks with less liquidity than average.

Our setup is closer in spirit to an aggregation of system influence. The mean-field term

operator (2.7) can be seen as a limit of 1
N2

∑
i,j∈1,N κ(X i,N

t , Xj,N
t ), which represents the

average intensity of interactions in the system, where the interactions of any two banks are

state-dependent and captured by the kernel κ. We can set for example κ(x, y) = φ(x− y),

where φ is the gaussian kernel. This leads to a tiered structure where banks with similar

capital interact, while there is little interaction for banks of dissimilar size. To obtain a

core-periphery structure (shown to be quite realistic [13]), we could in addition restrict the

interaction of two small banks: either large banks interact with each other and small banks

interact with large banks. For this case, we can choose κ(x, y) = φ(x − y)1x∨y>s0 , which

means that interaction occurs only if at least one of the banks has size larger than s0. Other

variations of the kernel definition can capture various market structures.

We interpret the mean-field BSDE solution as a dynamic risk measure for a representative

bank. The driver captures how the liquidity or financial position of an institution depends on

the rest of the system and allows (in a somewhat reduced form) to account for interactions

with the system. The drift form (1.4) above is one example by which the liquidity position of

one bank depends on the rest of the system, and this dependence is on the average liquidity.

Our setup is quite flexible in terms of modeling choices. In particular, we can use the states

(e.g. liquidity positions) of the nodes to define the intensity of lending (or the existence of

a link) among nodes. In the example of (1.4), the rate of interbank lending is a constant a.

It would be interesting to replace this by the average intensity of interactions in the system:

if the intensity of interactions is low, then there is little interbank lending. Our setup would

allow for the average intensity of interactions (possibly in in addition to the average state

of the system) to be a critical part of the driver.

2 Mean-field BSDEs with jumps

2.1 Notation and definitions

Let (Ω,F,P ) be a probability space. Let W be a one-dimensional Brownian motion. Let

E := R∗ := R \ {0} equipped with its Borelian σ-algebra B(E). Suppose that it is equipped

with a σ-finite positive measure ν and let N(dt, de) be an independant Poisson random

measure with compensator ν(de)dt. Let Ñ(dt, de) be its compensated process. Let IF =

{Ft, t ≥ 0} be the completed natural filtration associated with W and N . Let T > 0. Let

P be the predictable σ-algebra on [0, T ]× Ω.

We use the following notation: L2
P (FT ) (simply denoted by L2) is the set of R-valued
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square integrable FT -measurable random variables; IH2 is the set of real-valued predictable

processes φ such that ‖φ‖2
IH2 := E

[∫ T
0
φ2
tdt
]
< ∞; S2 denotes the set of real-valued RCLL

adapted processes φ such that ‖φ‖2
S2 := E(sup0≤t≤T |φt|2) < ∞; We also introduce the

following spaces:

• L2
ν is the set of Borelian functions ` : E→ R such that

∫
E
|`(e)|2ν(de) < +∞.

The set L2
ν is a Hilbert space equipped with the scalar product

〈`, `′〉ν :=
∫

E
`(e)`′(e)ν(de) for all `, `′ ∈ L2

ν×L2
ν , and the norm ‖`‖2

ν :=
∫

E
|`(e)|2ν(de).

• IH2
ν is the set of all mappings ` : [0, T ] × Ω × E → R that are P ⊗ B(E)/B(R)

measurable and satisfy ‖`‖2
IH2
ν

:= E
[∫ T

0
‖`t‖2

ν dt
]
< ∞, where `t(ω, e) = `(t, ω, e) for

all (t, ω, e) ∈ [0, T ]× Ω× E.

Definition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]×R×R2 × L2
ν → R

(ω, t, y′, y, z, `(·)) 7→ f(ω, t, y′, y, z, `(·)) is P ⊗ B(R2)⊗ B(L2
ν)− measurable,

• f(., 0, 0, 0, 0, 0) ∈ IH2.

A driver f is called a Lipschitz driver if moreover there exists a constant C ≥ 0 such that

dt⊗ dP -a.s. , for each (y′1, y1, z1, `1), (y′2, y2, z2, `2),

|f(ω, t, y′1, y1, z1, `1)− f(ω, t, y′2, y2, z2, `2)|
≤ C(|y′1 − y′2|+ |y1 − y2|+ |z1 − z2|+ ‖`1 − `2‖ν).

We now introduce the mean-field operator F . As we will see below, the canonical example

is the expectation or the expected intensity of state dependent interactions.

Definition 2.2 An operator F is said to be a mean-field operator if

• F : [0, T ]× L2 → R

(t,X) 7→ F (t,X) is B([0, T ])× B(L2)− measurable,

• For each t ∈ [0, T ], F (t, 0) < +∞.

A mean-field operator F is said to be Lipschitz if there exists a constant C ≥ 0, such that

for each (X1, X2) ∈ L2 × L2,

|F (t,X1)− F (t,X2)| ≤ C‖X1 −X2‖2, (2.5)

where ‖ · ‖2 stands for the L2 norm.
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2.2 Examples of mean-field operators

Example 2.1 (First order interactions) The first example for the mean-field operator

that satisfies the Lipschitz condition is the expectation of a Lipschitz function of the state:

F (t,X) := E[φ(t,X)] for X ∈ L2(F , P ) , where

φ : [0, T ]×R 7→ R, (t, x) 7→ φ(t, x)

is a Lipschitz function such that φ(t,X) ∈ L2.

Note that for a random variable X ∈ L2(F , P ), one can consider F (t,X) as a lifted

function of the law PX of X, but one can also consider, e.g., F (t,X) = E[Xη], for some

fixed η ∈ L2(F , P ), so that F (t,X) is not necessarily only a function of PX .

Example 2.2 (Second order interactions) A more general mean-field operator is given

by

F (t,X) = E [κ(t,X,X1)] , (2.6)

where κ is a Lipschitz kernel that captures the intensity of interactions and variable X1 is

an independent copy of the same distribution as X. The expectation is understood over the

product space.

We now establish links of the operator (2.6) to a dynamic version of the inhomogeneous

graph model of [4].

Inhomogeneous random graph and limit of average intensity of interactions.

We consider a sequence of N points (X i,N)i=1,N in R equipped with a Borel probability

measure µ. We assume that the empirical measure 1
N

∑N
i=1 δXi,N converges in probability to

a measure µ as N →∞, with µ(R) = 1.1 We define a kernel κ as a measurable function on

R×R. Given the sequence (X i,N)i=1,N , we consider a dynamic version of the inhomogeneous

random graph model (see [4][Remark 2.4]). We let (X i,N
t )i=1,N,t∈[0,T ] ∈ S2, and we assume

convergence of the unidimensional empirical distributions: for all t ∈ [0, T ], 1
N

∑N
i=1 δXi,N

t

converges in probability to a measure µt as N → ∞. Over time, nodes i and j interact

according to a Poisson process of intensity κ(X i,N
t , Xj,N

t )/N.

Following [4], we say that a kernel κ is graphical if the following conditions hold:

(i) κ is continuous on R×R;

(ii) κ ∈ L1(R×R);

(iii) 1
N
E
∑

i,j∈1,N κ(X i,N
t , Xj,N

t )/N −→
∫

R×R
κ(s, s′)µt(ds)µt(ds

′), as N →∞, for all t ∈ T ,

The first two conditions are natural technical conditions. The last condition can be

interpreted as the average intensity of interactions converges to a limit as the size of the

graph tends to infinity.

1This means that for any µ-continuity set A we have that #{i, Xi,N ∈ A}/N p→ µ(A).
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We can now interpret the mean-field operator in the context of an inhomogeneous random

graph as the limit of average intensity of interactions in the system. In the existing literature

on mean-field models, the nodes’ states depend on the average state of all other nodes. Here

we allow dependence on the average intensity of interactions. If nodes do not interact with

each other, there is little structural reason why the nodes’ states depend on others. We

propose the following operator suggested by the condition (iii) above

F (t,X) =

∫
R×R

κ(s, s′)µXt(ds)µXt(ds
′), (2.7)

where µXt is a distribution of Xt. We can check that this operator satisfies Definition 2.2

and it is Lipschitz if the kernel κ is Lipschitz, that is if there exists a constant C > 0 such

that for each x, y, x′, y′, |κ(x, y)− κ(x′, y′)| ≤ C(|x− x′|+ |y − y′|).

2.3 Properties of mean-field BSDEs with jumps

We now introduce the BSDE with jumps, whose driver depends on the mean-field operator

F .

Definition 2.3 (Mean-field BSDEs) A solution of a mean-field BSDE with jumps with

driver f , mean-field operator F , terminal time T and terminal condition ξ in L2(FT ), con-

sists of a triple of processes (X,Z, l) ∈ S2 × IH2 × IH2
ν satisfying

− dXt = f(t, ω, F (t,Xt−), Xt− , Zt, `t(·))dt− ZtdWt −
∫

E

`t(e)Ñ(dt, de); (2.8)

XT = ξ,

where X is a RCLL optional process, and Z (resp. `) is an R-valued predictable process

defined on Ω × [0, T ] (respectively Ω × [0, T ] × R∗) such that the stochastic integral with

respect to W (resp. Ñ) is well defined. We denote by (X(ξ, T ), Z(ξ, T ), `(ξ, T )) the solution

of the mean-field BSDE associated with terminal conditions (T, ξ).

2.3.1 Existence and Uniqueness Results

We note that an existence and uniqueness result was proven in [1] in the particular case of

F capturing the expectation of the state (or a function thereof).

Theorem 2.4 (Existence and Uniqueness for mean-field BSDEs) Let f be a Lips-

chitz driver, F a Lipschitz mean-field operator (see Definitions 2.1 and 2.2), and ξ in L2(FT ).

The mean-field BSDE (2.8) admits a unique solution (X,Z, `(.)) ∈ S2 × IH2 × IH2
ν .

Proof. By using a priori estimates based on the Lipschitz property of both f and F , we

establish the contraction property and the convergence of the Picard iterative sequence.

Let (Xn
s , Z

n
s , `

n
s ) be the solution of the following iterating BSDE with jumps

Xn
t = ξ +

∫ T

t

f(s, F (s,Xn−1
s− ), Xn

s− , Z
n
s , `

n
s )ds−

∫ T

t

Zn
s dBs −

∫ T

t

∫
E

`nt (e)Ñ(dt, de), (2.9)
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for n ≥ 1 and t ∈ [0, 1] and where for n = 0 we set (X0
s , Z

0
s , `

0
s) = (0, 0, 0).

The existence and the uniqueness in each iteration is established by classical results, see

[32], and we denote by Φ the resulting map (Xn, Zn, `n) = Φ(Xn−1, Zn−1, `n−1).2

Let X̄n
t = Xn

t −Xn−1
t ; Z̄n

t = Zn
t −Zn−1

t ; ¯̀n
t = `nt −`n−1

t . For β > 0 and φ in IH2, we intro-

duce the norm ‖φ‖β := E
[∫ T

0
eβsφ2

sds
]

and for l in IH2
ν , we set ‖l‖ν,β := E

[∫ T
0
eβs‖ls‖2

νds
]
.

We now show that Φ is a contraction in IH2 × IH2 × IH2
ν equipped with this norm (which

implies that (Xn, Zn, `n)n≥0 is a Cauchy sequence).

By applying Itô’s formula to eβs|Xn
s − Xn−1

s |2, n ≥ 1, we have analogously to [28,

Proposition A.4].

eβt(X̄n
t )2 + β

∫ T

t

eβs(X̄n
s )2ds+

∫ T

t

eβs(Z̄n
s )2ds+

∫ T

t

eβs‖¯̀ns‖2
νds

= 2

∫ T

t

eβsX̄n
s [f(s, F (s,Xn−1

s ), Xn
s , Z

n
s , `

n
s )− f(s, F (s,Xn−2

s ), Xn−1
s , Zn−1

s , `n−1
s )]ds

− 2

∫ T

t

eβsX̄n
s Z̄

n
s dWs −

∫ T

t

eβs
∫
R∗

(2X̄n
s−

¯̀n
s (u) + ¯̀n

s (u)2)Ñ(ds, de).

Taking the conditional expectation given Ft, which we denote by Et, (local martingales are

martingales since Xn
· , X

n−1
· ∈ S2) we get

eβt(X̄n
t )2 + Et

[
β

∫ T

t

eβs(X̄n
s )2ds+

∫ T

t

eβs[(Z̄n
s )2 + ‖¯̀ns‖2

ν ]ds

]
= 2Et

[∫ T

t

eβsX̄n
s [f(s, F (s,Xn−1

s ), Xn
s , Z

n
s , l

n
s )− f(s, F (s,Xn−2

s ), Xn−1
s , Zn−1

s , `n−1
s )]ds

]
.

Moreover,

|f(s, F (s,Xn−1
s ), Xn

s , Z
n
s , `

n
s )− f(s, F (s,Xn−2

s (·)), Xn−1
s , Zn−1

s , `n−1
s )|

≤ C0[|F (s,Xn−1
s )− F (s,Xn−2

s )|+ |X̄n
s |+ |Z̄n

s |+ ‖¯̀ns‖ν ]

≤ C[‖X̄n−1
s ‖2 + |X̄n

s |+ |Z̄n
s |+ ‖¯̀ns‖ν ] = C[(E|X̄n−1

s |2)
1
2 + |X̄n

s |+ |Z̄n
s |+ ‖¯̀ns‖ν ].

Now, for all real numbers x, z, l and ε > 0

2x(Cx+ Cz + Cl) ≤ x2

ε2
+ ε2(Cx+ Cz + Cl)2 ≤ x2

ε2
+ 3ε2(C2x2 + C2z2 + C2`2),

and for all η,

E[2X̄n
s (E|X̄n−1

s |2)
1
2 ] ≤ E[ 1

η2 |X̄n
s |2 + η2E|X̄n−1

s |2] = 1
η2E|X̄n

s |2 + η2E|X̄n−1
s |2.

Thus we obtain that

eβt(X̄n
t )2 + Et

[
β

∫ T

t

eβs(X̄n
s )2ds+

∫ T

t

eβs[(Z̄n
s )2 + ‖¯̀ns‖2

ν ]ds

]
≤ Et

[
(
C

η2
+

1

ε2
)

∫ T

t

eβs(X̄n
s )2ds+ Cη2

∫ T

t

eβs(X̄n−1
s )2ds+ 3C2ε2

∫ T

t

eβs[(X̄n
s )2 + (Z̄n

s )2 + ‖¯̀ns‖2
ν ]ds

]
.

2Note that in our current setting the map Φ does not depend on its last two arguments, but it would

if we had a mean-field term of the form F (s,Xn−1
s (·), Zn−1(·), `n−1(·)). Existence and uniqueness results

would go similarly through in this case.
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By choosing η = ε, and β and ε such that β − C+1
ε2
− 3Cε2 ≥ 2Cε2 and 1− 3C2ε2 ≥ 2Cε2 we

obtain the contraction inequality:

‖X̄n‖2
β + ‖Z̄n‖2

β + ‖¯̀n‖2
ν,β ≤

1

2
(‖X̄n−1‖2

β + ‖Z̄n−1‖2
β + ‖¯̀n−1‖2

ν,β). (2.10)

Therefore the map φ is a contraction with respect to the norm ‖ · ‖β. By the Banach

fixed point theorem, the map Φ has a unique fixed point, (X,Z, `). Now taking the limit in

(2.9), we conclude that (X,Z, `) is the unique solution of (2.8). �

2.3.2 Comparison Results

In this section, in order to compare the first components of the solutions of two mean-field

BSDEs, we need additional assumptions due to the presence of jumps and of the mean-field

operator.

Assumption 2.1 Assume that dt⊗ dP -a.s for each (x′, x, z, `1, `2) ∈ R3 × (L2
ν)

2,

f(t, x′, x, z, `1)− f(t, x′, x, z, `2) ≥ 〈θx
′,x,z,`1,`2
t , `1 − `2〉ν ,

with

θx
′,x,z,`1,`2
t : [0, T ]× Ω× R3 × (L2

ν)
2 → L2

ν ; (t, ω, x′, x, z, `1, `2) 7→ θx
′,x,z,`1,`2
t (ω, .)

P ⊗ B(R3) ⊗ B((L2
ν)

2)-measurable, bounded, and satisfying dP ⊗ dt ⊗ dν(u)-a.s. , for each

(x′, x, z, `1, `2) ∈ R3 × (L2
ν)

2,

θx
′,x,z,`1,`2
t (u) ≥ −1 and |θx

′,x,z,`1,`2
t (u)| ≤ ψ(u), (2.11)

where ψ ∈ L2
ν.

Theorem 2.5 (Comparison Theorem for mean-field BSDEs) Let fi = fi(ω, t, x
′, x, z, l),

i = 1, 2, be two Lipschitz drivers, and f1 satisfies Assumption 2.1. Furthermore, we assume:

• f2 is non-decreasing in x′;

F is Lipschitz on L2 and satisfies the following property:

• F is non-decreasing in X in the following sense: let X1, X2 ∈ L2, if X1 ≤ X2 a.s.,

then for each t ∈ [0, T ], F (t,X1) ≤ F (t,X2).

Let ξ1, ξ2 ∈ L2 and denote by (X1, Z1, `1) and (X2, Z2, `2) the solution of the mean-field

BSDE with jumps (2.8) associated with (ξ1, f1) and (ξ2, f2). Then suppose that

• ξ1 ≥ ξ2, a.s.

• f1(ω, t, x′, x, z, `(·)) ≥ f2(ω, t, x′, x, z, `(·)),a.s. for all (t, x′, x, z, `(·)) ∈ R4 × L2
ν.
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Then we have X1
t ≥ X2

t , ∀t ∈ [0, T ] a.s.

Proof. For i = 1, 2, let (X i,n
s , Zi,n

s , li,ns ) be the solution of the following iterating BSDE

with jumps

X i,n
t = ξi +

∫ T

t

fi(s, F (s,X i,n−1
s ), X i,n

s , Zi,n
s , `i,ns )ds−

∫ T

t

Zi,n
s dBs −

∫ T

t

∫
E

`t(e)Ñ(dt, de),

(2.12)

for n ≥ 1 and t ∈ [0, 1]. For n = 0, we set (X i,0
s , Zi,0

s , `
i,0
s ) = (0, 0, 0).

Now we define

f̃n1 (s, x, z, l) = f1(s, F (s,X1,n−1
s ), x, z, l),

f̃n2 (s, x, z, l) = f2(s, F (s,X2,n−1
s ), x, z, l).

Then obviously we have f̃ 1
1 ≥ f̃ 1

2 and f̃ 1
1 satisfies the monotone assumption in [28, Theorem

4.2]. Thus by the classic comparison theorem for BSDE with jumps [28, Theorem 4.2], we

have

X1,1
s ≥ X2,1

s a.s., s ∈ [0, T ]. (2.13)

Now since f2 is non-decreasing in x′, we have

f̃ 2
1 (s, x, z, l) = f1(s, F (s,X1,1

s ), x, z, l)

≥ f2(s, F (s,X1,1
s ), x, z, l)

≥ f2(s, F (s,X2,1
s ), x, z, l) = f̃ 2

2 (s, x, z, l)

where the last inequality follows from (2.13) and f2 and F are non-decreasing. Using again

the comparison results for classic BSDEs with jumps, we get

X1,2
s ≥ X2,2

s a.s., s ∈ [0, T ].

By the same argument above, we iteratively obtain that

X1,n
s ≥ X2,n

s a.s., s ∈ [0, T ], n ≥ 1. (2.14)

Using the proof of the existence and uniqueness result, we have that for i = 1, 2, (X i,n, Zi,n, `i,n)n≥0

converges to the respective solution with drivers (fi)i=1,2, call these X i, Zi, `i. We have that

X1
t ≥ X2

t , t ∈ [0, T ] a.s. follows directly from the fact that X1,n
t ≥ X2,n

t , t ∈ [0, T ] a.s. �

Remark 2.6 We can weaken the non-decreasing property of F , and consider it in the dis-

tribution sense. Let D1(x) = P(X1 ≤ x) and D2(x) = P(X2 ≤ x). Then we would say F

non-decreasing in x, if D1(x) ≥ D2(x) implies F (t,X1) ≤ F (t,X2).

Take Example 2.1, when F (X) = E(φ(t,X)), for X ∈ L2, F is non-decreasing if φ is C1

and non-decreasing. Assuming that D1 and D2 are sufficiently smooth, this can be verified

by direct computation : F (t,X1) − F (t,X2) = E(φ(t,X1)) − E(φ(t,X2)) =
∫
φ(t, x)d(D1 −

D2)(x) =
∫

∂φ
∂x

(t, x)(D2 −D1)(x)dx =
∫

∂φ
∂x

(t, x)[D2(x)−D1(x)]dx.
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In the example of an operator given by an inhomogeneous random graph of Section 2.2,

we make the assumption that the kernel κ is (D1 × D1 and D2 × D2 - almost everywhere)

differentiable and
∂2

∂x∂y
κ(x, y) > 0. (2.15)

In this case F (t,X1) =
∫
κ(x, y)dD1(x)dD1(y) =

∫
R×R

∂2

∂x∂y
κ(x, y)D1(x)D1(y)dxdy and the

non-decreasing property of F follows from (2.15). This condition, along with the Lipschitz

condition, are satisfied if one uses a truncated Gaussian kernel of coefficient σ

κ(x, y) =

e
−(x−y)2

2σ2 if |x− y| < σ,

0 otherwise.
(2.16)

We also notice that X1 ≤ X2 a.s. implies that D1(x) ≥ D2(x).

Remark 2.7 Symmetrically, if we assume one of the drivers is non-increasing in x′ and F

is a non-increasing operator, the arguments in Theorem 2.5 still hold.

We now provide a strict comparison theorem, which states that under a strict inequality

on the map θ, two solutions of the BSDEs are equal at all times, if they are equal at the

initial time. This theorem is used for bullet 6 in Section 3.1 and interesting in the context

of no-arbitrage pricing theory.

Theorem 2.8 (Strict comparison for mean-field BSDEs) Suppose the assumptions of

Theorem 2.5 hold with strict inequality θx
′,x,z,`1,`2

t (u) > −1 dt ⊗ dP - a.s. If X1
t0

= X2
t0

a.s.

for some t0 ∈ [0, T ], then X1. = X2. a.s. on [t0, T ].

Proof. Let X̄s = X1
s − X2

s ; Z̄s = Z1
s − Z2

s ; ¯̀
s(u) = `1

s(u) − `2
s(u). We suppose that f2 is

non-decreasing in x′ and Assumption 2.1 with strict inequality holds for f1. Then

−dX̄s = hsds− Z̄sdWs −
∫

E

¯̀
s(e)Ñ(ds, de). X̄T = ξ1 − ξ2.

where hs := f1(s, F (s,X1
s ), X1

s , Z
1
s , `

1
s)− f2(s, F (s,X2

s ), X2
s , Z

2
s , `

2
s).

Let φ(s) := f1(s, F (s,X1
s ), X2

s , Z
2
s , `

2
s)− f2(s, F (s,X2

s ), X2
s , Z

2
s , `

2
s).

Note that we have

hs = φs + f1(s, F (s,X1
s ), X1

s , Z
1
s , `

1
s)− f1(s, F (s,X1

s ), X2
s , Z

2
s , `

2
s).

Below we use a classical linearization procedure. We can write:

f1(s, F (s,X1
s ), X1

s , Z
1
s , `

1
s)− f1(s, F (s,X1

s ), X2
s , Z

2
s , `

2
s) =

f1(s, F (s,X1
s ), X1

s , Z
1
s , `

1
s)− f1(s, F (s,X1

s ), X2
s , Z

1
s , `

1
s) + f1(s, F (s,X1

s ), X2
s , Z

1
s , `

1
s)

− f1(s, F (s,X1
s ), X2

s , Z
2
s , `

1
s) + f1(s, F (s,X1

s ), X2
s , Z

2
s , `

1
s)− f1(s, F (s,X1

s ), X2
s , Z

2
s , `

2
s).
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Then from the Assumption 2.1 on f1, there exist bounded processes δ and β on Ω̄× [0, T ],

such that

f1(s, F (s,X1
s ), X1

s , Z
1
s , `

1
s)− f1(s, F (s,X1

s ), X2
s , Z

2
s , `

2
s) ≥ δsX̄s + βsZ̄s + 〈θs, ¯̀

s〉ν

with

δs :=
f1(s, F (s,X1

s ), X1
s , Z

1
s , `

1
s)− f1(s, F (s,X1

s ), X2
s , Z

1
s , `

1
s)

X̄s

1{X̄s 6=0}

βs :=
f1(s, F (s,X1

s ), X2
s , Z

1
s , `

1
s)− f1(s, F (s,X1

s ), X2
s , Z

2
s , `

1
s)

Z̄s
1{Z̄s 6=0}

and θs is as in Assumption 2.1.

Thus we have hs ≥ φs+δsX̄s+βsZ̄s+〈θs, ¯̀
s〉ν dt⊗dP -a.s.. For each t ∈ [0, T ], let (Γt,s)s∈[t,T ]

be the unique solution of the forward SDE

dΓt,s = Γt,s−
[
δsds+ βsdWs +

∫
E

θs(e)Ñ(dt, de)
]
; Γt,t = 1.

By classical comparison results with respect to a linear BSDE (see e.g., [28, Lemma 4.1])

we derive that

X̄t0 ≥ E
[
Γt0,t(ξ1 − ξ2) +

∫ t

t0

Γt0,sφ(s)ds|Ft0
]
, t0 ≤ t ≤ T.

By Theorem 2.5, we have X̄t = X1
t −X2

t ≥ 0, and using the non-decreasing property of F ,

we can write

f1(s, F (s,X1
s ), X2

s , Z
2
s , `

2
s) ≥ f2(s, F (s,X1

s ), X2
s , Z

2
s , `

2
s) ≥ f2(s, F (s,X2

s ), X2
s , Z

2
s , `

2
s)

by the assumption on f1 and f2. We conclude the proof by pointing out the fact that

φ(s) = f1(s, F (s,X1
s ), X2

s , Z
2
s , `

2
s)− f2(s, F (s,X2

s ), X2
s , Z

2
s , `

2
s) ≥ 0

and that if θs(u) > −1dP ⊗ ds⊗ dν(u)-a.s., then Γt,s > 0 a.s. from [28, Corollary 3.5]. �

Remark 2.9 We can weaken the assumption of Theorem 2.8 by assuming that the strict

inequality θx
′,x,z,`1,`2

t (u) > −1 holds only along the solutions, that is θ
F (t,X1

t ),X2
t ,Z

2
t ,`

1
t ,`

2
t

t (u) > −1

dt⊗dP - a.s. In the symmetric case when f2 is Lipschitz and non-decreasing in x′, we obtain

the results by assuming θ
F (t,X2

t ),X2
t ,Z

2
t ,`

1
t ,`

2
t

t (u) > −1 dt⊗ dP - a.s.

3 Global dynamic risk measures

In the light of the role played by BSDEs in risk measures (see e.g., [2, 20, 30], to name

just a few, for the Brownian case, and [28, 29] for the addition of jumps) we now explore

the link between mean-field BSDEs and dynamic risk measures, which we interpret in this

case as global dynamic risk measures. The global dynamic risk measure can be seen as the

regulatory capital or liquidity for a representative bank.
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3.1 Definition and properties

Let T > 0 be a time horizon and f be a Lipschitz driver. Set

ρt(η, T ) := −Xt(η, T ), 0 ≤ t ≤ T, (3.17)

where Xt(η, T ) denotes the solution of the mean-field BSDE (2.8) with driver f , mean-field

operator F and terminal condition η ∈ L2(FT ). We can think of η as the amount of liquidity

or capital that is acceptable to a regulator at time T . The risk measure ρt(η, T ) is interpreted

as the amount of capital needed at time t in order to be acceptable at time T . Note also

that, in insurance, the functional −ρ = X can represent a risk premium.

The functional ρ : (η, T ) 7→ ρ·(η, T ) represents a global dynamic risk measure induced

by the mean-field BSDE with driver f and mean-field operator F . When the dependence on

the time horizon T is clear from the context, we drop it from the notation and write ρt(η)

for ρt(η, T ).

We now provide properties of global dynamic risk measures, based on the comparison

results of the previous section. We work under the Assumption 2.1, which guarantees the

monotonicity of the risk measure in the jumps. Contrary to the standard non mean- field

case, the risk of a zero position may not be zero when the mean-field operator F is introduced.

The first three properties, which we give for completeness, are standard and follow the

pattern of the classical literature on dynamic risk measures, see e.g. [28], in which we plug

the comparison or uniqueness results specific to our case.

1. Consistency. Let S be a stopping time. Then for each time t smaller than S, the risk-

measure associated with position ξ and maturity T coincides with the risk-measure

associated with maturity S and position −ρS(ξ, T ) = XS(ξ, T ), that is

∀t ≤ S, ρt(ξ, T ) = ρt(−ρS(ξ, T ), S) a.s.

This corresponds to the flow property of mean-field BSDEs, which is the consequence

of the uniqueness result.

2. Continuity. Let {θα, α ∈ R} be a family of stopping times converging a.s. to a stopping

time θ as α tends to α0. Let {ξα, α ∈ R} be a family of random variables such that

E[ess supα(ξα)2] < ∞, and for each α, ξα is Fθα measurable. Suppose also that ξα

converges a.s. to a Fθ measurable random variable ξ as α tends to α0. Then for each

stopping time S, the random variable ρS(ξα, θα) → ρS(ξ, θ) a.s. and the processes

ρ(ξα, θα)→ ρ(ξ, θ) in S2 when α→ α0.

This property follows as in the proofs of [28, appendix], in which the a priori estimates

for mean-field BSDEs can be easily extended to account for the mean-field contribution.

3. Monotonicity. ρ is non-increasing with respect to ξ. i.e. for each ξ1, ξ2 ∈ L2, if ξ1 ≥ ξ2

a.s., then ρt(ξ
1, T ) ≤ ρt(ξ

2, T ), 0 ≤ t ≤ T a.s.

This is the direct consequence of the comparison results (Theorem 2.5).
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4. Convexity. Suppose f is concave with respect to (x′, x, z, l). Moreover, suppose that

f non-decreasing in x′ and F is non-decreasing concave operator in X. Then the

dynamic risk-measure ρ is convex, that is for any λ ∈ [0, 1], ξ1, ξ2 ∈ L2

ρ(λξ1 + (1− λ)ξ2, T ) ≤ λρ(ξ1, T ) + (1− λ)ρ(ξ2, T ).

Proof. For i = 1, 2, let (X i, Zi, `i) be a solution of the mean-field BSDE (2.8)

associated to terminal time T , driver f , mean-field operator F and terminal condition

ξi. Set ξ̂ := λξ1 + (1 − λ)ξ2, X̂ := λX1 + (1 − λ)X2, Ẑ := λZ1 + (1 − λ)Z2,
ˆ̀ := λ`1 + (1− λ)`2. We have

−dX̂t = [λf(t, F (t,X1
t ), X1

t , Z
1
t , `

1
t ) + (1− λ)f(t, F (t,X2

t ), X2
t , Z

2
t , `

2
t )]dt

− ẐtdWt −
∫

E

ˆ̀
t(e)Ñ(dt, de); X̂T = ξ̂.

By the assumptions on f and F we have

λf(t, F (t,X1
t ), X1

t , Z
1
t , `

1
t ) + (1− λ)f(t, F (t,X2

t ), X2
t , Z

2
t , `

2
t )

≤ f(t, λF (t,X1
t ) + (1− λ)F (t,X2

t ), λX1
t + (1− λ)X2

t , λZ
1
t + (1− λ)Z2

t , λ`
1
t + (1− λ)`2

t )

≤ f(t, F (t, λX1
t + (1− λ)X2

t ), λX1
t + (1− λ)X2

t , λZ
1
t + (1− λ)Z2

t , λ`
1
t + (1− λ)`2

t )

= f(t, F (t, X̂t), X̂t, Ẑt, ˆ̀
t).

Thus

−dX̂t ≤ f(t, F (t, X̂t), X̂t, Ẑt, ˆ̀
t)dt− ẐtdWt −

∫
E

ˆ̀
t(e)Ñ(dt, de); X̂T = ξ̂.

Let (X̄, Z̄, ¯̀) be a solution of the mean-field BSDE (2.8) associated to terminal time

T , driver f , mean-field operator F and terminal condition ξ̂. i.e.

−dX̄t = f(t, F (t, X̄t), X̄t, Z̄t, ¯̀
t)dt− Z̄tdWt −

∫
E

¯̀
t(e)Ñ(dt, de); X̄T = ξ̂.

By the (extended) comparison results in Theorem 2.5, we get X̂t ≤ X̄t as desired. �

Suppose furthermore in Assumption 2.1 that we have θx
′,x,z,`1,`2

t (u) > −1. Then we

have the following property.

5. No Arbitrage. For each ξ1, ξ2 ∈ L2, if ξ1 ≥ ξ2 a.s. and if ρt(ξ
1, T ) = ρt(ξ

2, T ) a.s. on

A ∈ Ft. then ξ1 = ξ2 a.s. on A.

This is the direct consequence of the strict comparison results (Theorem 2.8).

3.2 Dual representation for convex global risk measures

We now provide a representation for the expectation of risk measures induced by mean-field

BSDEs in terms of the value of a stochastic control problem, in the convex case. This
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dual representation is given via the supremum over a set of probability measures which are

absolutely continuous with respect to P .

With the mean-field term, the dual representation relies on a careful analysis of the Fenchel-

Legendre transform F ∗. We first need to establish bounds on the effective domain of this

transform (Lemma 3.2). Moreover, since the mean-field operator is inside the driver, we

have an additional dual variable with respect to the classical case and we need to establish

new bounds for it. New elements specific to the mean-field case arise. In particular, Lemma

3.4 provides an explicit form to the conjugacy relation of (F, F ∗) and relies on a new SDE

of mean-field type, for which we give uniqueness and existence results in Lemma 3.3. The

presence of the mean-field term in combination with the jumps poses technical challenges,

in particular to ensure the equivalence of the worst-case probability measure appearing in

the representation and the real-world probability measure.

In the sequel we make the following assumptions on f and F .

Assumption 3.2 Let f be a Lipschitz driver. Suppose f is concave with respect to (x′, x, z, l)

and non-decreasing with respect to x′ and satisfies Assumption 2.1 with strict inequal-

ity θt(u) > −1 dt ⊗ dP - a.s. Let F be a Lipschitz mean-field operator. Suppose F is

non-decreasing and concave in X, and moreover satisfies the following property: for each

s, t ∈ [0, T ] and X ∈ L2, F (t,E[X|Fs]) ≥ F (t,X).

For each (ω, t), we denote by f ∗ the Fenchel-Legendre transform of f , defined for each

(β, q, α1, α2) ∈ R3×L2
ν and F ∗ the Fenchel-Legendre transform of F , defined for each δ ∈ L2,

that is, (see e.g., [16]),

f ∗(ω, t, q, β, α1, α2) = sup
(x′,x,z,l)∈R3×L2

ν

[f(ω, t, x′, x, z, l)− qx′ − βx− α1z − 〈α2, l〉ν ]

F ∗(t, δ) = sup
X∈L2

[F (t,X)− 〈X, δ〉L2 ] .

For each predictable processes αt = (α1
t , α

2
t (·)), let Qα be the probability absolutely contin-

uous with respect to P which admits ΓαT as density with respect to P on FT , where Γα is

the solution of

dΓαt = Γαt−
(
α1
tdWt +

∫
R∗
α2
t (u)dÑ(dt, du)

)
; Γα0 = 1. (3.18)

The process Wα
t := Wt −

∫ t
0
α1(s, αs)ds is a Brownian motion with respect to Qα and

N is a Poisson random measure independant from Wα under Qα with compensated process

Ñα(dt, du) := Ñ(dt, du)− α2(t, αt, u)ν(du)dt.

Now we define the dual set of probability measures in terms of their densities.

Let AT be the set of predictable processes αs = (α1
s, α

2
s) such that

•
∫ T

0
(α1

s)
2ds+

∫ T
0
‖α2

s‖2
νds is bounded

• α2
s(u) > −1 ν(du)− a.s.
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From [28, Proposition 3.1, 3.2], we have that for all α· ∈ AT , Γαt > 0, 0 ≤ t ≤ T a.s. and

(Γαt )0≤t≤T ∈ S2. We therefore obtain that Qα and P are equivalent.

Let ĀT be the set of processes (γt, βt, qt, α
1
t , α

2
t ) where (βt, qt, α

1
t , α

2
t ) are predictable and

γt is adapted, such that

• (f ∗(ω, t, qt, βt, α
1
t , α

2
t ))t∈[0,T ] belongs to IH2

• αt = (α1
t , α

2
t (·))t∈[0,T ] belongs to AT .

• 0 ≤ qt ≤ C, ∀t ∈ [0, T ], dP a.s.

• The processes (Γαt e
−

∫ t
0 γsds)t∈[0,T ] belong to IH2.

3.2.1 Technical lemmas

We begin by some technical lemmas establishing bounds on the effective domain of the

Fenchel-Legendre transforms f ∗ and F ∗.

Lemma 3.1 For each (s, ω), the set of (q, β, α1, α2) ∈ R3×L2
ν such that f ∗(ω, s, q, β, α1, α2) <

+∞ is included in the set U defined by the following conditions:

• q ≥ 0 and is bounded by C;

• β and α1 are bounded by C;

• α2(u) > −1 and |α2(u)| ≤ C ν(du)− a.s.,

where C is the Lipschitz constant of f .

Proof. Suppose by contradiction that q < 0. By the definition of f ∗ we have

f ∗(t, q, β, α1, α2) ≥ f(t, x′, 0, 0, 0)− x′q,

for each x′. This holds in particular for xn := n, n ∈ N. We thus get

f ∗(t, q, β, α1, α2) ≥ f(t, n, 0, 0, 0)− nq ≥ f(t, 0, 0, 0, 0)− nq,

where the last inequality follows by the non-decreasingness of the map f with respect to x′.

By letting n→ +∞ in the above inequality, we get limn→+∞ f(t, 0, 0, 0, 0)−qn = +∞, since

q < 0. This implies that f ∗(t, q, β, α1, α2) = +∞ which provides the desired contradiction,

We thus have proved that q ≥ 0. The fact that q, β and α are included in the bounded

domain [−C,C] is due to the uniform Lipschitz property of f . Finally, for the bounds on

(α1, α2), the proof follows as in the classical case, see e.g., [28, Lemma 5.4]. �

Lemma 3.2 Assume that operator F satisfies Assumption 3.2. Then for each t ∈ [0, T ],

{δ ∈ L2|F ∗(t, δ) < +∞} (the effective domain of F ∗) satisfies the following property: δ ≥
0 dP a.s. and ‖δ‖2 ≤ C, where C is the Lipschitz constant of F .
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Proof. Suppose δ ≥ 0 dP -a.s. is not true. We denote A = {ω ∈ Ω | δ(ω) < 0}. Then

P (A) > 0. By the definition of F ∗, we have for each X ∈ L2

F ∗(t, δ) ≥ F (t,X)− 〈X, δ〉L2 = F (t,X)− EP [Xδ].

This holds in particular for Xn(ω) := −nδ(ω)1A(ω), where n ∈ N. This gives Xn ≥ 0 dP

a.s. and thus by the non-decreasing properties of F , we obtain

F ∗(t, δ) ≥ F (t,Xn)− EP [Xnδ] ≥ F (t, 0)− EP [Xnδ] = F (t, 0) + n

∫
A

|δ(ω)|2dP (ω).

By letting n → +∞ in the above inequality, we get F ∗(δ) = +∞, which gives the desired

contradiction, which implies δ ≥ 0 dP a.s. The boundedness of δ is a direct consequence of

the Lipschitz property of F . �

The following lemma establishes the existence of the solution of a particular mean-field

SDE, used towards an explicit form to the conjugacy relation of (F, F ∗) in Lemma 3.4 below.

Lemma 3.3 Let (α1
s, α

2
s(·))s≥t belong to AT , (Us)s≥t be adapted and uniformly bounded in

L2 and (hs)s≥t uniformly bounded almost surely. Then the following SDE admits a solution

(Vs)s≥t ∈ S2.

dVs = Vs− [α1
sdWs +

∫
R∗
α2
s(e)dÑ(ds, de)] + UsE[Vshs]ds, t ≤ s ≤ T

Vt = 1. (3.19)

Proof. We define inductively the sequence (V n) of the processes by setting V 0 ≡ 1 and

for n ≥ 1

V n
u = 1 +

∫ u

t

V n−1
s dMs +

∫ u

t

UsE[V n−1
s hs]ds,

where dMs = α1
sdWs +

∫
R∗
α2
s(e)dÑ(ds, de). Note that V n is adapted and right-continuous

and moreover, we have

E
[

sup
t≤s≤u

|V n+1
s − V n

s |2
]
≤ 2E

[
sup
t≤s≤u

(∫ s

t

(V n
r − V n−1

r )dMr

)2

+ sup
t≤s≤u

(∫ s

t

UrE[V n
r − V n−1

r ]dr

)2
]
.

(3.20)

Using Doob and Cauchy-Schwarz inequalities, it follows that

E
[

sup
t≤s≤u

|V n+1
s − V n

s |2
]
≤ 8E

[(∫ u

t

(V n
s − V n−1

s )dMs

)2
]

+ 2TE
[∫ u

t

|UsE[V n
s − V n−1

s ]|2ds
]

≤ 8E
[∫ u

t

(V n
s − V n−1

s )2d[M,M ]s

]
+ 2T

[∫ u

t

E|Us|2|E[V n
s − V n−1

s ]|2ds
]
.

(3.21)
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We have that d[M,M ]s = (α1
s)

2ds+
∫

R∗
(α2

s(e))
2dÑ(ds, de)+

∫
R∗

(α2
s(e))

2ν(de)ds, (α1
s, α

2
s(·))s≥t

belongs to AT and (Us)s≥t is uniformly bounded in L2. We then obtain there exists a con-

stant K such that

E
[

sup
t≤s≤u

|V n+1
s − V n

s |2
]
≤ 2K(4 + T )E

[∫ u

t

|V n
s − V n−1

s |2ds
]

≤ 2K(4 + T )E
[∫ u

t

sup
t≤s≤u

|V n
s − V n−1

s |2ds
]
. (3.22)

We set C = 2K(4+T ) and let D := E
[
supt≤s≤T |V 1

s − V 0
s |2
]
. It then follows from the above

computation that for each t ≤ u ≤ T and n,

E
[

sup
t≤s≤u

|V n
s − V n−1

s |2
]
≤ DCnT n

n!
.

Consequently
∞∑
n=1

∥∥∥∥ sup
t≤s≤u

|V n
s − V n−1

s |
∥∥∥∥

2

<∞.

Thus the series
∑∞

n=1 supt≤s≤u |V n
s − V n−1

s | converges a.s. and as a result, V n converges

a.s. uniformly on every bounded interval to a right-continuous adapted process V that is a

solution to (3.19). �

3.2.2 Dual representation theorem

We now give the main result of this section, the dual representation theorem for the expected

risk measure. For (γ, q, β, α1, α2) ∈ ĀT , we denote

Dβ,γ,q
t,s := exp(

∫ s

t

(βu + γu1E[qu]>0)du), 0 ≤ t ≤ s ≤ T, (3.23)

which can be interpreted as a discount factor. We recall that the process Γα follows the

dynamics defined in (3.18).

The following lemma gives the existence of the process (γ̄s)s≥t associated to the mean-

field term, which is used towards the dual representation theorem.

Lemma 3.4 Given the predictable processes (Xs, q̄s, β̄s, ᾱs)s≥t, with E[q̄s] > 0 for all s ∈
[0, T ], there exists an adapted process (γ̄s)s≥t such that (Γᾱse

∫ s
t γ̄udu)s≥t belongs to IH2 and

satisfies the following equation:

F (s,Xs)−
EQᾱ [XsD

β̄,γ̄,q̄
t,s γ̄s]

EQᾱ [Dβ̄,γ̄,q̄
t,s q̄s]

= F ∗(s,
ΓᾱsD

β̄,γ̄,q̄
t,s γ̄s

EQᾱ [Dβ̄,γ̄,q̄
t,s q̄s]

) for each s ∈ [0, T ]. (3.24)

Proof. Since F is concave and Lipschitz on L2, the conjugacy relation of (F, F ∗) gives

that for each s, there exists Ys ∈ L2 such that

F (s,Xs)− EP [XsYs] = F ∗(s, Ys) (3.25)
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and since F is non-decreasing, by Lemma 3.2 we have Ys ≥ 0 dP a.s. and ‖Ys‖L2 ≤ C.

Fix now s ∈ [t, T ]. For each Y in L2(Fs) and feasible, by Assumption 3.2, we have for

each X ∈ L2.

F (s,X)− EP [XY ] ≤ F (s,E[X|Fs])− EP [E[X|Fs]Y ].

This gives

F ∗(s, Y ) = sup
X∈L2(FT )

[F (s,X)− 〈X, Y 〉L2 ] = sup
X∈L2(Fs)

[F (s,X)− 〈X, Y 〉L2 ].

Therefore we can restrict the operator F on the subspace L2(Fs).3 This implies that we can

choose Ys ∈ L2(Fs) in (3.25), and thus it is adapted.

Now let (Vs)s≥t ∈ S2 be the solution of (3.19) with Us = e−
∫ s
t β̄uduYs , hs = e

∫ s
t β̄uduq̄s and

Vt = 1. We apply Itô’s formula to Vs(Γ
ᾱ
s )−1 and we obtain

d(V (Γᾱ)−1)s = Vsd(Γᾱs )−1 + (Γᾱs )−1dVs + d〈V, (Γᾱ)−1〉s
= (Γᾱs )−1e−

∫ s
t β̄uduYsE[Vse

∫ s
t β̄uduq̄s]ds. (3.26)

Thus V 1 := V (Γᾱ)−1 satisfies the stochastic differential equation

d(V 1)s = (Γᾱs )−1e−
∫ s
t β̄uduYsE[ΓᾱsV

1
s e

∫ s
t β̄uduq̄s]ds. (3.27)

Since Γᾱs > 0, q̄s ≥ 0, Ys ≥ 0 dP a.s., and V 1
t := Vt = 1 > 0 a.s. we have V 1

s > 0 a.s. Thus,

the process γ̄s satisfying e
∫ s
t γ̄udu = V 1

s is well defined due to (3.27). We obtain that

γ̄se
∫ s
t γ̄ududs = d(e

∫ s
t γ̄udu)s = (Γᾱs )−1e−

∫ s
t β̄uduYsE[Γᾱs e

∫ s
t γ̄udue

∫ s
t β̄uduq̄s]ds (3.28)

which implies that (γ̄s)s≥t satisfies

ΓᾱsD
β̄,γ̄,q̄
t,s γ̄s

E[ΓᾱsD
β̄,γ̄,q̄
t,s q̄s]

= Ys a.s.

and Γᾱs e
∫ s
t γ̄udu = Vs belongs to IH2. Since (Ys)s≥t is adapted, this gives the adaptedness of

(γ̄s)s≥t.

�

We are now ready to give the main result. The expected risk measure can be interpreted

as the expectation (under a worst-case discount factor and a worst case probability measure)

of the final position ξ plus a penalty function. The lemmas in the previous section ensure

that the supremum is finite as the effective domain is bounded.

3Note that we could have alternatively defined for each s the Fenchel-Legendre transform of the restriction

of operator F on the subspace L2(Fs). In this case we conjecture that the last property of Assumption 3.2

would not be necessary.
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Theorem 3.1 Let f and F satisfy Assumption 3.2. Then, for each t ∈ [0, T ], the expec-

tation of the convex risk-measure ρt, that is Eρt(., T ) has the following representation: for

each ξ ∈ L2,

Eρt(ξ, T ) = sup
(γ,β,q,α)∈ĀT

[
EQαDβ,γ,q

t,T (−ξ)− ζt(γ, β, q, α, T )
]
, (3.29)

where the function ζ, called penalty function, is defined for each T and (γ, q, β, α1, α2) ∈ ĀT
by

ζt(γ, β, q, α, T ) :=

∫ T

t

(
EQα [Dβ,γ,q

t,s f ∗(s, qs, βs, αs)] + EQα [Dβ,γ,q
t,s qs]F

∗(t,
ΓαsD

β,γ,q
t,s γs

EQα [Dβ,γ
t,s qs]

)1EQα [qs]>0

)
ds,

with Γαs following the dynamics defined in (3.18). Moreover, for each ξ ∈ L2, there exists

(γ̄t, q̄t, β̄t, ᾱ
1
t , ᾱ

2
t ) ∈ ĀT achieving the supremum in (3.29).

Proof. For each processes (γs, qs, βs, α
1
s, α

2
s) ∈ ĀT , we apply Itô’s formula to Dβ,γ,q

t,s Xs

between t and T , where (X,Z, l) is the solution of mean-field BSDE (2.8). We obtain

Xt =Dβ,γ,q
t,T ξ +

∫ T

t

Dβ,γ,q
t,s [−βsXs − γs1E[qs]>0Xs − α1

sZs − 〈α2
s, ls〉ν + f(s, F (s,Xs), Xs, Zs, ls)]ds

−
∫ T

t

dMQα

s , (3.30)

where dMα
s = Dβ,γ,q

t,s ZsdW
α
s +

∫
E
Dβ,γ,q
t,s ls(e)dÑ

α(dt, de).

For each s ∈ [t, T ], we have

− βsXs − γs1E[qs]>0Xs − α1
sZs − 〈α2

s, ls〉ν + f(s, F (s,Xs), Xs, Zs, ls)

= −βsXs − qsF (s,Xs)− α1
sZs − 〈α2

s, ls〉ν + f(s, F (s,Xs), Xs, Zs, ls) + (qsF (s,Xs)− γs1E[qs]>0Xs).

Since qs ≥ 0 dP a.s., we notice that

qsF (s,Xs)− γs1E[qs]>0Xs = (qsF (s,Xs)− γsXs)1E[qs]>0.

By taking expectation on both sides in (3.30), we obtain that

E[Xt] =EQα
[
Dβ,γ,q
t,T ξ +

∫ T

t

Dβ,γ,q
t,s [−βsXs − qsF (Xs)− α1

sZs − 〈α2
s, ls〉ν + f(s, F (s,Xs), Xs, Zs, ls)]

]
ds

+

∫ T

t

EQα [Dβ,γ,q
t,s qs]

[
F (s,Xs)−

EQα [XsD
β,γ,q
t,s γs]

EQα [Dβ,γ,q
t,s qs]

]
1E[qs]>0ds.

Since Qᾱ and P are equivalent measures and qs ≥ 0 dP a.s., we have 1E[qs]>0 = 1EQα [qs]>0.

By the definition of Fenchel-Legendre transform, we have

f(s, F (s,Xs), Xs, Zs, ls)− qsF (s,Xs)− βsXs − α1
sZs − 〈α2

s, ls〉ν ≤ f ∗(s, qs, βs, α
1
s, α

2
s)
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a.s. and

F (s,Xs)−
EQα [XsD

β,γ
t,s γs]

EQα [Dβ,γ
t,s qs]

= F (s,Xs)−
E[ΓαsXsD

β,γ
t,s γs]

E[ΓαsD
β,γ,q
t,s qs]

≤ F ∗(s,
ΓαsD

β,γ
t,s γs

EQα [Dβ,γ,q
t,s qs]

).

Since by assumption Dβ,γ,q
t,s ≥ 0 and qs ≥ 0 dQα a.s., we obtain

EXt ≤ inf
(γ,β,q,α)∈ĀT

EQα
[
Dβ,γ,q
t,T ξ +

∫ T

t

Dβ,γ
t,s f

∗(s, qs, βs, α
1
s, α

2
s)

]
ds

+

∫ T

t

EQα [Dβ,γ,q
t,s qs]

[
F ∗(s,

ΓαsD
β,γ,q
t,s γs

EQα [Dβ,γ,q
t,s qs]

)

]
1EQα [qs]>0ds. (3.31)

Recall that for any (ω, s) ∈ Ω× [0, T ], f is Lipschitz, concave in (x′, x, z, l), and the following

conjugacy relation of (f, f ∗) holds. Let U be the set introduced in Lemma 3.1, we have

f(ω, s, x′, x, z, l) = inf
(q,β,α1,α2)∈Ū

{f ∗(ω, s, q, β, α1, α2) + qx′ + βx+ α1z + 〈α2, l〉ν}

= f ∗(ω, s, q̄, β̄, ᾱ1, ᾱ2) + q̄x′ + β̄x+ ᾱ1z + 〈ᾱ2, l〉ν , (3.32)

where Ū is the closure of set U , that is the set in which α2 satisfies α2(u) ≥ −1 instead of

the strict inequality.

Now since Ū is strongly closed and convex, we obtain there exists (q̄, β̄, ᾱ1, ᾱ2) ∈ Ū that

satisfy (3.32). Since ν is a σ-finite measure and B(E) is countably generated, by [12, Propo-

sition 3.4.5], the space L2
ν is separable. We can thus apply the measurable selection theorem

(Appendix of Ch.III [15]) as in [28, Lemma 5.5] to assert the existence of a predictable

processes (q̄s, β̄s, ᾱ
1
s, ᾱ

2
s)s≥t satisfying

f(s, F (s,Xs), Xs, Zs, ls) = β̄sXs + q̄sF (Xs) + ᾱ1
sZs + 〈ᾱ2

s, ls〉ν + f ∗(s, β̄s, q̄s, ᾱ
1
s, ᾱ

2
s) a.s.

(3.33)

Similarly, since F is Lipschitz and concave, the conjugacy relation also holds for (F, F ∗).

Given the predictable processes (Xs, q̄s, β̄s, ᾱs)s≥t ∈ S2 × ĀT , we now introduce

q̃s = q̄s1EQᾱ [q̄s]>0 + C1EQᾱ [q̄s]=0

with C the Lipschitz constant of f . By Lemma 3.4 there exists an adapted process (γ̄s)s≥t
such that

F (s,Xs)−
EQᾱ [XsD

β̄,γ̄,q̄
t,s γ̄s]

EQᾱ [Dβ̄,γ̄,q̄
t,s q̃s]

= F ∗(s,
ΓᾱsD

β̄,γ̄,q̄
t,s γ̄s

EQᾱ [Dβ̄,γ̄,q̄
t,s q̃s]

). (3.34)

Since q̃s = q̄s for any s such that E[q̄s] > 0, we obtain

EXt = EQᾱ [Dβ̄,γ̄,q̄
t,T ξ +

∫ T

t

Dβ̄,γ̄,q̄
t,s f ∗(s, β̄s, qs, ᾱ

1
s, ᾱ

2
s)ds]

+

∫ T

t

EQᾱ [Dβ̄,γ̄,q̄
t,s q̄s]

[
F ∗(s,

ΓᾱsD
β̄,γ̄,q̄
t,s γ̄s

EQᾱ [Dβ̄,γ̄,q̄
t,s q̄s]

)

]
1EQᾱ [q̄s]>0ds.
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Together with (3.31), we obtain (3.29).

Finally, (3.33) implies that the process f ∗(ω, t, q̄t, β̄t, ᾱ
1
t , ᾱ

2
t ) belongs to IH2

T , since by as-

sumption (X,Z, l(.)) ∈ S2 × IH2 × IH2
ν and (q̄t, β̄t, ᾱ

1
t , ᾱ

2
t ) are bounded. �

Remark 3.5 We note that our running examples of mean-field operators F satisfy the as-

sumptions in Theorem 3.1. First, let a mean-field operator capture first order interactions.

Namely, set F (t,X) := E[ϕ(t,X)] for X ∈ L2(Ω, P,FT ), where φ : [0, T ]×R 7→ R, (t, x) 7→
ϕ(t, x) is a Lipschitz and concave function such that ϕ(t,X) ∈ L2. Then F is Lipschitz and

concave.

Second, let a mean-field operator capture the average intensity of interactions in an in-

homogeneous random graph as in Section 2.2. For F as in (2.7) and under the further

assumptions that the kernel κ is Lipschitz and concave, we check that F is Lipschitz and

concave. In particular, for the kernel κ of (2.16) these conditions are satisfied.

We end this remark by making the connection of our mean-field operator (2.7) with the

economics literature. To see this, we note that

F (t,X) =

∫
R×R

κ(x, y)dDX(x)dDX(y)

=

∫
[0,1]×[0,1]

κ(D−1
X (u), D−1

X (v))dudv, (3.35)

where DX and D−1
X denote the distribution function of X and its generalized inverse. The

form in (3.35) of the operator appears in the literature as a utility functional quadratic in

probabilities (as opposed to linear in probabilities as in the case of expected utility), see [14,

Example 2.3], [11]. In [14] this operator is an example of Shur-concave functional, and the

main result of the paper is a representation theorem of F and its Fenchel transform F ∗ in

terms of a family of nonnegative affine combinations of Choquet integrals.

4 Conclusion

We have studied mean-field BSDEs with jumps, whose driver can capture system influence

with higher order interactions. The mean-field term can capture for example the intensity

of bilateral interactions that depend on the states of the end nodes by means of a kernel

function. This opens the path towards using dynamic risk measures induced by mean-field

BSDE as a complementary approach to systemic risk measurement. The expectation of

the risk measure is interpreted as the necessary capital of the “representative” bank to

make it acceptable. We have given a dual representation for the expectation of dynamic

risk measures induced by mean-field BSDEs. The risk measure can be represented using a

worst case probability measure, discount factor and penalty applied to the terminal financial

position. The representation of the penalty function involves the Fenchel-Legendre transform

of the mean-field operator.
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