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Abstract

Real-time systems are a set of programs, a scheduling policy and a
system architecture, constrained by timing requirements. Most of daily
embedded devices are real-time systems, e.g. airplanes, cars, trains, spatial
probes, etc.. The time required by a program for its end-to-end execu-
tion is called its response time. Usually, upper-bounds of response times
are computed in order to provide safe deadline miss probabilities. In
this paper, we propose a suited re-parametrization of the inverse Gaus-
sian mixture distribution adapted to response times of real-time systems
and the estimation of deadline miss probabilities. The parameters and
their associated deadline miss probabilities are estimated with an adapted
Expectation-Maximization algorithm.

1 Introduction

The increasing demand for new functionalities in embedded systems like auto-
motive, avionics and space industries is driving an increase in the performance
required in embedded processors. For embedded systems with small energy
and computing resources, real-time systems have a specific design with a micro-
controller architecture and a set of programs (a.k.a. task set) running on it.
An important part of this design is to associate a processing unit to a given
task set. The time taken by the system to respond to an input and provide
the output or display the updated information is known as the response time.
To ensure that every task is executed within their specified timing constraints,
the computation resources are allocated to different tasks according to their
priority. During the run-time, each instance of the tasks compete for processing
time on the basis of there priority. These sets must be schedulable by construc-
tion, meaning that there must exist an order (or a schedule) such that programs
respect their timing requirements, that are called deadlines, in the given process-
ing time. Timing correctness of real-time systems is traditionally guaranteed
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by a separate schedulability analysis and a worst-case execution time analysis.
Classical techniques for worst-case execution time analysis aim at finding the
absolute upper bound on the execution time. After knowing this worst-case,
the worst-case response time (WCRT) is computed by summing the worst-case
execution times of the appropriate tasks in the worst-case scenario, i.e. the sce-
nario producing the biggest response times. However, as this method is efficient
to make schedulable task sets, it forces designers to over-estimate the quantity
of processing unit necessary to run a task set. A way to soften resources re-
quirements is to allow a failure rate for each task, such that the probability that
a deadline is missed is bounded by this failure rate. Concentration inequalities
have been widely studied these last years to bound deadline miss probabilities
[6, 35, 24, 7]. Currently, the most efficient bound is the Hoeffding bound (HB)
[34]. These bounds compute deadline miss probabilities only from the parame-
ters of the studied task set. The method built in this paper uses knowledge on
the task set and infers response time data to compute the maximum likelihood
estimate (MLE).

Furthermore, execution times may correspond to various state of a real-time
system (see [25, 28] among others). Statistical approaches have been also used to
detect mode changes within the functioning of time critical embedded systems.
Such detection serves a higher-level objective: characterizing a functional mode
that may be a normal, exceptional, functional or degraded, in order to increase
the reactivity of these systems and to predict mode transitions. Indeed, by
adapting the reaction of the system with respect to a given mode, an optimized
utilization of resources is possible, which becomes another commercial trend
within the time critical embedded systems industry. Sometime the state is
explicit, such as a drone in a take-off mode for example, but tasks often depend
of unobserved latent variables such as environmental variables. Under smooth
hypotheses, we justify in Section 2 that response times are first-passage times
of Brownian motions, and hence the inverse Gaussian (IG) family is the natural
family for response time approximations. The IG family is a natural choice for
a statistical modelling of positive and right-skewed distributions, see [12, 33]. It
is used in many fields, such as industrial degradation modelling [36], psychology
[31, 23], and many others like hydrology, market research, biology, ecology, and
so on c.f. [32].

In our case, we propose a suited parametrization of the IG distribution in
Section 3 after introducing real-time systems in Section 2. Using an adapted
Expectation-Maximization (EM) algorithm, we estimate the parameters of a
mixture of IG distributions. This allows to estimate response times without
using the extreme value approach and provide parametric scheduling knowledge.
Finally in Section 4.1 we show the rate of convergence of the algorithm and
compare it to the Hoeffding bound (see Lemma 2) with simulations, compare
it to the classic EM algorithm in terms of computation time, and apply to real
data.
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2 Real-time systems

In this paper we consider periodic tasks, meaning that an instance of each task
is periodically released at a given rate, and a single core system, i.e. only one
task is processed at a time.

2.1 Model

Let us consider a single core real-time system composed of a finite task set
Γ = {τ1, . . . , τγ}. A task τi is characterized by:

• its execution time Ci > 0,

• its inter-arrival time ti > 0,

• its permitted failure rate αi ∈ [0, 1).

The studied scheduling policy in this paper is the Rate Monotonic (RM)
policy. RM assigns higher priorities to smaller periods, i.e. the task τi will stop
(i.e. preempt) any running task τj with j > i to execute itself if needed, if
and only if ti < tj . We consider Γ ordered by decreasing priority order and
scheduled with the RM policy. RM is optimal for real-time systems using fixed
priorities and implicit deadlines [2].

The j-th instance of the task τi is called a job and we denote it τi,j . Its
execution time is denoted Ci,j . We assume that execution times of a given
task τi are i.i.d. with a probability function fi of positive and discrete support
{cmini , . . . , cmaxi }, and with mean mi and standard deviation si.

Let the mean utilization of level i be ui =
∑i
j=1mj/tj and the deviation of

level i be vi = (
∑i
j=1 s

2
j/tj)

1/2.

2.2 Response times

Formally, the response time Ri,j of a job τi,j is the elapsed time between its
arrival time ai,j = (j − 1)ti and the end of its execution with the RM policy,
see Figure 1.

In [38, 14], authors prove that when the utilization ui is smaller than 1, there
exists a time t∗ such that the response times of jobs of level i released after t∗ are
stationary, i.e. the sequence {Ri,j : ai,j > t∗} is identically distributed. Before t∗

the system is said transient. We treat in this paper the transient and stationary
response time with a mixture model and estimate its deadline miss probability.
In order to find the probability density function of this response time, the arrival
of jobs is modeled with a D/G/1 queue [38], and an approximation of response
times is determined by using the heavy-traffic assumption [17, 11] c.f. Figure 2,
which permits to approximate the size of a queue with a Brownian motion.
Ri,j is modeled as the first-passage time of a Brownian motion of drift ui − 1
and deviation vi, which is known to follow an IG distribution [3, 29]. The IG
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Figure 1: Example of a fixed-priority schedule. The higher priority tasks stop
the execution of tasks if needed. Thus, the response time is time between the
release and the end of a job, taking the jobs of higher priority tasks into account.

probability density function ψ is defined by

ψ(x; ξ, δ) =

√
δ

2πx3
exp

(
δ(x− ξ)2

2xξ2

)
, x ≥ 0 (1)

where ξ > 0 corresponds to the mean and and δ > 0 is called the shape.
In order for a task τi ∈ Γ to be schedulable, its deadline miss probability

∆i = supj P (Ri,j > ti) [6] should be lower than its permitted failure rate αi ∈
[0, 1), i.e.

∆i ≤ αi (2)

thus finding an analytical expression of the probability density function of re-
sponse times permits to determine if a task is schedulable or not. Furthermore,
the estimation must provide in the worst-case bigger quantiles than the mea-
surements, so that the inequality (2) is satisfied.

In [38], authors prove that if ui < 1, there exists a distribution Pi,j that
depends on fi and the arrival time ai,j such that the probability density function
of Ri,j is

hi,j(x) =

∫ ∞
0

ψi−1(x; θ)dPi,j(θ), x ≥ 0 (3)

where ψi(x; θ) is the probability density function of the IG distribution of mean

θ/(1 − ui) and shape (θ/vi)
2
. The parameter θ is linked to the backlog of the

associated D/G/1 queue used to model the arrival of jobs.
This representation of response times is accurate, but it is a very expensive

task to compute dPi,j(θ) for each θ > 0 and each ai,j at each decision of the
scheduling algorithm. Moreover, the distribution Pi,j depends on the fact that
fi is known, which is not always the case. Therefore, in practice we estimate
Pi,j . We find in the next section the appropriate parametric estimation of the
probability density function hi, using only the utilization ui and the deviation
vi, which only use the mean and variance of Ci.
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Figure 2: Example of the MLE of the transient response time, and the stationary
and worst-case response time distribution.

3 IG mixture model for response times

Let Ri be the response time of τi. Its distribution function is the mixture of
the distribution functions of the response times Ri,j . The distribution of Ri
is composed of ki components. Formally, this means that we approximate the
probability density function of the response time Ri with a the variable Ri of
probability density function

hi(x;πi,θi) =

ki∑
k=1

πi,kψi−1 (x; θi,k) (4)

In real-time systems, the interest of the analytical approach is to measure
the deadline miss probability ∆i with a closed expression. For example, a task τi
should not miss its deadline with a permitted failure rate αi, and the inequality
in (2) is approximated with the mixture (4).

3.1 Re-parameterized IG distribution for response times

The purpose of this section is to provide the efficient distribution family for an
approximation of response times and an adapted EM algorithm to estimate the
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parameters of this approximation. This adapted re-parametrization of the IG
distribution reduces the number of parameters of the mixture model. Further-
more, as underlined in [26], the log-likelihood of the IG distribution has flat
regions thus the EM algorithm has very tiny variations. Reducing the num-
ber of parameters addresses a part of this problem. A second reduction of this
problem is the use of the Aitken acceleration procedure [1].

In [26], the author introduces a modified version of the IG distribution of
parameters (ξ, δ), using its mode µ = (ξ2+(3ξ2/2δ)2)

1/2−3ξ2/2δ and its variability
coefficient λ = ξ2/δ instead of the mean and shape. This re-parameterized IG
distribution (rIG) of parameters (µ, λ) is defined by the probability density
function

ψ̃(x;µ, λ) =

√
µ(3λ+ µ)

2πλx3
exp

−
(
x−

√
µ(3λ+ µ)

)2
2λx

 (5)

With the rIG distribution applied to the form that take the parameters of
the distributions of response times, one can see that only the mode is sensitive
to the mixture provided in (3). The variability coefficient of an IG distribution

of mean θ/(1− ui) and shape (θ/vi)
2

is

λi =
v2i

(1− ui)2
(6)

and its mode is

µi(θ) =

√(
θ

1− ui

)2

+
9λ2i
4
− 3λi

2
(7)

so that ψi(x; θ) is the probability density function of an rIG distribution of mode
µi(θ) and variability λi.

3.2 Maximum likelihood estimation of response time dis-
tributions

In this section we present an adaptation of the maximum likelihood estimator
(MLE) proposed by [26] for real-time systems (πi,θi). Both are implemented
in the Python language in the library rInverseGaussian [39].

When ki = 1, π1 = 1 and we have the MLE

θ̂i = (1− ui−1)
√
R̄i(R̄i + 3λi−1) (8)

where R̄i = 1
n

∑n
j=1Ri,j , see [12]. The complete-likelihood of mixture models

[19, 5] can be written as

Lc(Zi,πi,θi) =

n∏
j=1

ki∏
k=1

[πi,kψi−1(rj ; θi,k)]Zi,j,k (9)
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and the complete log-likelihood `c = logLc is

`c(Zi,πi,θi) = `c1(Zi,πi) + `c2(Zi,θi) (10)

where

`c1(Zi,πi) =

n∑
j=1

ki∑
k=1

Zi,j,k log πi,k (11)

and

`c2(Zi,θi) =

n∑
j=1

ki∑
k=1

Zi,j,k logψi−1(rj ; θi,k) (12)

which leads to the following EM algorithm:

E-step For the (s + 1)th step of the EM algorithm, z
(s)
i the conditional ex-

pectation of Zi given (πi,θi) =
(
π

(s)
i ,θ

(s)
i

)
is given by

z
(s)
i,j,k =

π
(s)
i,kψi−1

(
rj ; θ

(s)
i,k

)
hi

(
rj ;π

(s)
i ,θ

(s)
i

) (13)

M-step For the (s+ 1)th step of the EM algorithm, `c1(z
(s)
i , ·) is maximized

by

π
(s+1)
i,k =

1

n

n∑
j=1

z
(s)
i,j,k, k = 1, . . . , ki (14)

and maximizing `c2 with respect to θ is maximizing each of the ki expressions

n∑
j=1

z
(s)
i,j,k logψi−1(rj ; θi,k), k = 1, . . . , ki (15)

using Newton-like algorithms to solve

∇`c = 0 (16)

Then with ∂ logψi
∂θ (x; θ) = ∂µi

∂θ (θ)∂ log ψ̃
∂µ (x;µi(θ), λi) and the derivatives

∂ log ψ̃
∂µ (x;µ, λ) = − 3

2x −
µ
xλ + 1

3λ+µ + 3λ
2µ(3λ+µ) +

√
µ

2λ
√
3λ+µ

+
√
3λ+µ

2λ
√
µ

∂µi
∂θ (θ) = θ

(1−ui)2

((
θ

1−ui

)2
+

9λ2
i

4

)−1/2 (17)

(16) is equivalently solved by (14) and the solutions of

n∑
j=1

z
(s)
i,j,k

∂ logψi−1
∂θ

(rj ; θk) = 0,∀k = 1, . . . , ki (18)
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In order to stop the algorithm, the author in [26] proposes the Aitken ac-
celeration to stop the algorithm. The Aitken acceleration at iteration s + 1 is
given by

a(s+1) =
`(s+2) − `(s+1)

`(s+1) − `(s)
(19)

where `(s) is the observed-data log-likelihood from iteration s. The limit `∞ of
the sequence of values of the log-likelihood is

`(s+2)
∞ = `(s+1) +

`(s+2) − `(s+1)

1− a(s+1)
(20)

The EM algorithm is considered to have converged if

|`(s+2)
∞ − `(s+1)

∞ | < ε (21)

with a tolerance ε > 0.
Finally, we initialize the algorithm with a k-means clustering.

3.3 Bayesian information criteria

The Bayesian information criteria (BIC, [30]) is used to chose the number of
components of the mixture, which has been proven consistent for mixture models
[27, 13, 10]. The number of parameters of a mixture of k components being
2k − 1, the number of components chosen is equal to

ki = argmax
k

2`n(πi,θi)− (2k − 1) log n (22)

where `n is the observed-data log-likelihood. The number of parameters being
reduced from 3ki − 1 to 2ki − 1, the computation time of this EM algorithm is
also reduced.

3.4 Deadline miss probability

We use the link of IG distributions with the χ2
1 distribution to check the qual-

ity of the MLE. Indeed, if X is an IG variable of mean ξ and shape δ, then
δ(X − ξ)2/ξ2X is distributed as a Chi-squared distribution of one degree of free-
dom [33]. Let PIG

k be the probability conditionally that the response time Ri is
in the k-th component in the IG estimation, and

gi(x; θ) =

(
x− θ

1−ui−1

)2
λi−1x

, x > 0 (23)

In our case, for each component k = 1, . . . , ki of the mixture (4), after classifi-
cation we should have that

gi

(
Ri; θ̂i,k

)
∼ χ2

1 (24)
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Figure 3: Utilizations ui against the deadline miss probabilities of the IG estima-
tion ∆IG

i , the Hoeffding bound ∆H
i and the empirical deadline miss probabilities

∆
(n)
i over a sample of n = 10 000 response times per task simulated on SimSo.

under the probability PIG
k . Therefore, we use (24) to validate the MLE, and

provide the deadline miss probabilities we are looking for. Note that the larger
quantiles values are the ones that real-time designers are interested in to deter-
mine whether a task is schedulable or not, see (2). We use (24) to determine
whether a task is schedulable in its transient state or not.

Proposition 1. The deadline miss probability of the IG estimation is

∆IG
i =

ki∑
k=1

πi,k|1{ti> θi,k
1−ui−1

}
− χ2

1 (gi(ti; θi,k))| (25)

where χ2
1 is the cumulative distribution function of the Chi-squared distribution

of one degree of freedom.

Proof. By unconditioning we have ∆IG
i =

∑ki
k=1 πi,kP

IG
k (Ri > ti) and since

gi(·; θ) is positive and, decreasing for x ≤ θ
1−ui−1

and increasing for x > θ
1−ui−1

,

we get the result.

See in Figure 3 a comparison between the empirical deadline miss probabil-
ities, the IG method in (25) and the Hoeffding bound.
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Proposition 2. Let Γ be a task set as defined in Section 2.1 scheduled with the
RM policy. Suppose ui < 1, and let vmaxi =

∑i
j=1(cmaxj − cminj )2/tj and

∆H
i = exp

(
−ti

(1− ui)2

vmaxi

)
(26)

be the Hoeffding bound. If ti >
∑i
j=1mj

1−ui , then ∆i ≤ ∆H
i .

Proof. According to [34, Theorem 6], the Hoeffding inequality applied to a fixed-
priority policiy gives us

∆i ≤ inf
t∈(0,ti)

t>E[Wi(t)]

exp

(
−2

(t−E[Wi(t)])
2∑i

j=1(cmaxj − cminj )2nj(t)

)
(27)

where nj(t) = dt/tje is the number of jobs of the task τj released before t > 0,

and Wi(t) = Ci +
∑i−1
j=1

∑nj(t)
k=1 Cj,k.

Let t ∈ (0, ti). Since only one job of τi is released before ti, we have Wi(t) =∑i
j=1

∑nj(t)
k=1 Cj,k and E[Wi(t)] =

∑i
j=1 nj(t)mj . Since

t/tj ≤ nj(t) ≤ t/tj + 1 (28)

and ui < 1, we have the relation uit +
∑i
j=1mj ≥ E[Wi(t)] ≥ uit. Hence,

t > E[Wi(t)] if t >
∑i
j=1mj

1−ui .

Suppose ti >
∑i
j=1mj

1−ui and t ∈ (
∑i
j=1mj

1−ui , ti). With (28) we get

(t−E[Wi(t)])
2∑i

j=1(cmaxj − cminj )2nj(t)
≥ t(1− ui)2

vmaxi + t−1
∑i
j=1(cmaxj − cminj )2

(29)

Finally the infinimum in (27) is reached for t = ti, and we are using the RM
policy, thus we have tj ≤ ti for j ≤ i, hence we get

vmaxi + t−1i

i∑
j=1

(cmaxj − cminj )2 ≤ 2vmaxi (30)

which gives us the result with (29).

In the following, we test with simulation if ∆IG
i is a good estimation of ∆i

and if the Hoeffding bound is a safe bound of the IG estimation, i.e. ∆IG
i ≤ ∆H

i .

4 Experimental results

The seminal work of Liu and Layland [18] provides a sufficient condition for the
schedulability of any system with finite supports of execution times using the
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maximal utilization of the priority level i umaxi =
∑i
j=1 c

max
j /tj , where cmaxi

is the worst-case execution time, i.e. the maximum value of the support of the
execution time Ci. Whenever

umaxγ < γ(2
1/γ − 1) (31)

the task set Γ is proven schedulable for α1 = · · · = αγ = 0 [18, Theorem 5]. The

bound usually used is lim↑γ→∞ γ(2
1/γ − 1) = log(2). Moreover, while umaxi < 1

there exists a scheduling policy, with dynamic priorities that can satisfy the
schedulability of the task τi [18]. Hence there are two phase transitions, one at
umaxi > log(2) where deadline misses can happen, and one at umaxi > 1 where
deadline misses must happen. As proven in [38], the necessary condition for
the schedulability of a task τi (2) is that the mean utilization ui is less than
one. Hence, there is a gap to fill in the theory between the necessary condition
ui < 1 and the sufficient condition umaxi < log(2). In particular in the case
where ui < 1 and umaxi > 1 as we see in Figure 3.

4.1 Simulations

In this section, we apply our results with simulated data. The simulated data
is generated using SimSo [9], a Python framework used to generate arrivals of
jobs and scheduling policies. A modified version of SimSo [8] allows to generate
random inter-arrival times and random execution times [37]1. We study the
quality of the estimation as a function of utilization level. We show that the
utilization, the better the estimation. We also check how much the IG bound is
larger than the empirical deadline miss probabilities,

∆
(n)
i =

1

n

n∑
j=1

1Ri,j>ti (32)

Consider a task set where the probability density functions (fi)i of the execu-
tion times (Ci)i are known. From SimSo we generate the response times of tasks
with the RM scheduling policy from the probability functions (fi, i = 1, . . . , 28).
Their parameters are given in Table 1. The distributions of execution times used
in the simulations are generated with UUnifast [4], to emphasize the fact that
fi can be any distribution (D/G/1 queue). Two methods are used: one with a
finite support where the maximal utilization umaxi is finite, and another one with
an infinite support with exponential distributions where the maximal utilization
is not defined. This schedule is instantiated 100 times, thus in Figure 4(a), the
box-plots of each task are based on 100 estimators. Also note in Figure 4(a)
that the variability of the estimates decreases with the priority level. Because
of the fixed-priority structure of RM, we can see in Figure 4 that the error of
the estimation decreases with the priority level. The first task is never pre-
empted, so its response time is always equal to its execution time. Therefore
the estimation of its response time cannot be good in general.

1https://github.com/kevinzagalo/simso/blob/main/generator/task_generator.py
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Figure 4: L2 distance between the empirical distribution of the simulations and
the MLE distribution, of 100 instances of the schedule, for the task set shown
in Table 1.

In a second step, a task set with exponentially distributed execution times is
simulated for comparison (D/M/1 queue), as it is a special case widely studied
in queueing theory [22]. This is a baseline for determining the rate of con-
vergence of the response times estimation as a function of the priority levels.
This baseline confirms that the rate of convergence depends on the type of
distributions used for execution times, but that there is a phase transition at
umaxi > 1, independent from the type of distribution used for execution times.
The parameters of the task set are given in Table 1.

In Figure 3, we have the mean utilizations (ui)i on the x-axis and (∆
(n)
i ,∆H

i ,∆
IG
i )i

on the y-axis. We can see that when umaxi < log(2), it is useless to compare
the methods because they are already proven schedulable in (31). Moreover, all
methods start increasing when umaxi > 1.
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4.2 Data

In this section we use the IG method on real data. We use a real case of 9
programs of an autopilot of a drone, PX4-RT [21], a modified version of PX4
[20] with a real-time behavior, and a clock measuring preempting the operating
system itself. PX4-RT is run on an ARM Cortex M4 CPU clocked at 180 MHz
with 256 KB of RAM using a simulated environment from Gazebo [16]. PX4-RT
allows to measure execution times (Figure 5 and Table 2) and response times
during the flight of a drone. It runs on top of NuttX, a Unix-like operating
system. It provides an infrastructure for internal communications between all
programs and off-board applications. Each task is a NuttX task launched at
the beginning of the PX4 program. The tasks read data from sensors (snsr),
estimate positions and attitudes using a Kalman filter (ekf2), control the posi-
tion (pctl) and the attitude (actl) of the drone, the flight manager (fmgr), the
hover thrust estimator (hte), handle the navigation (navr), command the state
of the drone (cmdr), and the rate controller (rctl), which is the inner-most loop
to control the body rates. These tasks are in constant interference with the
operating system NuttX. Because the operating system has the highest priority,
the nine tasks studied are constantly preempted by NuttX. Unfortunately, it
is not possible to have information about the interfering operating system pro-
grams. Unlike the simulation in Section 4.1, PX4-RT runs concurrently with
other tasks which do not have timing requirements, making it a complex system
with many unknown variables. We test in this section whether and when the
proposed parametric estimation is suitable for such complex system.

In this case, the distribution functions of execution times cannot be provided.
Therefore, we use the empirical distributions shown in Figure 5. Thus, the mean
utilizations ûi are computed with the empirical means of execution times, and
the maximal utilizations ûmaxi with the empirical maximum of execution times.
See Table 2 for a full description of the parameters. As shown in the previous
section, the response times of the highest priority task snsr are not estimated.

These programs generate response times shown in Figure 6, on which we
use the mixture model proposed in (4) with the EM algorithm provided in Sec-
tion 3.2. See [15] for a full description of the data. The QQplots in Figure 6 show
that the estimation is good for the large quantiles, which is what is important
to determine the schedulability of a system, c.f. (2). We can identify in Figure 6
that for the cmdr and fmgr tasks the estimation is not good enough, which
means that we have too little information about the programs interfere with
them (operating system etc.), and that a schedulability test on this task would
not be suitable with the method built in this paper. Nevertheless, for the other
tasks the approximation is good and can therefore be used for a schedulability
analysis.
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Figure 5: Execution time empirical probability functions of the 9 studied tasks
of the drone autopilot.
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Figure 6: Response times empirical distributions of the PX4-RT autopilot and
QQplots with the χ2

1 quantiles from (24) for each component of the estimated
mixtures.
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