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ABSTRACT

In machine listening there is a tendency to resort to mod-
els with a growing number of parameters raising thus con-
cerns about the practical viability of these due to their energy
consumption. Reporting energy consumption of the models
could be a first step to raise awareness on this matter. Yet, es-
timating the energy consumption across different conditions
(hyper-parameters, GPU types etc.) poses some challenges in
terms of biases and fairness of the comparison between differ-
ent models and works. In this paper we perform an extensive
study using the DCASE task 4 baseline system and monitor
energy consumption and training time for different GPU types
and batch sizes. The goal is to identify which aspects can have
an impact on the estimation of the energy consumption and
should be normalized for a fair comparison across systems.
Additionally, we propose an analysis of the relationship be-
tween the energy consumption and the sound event detection
performance that calls into question our current way to eval-
uate systems.

Index Terms— sound event detection, machine listening,
energy consumption, efficiency, carbon footprint

1. INTRODUCTION

Deep learning has enabled significant progress in the field of
machine listening, and is now the de-facto standard approach
for tackling problems and applications such as sound event
detection (SED) and recognition (SER). However as argued
by many works [1–4] some deep learning recent trends, both
in industry and academia, raise fundamental concerns about
the environmental impact and energy consumption of deep
learning approaches. For example in [2], the authors point out
that the large majority of the current research is focused on ab-
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terest group hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.grid5000).

solute performance rather than model efficiency. The down-
side of this is that, in applications such as natural language
processing (NLP), the computing requirements for training
state-of-the-art models are increasingly prohibitive and the
actual costs due to hardware and to energy consumption can
amount to tens of thousands of dollars. This also often trans-
lates in expensive inference too, which can be even more
problematic: when the model is deployed in a real-time appli-
cation, its impact over time will largely surpass the training
stage one. Moreover, if it must be deployed server-side be-
cause it is too demanding for edge-devices, data transmission
will add up to the environmental/cost impact of the model.
On the other hand, large-scale models are undoubtedly useful
and there is a growing interest towards more efficient ways
to tap their potential in a cost-effective and environmental-
friendly manner. For example, by model compression and/or
quantization techniques [5,6] or by leveraging knowledge dis-
tillation [7].

Recently in [4], Parcollet and Ravanelli, investigated the
carbon footprint of training state-of-the-art medium size au-
tomatic speech recognition (ASR) models. It was pointed out
how training a state-of-the-art ASR model on the popular Lib-
riSpeech benchmark dataset [8] can exceed several times the
carbon emissions of driving a car for 100 km. Crucially, in
their study, increasing the model size and doubling the emis-
sions only improved marginally the performance, raising thus
questions about if such improvement is worth or not consid-
ering the financial and environmental costs.

1.1. Motivations and background

For the past few years DCASE task 4 has proposed to investi-
gate SED. The particular use case is to train the SED system
on an heterogeneous dataset composed of audio soundscapes
with different level of annotations. The problem of evaluat-
ing systems under realistic setups in order to obtain insights
on the systems (and just a ranking) has been central in the task
organization [9–12].

Over the years there has been a tendency, in line to what
is argued in [2], to resort to models with a growing number of
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parameters which are even sometimes combined with each
other using ensemble approaches1. As said, this tendency
raises concerns about the financial and environmental viabil-
ity of these models. As DCASE task organizers we felt it was
our duty to relay this concern to the participants and this is
why in the recent DCASE 2022 task 4 we asked participant to
report the energy consumption of their systems both at train-
ing and test time [13].

Reporting the energy consumption was introduced as an
optional metric as its estimation on the participants side could
raise some question in terms of biases (e.g. the hardware
used) and fairness of the comparison between systems. These
concerns were confirmed to some extent by the submissions
we received this year. As such, one of the goals of this paper
is to identify some potential sources of variability in the es-
timation of the energy consumption on the participants side.
Here we analyze the energy consumed in the training phase
of the DCASE 2022 task 4 baseline when the GPU type and
batch size are changed, while at the same time monitoring
the performance of the SED model. We are fully aware that
the energy consumed at inference phase plays a large role in
the overall footprint of a system. However, here we focus
only on the training phase as a similar analysis on the test
phase requires knowledge of the specific hardware used when
deploying the SED algorithms (especially on edge-devices)
which is beyond the focus of the current paper.

Our work is similar thus to [4] but, compared to this one,
aside from focusing on SED and energy consumption instead
of carbon oxide emissions, we explore also factors of varia-
tions such as GPU type and how hyper-parameters as batch
size have also an impact.

Finally we hope that this work could give some insights
and “best-practices” that allow to reach the best trade-off be-
tween performance and energy consumption for SED appli-
cations when an heterogeneous dataset is used.

2. EXPERIMENTAL SETUP

2.1. SED System

The DCASE 2022 task 4 baseline system is based on a con-
volutional recurrent neural network (CRNN) trained within
a mean-teacher framework. This system is inspired by [14].
The CRNN is composed of a 7 layers CNN module followed
by a 2-layers bi-directional gated recurrent unit (biGRU). In-
put features are 128 Log-Mel Filterbank Energies (LFBE) ex-
tracted with a 128 ms window and 16 ms stride. To leverage
more effectively weakly, unlabeled and labeled data, atten-
tion pooling is employed to obtain clip-level predictions from
frame-level predictions [14]. With respect to the 2020 base-
line, during the years, small changes, such as MixUp [15],
and some hyper-parameters improvements have been added to
this simple but effective baseline system, based on top-ranked

1see also the DCASE task for results pages on https://dcase.community/

systems submitted every year from participants2.

2.2. Dataset

The dataset used for the SED experiments is DESED3, a
dataset for SED in domestic environments composed of 10-
sec audio clips that are recorded or synthesized [9, 16]. The
recorded soundscapes are taken from AudioSet [17]. The
synthetic soundscapes are generated using Scaper [18]. The
foreground events are obtained from FSD50k [19, 20]. The
background textures are obtained from the SINS dataset [21]
and TUT scenes 2016 development dataset [22].

2.3. Evaluation Metric

Within DCASE task 4, systems performance is evaluated with
the polyphonic sound event detection scores (PSDS) [23].
However, in this study we monitor the performance at train-
ing time each epoch and PSDS would be too costly in such
scenario. Therefore, we instead use the intersection based
F1-score as a performance metric. The decision threshold
is set to 0.5, the detection tolerance criterion (DTC) and
ground truth intersection criterion (GTC) are set to 0.7. This
is considerably faster to compute as it relies on a single op-
erating point (threshold value) but still alleviates the problem
of event matching with collar based metrics [10, 23]. Addi-
tionally, this metric has been shown to correlate with PSDS
scenario 1 [11]. This is because the operating point consid-
ered to compute the F1-score is part of the set of operating
points included in PSDS computation and the DTC and GTC
are set similarly as when computing PSDS for scenario 1.

The energy consumption at training time is estimated us-
ing the CodeCarbon toolkit 4, a software package that esti-
mates the amount of energy consumed and carbon dioxide
produced by the cloud or personal computing resources used
to execute the code. The energy consumption is monitored
for each epoch and aggregated over the whole training phase.

The baseline system is trained 3 times for 200 epochs for
each combination of batch size and hardware, this allows us
to report also standard deviation over these 3 runs.

2.4. Hardware

One of the goals of this study is to analyze the impact of
the hardware used at training time (and in particular the GPU
type) on the energy consumption. Compared to previous stud-
ies, here we consider a wider set of GPUs commonly em-
ployed in academia and industry alike, both newer and older:
GTX 980, GTX 1080 Ti, RTX 2080 Ti, T4, A40 and A100.
To obtain correct energy consumption figures, for each exper-
iment, the GPU is always allocated to training only our model
with no other task running in parallel.

2Code is publicly available: github.com/DCASE-REPO/DESED task
3https://project.inria.fr/desed/
4https://codecarbon.io/
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Energy
Batch Max F1 Time Total (kWh) Epoch(Wh) Minute(Wh)
4 49.1 ± 0.7 08:28 ± 0:45 1.27 ± 0.13 6.4 ± 0.7 2.6 ± 0.1
8 55.2 ± 0.8 06:39 ± 0:27 0.92 ± 0.08 4.6 ± 0.4 2.4 ± 0.1
16 59.6 ± 0.4 06:20 ± 0:07 0.98 ± 0.05 4.9 ± 0.3 2.7 ± 0.2
32 58.7 ± 0.4 06:19 ± 0:07 0.83 ± 0.02 4.1 ± 0.1 2.2 ± 0.1
GPU Max F1 Time Total (kWh) Epoch(Wh) Minute(Wh)
GTX 980 56.2 ± 0.4 11:38 ± 0:06 1.23 ± 0.03 6.2 ± 0.1 1.8 ± 0.1
GTX 1080 Ti 56.9 ± 0.7 09:10 ± 0:09 1.41 ± 0.02 7.0 ± 0.1 2.5 ± 0.1
RTX 2080 Ti 56.6 ± 0.6 04:31 ± 0:11 0.59 ± 0.07 3.0 ± 0.4 2.2 ± 0.3
T4 56.1 ± 0.8 06:28 ± 0:18 0.89 ± 0.25 4.5 ± 1.2 2.3 ± 0.3
A40 56.4 ± 0.6 05:12 ± 0:02 1.24 ± 0.05 6.2 ± 0.2 4.0 ± 0.2
A100 55.9 ± 0.4 04:23 ± 0:06 0.72 ± 0.01 3.6 ± 0.1 2.7 ± 0.1

Table 1: Systems performance, training time and energy consumption for different GPU types. Top panel: average over all the
GPUs types. Bottom panel: average over all batch sizes.

2.5. Batch Size and Composition

Previous studies have shown empirically that composing a
batch of 1

4 weakly labelled recorded soundscapes, 1
4 strongly

labelled synthetic soundscapes and 1
2 unlabelled recorded

soundscape offers a good balance to train effectively a SED
model on an heterogeneous dataset [24]. In this study we
keep this batch composition and experiment with the follow-
ing batch sizes: 4, 8, 16 and 32. We upper bounded the batch
size to 32 in order to allow for running the experiments on all
the GPU types without incurring in out-of-memory issues.

3. RESULTS AND DISCUSSIONS

We present our results and discuss them thereafter. As ex-
plained, we ran a total of 72 experiments: 3 runs for 4 differ-
ent batch-sizes and 6 different types of GPUs.

3.1. Impact of Batch Size

The aim of this experiment is to study the impact of the batch
size on the energy consumption at training time. The batch
size could potentially have an impact on the computational
load of the GPU but also on the overall training speed. In Ta-
ble 1 upper panel, we present the performance averaged over
3 runs of 200 epochs and over all the 6 GPU types we used
in our experiments. The F1 score we report is the best score
achieved over the total 200 epoch. We also report the training
time, the total energy consumption in kWh and the average
energy consumption for each epoch and for each minute.

The overall training time and energy consumption varies
significantly with the batch size. The general tendency is that
both the training time and energy consumption decrease when
increasing the batch size. This is also reflected on the energy
consumed for one epoch. This is not surprising as the energy
consumption remains stable over the epochs. If we consider
the energy consumed in 1 minute, the difference when chang-
ing the batch size is barely significant. This indicates that the

computational load of the GPU has a minor impact on the en-
ergy consumption. This aspect also explains the fact that the
energy consumed over the 200 epoch is lower with the config-
urations that tend to train faster with larger batches while not
consuming significantly more energy per time unit. There-
fore, as the F1-score increases with the batch size (at least
for the sizes presented here), using larger batch sizes is a rea-
sonable choice when training SED systems. Note that these
conclusions still holds when breaking the results per batch
and per GPU5.

3.2. Impact of Hardware

The aim of this experiment is to study the impact of the GPU
used at training time on the energy consumption. In Table 1
bottom panel, we report the same metrics as previously except
that they are averaged now over batch sizes and presented de-
pending on the GPU used during training.

As expected, the best F1-score achieved remains quite sta-
ble across all GPU types. The energy consumption for the
whole training phase varies significantly depending on the
GPU that is used. Differently than what observed for the
batch size, the energy consumed in 1 minutes also varies sig-
nificantly with the GPU types. This indicates that variation in
the overall consumption are directly related to the GPU type
and not only to the training time. However, the training time
can still have a large impact. For example, GTX 980 has the
lowest energy consumption per minute but as the training is
much longer than with other, newer GPUs, its overall con-
sumption is amongst the largest.

This impact of the GPU used should be taken into account
when comparing systems that are trained on different hard-
ware. During DCASE 2022 task 4, to mitigate this problem,
we proposed the participants to normalize the energy con-
sumption of the submitted system by the energy consumed
to train this very same baseline model on their hardware [11].

5See the detailed results
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Energy (kWh) Extra cost
Batch Max F1 95% Max F1 @F1 = 40% @95% Max F1 @Max F1 200 epochs 95%→Max F1
4 49.1 ±0.7 46.6 ±0.7 0.17 ± 0.02 0.24±0.05 0.38±0.06 1.27 ± 0.13 60%
8 55.2 ±0.8 52.4 ±0.8 0.14 ± 0.01 0.27±0.05 0.56 ±0.15 0.92 ± 0.08 108%
16 59.6 ±0.4 56.6 ±0.4 0.16 ± 0.01 0.42±0.04 0.81 ±0.14 0.98 ± 0.05 100%
32 58.7 ±0.4 55.7 ±0.4 0.16 ± 0.01 0.33±0.03 0.60 ±0.08 0.83 ± 0.02 87%
GPU Max F1 95% Max F1 @F1 = 40% @95% Max F1 @Max F1 200 epochs 95%→Max F1
GTX 980 56.2 ± 0.4 53.3 ± 0.3 0.20 ± 0.01 0.42 ± 0.03 0.77 ± 0.17 1.23± 0.03 80%
GTX 1080 Ti 56.9 ± 0.7 54.0 ± 0.5 0.22 ± 0.01 0.51 ± 0.05 0.92 ± 0.07 1.41± 0.02 85%
RTX 2080 Ti 56.6 ± 0.6 53.8 ± 0.3 0.09 ± 0.01 0.26 ± 0.03 0.37 ± 0.06 0.59± 0.07 80%
T4 56.1 ± 0.8 53.3 ± 0.7 0.13 ± 0.04 0.26 ± 0.07 0.51 ± 0.15 0.89± 0.25 100%
A40 56.4 ± 0.6 53.6 ± 0.6 0.20 ± 0.01 0.45 ± 0.06 0.81 ± 0.13 1.24± 0.05 80%
A100 55.9 ± 0.4 53.1 ± 0.2 0.11 ± 0.01 0.21 ± 0.02 0.42 ± 0.02 0.72± 0.01 97%

Table 2: Systems performance and energy consumption at different convergence steps and for different GPU types. Top panel:
average over all the GPU types. Bottom panel: average over all the batch sizes.

3.3. Energy consumption and SED Performance

In the previous experiments we used a fixed number of epoch
of 200. Whereas the energy consumption remains stable over
the whole training phase, this is not the case for the F1-score
and there seems to be no linear relationship between the en-
ergy consumed and the F1-score performance. Therefore, in
this experiment, we compare the energy consumed to achieve
a fixed threshold F1-score of 40%, to achieve the maximum
F1-score and to obtain 95% of this maximum F1-score. In
Table 2 upper panel we report the F1-score and the energy
consumption depending on the batch size (and averaged over
GPU types). In Table 2 bottom panel, instead we show the
F1-score and the energy consumption depending on the GPU
types (and averaged over the batch sizes).

In the early stage of the training process, the batch size
does not have a large impact on the energy consumed. The
energy consumed to reach an F1 score of 40% is pretty sta-
ble across batch sizes. This does not verify for GPU types
where the energy consumed to attain the 40% threshold can
vary significantly. When considering the energy consumed
to achieve the maximum F1-score, both the batch sizes and
the GPU type do have an impact. For small batch sizes, the
energy consumed is low but the F1-score is low too whereas
for larger batch sizes the F1-score gets better but the energy
consumption also increases. Note that at some point increas-
ing the batch size maintain the F1-score performance while
reducing the energy consumed. This also correlates with the
fact that for small batch sizes the maximum performance is
reached early in the training phase (hence the low total en-
ergy consumed due to the low number of epochs), while for
larger batch sizes the maximum F1-score is reached later in
the training process (reaching the maximum F1-score costs
about 80% of the total training energy budget).

The observations above raise the question of the energy
budget we allocate to gain the final few point in terms of F1-
score as also noted in [4]. Regardless of the batch size or the
GPU type, it costs 60% to more than 100% more to gain the

last 5% relative in term of F1-score. This additional cost does
not depend on the GPU type. It is however smaller for small
batch size which converge quicker to the maximum perfor-
mance. Such results suggest that comparing systems on the
sole performance criterion is inadequate or at least does not
provide the full picture (this is particularly true in challenges).
It is important to asses the impact of these last few F1-score
point on the systems usability (or if they actually matter for
user experience) to ensure that the energy (and financial) bud-
get spent for these minor improvements is actually worth it.
A first step toward this is to systematically include the energy
consumption budget in our performance eports [13, 25].

Finally, we stress that energy consumption can be reduced
by using early stopping. Stopping the training at the best
epoch could save about 40% of energy in average (up to 70%
for small batch sizes) whereas stopping at 95% of the maxi-
mum F1-score could save about 65% in average (up to 80%
for small batch sizes). While this latter solution is not realis-
tic in practice, one easy alternative would be to stop training
when the progress between epochs slows down too much.

4. CONCLUSION

We conducted an in depth study using the DCASE task 4
baseline for analyzing the relationships between energy con-
sumption, training time, GPU type, batch size and perfor-
mance when training a SED system. Our experiments show
that the batch size impact on energy consumption is solely
related to a reduction in training time. The GPU type used
at training on the other hand has a large impact on the en-
ergy consumption. This aspect should be taken into account
to avoid any biases when comparing systems trained on dif-
ferent GPUs. Finally, it was shown that the final training steps
required to achieve the last few points in terms of SED perfor-
mance cause a large increase in terms of energy consumption
(between 60% to 100% more). This latter aspect calls into
question our current way evaluate SED systems (machine lis-
tening systems in general) focusing only on performance.
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