
HAL Id: tel-03130643
https://hal.inria.fr/tel-03130643v2

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring new numerical methods for the simulation of
soft tissue deformations in surgery assistance

Jean-Nicolas Brunet

To cite this version:
Jean-Nicolas Brunet. Exploring new numerical methods for the simulation of soft tissue deformations
in surgery assistance. Bioinformatics [q-bio.QM]. Université de Strasbourg, 2020. English. �NNT :
2020STRAD029�. �tel-03130643v2�

https://hal.inria.fr/tel-03130643v2
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE STRASBOURG

École Doctorale Mathématiques,
Sciences de l’Information et de l’Ingénieur

Laboratoire des sciences de l’ingénieur,
de l’informatique et de l’imagerie

THESIS

presented for the grade of

Docteur de l’Université de Strasbourg

Discipline (mention): Informatique (computer science)

by

Jean-Nicolas BRUNET

Exploring new numerical methods for the simulation of
soft tissue deformations in surgery assistance

Defended publicly on the November 4, 2020

Members of the jury:

M. Adam Wittek . Reviewer
Professor at the University of Western Australia, Australia

M. Fabrice Jaillet .Reviewer
Professor at the University of Lyon, France

M. Ole Jacob Elle .Examiner
Research director at the Oslo University Hospital, Norway

M. Yannick Privat . Examiner
Professor at the University of Strasbourg, France

M. Stéphane Cotin . Advisor
Research Director at the University of Strasbourg, France

Jean-Nicolas BRUNET

Exploring new numerical methods for the simulation of
soft tissue deformations in surgery assistance

Résumé

Cette thèse aborde le problème de simulation des tissus mous pour les applications de réal-
ité augmentée en assistance peropératoire du foie et, plus précisément, la mise en œuvre
d’une procédure automatique de recalage non rigide entre une reconstruction préopéra-
toire du foie d’un patient et les données acquises en temps réel pendant la chirurgie.
Un cadre formel basé sur la physique est d’abord défini et utilisé comme base pour la
construction d’un modèle biomécanique capable de reproduire les déformations du foie.
Quatre directives de recherche ont guidé le développement du modèle: la précision, la
rapidité, la stabilité et la simplicité de mise en œuvre. Les méthodes sans maillage et les
méthodes aux frontières immergées sont toutes deux considérées comme des alternatives
à la méthode traditionnelle des éléments finis. Un algorithme complet de recalage non
rigide est documenté et testé avec des scénarios réels. Finalement, une introduction des
solutions émergentes en apprentissage automatique et réseaux de neurones est également
fournie.

Mots-clés: Modèle biomécanique, Méthodes sans maillage, Méthodes aux frontières im-
mergées, Recalage non rigide, Déformation du foie, Assistance peropératoire, Réalité aug-
mentée

Abstract

This thesis addresses the problem of soft tissue simulation for augmented reality applica-
tions in liver surgery assistance and, more specifically, the implementation of a non-rigid
registration pipeline to be used by the medical staff to generate interactive deformations of
a patient specific liver three-dimensional virtual representation. A formal physics-based
framework is first defined and used as the basis for the construction of a biomechani-
cal model capable of producing realistic deformations. Four basic requirements guided
the development of the model: accuracy, speed, stability and simplicity of implementa-
tion. Meshless and immersed-boundary methods are both considered as alternatives to
the traditional finite element method. A formal non-rigid registration algorithm is fi-
nally documented and tested with real-life scenarios. A comparison with new and rising
machine learning and neural network solutions is also provided.

Keywords: Biomechanical model, Meshless methods, Immersed-Boundary methods,
Non-rigid registration, Liver deformation, Intra-operative guidance, Augmented reality

I

À ma femme...

II

Acknowledgments

Tout d’abord, j’aimerais remercier mon directeur de thèse, Stéphane Cotin, qui
non seulement m’a permis de réaliser ce projet de thèse, mais m’a également permis
de vivre une expérience de vie inoubliable. Merci Stéphane pour ton soutient, tes
sages conseilles, ta patience et ton écoute. Surtout, merci de m’avoir si bien
transmis ta passion pour ce domaine de recherche.

I would like to express my gratitude to the members of my thesis committee:
Adam Wittek, Fabrice Jaillet, Ole Jacob Elle and Yannick Privat. I want to
address a special thanks to the two reviewers Adam Wittek and Fabrice Jaillet.
Having its thesis read and reviewed by such renowned experts despite their busy
schedule is truly an honor.

J’aimerais remercier Hugo Talbot, d’abord pour m’avoir si bien intégré dans
l’équipe au début de cette thèse, puis pour ton support constant durant le reste
ce celle-ci. Au-delà du travail, toi, Frédérique Roy et Andrea Mendizabal êtes
devenus mes confidents, mes partenaires de soirées, et mes meilleurs amis. Vous
avez éclairé les moments les plus sombres de cette thèse et je vous en serai toujours
reconnaissant.

Merci à Vincent Magnoux de m’avoir accompagné dans ce début thèse au
débrouillage et à la difficile implémentation des méthodes sans maillage. J’espère
de tout coeur que nous aurons l’occasion de retravailler ensemble, nous formons
une équipe incroyable. J’ai adoré travailler avec toi.

Merci à mon père, Gilles Brunet, pour son appui incommensurable du début
à la fin de ce projet. Merci, papa, de m’avoir constamment encouragé à aller au
bout de mes rêves. Merci pour l’aide colossale que tu m’as apportée à la rédaction
et à la relecture de ce manuscrit.

Finalement, j’aimerais remercier ma femme, Aurélie, sans qui cette thèse n’aurait
tout simplement pas été possible. Merci d’avoir été à mes côtés chaque jour de ce
projet interminable. Merci pour ta patience, tes encouragements, et ton soutien
inconditionnel. Cette thèse t’appartient tout autant qu’à moi. Nous formons une
équipe exceptionnelle, et chaque jour je réalise un peu plus la chance que j’ai de
t’avoir comme femme et mère de nos enfants. Merci d’être dans ma vie.

III

List of acronyms

AR Augmented Reality

CAI Computer-Assisted Interventions

CG Conjugate Gradient

CT Computed Tomography

DOF Degrees Of Freedom

FC Finite Cell

FCM Finite Cell Method

FE Finite Element

FEM Finite Element Method

FPK First Piola-Kirchhoff

HiPerNav High Perfomance Soft Tissue Navigation

IB Immersed boundary

ICP Iterative closest point

ITN Innovative Training Network

LMS Least median of squares

MIS Minimally Invasive Surgery

ML Machine Learning

MLAMBI Meshless Approximation Mesh-Based Integration

MLS Moving Least Squares

MRI Magnetic Resonance Imaging

MTLED Meshless Total Lagrangian Explicit Dynamics

NN Neural Network

NR Newton–Raphson

OR Operation Rooms

PBA Point-Based Animation

PC Points Cloud

PCA Principle Components analysis

PDE Partial Differential Equation

PIC Particle In Cell

SOFA Simulation Open Framework Architecture

SPH Smoothed Particle Hydrodynamics

SPK Second Piola-Kirchhoff

SVD Singular Value Decomposition

SVK Saint Venant–Kirchhoff

TFCM Tetrahedral Finite Cell Method

US Ultrasound

VR Virtual Reality

WC Weighted Cell

V

Contents

Dedication I

Acknowledgments II

List of acronyms III

Contents IV

Chapter 1 Introduction 1
1.1 Liver surgery simulation . 2
1.2 Augmented reality for liver surgery 4
1.3 Key requirements . 7

1.3.1 Accuracy . 7
1.3.2 Speed . 8
1.3.3 Stability . 8
1.3.4 Simplicity . 9

1.4 Objectives of this thesis . 9
1.5 Contributions . 13
1.6 Outline . 14

Chapter 2 Continuum mechanics, finite elements and imple-
mentation design 15
2.1 Lagrangian description of a deformation 17
2.2 Hyper-elasticity: a relation between strains and stresses 21
2.3 Hyperelastic materials . 24

2.3.1 St-Venant-Kirchhoff . 25
2.3.2 Neo-hookean . 26

2.4 Balance equations . 28
2.5 Lagrangian description of the weak formulation 29
2.6 Discretization of the weak formulation 31
2.7 Linearization of the weak formulation 37
2.8 Isoparametric elements . 40
2.9 Development of a generic and efficient library 46
2.10 Discussion . 51

Chapter 3 Meshless methods 53
3.1 Literature review . 55

3.2 Kernel and shape functions . 58
3.3 Point-based animation . 61

3.3.1 Point-based numerical integration 62
3.3.2 Shape function: SPH approximation 64
3.3.3 Shape function: MLS approximation 65
3.3.4 Discussion . 67

3.4 Meshless Approximation Mesh-Based Integration 68
3.4.1 Shape function: MLS approximation 68

3.5 Linear elasticity . 71
3.6 Corotational elasticity . 73
3.7 Surface mapping . 76
3.8 Neumann boundary condition . 78
3.9 Dirichlet boundary condition . 79
3.10 Solving the dynamic system . 81
3.11 Results . 83
3.12 Discussions . 93

Chapter 4 Immersed boundary methods 95
4.1 Literature review . 96
4.2 The choice of background element type 99
4.3 Immersed-boundary discretization and integration 101
4.4 The Finite Cell approach . 102
4.5 The Weighted Cell method . 105
4.6 Neumann boundary condition . 107
4.7 Dirichlet boundary condition . 108
4.8 Preliminary validation of the Weighted Cell method 110
4.9 Experiments performed on an in-vivo porcine liver 118
4.10 Experiment performed on an ex-vivo human liver 123
4.11 Discussions . 125

Chapter 5 Implementation of a non-rigid registration pipeline127
5.1 Surface reconstruction . 128
5.2 Initial rigid registration . 129
5.3 Deformable registration . 132
5.4 Experiments performed on in-vivo porcine livers 139
5.5 Experiments performed on an ex-vivo human liver 144
5.6 Experiments mixing IBM and machine learning techniques 148
5.7 Discussions . 153

Chapter 6 Conclusion 155

Chapter 7 Brief summary in French 159
7.1 Introduction . 159
7.2 Méthodes sans maillage . 161

7.2.1 Animation basée sur les points (Méthode PBA) 162
7.2.2 Approximation sans maillage, intégration avec maillage . . . 164

7.3 Méthode aux frontières immergées 165
7.4 Application à la chirurgie . 168

bibliography 171

List of publications 183

Chapter

1

INTRODUCTION

1.1 Liver surgery simulation . 2

1.2 Augmented reality for liver surgery 4

1.3 Key requirements . 7

1.3.1 Accuracy . 7

1.3.2 Speed . 8

1.3.3 Stability . 8

1.3.4 Simplicity . 9

1.4 Objectives of this thesis . 9

1.5 Contributions . 13

1.6 Outline . 14

Simulations of physical phenomenons through numerical and computer engineering
are nowadays well embedded in our society. Applications vary widely and range
from structural design of infrastructure, realistic animations in movies and video
games, intermolecular interactions of human cells, airflow and heat transfer in large
cities, efficient design of microprocessors, and more recently, estimations of virus
propagation from respiratory droplets in the COVID-19 pandemic situation.

In this thesis, we are interested in a very specific application: the simulation of
soft tissues for augmented reality in liver surgery interventions. Our project was
part of the European Innovative Training Network (ITN) High Perfomance Soft
Tissue Navigation (HiPerNav) funded by the European Union’s Horizon 2020

2 Introduction

Research and Innovation program under a Marie Skłodowska-Curie grant. In this
program, 16 PhD students worked jointly to research and develop new methods in
various areas of soft tissue navigation.

In this chapter, we first discuss the relevance of physics-based soft tissue simula-
tions for computer-assisted interventions. We will present some of the challenges
found in this field, how they were approached in the past, and the reasons why
they are still the object of many ongoing research. We will then discuss the prob-
lematic at the center of this thesis, and some of the hypotheses that will be used
to address it. Finally, we will conclude with a clear record of the contributions
found in this work and a detailed plan of the manuscript.

1.1 Liver surgery simulation

The human liver is a complex and fascinating organ. Located just below the
diaphragm, it is one of the largest organs of the human body with an average width
of 15 centimeters. Weighing approximately 1.5 kilograms, it is also the heaviest,
just before the brain and the lungs. Its functions vary from the production of
the bile, synthesis of many proteins and enzymes, breakdown of hormones such as
insulin, and bare many more vital duties. It is also the only internal organ having
the extraordinary capability to regenerate up to 25% of its lost tissue.

Unfortunately, it is also an extremely frequent target of various cancers. In fact,
primary liver cancers are the sixth-most frequent cancers found in humans. With
about 782 000 deaths in 2018, they also hold the tragic second place at being the
deadliest cancers worldwide [Bray et al. (2018)]. Many efforts are made to reduce
these numbers and partial liver resection remains the optimal treatment [Gilg et al.
(2017); Fong and Tanabe (2014)]. The general idea here is to physically remove
malignant tumors from the liver, hopefully before cancer cells spread elsewhere.

Liver resections have traditionally been done through open surgery, which means
that surgeons make a large incision (usually around 20 centimeters) across the right
upper abdomen of the patient in order to access its organ. However, depending
on the location and size of tumors, a Minimally Invasive Surgery (MIS), often
called a laparoscopic surgery in the context of abdominal interventions, can also
be done (figure 1.1). During this type of intervention, only three to four tiny
incisions (usually of less than 1.5 centimeters each) are made on the patient’s
abdomen. The abdomen of the patient is inflated with carbon dioxide, creating an
artificial pneumoperitoneum (pneumatosis in the peritoneal cavity). A laparoscope,

1.1 Liver surgery simulation 3

an advanced surgical tool to which a camera is attached and connected to a fiber
cable, is then inserted inside one of the incisions. The pneumoperitoneum creates
a working space for the surgical team to move the laparoscope and other surgical
tools inside the patient.

Figure 1.1: Laparoscopic surgery (Samuel Bendet, US Air Force, Wikipedia)

MIS benefits are numerous. The use of smaller incisions diminishes post-operation
pain which contributes to reducing sedative medication. It also shortens the recov-
ery time, lowers the chances of hemorrhaging, reduces the risk of infections, and
in some cases avoid the need for general anesthesia [Viganò et al. (2009); Bajwa
and Kulshrestha (2016); H. Li et al. (2017)].

However, a MIS procedure is more difficult to accomplish compared to a traditional
open surgery. Movements of the laparoscopic instruments during the intervention
are highly limited, thus surgeons require a lot of dexterity. They also require an
extensive training which isn’t always possible due to material, time and logistic
costs. In fact, the training of surgeons for MIS procedures is the main motivation
behind a large field of surgery simulations: the virtual training of laparoscopic
intervention using surgery simulators. Instead of practicing MIS maneuvers on
animals or human cadavers - which is not only expensive but also brings a lot
of ethical considerations - surgeons can develop their skill in a completely virtual
environment. There, physically plausible animations of a human liver and its
surroundings are made available to students. When combined with a haptic device
which mimics tactile sensations of laparoscopic tools, surgeons are immersed into
a virtual world that prepares them to real life interventions. Benefits of virtual
training have been demonstrated on many occasions [Haluck et al. (2001); Seymour
et al. (2002); Feudner et al. (2009); Haller et al. (2009); Selvander and Åsman
(2012)].

But even for a well-trained and experienced surgeon, a MIS intervention remains

4 Introduction

Figure 1.2: Retina surgery simulator with haptic feedback

a complex procedure. Poor depth perception from the laparoscope camera makes
difficult the navigation of the surgical tools. Not being able to tactically feel
the tissue makes it hard for the surgeon to locate vessels or tumors. Moreover,
any surgical plan made before the operation using medical images such as Com-
puted Tomography (CT) scan or Magnetic Resonance Imaging (MRI) can be-
come difficult to interpret during the intervention since the shape of the liver will
deform significantly due to the pneumoperitoneum. These difficulties motivated
another large (and more recent) field in surgery simulations: augmented reality for
computer-aided intervention.

1.2 Augmented reality for liver surgery

The main goal of Augmented Reality (AR) applications is to enhance the objects
found in the real-world environment of an user by overlaying computer-generated
information across multiple sensory modalities. The enhancement can take many
forms such as an augmented visual view of the surrounding objects, haptic feedback
tools that simulate physical contacts, advanced 3D sound rendering, etc. When
sensory modalities are completely substituted by computer-generated ones, we fall
into the branch of Virtual Reality (VR) applications. The real-world environment
is then replaced by a virtual one resulting in a complete immersion.

In this thesis, we are interested in applying the AR approach in the context of
Computer-Assisted Interventions (CAI). The research field of CAI is quite exten-
sive and includes applications varying from medical robotics to needle insertion
assistance, surgical planning, medical-image processing, and many more. Some
of them, in particular surgical and interventional navigation applications, aim at

1.2 Augmented reality for liver surgery 5

improving the workflow of a medical team during a surgical intervention. When
coupled with AR, it will usually take the form of projecting computer-generated
information of the current procedure directly onto images taken in real time. This
can be done, for example, by using specialized AR glasses, or by simply overlying
the generated information on top of the images acquired by a camera such as a
laparoscope.

Our research effort will focus on a very specific application of Augmented Re-
ality (AR) to the Computer-Assisted Interventions (CAI) field: augmented re-
ality for computer-assisted surgery. Our goal will be to automatically deform a
three-dimensional virtual representation of a patient’s liver such that it constantly
matches the real shape of the organ during surgery, a concept called non-rigid reg-
istration. It can be seen as an extension to rigid registration whereby the virtual
organ is overlaid onto acquired images of the patient’s liver and it is viewed as
"rigid", hence does not deform. Note that the registration concept is not restricted
to 3D virtual models and is also applied to different medical modalities, such as
registering MRI 2D slices taken before the surgery to ultrasound images acquired
during the operation.

(a) Open surgery (b) Laparoscopic surgery

Figure 1.3: Non-rigid registration where the deformed virtual model of a liver is
overlaid on the top of images taken during the surgery.

The overlay of the virtual 3D model (see figure 1.3) can be used by the medical team
to better adjust the initial surgery plan as the procedure advances. For example,
it can be used to visualize the location of tumors, or to avoid the resection of
critical parts of the liver. This is especially useful for laparoscopic interventions
since, as mentioned before, surgeons can only rely on surgical tools and do not
have any tactile perceptions of the liver that would normally allow them to feel
the location of a tumor or blood vessel. The liver having undergone extensive
deformations from the pneumoperitoneum, surgeons might also have difficulties to
locate its internal structures from medical images taken before the surgery when
the liver had a completely different shape and orientation.

6 Introduction

A typical AR workflow in non-rigid MIS goes as follows. First, an initial pre-
operative MRI or CT scan of the patient’s liver is done. In the case of a CT scan,
a radio contrast (generally iodine-based) is usually injected to better highlight the
internal structures such as blood vessels or tumors. Both MRI and CT scans will
produce a series of 2D images that are merged into a single 3D image using volume
rendering techniques [Udupa and Herman (1999)]. The 3D image is represented
by a grid of voxels (3D rectangular cells). Each voxel is assigned a color intensity
that can be used to differentiate between material properties at different locations
within the patient’s body. At this point, the 3D image does not differentiate
the liver from its surrounding tissues and organs. The second step consists in
isolating the liver from the rest of the image, a process called segmentation. It
is normally done through either a manual, automatic or semi-automatic method
using advanced medical imaging software. Additional segmentation is normally
being done to isolate the internal structures of the liver such as blood vessels and
tumors from the remaining of its parenchyma. Optionally, a triangulation step
such as the marching cube algorithm [Newman and Yi (2006)] is performed on the
segmented image to produce a surface mesh that delimits the boundaries of the
liver and its internal structures.

Figure 1.4: Typical non-rigid registration workflow for laparoscopic CAI

From the segmented images (or surface meshes), labels are assigned to different
parts of the liver together with material parameters. These parameters are used
to define the deformable behavior of a biomechanical model which is at the core
of the workflow. As can be seen in figure 1.4, the biomechanical model is the glue
between the pre-operative data, the real-time acquired data during the surgery
(intra-operative data), and the overlaid AR information showed to the medical
team and will be the general context of this thesis.

1.3 Key requirements 7

1.3 Key requirements

The biomechanical model can be seen as a black box having the pre-operative
liver reconstruction (either in the form of segmented 3D images or surface meshes
of its boundaries) and its elasticity parameters as initial inputs. For this reason,
the model is often called the patient-specific biomechanical model. When given
some information on the current state of the liver during the surgery, the model
will generate a deformed shape of the pre-operative reconstruction. Several ap-
proaches can be used to produce a deformation. However, within the context of
an AR application for CAI, we are looking for numerical methods that meet very
specific requirements given the high standards of a medical environment and more
importantly, the potential impacts on the patient.

Four key requirements will be used to guide the development of our biomechanical
model: accuracy of the solution, computational speed, stability and the simplicity
of the overall process.

1.3.1 Accuracy

Accuracy is usually the first requirement to be considered in medical applications
such as surgery simulations. In our context, this requirement can be formulated
as how close the virtual liver generated by the biomechanical model is from the real
organ? It is measured using the internal structures of the liver and their positions
predicted by the model. The model will therefore be considered accurate if the
computed deformed shape of the liver and its internal structures match the true
organ deformations observed during the surgery.

This requirement led us naturally to the theory of elasticity and other continuum
mechanic concepts that allows the state of a material having undergone external
forces to be described mathematically. In a surgical context, these external forces
usually result from the surgeon’s manipulations on the liver, the effect of gravity
or the pneumoperitoneum. Hence, the mathematical equations describe the equi-
librium between these external forces and the internal elastic forces of the organ
that tries to regain its initial shape at rest. The solution produced by the biome-
chanical model is therefore the deformed shape that cancels out the internal and
external forces. To reach this equilibrium, the model needs to execute a series of
numerical operations. Given the complexity of mathematical equations required
to produce exact solutions, approximations or heuristics must be used. Our choice
of approximations will obviously be guided by the level of accuracy required for

8 Introduction

surgical applications.

1.3.2 Speed

The main motivation of an AR workflow is to output accurate information dynam-
ically to allow the medical team to adapt their surgical plan in real-time. If the
workflow requires too much time to produce its output, the medical team might
simply ignore the simulation tool because the gains associated with a slow AR
solution would be outweighed by the risk of affecting the outcome of the surgery.
Hence the speed objectives for our model depend entirely on where the medical
team will place the risk of a slow response versus the usefulness of the simulation.
This is in total contrast with the behavior found in surgical simulations for VR
applications where the speed criterion is set for an optimal immersion, and is usu-
ally well defined in the literature. For example, a typical surgery simulator will
usually try to update the visual of the virtual organ between 30 to 60 times per
second to achieve a feeling of continuous motion, and an update rate of about 1000
Hz for haptic devices [J. Zhang, Zhong, and C. Gu (2017)].

In the context of this thesis, we assume that the medical team will not be constantly
looking at the AR display and we will therefore tend to relax this constraint.
Clearly, an accurate solution should be given in a much lower time frame than
what is usually required for hybrid OR to acquired an intra-operative volumetric
image. From our experience, contrast-enhanced CT and cone beam CT image
acquisitions can easily take up to 15 minutes for an experienced surgical team.

1.3.3 Stability

In a simulation environment, stability is related to the robustness of the numerical
method when facing unpredictable and often non-physical inputs. These inputs
may come from a noisy and incomplete surface reconstruction of intra-operative
liver images acquired during the surgery. For example, the reconstruction could
misinterpret some parts of the tissues surrounding the liver as the liver itself. The
model will therefore try to produce a shape that does not make any physical sense.
As we will see in the following chapters, complex biomechanical models targeted
at very accurate simulations will usually be very sensitive to these non-physical
inputs and will often diverge completely, thus requiring a complete restart of the
simulation. On the other hand, a method using weaker approximations will be less
sensitive to those inputs, but might produce numerical artifacts. These artifacts

1.4 Objectives of this thesis 9

might accumulate and, at some point, reach a state where the simulation can no
longer continue. This is obviously not desirable and the choice of the numerical
method must reflect a balance between the two.

1.3.4 Simplicity

The last three requirements will tend to require a certain amount of complexity
that will undoubtedly affect the implementation of the method, its operation or
both. A balance between these three requirements against the amount of config-
uration work and technical knowledge imposed on the end user is required. This
is even more essential in the context of patient-specific simulation. The biome-
chanical model has to be reconfigured for each patient in order to incorporate,
for example, accurate information on the location of its tumors or blood vessels,
external structures attached to the liver that restrict its movement inside the peri-
toneal cavity, and material properties. Since the time between a pre-operative
scan and the surgery might be quite short, sometimes less than half a day, it is
clear that the configuration of the model should remain as fast and effortless as
possible. With the rise of fully automatic segmentation methods [Luo, X. Li, and
J. Li (2014)], it seems natural to lean towards a method that requires a minimal
amount of configuration work, thereby getting closer to a fully automatic CAI
workflow.

A biomedical model that is simple to implement is also quite important as it may
impact the decision of pursuing or not a given research approach. For example,
and as we have realized during this thesis, obtaining the necessary resources to
implement a complex method might simply be too expensive and ultimately re-
solves in the research team simply dropping this direction of research. Another
consideration is the amount of work required to set up the biomechanical model.
Depending on the approach used, this work may often be completely or partially
lost as soon as the topology of the simulated object changes. In our context, these
types of changes arise when the liver is cut, or teared in parts. A numerical method
requiring that a large number of elements be recomputed after a topological change
may quickly become too time consuming and expensive for the medical team.

1.4 Objectives of this thesis

Managing pre-operative data and real time acquired intra-operative images repre-
sents a challenging task and requires the usage of patient-specific biomechanical

10 Introduction

models capable of accurate registrations between different imaging modalities. The
model is normally based on a mathematical framework made of a set of Partial
Differential Equation (PDE)s, often called constitutive equations, that has to be
numerically solved. In this framework, the discretization of the virtual domain is
required and multiple approaches are possible. However, very few meet the four
key requirements listed in the previous section.

Finite Element methods have been the de facto approach for accurate surgery
simulations, both for virtual training and CAI applications [J. Zhang, Zhong, C.
Gu, and Coloe (2017); F.-y. Li et al. (2018); Malukhin and Ehmann (2018)]. The
general idea behind FE methods is to reduce the initial Partial Differential Equa-
tion (PDE) problem to a finite set of weaker and discrete equations that have to
be solved on geometrical elements. Hence, the interior volume of the simulated
object, or the virtual organ in our case, is filled with a mesh of iso-parametric
elements (tetrahedra, hexahedra, prisms, etc.). In this mesh, two adjacent ele-
ments are joined through common nodes between them. Since we can easily define
geometrical procedures to integrate and interpolate a field function within these
elements from the value of their nodes, the problem of finding a deformed state of
the whole volume can be transposed to that of solving the deformed state of the
mesh’s nodes. Hence, in a three-dimensional problem, we will say that a discrete
node has three unknown, often called Degrees Of Freedom (DOF), namely the x,
y and z components of the nodal displacement vector u ∈ ℜ3.

The main issue with classical FE methods is with the quality of the mesh which
greatly influences the criteria associated with our key requirements. The domain
of interest must be discretized by a mesh of geometrical elements that conforms to
its boundary and the interface between different internal structures of the organ.
For this purpose, a dense mesh made of a large quantity of elements around angled
boundaries is usually required [Wu et al. (2001)]. Because the numerical opera-
tions of the methods are executed on every one of these elements, a dense mesh will
rapidly degrade the speed of the simulation. Alternatively, a coarser mesh could be
made from fewer but distorted elements (e.g. sliver elements). These badly shaped
elements are known to cause various numerical issues, hence failing the robustness
requirement [P.-L. et al. (2016); Bathe and L. Zhang (2017)]. Finally, a mesh could
be built out of fewer and well-formed elements by relaxing this boundary confor-
mance constraint, thus allowing elements to cross the boundaries of the simulated
domain. As we will see in chapter 4, these nonconforming meshes directly affect
the accuracy of the solution unless special attention is made for the computation
over elements cut by the boundary. Figure 1.5 illustrates this problem. Hence,
the discretization process can rapidly become a tedious task, especially in patient-
specific models where the surface mesh is generated from medical images, leading

1.4 Objectives of this thesis 11

to complex, often incomplete or invalid surface representation with many inter-
nal structures. This is in total contradiction with the simplicity requirement we
chose to impose on the overall process. In fact, an experienced engineer can easily
spend several hours, sometimes even days, to create a FE mesh that accurately
reflects the important structures of the liver, that is robust enough to handle large
deformations, and that is able to produce real-time solutions.

not accurate
(Elements don't follow boundaries)

too slow
(Too much elements around boundaries)

unstable
(baldy shaped elements)

Figure 1.5: Typical meshing difficulties found with standard FE methods.

To alleviate the difficulty inherent to the meshing process inside the boundaries,
we are looking for an alternative to the traditional use of Finite Element (FE)
methods while preserving the concept of physics-based simulation concepts from
the continuum mechanics theory. The main question that we wish to address is
therefore:

“Can we develop an alternative method driven by the balance of linear momentum
and capable of patient-specific liver simulations for accurate non-rigid registration
between pre-operative and intra-operative data?”

More precisely, we will consider a subset of Galerkin methods where a system of
continuous Partial Differential Equation (PDE)s is converted to a discrete problem
of residual minimization over a geometrical discretization of the simulated domain.

12 Introduction

Obviously, the elaboration of our candidate methods will be influenced by our four
key requirements.

The Galerkin methods considered in this thesis are classified in three branches.
The first one, mesh-based methods, includes methods where both the integration
and the approximation of a field function over the domain is done through a mesh
of geometrical elements. When the boundary of this mesh matches the boundary
of the simulated domain, and when the approximation of a value within an element
depends only on the element’s nodes, the result is equivalent to the classical Finite
Element method. When the mesh is allowed to overlap boundaries, we fall into
the field of Immersed boundary (IB) methods. Here, the simulated domain is said
to be immersed into a computational background mesh.

The next branch, meshless methods, includes methods where both the integration
and the approximation are done using numerical analysis of clouds of points. In-
stead of discretizing the domain with a mesh of elements, the interior is simply
filled with nodes representing the DOF of the system. The approximation of a
value anywhere inside the domain is done by looking at the value of neighbor-
ing nodes. Special numerical schemes have to be constructed to integrate a field
function over the domain.

The third and final branch are the hybrid methods which are a mixture of mesh-
based methods and meshless methods. Usually, a mesh of elements is used for the
numerical integration of the field function, whereas clouds of points are used for
the approximation.

Our hypothesis is that, given an initial volumetric reconstruction of a liver before
surgery, and given partial reconstructions of the same liver surface during the
surgery, an IB method, a fully meshless method and a hybrid method can all be
used to deform a biomechanical model and meet our four key requirements.

1.5 Contributions 13

1.5 Contributions

The contributions made in this research project are divided in five parts:

Contribution 1 Standardization of the parts of the theory of hyper-elasticity in
continuum mechanics that were necessary for our simulation framework

Contribution 1.1 Identification of physical tensors and their simplifications

Contribution 1.2 Identification of the constitutive laws

Contribution 1.3 Description of the mathematical tools related to the theory

Contribution 1.4 Description of the discrete terms that will have to be imple-
mented by our considered numerical methods

Contribution 2 Meshless method

Contribution 2.1 Analysis of particle-based approximation methods

Contribution 2.2 Analysis of particle-based integration methods

Contribution 2.3 Design and implementation of prospective meshless methods

Contribution 2.4 Identification of the limits and sources of error of these meth-
ods

Contribution 3 Hybrid method

Contribution 3.1 Analysis of particle-based approximation methods coupled
with mesh-based integration methods

Contribution 3.2 Design and implementation of prospective hybrid methods

Contribution 3.3 Identification of the limits and sources of error of these meth-
ods

Contribution 4 Immersed boundary method

Contribution 4.1 Analysis of current IB methods

Contribution 4.2 Design and implementation of prospective IB methods

Contribution 4.3 Identification of the limits and sources of error of these meth-
ods

Contribution 5 Non-rigid biomechanical registration framework

Contribution 5.1 Design and implementation of a non-rigid registration
pipeline based on a biomechanical model

Contribution 5.2 Validation of our implementations in real-life scenarios

14 Introduction

1.6 Outline

The outline of the thesis stems directly from our research objectives. We will
begin with an introduction of the theory of hyper-elasticity. In chapter 2 we will
explicitly state the system of partial differential equations which will be solved in
our simulations. It will highlight the discrete terms that will be used to establish
the weak formulation of the optimization problem that we wish to implement.
It will also put the basis of the mathematical framework and the notation to be
used throughout this document. Chapter 3 will describe our analysis of meshless
and hybrid methods and their positions with respect to traditional finite element
methods. A variant aimed for interactive simulations will be proposed. In chapter
4, we will review immersed-boundary methods. Similarly to the meshless methods,
we will propose an immersed-boundary method well adapted to our main objective.
Chapter 5 will present a non-rigid registration framework based on a physics-driven
iterative closest point algorithm. Validation and experimentation of our considered
methods within this framework will be presented. Chapter 6 will close this thesis
with a conclusion and a summary of the observations made throughout our work
and our recommendations for future research.

Chapter

2

CONTINUUM MECHANICS, FI-

NITE ELEMENTS AND IMPLE-

MENTATION DESIGN

2.1 Lagrangian description of a deformation 17

2.2 Hyper-elasticity: a relation between strains and stresses 21

2.3 Hyperelastic materials . 24

2.3.1 St-Venant-Kirchhoff . 25

2.3.2 Neo-hookean . 26

2.4 Balance equations . 28

2.5 Lagrangian description of the weak formulation 29

2.6 Discretization of the weak formulation 31

2.7 Linearization of the weak formulation 37

2.8 Isoparametric elements . 40

2.9 Development of a generic and efficient library 46

2.10 Discussion . 51

The numerical models discussed in this thesis are derived from basic elasticity
principles that originated from the field of continuum mechanics. This allows
us to represent the deformation of an object that undergoes an external force
with some well-known mechanical concepts. One of them is the displacement
function. For any point inside the simulated object, the displacement function
returns a vector between the initial and terminating positions of a deformed point
inside the object. After studying different kinds of elastic objects, researchers have

16 Continuum mechanics, finite elements and implementation design

managed to build relationships between a force applied to an object, the resulting
deformation, and the material properties (i.e., the resistance of a material against
stretch and compression). These relationships are formulated as a function of the
derivatives of the displacement function. In order to get an explicit representation
of the deformation, a set of Partial Differential Equations (PDEs) must therefore
be solved. The displacement function that results from the resolution of the PDEs
can be viewed as a balance between the internal elastic forces of the object and the
external forces exerted on it. In reality, the internal elastic force corresponds to the
potential energy stored by the object from the deformation in order to regain its
initial shape once the external force is removed. This potential energy must always
be equal to the amount of external energy applied to the object, which corresponds
to the equilibrium state of the system. Hence, solving the displacement function
from the PDEs will yield the displacement of any point of the object from its
initial position at rest to its deformed position once the equilibrium state has been
reached.

This chapter presents the mathematical framework behind these basic concepts.
It provides a formal derivation of the PDE problem to be solved as well as other
important elements associated with the non-linear elasticity theory. This includes
the transposition of a system of continuous equations into a discrete problem that
can be solved using standard numerical algorithms. This discretization problem
will be at the heart of the methods proposed later in this thesis.

Most of the concepts and mathematical equations presented in this chapter are
documented in Wriggers (2008) (in English) and André Fortin and Garon (2018)
(in French). These books will be extensively referenced throughout the remainder
of this document. Because they form the foundations of our models, we have de-
cided to explain in detail the derivation of some of the key equations. We are also
presenting this information for reference purposes to facilitate the development
of software tools in future research. Moreover, to study advanced numerical ap-
proaches and stepping outside of the traditional FE methodology, we implemented
these concepts in an advanced simulation software library. Technical details and
challenges encountered during the implementation are presented at the end of this
chapter.

2.1 Lagrangian description of a deformation 17

2.1 Lagrangian description of a deformation

The system of equations that defines a deformation can take two forms: the La-
grangian description or its counterpart, the Eulerian description. These two rep-
resentations can be described as follows. For a dimension d, let the set E = {Ei ∈
E

d} with i = {1, . . . , d} be the orthonormal basis vectors of a Euclidean vector
space E

d centered at the origin O. The simulated object lying in this space is
defined as the bounded domain Ω ⊂ E

d. We can view this domain as part of the
space enclosed by the boundary of the object. By introducing the notion of time,
we will say that the state of rest is the shape of the object at the time t = t0

of the simulation, which is, the initial state of the object before any deformation.
During the simulation, the applied forces will deform the object, making the space
Ω a function of the time. We describe the position vector of a point inside the
initial domain as X ∈ Ω(t0) = Ω0. The coordinates of X are called the material
coordinates and are the independent variables of the system. To get the position
vector of a material point in the deformed domain at a subsequent time t1, we
define the linear map xt : Ω0 → Ωt as the rigid transformation

xt(X) = Rt ·X + Tt

where Rt is an orthogonal (rotation) matrix and Tt is a translation vector. The
vector joining the two positions of the same point is called the displacement vector
and is spawned by the vector field

ut(X) = xt(X)−X

This is represented in the three-dimensional diagram provided in figure 2.1.

From now on, subscript t will be dropped with the understanding that x and
u are evaluated at some time t. We say that the transformation x(X) and the
displacement field u(X) are formulated in terms of material coordinates (X).
This corresponds to the Lagrangian description of the system. Conversely, if the
coordinates of x, called the spacial coordinates, are the independent variables of
the system, we then have the Eulerian description. With the latter, X(x) is
the transformation map and U (x) is the displacement field. From a theoretical
point of view, both descriptions are equivalent. However, from an implementation
perspective, it is often more efficient to use the Lagrangian description, which is
what we will do from now on.

Now, taking the partial derivative of the transformation x(X) with respect to the
material coordinates, ∇X [x(X)] = ∇X [X + u], we get the deformation gradient

18 Continuum mechanics, finite elements and implementation design

O

E1
E2

E3

Ω0

X

=
(X

, Y
, Z

)

x1
(X) = (x, y, z)

Current (deformed) state
t = t1

Initial (undeformed) state
t = t0

Ω1

Fext

u
1 (X)

E
3

Figure 2.1: Left: initial state of an object. Right: Current state of the same object
where an external force is applied to its top boundary.

tensor, which is defined as

F = I + ∇Xu (2.1)

where

∇Xu =

∂u
∂X

∂u
∂Y

∂u
∂Z

∂v
∂X

∂v
∂Y

∂v
∂Z

∂w
∂X

∂w
∂Y

∂w
∂Z

 (2.2)

is the displacement gradient tensor. The deformation gradient tensor F plays a
major role in the local description of a deformation. It is used to transform a line
(X, X +dX) in the initial (undeformed) domain to its deformed shape (x, x+dx)
from the following relation

dx = FdX

Using Nanson’s relation, this equation can be extended to describe the transfor-
mation of a small area element dA around a point to its deformed shape da or a
small volume element dV to its deformed shape dv. The relations in this case are
written as follows

dan = JdAF−⊺N

dv = JdV

where J is the determinant of F, and n (resp. N) is the unit vector normal to da
(resp. dA). It is easy to see that, for an incompressible material (a material that

2.1 Lagrangian description of a deformation 19

preserves its volume after a deformation), J must be equal to 1. As we will see later,
this observation will be useful when simulating incompressible materials as special
treatment will be required around J . Figure 2.2 illustrates the transformation of
these three quantities.

dX

Current (deformed) state
t = t1

Initial (undeformed) state
t = t0

Ω1

F

E
3

Ω0
dx

dA

N

da

n

dV

dV

Figure 2.2: The deformation gradient tensor F transforms any line segment, sur-
face area or volume element from the undeformed configuration to the deformed
configuration

.

The displacement of a local body around a point consists of two parts, a rigid
motion (rotation and/or translation) that does not change the body’s shape or
size; and a pure deformation that does change its shape or its size. Hence, using
the polar decomposition, the deformation gradient tensor can be decomposed into
a product of an orthogonal tensor RF and a positive definite symmetric tensor :

F = RF UF = VF RF

where UF is the right stretch tensor and VF is the left stretch tensor (see figure
2.3).

20 Continuum mechanics, finite elements and implementation design

Ω0

Initial (undeformed) state
t = t0

Current (deformed) state
t = t1

Ω1

dX

F

RF VF

UF RF

Figure 2.3: The deformation of a small line segment dX consists of a rigid dis-
placement and a stretching deformation

.

Because a rigid motion does not produce any internal elastic potential energy
(rotating or moving a body does not deform its shape), it is useful to isolate
the component of the displacement that is associated with the sole deformation.
This quantity, called strain, gives how much a given displacement differs locally
from a rigid body motion. The orthogonality of RF implies that R⊺

F RF = I.
This naturally suggests the definition of a new deformation tensor that takes this
orthogonality into account:

C = F⊺F = U2
F (2.3)

where C is called the right Cauchy–Green deformation tensor and is independent
of the rotation.

At this point, we have all the elements required to measure the strain. Recall that,
for a local segment dX starting from any material point, a strain measurement
should give us the amount of stretch this segment has undergone. Taking the dif-
ference between the squares of the local segment dX and its deformed counterpart
dx yields

dx2 − dX2 = dx · dx − dX · dX

= dX ·C · dX − dX · dX

= dX · (C− I) · dX

= dX · (F⊺F− I) · dX

2.2 Hyper-elasticity: a relation between strains and stresses 21

Finally, by taking the symmetric part of the last equation, we define

E =
1
2

(F⊺F− I) (2.4)

as the Green-Lagrangian strain tensor which provides a measure of how much C
differs from I.

2.2 Hyper-elasticity: a relation between strains and
stresses

In continuum mechanics, stress is a physical quantity that measures the amount
of internal forces found in an infinitesimal closed space of continuous material.
Analogous to the strain which measures the change of shape between two particles
of this closed space, the stress will give the amount of force exerted between
the two. A stress that is represented by either a scalar or a vector is called a
simple stress. The two most frequent simple stresses are without any doubts the
uniaxial (or normal) stress and the shear stress. The uniaxial stress is usually
conceptualized as the ratio between the magnitude of a tractive force applied to
a small cross-section of a straight rod (in the direction of the rod), over the area
of the cross-section, i.e., σ = F

A
. The shear stress on the other hand can be

viewed as a rectangular piece of elastic material where its top face is pulled in a
direction parallel to the rectangle, and its bottom face in the opposite direction
but also parallel. As the cross-section area grows bigger, it is clear that these two
simple stresses will yield a rough approximation: they are in fact only an average
of stress across the area. Combined stress is a physical quantity that describes
multiple simple stresses at any given position. The Cauchy stress tensor is one
of them, and can be used to express both the shears and uniaxial stresses across
an imaginary surface perpendicular to a unit vector n. It is written as a traction
vector t:

t = n · σ = σ⊺ · n (2.5)

or

dft = tda = σ⊺ · nda (2.6)

22 Continuum mechanics, finite elements and implementation design

where σ is the second-order Cauchy stress tensor and is defined by :

σ =

σx τxy τxz

τxy σy τyz

τzx τzy σz

 (2.7)

which is symmetric. Here, σ and τ are, respectively, the uniaxial and shear stresses.
Figure 2.4 illustrate the different components of the Cauchy stress tensor.

Figure 2.4: Cauchy stress tensor (Sanpaz, Wikipedia)
.

The Cauchy stress tensor relates the force acting on a body to the amount of
deformation in the current deformed configuration, which means that it follows an
Eulerian description. It is possible to transform the spacial coordinates of the unit
vector n in equation (2.5) into material coordinates. Indeed, using again Nanson’s
formula, we have

σ⊺ · nda = σ⊺ ·
(

JdAF−⊺ ·N
)

=
(

Jσ⊺F−⊺
)

·NdA

= P ·NdA

= dft

where P = Jσ⊺F−⊺ is the First Piola-Kirchhoff (FPK) stress tensor. Here, the
tensor P is a two-point tensor, which means that it relates quantities in both spacial
and material coordinates. It is therefore not symmetric. Recall any small spacial
segment dx can be written in terms of material coordinates using dx = F · dX.

2.2 Hyper-elasticity: a relation between strains and stresses 23

Therefore, the First Piola-Kirchhoff can be converted to its fully Lagrangian form
using

P ·NdA = dft = F · dFt

and

dFt = F−1P ·NdA = S ·NdA

where S = F−1P is called the Second Piola-Kirchhoff (SPK) stress tensor and is
symmetric.

So far, we managed to explicitly expressed a measure of the deformation with
respect to the displacement of a point in material coordinates using the Green-
Lagrangian strain tensor E. We have also presented a symmetric stress tensor that
can relate the amount of stress at any given material coordinates to an internal
force vector. We still have to describe the relation between these two kinetic
quantities.

A constitutive relation, often call a constitutive model is an equation specific to a
type of material that ties two physical quantities together. In our case, it creates
a relation between the amount of deformation undergone by a body (the strain),
and the response of the material as internal forces (the stress). A hyperelastic
material is a type of constitutive relation for which the relation between the strain
and the stress is derived from a scalar-valued strain energy density function. Let
W (F) be this function. For an hyperelastic material, the FPK stress tensor can
be calculated using

P =
∂W

∂F
= F · ∂W

∂E
= 2F · ∂W

∂C

where we recall that the deformation gradient tensor is F, the Green-Lagrangian
strain tensor is E and the right Cauchy–Green deformation tensor is C. We will
say that the FPK stress tensor is energy conjugate to the deformation gradient.

Similarly, the SPK stress tensor is defined as

S =
∂W

∂E
= F−1 · ∂W

∂F
= 2

∂W

∂C

and is energy conjugate to the Green-Lagrangian strain tensor.

The last element of the full Lagrangian description of the internal elastic force
associated with an unknown displacement vector u that needs to be defined is the
material strain energy density function W . This requires a brief introduction of
some basic hyperelastic material models.

24 Continuum mechanics, finite elements and implementation design

2.3 Hyperelastic materials

Hyperelastic materials are constitutive models that are well suited for modeling soft
tissues and organs such as a human liver [Marchesseau, Chatelin, and Delingette
(2017)]. These models are usually divided in two categories. The first one, the
materials that are based on phenomenological descriptions, are those that can be
classified based on the response or behavior of the object that is observed just
after a known force has been applied. Hence, for this category, the modelization
is built using empirical methods. Good examples are the Saint-Venant-Kirchhoff
material, the Ogden material [R. W. Ogden (1973)] and the Mooney-Rivlin mate-
rial [Mooney (1940); Rivlin (1948)]. The other category is the mechanistic models.
In this case modelization is done from the underlying structure of the material,
usually extracted at a molecular level. The Neo-Hookean material [R W Ogden
(2013)] and the Arruda–Boyce material [Arruda and Boyce (1993)] fall in this
category.

In this thesis, we have implemented two constitutive models, namely the Saint-
Venant-Kirchhoff and the Neo-Hookean. Each of them will be described in the
following subsections. But first, we need to describe two tensor operators which
will be required for the derivation of the strain energy density function.

Let A be a second-order tensor. We define the operator A⊗A and its symmetric
part A

¯
⊗̄A as the fourth order tensors

A⊗A = (AikAjl)ei ⊗ ej ⊗ ek ⊗ el

A
¯
⊗̄A =

1
2

(AikAjl + AilAjk)ei ⊗ ej ⊗ ek ⊗ el

Using these operators, we can build the following derivation with respect to the
Green-Lagrange strain tensor E:

(

∂ tr(E)
∂E

)

= I

(

∂E
∂E

)

= I ⊗ I
sym.= I

¯
⊗̄I

(

∂E−1

∂E

)

= −E−1 ⊗ E−1 sym.= − E−1

¯
⊗̄E−1

(

∂J

∂E

)

= 2

(

∂J

∂C

)

= 2
(1

2
JC−1

)

= JC−1

(

∂f(E)T(E)
∂E

)

= T(E)⊗ ∂f(E)
∂E

+ f(E)
∂T(E)

∂E

2.3 Hyperelastic materials 25

where tr(E) = E00 + E11 + E22, J = det(F), C is the right Cauchy-Green strain
tensor, f(E) is a scalar-valued function and T(E) is a second order tensor valued
function.

In some cases, the strain energy density can be written as a function of the three
invariant (I1, I2 and I3) of the right Cauchy-Green strain tensor C. We define
them here with their derivatives with respect to C and the eigenvalues (L1, L2

and L3) of C.

I1 = tr(C) I2 = 1
2

[

(tr(C))2 − tr(C2))
]

I3 = det C = J2

= 1
2

[(I2
1 −C : C)]

∂I1

∂C
= I ∂I2

∂C
= I1I −C ∂I3

∂C
= I3C−1

∂I1

∂Li
= 1 ∂I2

∂Li
= I1 − Li

∂I3

∂Li
= I3

Li

Using the eigenvectors Ni of C, we also note the following important relations:

I =
∑3

i=1 Ni ⊗Ni C =
∑3

i=1 LiNi ⊗Ni C−1 =
∑3

i=1
1

Li
Ni ⊗Ni

2.3.1 St-Venant-Kirchhoff

The Saint Venant–Kirchhoff (SVK) material is probably the simplest of hypere-
lastic models. It is a direct extension of Hooke’s law in linear elasticity. It also
is a homogeneous and isotropic material, which means that its resistance to de-
formation is the same on every point, and for every direction. Let µ = E

2(1+ν)

and λ = Eν
((1+ν)(1−2ν))

be the Lamé’s first and second parameters, respectively, and
where E is the Young’s modulus and ν is the Poisson’s ratio. The strain density
energy function of the SVK material is defined as

W =
λ

2
[tr(E)]2 + µ tr(E2) (2.8)

The first and second derivatives of W with respect to the Green-Lagrangian strain
tensor yield the second order SPK stress tensor and the fourth order material

26 Continuum mechanics, finite elements and implementation design

tensor, respectively,

S =
∂W

∂E

∣
∣
∣
∣
∣
X

= λ tr(E)I + 2µE

❈ =
∂S
∂E

∣
∣
∣
∣
∣
X

= λ(I ⊗ I) + 2µ(I
¯
⊗̄I)

When only very small deformations are considered, the infinitesimal strain theory
can be used and the non-linear Green-Lagrangian strain tensor E = 1

2
(F⊺F − I)

can be approximated by

ǫ =
1
2

(∇Xu⊺ + ∇Xu)

where ǫ is called the small strain tensor. Substituting ǫ into equation (2.8) gives
the linear Cauchy elastic stress tensor:

σ = λ tr(ǫ)I + 2µǫ

❈ = λ(I ⊗ I) + 2µ(I
¯
⊗̄I)

which is the three-dimensional representation of the Hooke’s law and will be dis-
cussed further in chapter 3.

The Saint Venant–Kirchhoff material is simple to implement, computationally ef-
ficient and numerically robust as it contains no asymptote, hence no undermined
points. It is usually used for deformations having large displacements and rota-
tion, but small strains. For large strains, it is usually not accurate enough. It
is known to experience major deficiencies when the compression of a body ap-
proaches a volume of zero (i.e., when J → 0). In this extreme case, the stress will
also approaches zero instead of infinity [Wriggers (2008)].

2.3.2 Neo-hookean

The Neo-Hookean model can be seen as a non-linear extension of the SVK ap-
proach. In fact, the relationship between the strain and the stress is initially
linear. At a certain point, however, the stress-strain curve will reach a plateau.
The model was proposed by Ronald Rivlin [Rivlin (1948)] and does not exhibit
the deficiencies of the SVK when a large compression arises. The strain energy
density function reads as

2.3 Hyperelastic materials 27

W = µ tr(E)− µ ln(J) +
λ

2
(ln(J))2

=
µ

2
(tr(C)− 3)− µ ln(J) +

λ

2
(ln J)2 (2.9)

The first and second derivatives of W with respect to the Green-Lagrangian strain
tensor yield the second order SPK stress tensor and the fourth order material
tensor, respectively, which can also be written with respect to the invariant of C:

S =
∂W

∂E

∣
∣
∣
∣
∣
X

= 2
∂W

∂C

∣
∣
∣
∣
∣
X

= µ

[

∂ tr(C)
∂C

]

− 2µ
1
J

[

∂J

∂C

]

+ 2λ
1
J

(ln J)

[

∂J

∂C

]

= µ

[

∂I1

∂C

]

− 2µ
1
J

[

∂
√

I3

∂C

]

+ 2λ
1
J

(ln J)

[

∂
√

I3

∂C

]

= µI − µC−1 + λ(ln J)C−1

= µ(I −C−1) + λ(ln J)C−1

and

❈ =
∂S
∂E

∣
∣
∣
∣
∣
X

= 2
∂S
∂C

∣
∣
∣
∣
∣
X

= −2µ

[

∂C−1

∂C

]

+ 2λ

(

C−1 ⊗ ∂(ln J)
∂C

+ (ln J)

[

∂C−1

∂C

])

= −2µ

[

∂C−1

∂C

]

+ 2λ

(

1
J

C−1 ⊗
[

∂J

∂C

]

+ (ln J)

[

∂C−1

∂C

])

= −2µ

[

∂C−1

∂C

]

+ 2λ

(

1
2

(C−1 ⊗C−1) + (ln J)

[

∂C−1

∂C

])

= λ(C−1 ⊗C−1) + 2(µ− λ ln J)(C−1

¯
⊗̄C−1)

Here, the density of strain energy is undetermined when J ≤ 0. While reaching
a null or negative jacobian looks counterintuitive, some numerical methods can
produce solutions where elements of the mesh are inverted, or badly compressed.
Special attention is therefore required when the Neo-Hookean material is used.
These considerations will be discussed in chapters 4 and 5.

28 Continuum mechanics, finite elements and implementation design

2.4 Balance equations

To be physically accurate, the simulation of a deformable object requires that
a set of rules, or laws, be defined on the different kinematics quantities of the
system. We have to keep in mind that at the beginning of the simulation, only
the description of the initial shape of the object and the amount of external forces
applied to it are known. The shape of the object at an upcoming time t is what we
seek and is therefore unknown. The general idea behind these rules is to impose
the resolution of a set of equations on the unknown shape of the object at each
interval t in order to control or restrain the change (or rate of change) of the
simulated kinematics quantities over time. In continuum mechanics, these rules
are known as the balance of mass, the balance of linear momentum (Cauchy’s first
law of motion), the balance of angular momentum (Cauchy’s second law of motion)
and the balance of energy (first law of thermodynamics).

In the last two sections, we have defined kinematic quantities that describe the
amount of deformation (strain) and the amount of internal force (stress) of a
deformed state of a body at a given time. The remaining quantities are related
to the motion of the body over time. The density function ρ(X, t) = ρt gives
a measure of the mass per unit of volume at the material coordinates X (initial
undeformed state). The velocity v(X, t) = d

dt
xt(X) = ẋ gives the rate of change of

the position of an infinitesimal particle located at X and at the time t. Similarly,
the acceleration a(X, t) = d

dt
v(X, t) = ẍ describes the rate of change of the

velocity. The rules applied to these quantities can be written as follows:

Law Lagrangian description Eulerian description

Balance of mass ρ0 − Jρt = 0 ρ̇ + ρ∇ · v

Balance of linear momentum ρ0ẍ − ∇X · P = ρ0b ρẍ − ∇x · σ = ρb

Balance of angular momentum PF⊺ = FP⊺ σ = σ⊺

Balance of energy ρ0u̇ = S · Ė − ∇XQ + ρ0R ρu̇ = σ · d − ∇xq + ρr

where the heat flux vector q (respectively Q) and the heat source r (respectively
R) has been introduced for the Eulerian (respectively Lagrangian) configuration.
The vector b represents the external body forces that act everywhere within the
domain. A good example of this could be the gravitational force exerted on the
simulated object.

In this thesis, simulated materials will be considered of constant density throughout
the simulation, and represented only by the symmetric Second Piola-Kirchhoff
(SPK) stress tensor, hence we will assume that the conservation of mass and the
angular momentum (first and third rules) are always respected. We will also only

2.5 Lagrangian description of the weak formulation 29

consider simulations without heat. Hence, from the symmetry of the stress tensor,
it can be shown that the balance of energy is equivalent to the balance of linear
momentum [André Fortin and Garon (2018)]. The only rule remaining is therefore
the balance of linear momentum and will be the one we will focus on.

2.5 Lagrangian description of the weak formulation

The balance of linear momentum rule presented in the preceding section can be
viewed as a nonlinear initial boundary problem where a system of partial differ-
ential equations subject to boundary conditions has to be solved. To solve the
system, the general idea is to replace the exact solution u of the system by an
approximation uh which, in the case of Finite Element (FE) methods, usually
consists of a set of piece-wise continuous approximation functions. Inserting uh in
the balance equation yields

ρ0ẍ−∇X ·P(uh)− ρ0b = R (2.10)

where R is a residual from the approximation error. The error can be minimized by
multiplying the residual by a vector-valued weight function w and by integrating
the resulting equation over the initial domain. The function w is usually called
a test function, and is zero on the boundary region where an essential boundary
condition (see below) is imposed. The resulting equation is called the weak for-
mulation of equation (2.10), and the residual R is said to be minimized in a weak
sense. The weak formulation is therefore given by:

G(uh, w)− L(w) =

G(uh,w)
∫

Ω0

P : ∇Xwdv
︸ ︷︷ ︸

Internal virtual work

−
L(w)

∫

Ω0

ρ0ẍ ·wdv
︸ ︷︷ ︸

Virtual inertia

−
∫

Ω0

ρ0b ·wdv −
∫

Γt

t ·wds
︸ ︷︷ ︸

Virtual load work

(2.11)

= 0

subject to

uh = ug on Γu

30 Continuum mechanics, finite elements and implementation design

where Γ = Γt∪Γu is the boundary of Ω0, N (X) : X ∈ Γt is the unit vector normal
to the boundary. The imposed traction t and displacement ug are respectively the
natural and essential boundary conditions.

Because the stress tensor P is not guaranteed to be symmetrical, we can convert it
to its Second Piola-Kirchhoff form with P = FS. The internal virtual work term
then becomes:

∫

Ω0

P : ∇Xwdv =
∫

Ω0

(FS) : ∇Xwdv (2.12)

We can simplify this first term further by using the fact that the double dot
product between a symmetrical tensor and an anti-symmetrical tensor is zero.
Hence, if B = BS + BA where BS and BA are respectively the symmetrical and
antisymmetric parts of B, then if A is symmetric we have A : B = A : (BS+BA) =
A : BS + A : BA = A : BS + 0 = A : BS. This yield

∫

Ω0

(FS) : ∇Xwdv =
∫

Ω0

S : F⊺
∇Xwdv

=
∫

Ω0

S :
1
2

(F⊺
∇Xw + ∇

⊺
XwF)dv

=
∫

Ω0

S : δEdv (2.13)

where δE is the symmetrical part of F⊺
∇Xw. We can also note that δE = DE·w =

∂E
∂u
·w, which is why it is often called the variation of the Green-Lagrange strain

tensor.

Both equations (2.12) and (2.13) are equivalent. But we are interested in deriving
both of them as they lead to two different implementations of an equivalent finite
element code. We will address the internal virtual work, virtual inertia and virtual
load work components of equation (2.11) later in the next section. This will be
done using a discretization of the weakened continuous domain.

2.6 Discretization of the weak formulation 31

2.6 Discretization of the weak formulation

So far, we have managed to reduce the order of the PDEs by one and boundary
terms to impose traction conditions on our system are now explicitly formulated.
However, the different integration terms in equation (2.11) over a continuous 2D or
3D field of arbitrary shapes, such as a liver, is often not possible: we do not have
a numerical description of its geometry. A useful trick to overcome this problem,
which forms the basis of the Finite Element Method (FEM), consists in splitting
the global shape of the object into a series of smaller geometrical elements, such as
triangles and quads in two dimensions, or tetrahedrons and hexahedrons in three
dimensions. This concept is called discretization.

The set of elements, often call the mesh, or the tesselation, fills the entire interior
domain of the global shape. The continuous terms in equation (2.11) are replaced
by a finite sum of piece-wise continuous terms on each element, and the field
functions uh and wh by their approximation uh

e and wh
e restricted inside an element

e. Hence, approximating the value of a field function at any given position X

within the initial domain Ω0 results in finding the element e containing X, and
computing

uh
e (X) =

ne−1∑

i=0

Ni(X)ui (2.14)

where ne is the number of nodes in the element e, ui is the field value at node i,
and Ni(x) : Ω0 → ℜ is the ith shape function of the element.

Likewise, the integration of a field function over Ω0 is approximated by a finite
sum of integral over element domains Ωe:

∫

Ω0

f(X)dΩ0 ≈
∑

e

∫

Ωe

f(X)dΩe

Since this piece-wise integration will be used to construct an algebraic system
of equations, we use a notation similar to that proposed in Wriggers (2008) and
introduce the operator

⋃

+e which denotes that an assembly process takes place.
For example, let’s suppose that Ω0 ∈ E

3, and that 0 ≤ (i, j) ≤ ne with ne being
the number of geometric nodes in element e. Let’s also define NUM(i) as the
numbering method which states that the ith node of an element represents the
NUM(i), NUM(i) + 1 and NUM(i) + 2 unknowns of the algebraic system (often
called the degrees of freedom). The following equation

32 Continuum mechanics, finite elements and implementation design

R =
⋃

+
e

ne−1∑

i=0

∫

Ωe

f(X)dΩe

︸ ︷︷ ︸

Ri

with f : Ω0 → ℜ3 indicates that, for each element e, the value of the integral Ri

is accumulated into the entries NUM(i), NUM(i) + 1 and NUM(i) + 2 of the
vector R. Similarly, the equation

K =
⋃

+
e

ne−1∑∑

(i,j)

∫

Ωe

A(X)dΩe

︸ ︷︷ ︸

Kij

with A : Ω0 → ℜ3×3 indicates that, for each element e, the value of the integral
Kij is accumulated into the 3×3 sub-matrix at (NUM(i), NUM(j)) of the matrix
K.

The approximation of the displacement gradient at any point inside the element e
can be obtained with:

∇Xuh
e =

ne−1∑

i=0

ui ⊗∇XNi (2.15)

where ∇XNi = [∂Ni

∂X
, ∂Ni

∂Y
, ∂Ni

∂Z
]⊺ is the gradient of the ith shape function with respect

to material coordinates.

From this, we can approximate the deformation gradient of any point inside the
element with:

Fe = ∇Xue + I =
ne−1∑

i=0

ui ⊗∇XNi + I

=
ne−1∑

i=0

xi ⊗∇XNi −
ne−1∑

i=0

Xi ⊗∇XNi

︸ ︷︷ ︸

∇XXe=I

+I

=
ne−1∑

i=0

xi ⊗∇XNi

2.6 Discretization of the weak formulation 33

Finally, the variation of the Green-Lagrange strain tensor in equation (2.13) can
be expressed as:

δEe =
1
2

(F⊺
e∇Xw + ∇Xw⊺Fe)

=
1
2

ne−1∑

i=0

n−1∑

j=0

(xi ⊗∇XNi)⊺(wj ⊗∇XNj) + (wj ⊗∇XNj)⊺(xi ⊗∇XNi)

Using the Voigt notation, we can rewrite the last equation using the following
matrix form:

δẼe =

δE00

δE11

δE22

2δE01

2δE12

2δE02

=
ne−1∑

i=0

F00Ni,X F10Ni,X F20Ni,X

F01Ni,Y F11Ni,Y F21Ni,Y

F02Ni,Z F12Ni,Z F22Ni,Z

F00Ni,Y + F01Ni,X F10Ni,Y + F11Ni,X F20Ni,Y + F21Ni,X

F01Ni,Z + F02Ni,Y F11Ni,Z + F12Ni,Y F21Ni,Z + F22Ni,Y

F00Ni,Z + F02Ni,X F01Ni,Z + F12Ni,X F20Ni,Z + F22Ni,X

wi

=
ne−1∑

i=0

Biwi

34 Continuum mechanics, finite elements and implementation design

Note that, using F = I + ∇Xu the matrix Bi can be reformulated with:

Bi =

Ni,X 0 0
0 Ni,Y 0
0 0 Ni,Z

Ni,Y Ni,X 0
0 Ni,Z Ni,Y

Ni,Z 0 Ni,X

︸ ︷︷ ︸

BLi

+

u0,XNi,X u1,XNi,X u2,XNi,X

u0,Y Ni,Y u1,Y Ni,Y u2,Y Ni,Y

u0,ZNi,Z u1,ZNi,Z u2,ZNi,Z

u0,XNi,Y + u0,Y Ni,X u1,XNi,Y + u1,Y Ni,X u2,XNi,Y + u2,Y Ni,X

u0,Y Ni,Z + u0,ZNi,Y u1,Y Ni,Z + u1,ZNi,Y u2,Y Ni,Z + u2,ZNi,Y

u0,XNi,Z + u0,ZNi,X u0,Y Ni,Z + u1,ZNi,X u2,XNi,Z + u2,ZNi,X

︸ ︷︷ ︸

BNLi

(2.16)

where BLi and BNLi represent respectively the linear and non-linear parts of the
strain variation.

Internal Virtual Work:

We now have all discretized quantities required to describe the internal virtual
work component of equation (2.11) using either the formulation of equation (2.12)
or that of equation (2.13).

For a formulation using equation (2.12), we have

∫

Ω0

FS : ∇Xwdv =
⋃

+
e

ne−1∑

i=0

∫

Ωe

FeSe : (wi ⊗∇XNi)dv

=
⋃

+
e

ne−1∑

i=0

∫

Ωe

(FeSe ·∇XNi) ·widv

=
⋃

+
e

ne−1∑

i=0

∫

Ωe

(FeSe ·∇XNi)dv ·wi

=
⋃

+
e

ne−1∑

i=0

Ri(ue) ·wi

= R(u) ·w (2.17)

where we used the fact that, for a second order tensor A and two vectors v and

2.6 Discretization of the weak formulation 35

w, the following equality holds : (v ⊗w) : A = A : (v ⊗w) = (A ·w) · v. Here,
R(u) denotes the internal force of the body.

Alternatively, if the formulation of equation (2.13) is used, we then have:
∫

Ω0

S : δEdv =
⋃

+
e

∫

Ωe

Se : δEedv

=
⋃

+
e

∫

Ωe

δẼ⊺
eS̃edv

=
⋃

+
e

ne−1∑

i=0

w
⊺
i

∫

Ωe

B⊺
i S̃edv

=
⋃

+
e

ne−1∑

i=0

w
⊺
i Ri(ue)

= R(u) ·w (2.18)

where Ẽ and S̃ are the Voigt representation of E and S, respectively.

Virtual Inertia:

Using the same approach for the virtual inertia component, we can approximate
the acceleration field ae(X, t) within an element with

ẍe =
ne−1∑

i=0

Ni(X)ẍi

The discretization of the virtual inertia term in equation (2.11) then becomes
∫

Ω0

ρ0ẍ ·wdv =
⋃

+
e

∫

Ωe

w⊺ρ0ẍedv

=
⋃

+
e

ne−1∑∑

(i,j)

w
⊺
i

[∫

Ωe

ρ0NiNjIdv
]

ẍj

=
⋃

+
e

ne−1∑∑

(i,j)

w
⊺
i Mijẍj

= Mẍ ·w (2.19)

where the matrix M is the mass matrix of the system and is constant throughout
the simulation.

Virtual load work:

36 Continuum mechanics, finite elements and implementation design

The discretization of the traction and body force terms can also be formulated
in a similar way. However, the surface integration of the traction term will be
translated into the integration over the element’s boundary faces. Let F be the
set of faces lying on the natural boundary Γt, and ef ∈ F the face of an element e.
We have

∫

Ω0

ρ0b ·wdv +
∫

Γt

t ·wds =
⋃

+
e

ne−1∑

i=0

w
⊺
i

∫

Ωe

ρ0biNidv +
⋃

+
ef

nef
−1

∑

i=0

w
⊺
i

∫

Ωef

ρ0tiNida

=
⋃

+
e

ne−1∑

i=0

w
⊺
i Bi +

⋃

+
ef

nef
−1

∑

i=0

w
⊺
i Ti

= B ·w + T ·w (2.20)

All components combined together

Combining equations (2.18), (2.19) and (2.20) together yields the following equa-
tion

[Mẍ−R(uh)−B − T] ·w = 0

Note that for the type of simulations we are interested in, a damping matrix D

is often introduced to model damping effects occurring in structures undergoing
dynamic motion. These effects usually come from internal friction within the
material. The damping matrix normally has the form of D = αmM + αkK where
αm and αk are scalar parameters. The matrix K is called the tangent stiffness
matrix and will be discussed later in section 2.7. The damping matrix can be used
to produce a damping force vector linearly dependent on ẋ, i.e., Fdamp = Dẋ,
which gives

[Mẍ−Dẋ−R(uh)−B − T] ·w = 0

Because test functions w are arbitrary, and since x = X + u, the continuous
problem of (2.11) is thereby transformed to the discrete problem of finding the
unknown vector uh = [u0, . . . , un−1] such that

Mü−Du̇−R(uh)−B − T = 0 (2.21)

2.7 Linearization of the weak formulation 37

subject to

uh = ug on Γu

For a problem of dimension d (i.e., Ω0 ∈ ℜd) discretized with a mesh of n nodes,
equation (2.21) translates into an algebraic system of nd equations having nd
unknowns.

2.7 Linearization of the weak formulation

The dynamic equation (2.21) introduced in the last section can be solved through
either explicit or implicit time integration methods. A good review of these meth-
ods in the context of hyperelasticity can be found in Wriggers (2008).

When an implicit scheme is used, a system of non-linear equations has to be
solved. This is also the case when inertia terms are ignored and only the static
system is considered. The most popular numerical method to solve these types
of non-linear systems is without any doubt the Newton–Raphson (NR) iterative
algorithm, which we will now present in the static case (the same principle can be
easily extended to implicit formulations).

Dropping the inertia terms in equation (2.21) we get

R(uh) = F (2.22)

where F = B + T is the vector containing the external forces applied to the
simulated body. It is important to note here that the internal elastic residual
vector R(uh) is non-linear in uh due to the non-linearity of the Green-Lagrangian
strain tensor E. Hence, even a linear hyperelastic material such as the Saint
Venant–Kirchhoff model will exhibit a non-linear relationship with the displace-
ment.

The NR algorithm is based on a Taylor series development of equation (2.22) at
a known displacement state ū:

R(ū + δu) = F + R(ū) + DR(ū) · δu + r(ū) (2.23)

38 Continuum mechanics, finite elements and implementation design

where DR(ū)·δu is the derivative of R in the direction of a displacement increment
δu, and r is the residuum vector of the Taylor approximation. To derive the
elastic force vector, we first introduce the linearization of the continuous weak
term G(u, w) in equation (2.11) around ū:

L[G]Ω=Ω̄ = G(ū, w) + DG(ū, w) · δu

From now on, terms with a bar such as F̄ means the value of F evaluated at a
known displacement ū, ie F̄ = F(ū). Here, DG(ū, w) · δu = ∂G(ū,w)

∂u
· δu is the

derivative of G with respect to u evaluated at the initial displacement ū and in
the direction of δu.

For the formulation using equation (2.12), we then have:

DG(ū, w) · δu =
∫

Ω0

∂[(F̄S̄) : ∇Xw]
∂u

· δudv

=
∫

Ω0

∇Xw :

(

∂F̄S̄
∂u
· δu

)

+ F̄S̄ :

(

∂∇Xw

∂u
· δu

)

︸ ︷︷ ︸

=0

dv

=
∫

Ω0

∇Xw :

[(

∂F̄
∂u
· δu

)

S̄ + F̄

(

∂S̄
∂u
· δu

)]

dv

=
∫

Ω0

(

∂F̄
∂u
· δu

)

S̄ : ∇Xwdv +
∫

Ω0

F̄

(

∂S̄
∂u
· δu

)

: ∇Xwdv

with
(

∂Ē
∂u
· δu

)

=
[1
2

(F̄⊺ ·∇Xδu + ∇
⊺
Xδu · F̄)

]

= [∆Ē]
(

∂S̄
∂u
· δu

)

=
∂S̄
∂E

:

(

∂Ē
∂u
· δu

)

=
∂S̄
∂E

: (F̄⊺ ·∇Xδu)
(

∂F̄
∂u
· δu

)

= ∇Xδu

which yields the final linearized version of the continuous weak equation (2.11):

DG(ū, w) · δu =
∫

Ω0

∇XδuS̄ : ∇Xwdv +
∫

Ω0

F̄

(

∂S̄
∂E

: (F̄⊺ ·∇Xδu)

)

: ∇Xwdv

(2.24)

2.7 Linearization of the weak formulation 39

Equivalently, if the formulation of equation (2.13) is used, we have:

DG(ū, w) · δu =
∫

Ω0

(

∂S̄
∂u
· δu

)

: δĒ + S̄ :

(

∂δĒ
∂u
· δu

)

dv

=
∫

Ω0

(

∂S̄
∂E

: [∆Ē]

)

: δĒ + S̄ : (∇Xδu ⊗∇Xw)dv

=
∫

Ω0

∇XδuS̄ : ∇Xwdv +
∫

Ω0

δĒ :
∂S̄
∂E

: [∆Ē]dv (2.25)

Both derivations lead to the same discrete form:

DG(ū, w) · δu =
⋃

+
e

ne−1∑

i=0

ne−1∑

j=0

∫

Ωe

w
⊺
i

[

(∇⊺
XNi)S̄(∇XNj)I + B̄⊺

i ❈̄B̄j

]

︸ ︷︷ ︸

K̄ij

·δuj

(2.26)

with ❈̄ = ∂S̄
∂E

and where K̄ij is the element’s tangent stiffness matrix relating the
force acting on the node i when a small displacement of the node j occurs.

Using this result, we can formulate the direction derivative of the elastic residual
vector R as

K = DR(ū) · δu =
⋃

+
e

ne−1∑

i=0

ne−1∑

j=0

∫

Ωe

[

(∇⊺
XNi)S̄(∇XNj)I + B̄⊺

i ❈̄B̄j

]

︸ ︷︷ ︸

K̄ij

(2.27)

where K is the assembled global tangent stiffness matrix.

Dropping the residuum vector r in equation (2.23) leads to the linear system of
equations that has to be solved at an iteration k of the NR algorithm:

K(uk + δk
u) · δk+1

u = F + R(uk) (2.28)

uk+1 = uk + δk+1
u

The overall procedure is presented in algorithms 1 below.

40 Continuum mechanics, finite elements and implementation design

Algorithm 1 Newton-Raphson

1: procedure NEWTON-RAPHSON(n, ū, ǫr, ǫu)
2: δ0

u ← 0
3: u0 ← ū

4: Assemble R(u0) ⊲ Using eq. (2.17)
5: while k ≤ n do
6: Assemble K(uk + δk

u) ⊲ Using eq. (2.27)
7: Solve δk+1

u ⊲ Using eq. (2.28)
8: Assemble R(uk) ⊲ Using eq. (2.17)
9: rk ←

∥
∥
∥R(uk)

∥
∥
∥

10: uk+1 ← uk + δk+1
u

11: if rk

r0
≤ ǫr then

12: Converged

13: if ‖δk+1
u ‖
‖uk+1‖ ≤ ǫu then

14: Converged
15: k ← k + 1

2.8 Isoparametric elements

To complete the explicit formulation of the discrete problem stated in equation
(2.21), two additional components are required. The first one is the element-wise
shape functions Ni(X) needed for the approximation of the displacement field.
The second one is the integration of this field over the same element. These two
components are directly related to the discretization approach being used.

As we recall from equation (2.14), the shape functions of an element are used to
approximate a scalar or vector value at any given position inside the element’s ma-
terial subspace. A special case of shape functions are found when isoparametric
elements are used for the discretization of the domain. Here the term isoparamet-
ric element is taken from the traditional Finite Element methodology, where the
discrete subspace Ωe is enclosed inside a geometrical object, usually a polytope
(i.e., polygons for 2-dimensional manifolds, or polyhedrons for 3-dimensional man-
ifolds). With the isoparametric concept both the interpolation of a field variable
(e.g., the displacement vector field) and the geometry (e.g., the position vector
field) inside an element are derived from the same shape functions. Hence, in ad-
dition to equation (2.14), we can also interpolate the position vector of any point
within an element e having ne nodes using

2.8 Isoparametric elements 41

Xe(ξ) =
ne−1∑

i=0

Ni(ξ)Xi (2.29)

xe(ξ) =
ne−1∑

i=0

Ni(ξ)xi (2.30)

where ξ = [ξ, η, ζ] is called the local (or canonical) coordinates vector. These
coordinates represent the position of a point within a reference element denoted by
the subspace Ω�. Using these coordinates, the shape functions of an isoparametric
element can therefore be used to map the position of a point in the reference
element into its position inside either the original or deformed configuration, and
vice versa (see figure 2.5).

O X

Y

(-1, -1) (1, -1)

(1, 1)(-1, 1)

(0, 0) (1, -1)

(-1, 1)

Figure 2.5: Transformation of the coordinates of a point in Ωe to its canonical
coordinates

.

In section 2.6, we also saw that the gradient of the displacement at any point
inside an element can be approximated using the values of the displacement at the
element’s nodes and the gradient of their shape functions with respect to material

42 Continuum mechanics, finite elements and implementation design

coordinates, i.e.:

∇Xuh
e =

ne−1∑

i=0

ui ⊗∇XNi

The jacobian of the mapping described in equations (2.29) and (2.30) can be used
to transform a gradient from one basis to its counterpart in the other configuration
of the mapping. This is obtained by taking the derivatives of Xe and xe with
respect to the canonical coordinates, yielding

Je =
dX

dξ
=

ne−1∑

i=0

Xi ⊗∇ξNi (2.31)

je =
dx

dξ
=

ne−1∑

i=0

xi ⊗∇ξNi (2.32)

where ∇ξNi = [dNi

dξ
, dNi

dη
, dNi

dζ
] is the gradient of the scalar-valued shape function Ni

with respect to ξ.

The gradient of the ne shape functions Ni with respect to material coordinates
then becomes

∇XNi = J−1
e ∇ξNi (2.33)

and the displacement gradient can be computed at any points on the reference
element using

∇Xuh
e =

ne−1∑

i=0

ui ⊗ (J−1
e ∇ξNi) (2.34)

where again, thanks to the Lagrangian description, the vector (J−1
e ∇ξNi) depends

only on material coordinates and can be precomputed before the simulation.

2.8 Isoparametric elements 43

Using the isoparametric concept, we can also translate an integral on a material
element domain Ωe to an integral on the reference element domain Ω�. From
equation (2.31), we have dX = Jedξ. An integration on Ωe can therefore be
transformed to

∫

Ωe

f(X)dX =
∫

Ω�

f(ξ)Je(ξ)dξ (2.35)

When the product f(ξ)Je(ξ) is a polynomial, the integration on the reference ele-
ment can usually be analytically computed. However, when using the hyperelastic
equations presented earlier in this chapter, this product generally yields a rational
function. In this case, we usually rely on the Gauss numerical integration method
which as proved to be very accurate. The integration is therefore approximated
by a sum of values taken at different locations inside the reference element. These
sampling locations are called the Gauss (or integration) points. If we let nI be the
number of Gauss points inside the reference element, the integration can then be
approximated by

∫

Ω�

f(ξ)Je(ξ)dξ ≈
nI∑

I=1

f(ξI)Je(ξI)wI (2.36)

where ξI is are canonical coordinates of the Ith Gauss points, and wI its weight.
A description of the shape functions Ni, their gradient with respect to canonical
coordinates ∇ξNi, the location ξI of Gauss points and their weights wI for various
isoparametric elements can be found in the work of Wriggers (2008) and André
Fortin and Garon (2018).

An overview of the classical isoparametric elements for three-dimensional problems
is illustrated in figure 2.6. Here, P1 and H1 are linear elements whereas P2 and Q2

are quadratic, and will hold optimal convergence of the same order. An excellent
overview of their performance in the simulation of large deformations can be found
in Chamberland, Fortin, and M. Fortin (2010). We quickly highlight here some of
the results presented in their work. By designing a manufactured solution, they are
able to compare the relative error of the displacement norm between various meshes
made of different element types and the exact solution. Figure 2.7 illustrates the
geometry of the problem where the domain is filled with a compressible SVK
material (section 2.3.1) using a Young’s modulus of 1 and a Poisson’s ratio of 0.3.

44 Continuum mechanics, finite elements and implementation design

T
e
tr
a
h
e
d
r
o
n

H
e
x
a
h
e
d
r
o
n

Figure 2.6: Comparison of the classical tetrahedral and hexahedral elements for
3D problems.

Using a log-log scale, the relative H1-norm of the displacement error is shown in
figure 2.8a. To better appreciate the performance of these discretization choices,
figures 2.8b and 2.8c show, respectively, the relative L2-norm of the Cauchy stress
tensor error (‖σ − σh‖0,Ω) and the computation time taken from the start to the
end of the simulation.

These results were obtained using a discretization made of well-formed elements
on a very simple geometry. While the authors show similar results by adding small
perturbations on the positions of the nodes, we are not sure if similar results could
be acquired when modeling a very complex shape such as the one of a human liver.
However, it does illustrate the benefits of using higher order elements. Similarly
to the conclusion of Chamberland, Fortin, and M. Fortin (2010), we believe that,
when it is possible, higher order elements should be used for the simulation of large
deformation.

As aforementioned in the introduction, the difficulty with discretizing the domain
with these standard isoparametric is found when complex shapes with sharp and
concave boundaries have to be modeled. Mesh generation becomes increasingly
complex and, while some research is currently done for automatic hexahedral mesh
generation [Sokolov et al. (2016)], tetrahedral elements are generally preferred,
especially around sharp angles. In this case, a large number of elements are used

2.8 Isoparametric elements 45

(a) Geometry and boundary conditions
of the problem.

(b) Coarser and finer hexahedral (left)
and tetrahedral (right) meshes.

Figure 2.7: Geometry and discretization of the manufactured solution. Graphics
and captions taken from Chamberland, Fortin, and M. Fortin (2010).

to respect the geometry of these angles. This rapidly becomes problematic as it
goes against our computational time key constraint.

To overcome these difficulties and enable higher order discretizations, two research
directions can be taken. The first one would be to improve current automatic
meshing method, and represent a complete line of research on its own. Alterna-
tively, we could try to find a numerical method that either does not require at all
an element-based discretization, or at least relax the meshing constraint around
sharp features. For this thesis, we have chosen the latter. As we will describe
in the following chapters, mesh-free Galerkin methods and mesh-based immersed
boundary methods will be studied. In all cases, while we focus on linear discretiza-
tion for the sake of simplicity, all our studied methods are compatible with higher
order approximations. Note that these two lines of research are not incompatible
with each other. As we will see, most of the methods we have implemented still use
a hybrid approach where a computation mesh is necessary at some point. Thus,
while not required, we could still highly benefit from advanced automatic mesh
generation.

46 Continuum mechanics, finite elements and implementation design

(a) Relative error as a function of the
maximum element length (h)

(b) relative error as a function of the
number of DOFs.

(c) relative error as a function of the
number of CPU time in seconds.

Figure 2.8: Convergence of the manufactured solution. Graphs and captions taken
from Chamberland, Fortin, and M. Fortin (2010).

2.9 Development of a generic and efficient library

We quickly realized that the implementation of a discretization scheme outside of
the traditional isoparametric approach was not possible with most of the software
tools currently available. In most cases, these tools are simply not adequate for
a real-time application like ours which required that the intra-operative data be
dynamically injected into the simulation process. As a starting point, we therefore
derived and implemented a complete set of numerical algorithms. These have been
made available in an advanced simulation software library 1 which turned out to
be a valuable asset for the entire research team. At the end of this thesis, the
library accumulated about 17k lines of C++ code, and about 1k lines of Python
code.

The technical requirements for our research were as follows. First, we needed a

1https://github.com/jnbrunet/caribou

2.9 Development of a generic and efficient library 47

way to quickly implements new shape functions and their derivatives. Similarly,
we wanted to study different volumetric quadrature schemes. Finally, different
hyperelastic materials had to be implemented. Hence, the software design had to
be generic enough to allow a combination of all these requirements. It also had to
be efficient enough to avoid the creation of a bottleneck that would prevent the
biomechanical model from meeting its computational speed requirement.

We opted for a compile-time polymorphism design using generic C++ template
programming. The idea here was to let the compiler decide how to best optimize
the set of operations executed during the simulation, while keeping an object-
oriented code. The lowest numerical building block of the simulation framework
being the elements, we started our implementation there. We created the Element
concept as a generic computational class that would be inherited by all element
types. With this approach, a C++ class needs to provide the following properties
to be considered a valid Element: (1) its canonical dimension, (2) its material
dimension, (3) its number of nodes known at compile time, or -1 if it will be deter-
mined at runtime, (4) its number of quadrature nodes known at compile time, or
again -1 in the dynamic case, (5) a method to obtain the material coordinates of its
nodes, (6) a method to obtain the quadrature nodes and their respective weights,
and (7) two methods to get the values of the shape functions, and their derivatives
with respect to the material coordinates, respectively. Figure 2.9 illustrates the
resulting simplicity for the implementation of a linear quadrangle element.

Once compiled, various utilities become available for the newly created element
in both C++ and Python code. Hence, the Element concept provides a way to
quickly add interpolation and quadrature numerical procedures. Since standard
isoparametric elements have a number of nodes, quadrature points and shape
functions already known at compile time, most modern compilers will be able to
aggressively inline the code in order to optimize the computation. For meshless
methods (chapter 3) or immersed-boundary methods (chapter 4), the number of
nodes or quadrature nodes are often determined at run time, for example depend-
ing on the location of the boundaries, or the location of neighbor nodes. Our
Element concept poses no difficulties in this case. This information can be given
at run time during the construction of the element.

Elements are used all over the library, most of the time as a template parameter
to different class components. An example is the Domain class, which creates a
topology of elements and allows us to approximate or integrate field functions over
a discrete domain made of a given Element type. For standard finite elements, a
Domain will therefore represent the complete mesh or a part of it. It will store
for each element the indices of its nodes. For IB or meshless methods, the domain

48 Continuum mechanics, finite elements and implementation design

template<UNSIGNED_INTEGER_TYPE _Dimension>
struct traits<Quad <_Dimension, Linear>> {

static constexpr UNSIGNED_INTEGER_TYPE CanonicalDimension = 2;
static constexpr UNSIGNED_INTEGER_TYPE Dimension = _Dimension;
static constexpr INTEGER_TYPE NumberOfNodesAtCompileTime = 4;
static constexpr INTEGER_TYPE NumberOfQuadratureNodesAtCompileTime = 4;

};

template<UNSIGNED_INTEGER_TYPE _Dimension>
struct Quad <_Dimension, Linear> : public Element<Quad <_Dimension, Linear>> {
private:

// Shape values at canonical coordinates xi
inline auto get_L(const LocalCoordinates & xi) const -> Vector<NumberOfNodesAtCompileTime> {

const auto & u = xi[0];
const auto & v = xi[1];
return {

1 / 4. * (1 - u) * (1 – v), // Shape value of 1th node
1 / 4. * (1 + u) * (1 – v), // Shape value of 2th node
1 / 4. * (1 + u) * (1 + v), // Shape value of 3th node
1 / 4. * (1 - u) * (1 + v) // Shape value of 4th node

};
};

// Shape derivatives at canonical coordinates xi
inline auto get_dL(const LocalCoordinates & xi) const {

const auto & u = xi[0];
const auto & v = xi[1];

Matrix<NumberOfNodesAtCompileTime, CanonicalDimension> m;
// dL/du dL/dv
m << -1 / 4. * (1 - v), -1 / 4. * (1 - u), // Shape derivatives of 1th node

+1 / 4. * (1 - v), -1 / 4. * (1 + u), // Shape derivatives of 2th node
+1 / 4. * (1 + v), +1 / 4. * (1 + u), // Shape derivatives of 3th node
-1 / 4. * (1 + v), +1 / 4. * (1 - u); // Shape derivatives of 4th node

return m;
};

// Quadrature nodes
inline auto get_quadrature_nodes() const -> const auto & {

return {
QuadratureNode{LocalCoordinates(-1/sqrt(3), -1/sqrt(3)), Weight(1)}, // Quadrature node 1
QuadratureNode{LocalCoordinates(+1/sqrt(3), -1/sqrt(3)), Weight(1)}, // Quadrature node 2
QuadratureNode{LocalCoordinates(+1/sqrt(3), +1/sqrt(3)), Weight(1)}, // Quadrature node 3
QuadratureNode{LocalCoordinates(-1/sqrt(3), +1/sqrt(3)), Weight(1)} // Quadrature node 4

};
}

};

Figure 2.9: Example of a linear quadrangle implementation.

will also store the location and weights of the quadrature points, and the values
of the shape functions and their derivatives. As we will see in the chapter 3, one
of our implementations of a meshless method uses a nodal integration scheme. In
this case, a simple node (called a particle) is seen as an Element containing only
one quadrature point (the particle itself), and its neighbors points (the nodes of
the element used for the approximation). Hence, our Element concept paired with
the Domain class becomes a powerful design that simplifies testing of different
approximation and integration schemes.

Figures 2.10 and 2.11 illustrate code examples for the assembly of the internal
residual vector of a Neo-Hookean material in both C++ and Python, respectively.
We can see how intuitive the implementation of a new material becomes, and how

2.9 Development of a generic and efficient library 49

#include <Caribou/Topology/Mesh.h>
#include <Caribou/Topology/Domain.h>
#include <Caribou/Geometry/Tetrahedron.h>

// Domain creation
Mesh mesh (get_nodes());
auto domain = mesh.add_domain<Tetrahedron<Quadratic>>(get_tetra_indices());

// Material Lame’s parameters
auto l = get_lambda();
auto m = get_mu();
auto Id = Matrix<3, 3>::Identity();

// Internal residual assembly
auto R = domain.assemble(
[&l, &m, &id](const Tetrahedron<Quadratic> & e, const Matrix<10, 3> & dN_dx) -> Vector<3> {
const auto F = e.nodes().T() * dN_dx; // Deformation tensor
const auto J = F.determinant();
const auto C = F.T() * F; // Right Cauchy-Green strain tensor
const auto Ci = C.inverse();
const auto S = (Id - Ci)*m + Ci*(l*log(J)); // Second Piola-Kirchhoff stress tensor
return F*S;

}
);

Figure 2.10: C++ example of the internal residual assembly (equation 2.17) for a
Neo-Hookean material (equation 2.9).

it stays independent of the discretization.

Real-time interactive simulations involves many more numerical procedures, such
as the visualization of the simulated bodies, collisions handling, time integra-
tion, and more. The open-source SOFA framework [Allard et al. (2007)] is a
well-known set of numerical tools for interactive simulations and its contribu-
tions to the surgery simulation research field have grown considerably for the
past decade. For this reason, we inserted our library as a form of plugin to this
framework, hence inheriting its numerous numerical procedures. The plugin com-
bines all the contributions we have made to the framework and the components
that were necessary for our research. The structure of the plugin is illustrated in
figure 2.12. A more thorough documentation of these components can be found
at https://caribou.readthedocs.io.

50 Continuum mechanics, finite elements and implementation design

from Caribou.Topology import Mesh, Domain
from Caribou.Geometry import Tetrahedron
from Caribou import Quadratic
import numpy

Domain creation
mesh = Mesh(get_nodes())
domain = mesh.add_domain(Tetrahedron(Quadratic), get_tetra_indices())

Material Lame’s parameters
l, m = get_lambda(), get_mu()
Id = numpy.identity(3)

Internal residual assemby
def residual(e, dN_dx):

F = e.nodes().dot(dN_dx) # Deformation tensor
J = numpy.linalg.det(F)
C = numpy.dot(F.T, F)
Ci = numpy.linalg.inv(C) # Right Cauchy-Green strain tensor
S = (Id – Ci) * m + Ci*(l*numpy.log(J)) # Second Piola-Kirchhoff stress tensor
return numpy.dot(F, S)

R = domain.assemble(residual)

Figure 2.11: Python example of the internal residual assembly (equation 2.17) for
a Neo-Hookean material (equation 2.9).

SofaCaribou

Forcefields

<HexahedronElasticForce />

<TetrahedronElasticForce />

<HyperelasticForceField />

<TractionForce />

Linear solvers

<ConjugateGradientSolver />

Identity, Diagonal, iChol, iLU

<SparseLLTSolver />

Eigen, Pardiso

<SparseLDLTSolver />

Eigen, Pardiso

<SparseLUSolver />

Eigen, Pardiso

ODEs

<StaticODESolver />

Materials

<SaintVenantKirchhoffMaterial />

<NeoHookeanMaterial />

Wrappers

EigenMatrixWrapper

Visitors

AssembleGlobalMatrix

ConstrainGlobalMatrix

MultiVecEqual

Caribou
Geometry

Element

Segment
1D, 2D, 3D

Triangle
2D, 3D

Linear, Quadratic

Quad
2D, 3D

Linear, Quadratic

Tetrahedron
3D

Linear, Quadratic

Hexahedron
3D

Linear, Quadratic

Topology

Mesh
1D,2D, 3D

VTKLoader
1D, 2D, 3D

Grid
1D, 2D, 3D

HashGrid
1D, 2D, 3D

Domain
1D,2D, 3D

BarycentricContainer
1D,2D, 3D

Figure 2.12: Structure of the Caribou SOFA plugin.

2.10 Discussion 51

2.10 Discussion

In this chapter, we provided an extensive review of some of the basic concepts
behind the theory of hyperelasticity. We also provided the mathematical frame-
work associated with the numerical resolution process of the Partial Differential
Equations for a FE method. This task was a challenging one and has consumed
a non-negligible portion of our research effort. But this extensive review was a
necessary step before exploring alternative numerical methods.

While software that uses the FE approach usually allow the implementation of
different material models, most of the time the use of standard FE isoparametric
elements is required. In the next chapters, we will extend the basic approximation
and integration methods we have just described to arrive at a solution that does
not impose such requirement.

We will also use the theory provided in this chapter to adapt the shape functions,
their derivatives and the integration of the weak formulation over the domain
for alternative discretization methods. We will see how the boundary conditions
can be imposed when we are no longer following the traditional FE methodology.
Finally, we will present the numerical challenges inherent to the field of augmented
reality and how the basic concepts presented in this chapter must be adapted.

It is important to note that throughout the development of the alternative methods
that will be discussed in the next chapters, most of the concepts introduced in this
chapter had to be implemented. The detailed description of the key equations
has been very useful in this context and we believe that it will remain a valuable
reference for future software coding development.

Chapter

3

MESHLESS METHODS

3.1 Literature review . 55

3.2 Kernel and shape functions . 58

3.3 Point-based animation . 61

3.3.1 Point-based numerical integration 62

3.3.2 Shape function: SPH approximation 64

3.3.3 Shape function: MLS approximation 65

3.3.4 Discussion . 67

3.4 Meshless Approximation Mesh-Based Integration 68

3.4.1 Shape function: MLS approximation 68

3.5 Linear elasticity . 71

3.6 Corotational elasticity . 73

3.7 Surface mapping . 76

3.8 Neumann boundary condition 78

3.9 Dirichlet boundary condition 79

3.10 Solving the dynamic system 81

3.11 Results . 83

3.12 Discussions . 93

As we saw in the previous chapter, the discretization of the simulated domain
constitutes a key component of any Galerkin method. With traditional Finite El-
ement (FE) methods, the process uses a mesh of isoparametric elements such as

54 Meshless methods

those discussed in section 2.8. Meshless methods use a different approach whereby
a neighborhood of points, often called particles, are used to approximate the dis-
placement field and to impose boundary conditions. Hence, the term meshless
comes from the fact that no "traditional" mesh of geometrical elements is needed.
However, as we will see, a meshless discretization may also be coupled with a
mesh of elements for the numerical integration of the weak formulation (equation
(2.11)).

One of the main advantages of meshless methods come from the simplicity of their
implementation. To discretize the simulated domain Ω0, one simply needs to fill
in the interior volume of the object with particles which, similarly to the nodes of
elements in FE methods, represent the unknown degrees of freedom of the system
to be solved. The density of particles can be dynamically increased in regions where
higher precision of the solution is needed. The approximation of a field function at
any given point is done by taking the value of neighboring particles, which are then
weighted down using a decreasing monotone kernel (or weight) function. Shape
functions are usually constructed from a given set of monomials. Hence, similarly
to high order isoparametric elements, choosing monomials of higher degrees will
enable approximation of higher degrees.

In the case of surgical simulations, these properties of meshless methods are highly
desirable. 3D surface reconstructions of organs such as those done on the liver are
complex. For example, a typical human liver will have a concave shape around its
two lobes. Internal structures such as blood vessels and tumors introduce curved
interfaces between different materials which make an automatic discretization of
the interior difficult to be achieved when using only geometrical elements. Hence,
in order to correctly represent these boundaries, traditional FE methods require a
very fine mesh. When topological changes arise, such as cuts and tears made by the
surgeon, new boundaries are introduced. Regions around these discontinuities need
to be re-meshed dynamically during the simulation. This is where the simplicity of
the meshless implementation comes very handy. The remeshing process required
in FE methods is replaced by the simple process of finding new neighbors that do
not cross the discontinuity.

The next section presents a review of the meshless discretization principles. We
will then present two meshless approaches to construct the discrete algebraic sys-
tem presented earlier (equation (2.21)). The first one, the point-based method,
uses a fully meshless approach where both the numerical approximation and inte-
gration terms found in the weak internal virtual work component are given from
the analysis of point neighborhoods. The second approach also uses a numerical
approximation based on points, but where the numerical integration is computed

3.1 Literature review 55

using a background mesh of elements, hence resulting in a mixed method.

3.1 Literature review

In the early days of computer simulations, Reeves (1983) introduced the concept of
a particle which is simply a generated point that can move in space and that dies off
after a certain amount of time. By filling an object with many particles, different
phenomenons such as fire and clouds can then be simulated. The dynamics of
the system is established from a stochastic model and particles are not interacting
with each other. In Luciani et al. (1991), the particles represent balls of dynamic
radius and, depending on the distance between them, will either attract or repel
each other. The attraction-repulsion force is determined with the help of Lennard-
Jones intermolecular potential. Later on, Szeliski and Tonnesen (1992) extended
the use of a Lennard-Jones based potential by adding an orthogonal frame to each
particle in order to enforce momentum preservation.

0 1 rm 2

-1

0

1

2

3

4

5

r/σ

Φ/ǫ

Figure 3.1: Lennard-Jones potential φLJ(r) = B
rn − A

rm with n = 12, m = 6, ǫ = B2

4A

and σ = 6

√
A
B

. Here, the scalar parameters A and B defines the attraction-repulsion
behavior, and r denotes the distance between two particles.

While these techniques pioneered the field of meshless discretization, it is the work
of Desbrun and Gascuel (1996) that first introduced a method, called Smoothed
Particle Hydrodynamics (SPH) (from the work of Lucy (1977) and Monaghan
(1992) in astrophysics applications), for animations of deformable objects driven
entirely by force. The SPH method is able to interpolate both a field function and
its derivatives with a discretization of the space entirely based on particles, hence
without the need of a background grid as was usually done with Particle In Cell
(PIC) methods. Their interpolant is defined as

56 Meshless methods

A(r) =
∫

A(r′)W (r − r′, h)dr′

for any field A(r), and where dr′ is a differential volume element around any
position r′. The weighing kernel W is a monotonic and decreasing scalar field as
‖r − r′‖ approaches a distance of h, and has the following two key properties:

∫

W (r − r′, h)dr′ = 1

lim
h→0

W (r − r′, h) = δ(r − r′)

The interpolant and its derivatives are approximated from a set of neighboring
particles with

A(r) =
∑

i

mi

Ai

ρi

W (r − ri, h) (3.1)

∇A(r) =
∑

i

mi

Ai

ρi

∇W (r − ri, h)

where mi is the mass of a particle i, and ρi its density defined as

ρ(xi) =
∑

j

mjW (xi − xj, h)

While SPH was initially designed for fluid and astrophysics simulations, Desbrun
and Gascuel (1996) first introduced it to the simulation of deformable bodies by
defining an energy potential that would push particles to regain their initial vol-
ume. The stiffness of the material is set with a single scalar parameter k, and the
force acting on a particle becomes

Fi = −kmi

ρi − ρ0

ρ2
i

∑

j 6=i

mj∇iW (xi − xj, h) +
∑

j 6=i

mj

ρj − ρ0

ρ2
j

∇iW (xi − xj, h)

3.1 Literature review 57

with the kernel W defined in equation (3.3).

The use of SPH by Desbrun and Gascuel (1996) established an important step in
the field of deformable meshless simulations for computer animations. Later on,
Müller, Keiser, et al. (2004) pushed further this concept, this time, by introducing
the theory of linear elasticity as a ground for their energy potential. However,
instead of using the SPH interpolant, they chose an interpolant based on the
Moving Least Squares (MLS) method [Lancaster and Salkauskas (1981)] which
consisted in minimizing the error of a first degree Taylor approximation of the
displacement gradient ∇u. While their interpolant is one degree higher than the
SPH one, special attention has to be taken for the placement of the particles
as their method is incompatible with particles neighborhood having co-linear or
coplanar configurations. Their energy potential consisted of pairing the linear
Saint-Venant-Kirchhoff constitutive law with a volume conserving potential.

Solenthaler, Schläfli, and Pajarola (2007b) also presented a meshless method for
linear elasticity, but this time reusing the SPH approximation. Unlike Müller,
Keiser, et al. (2004), their shape function allows for co-linear and coplanar neigh-
borhoods. Becker, Ihmsen, and Teschner (2009a) extended this strategy by carry-
ing the corotational principle [Müller, Dorsey, et al. (2002)] to the SPH formula-
tion. Here, a rotation frame is extracted and removed from the nodal position just
before computing the strain, hence allowing the use of the small strain tensor ǫ

(cf. section 2.3.1). While these meshless methods present visually plausible results,
their volumetric integration approach is based on an approximation of the particle
density. This reduces the precision of the simulation and induces instabilities. It
is especially true given that their particles represent both the degrees of freedom
and the integration points.

The introduction of meshless methods for surgical simulation applications is more
recent. Horton et al. (2010) has proposed a fully non-linear element-free Galerkin
method [Ted Belytschko, Y. Y. Lu, and L. Gu (1994)] for certain types of surgical
simulations. Although no mention was made with respect to real-time compliance,
all indications are that they were the first to propose a fast Galerkin-based solution
without element-based approximations. Since then, their work has been carried
over to various surgical applications [K. Miller et al. (2012); G. Y. Zhang et al.
(2014); Dehghan et al. (2016); Dong et al. (2016); Wittek et al. (2016)]. While
these meshless methods are accurate, their use of fully non-linear material is time-
consuming and might not be well adapted for applications requiring a real time or
close to real-time framerate. Since they use an explicit time integration scheme,
they are also restricted to small and regular time step intervals which implies a
less robust solution in an interactive environment.

58 Meshless methods

3.2 Kernel and shape functions

Similar to the Finite Element (FE) approach, meshless methods involve the ap-
proximation of a vector field u(X) at a given position X of the undeformed domain
Ω0. However, instead of using geometric properties of an iso-parametric element
such as a tetrahedron or a quadrangle to approximate the field, meshless methods
use a point cloud where each point, often call particle, represents the degrees of
freedoms xi, yi and zi as a compact support of influence. This support is usually
called the influence domain Ωi of the particle i. The approximation uh(x) ≈ u(x)
is done using the scalar-valued shape functions φi(X) of all particles neighbor to
X:

uh(x) =
∑

i

φi(x)ui (3.2)

where ui is the field value at the particle i.

The support of a particle’s shape function is usually built from a weight function
W (X−XI , hI) (often called a kernel or window function), which is monotonic and
has its value decreasing as the distance between X and the particle i approaches
the boundary of its influence radius hi. Most support domains are either circular,
or rectangular, as shown in figure 3.2.

ΩI

I

ΩI

I

Figure 3.2: Influence domain from monotonic and decreasing weight functions
W (X −Xi, hi)

Because our modeling approach is using a Lagrangian formulation (see section
2.1), the influence a particle has on any material position X will remain constant
throughout the simulation, unless topological changes happen (for example, if
cuts or fractures are also simulated). This means that shape functions φi can
be precomputed before starting the simulation, resulting in a great computation
advantage as compared to the Eulerian formulations.

3.2 Kernel and shape functions 59

The choice of weight function usually varies from one application to another. How-
ever, a few conditions must be considered to ensure a good local representation of
the field around a particle, and the consistency of the approximation towards the
solution [Ted Belytschko, Yury Krongauz, et al. (1996)]. These conditions are:

1. W (X −Xi, hi) > 0 for x ∈ Ωi

2. W (X −Xi, hi) = 0 for x /∈ Ωi

3.
∫

Ω W (X −Xi, hi)dΩ = 1

4. W (X1 −Xi, hi) > W (X2 −Xi, hi) when ‖X1 −Xi‖ < ‖X2 −Xi‖

5. W (X −Xi, hi) → δ(‖X −Xi‖) when hi → 0, δ(‖X −Xi‖) is the Dirac
function.

The quality of the approximation is directly related to consistency criteria and the
order of the field function. We will say that an approximation has a consistency
of degree k if it can represent exactly a polynomial solution of degree k.

Many kernels have been documented in the literature. We have implemented and
tested the following:

Spiky (Desbrun and Gascuel (1996)) w(q) =

{
15

πh3
(1 − q)3 q ≤ 1

0 q > 1
(3.3)

Poly6 (Müller, Charypar, and Gross (2003)) w(q) =

315
64πh3

(1 − q2)3 q ≤ 1

0 q > 1

(3.4)

SPH (Solenthaler, Schläfli, and Pajarola (2007a)) w(q) =

{
cos(π

2
(1+q))+1

4h3(π

3
− 8

π
+ 16

π
2

)
q ≤ 1

0 q > 1
(3.5)

Cubic spline w(q) =

8
πh3

(1 − 6q2 + 6q3) q ≤ 1
2

16
πh3

(1 − q)3 1
2

≤ q ≤ 1

0 q > 1

(3.6)

Quartic spline (Horton et al. (2010)) w(q) =

{
1 − 6q2 + 8q3 − 3q4 q ≤ 1

0 q > 1
(3.7)

with q = ‖x−xI‖
h

.

A graphical representation of those kernel can be found in figures 3.3 and 3.4.
Note that the 1D figure 3.3 illustrates both W and its gradient ∇W with respect
to material coordinates. Since this gradient will be directly involved with the

60 Meshless methods

approximation of the deformation gradient used to compute internal elastic forces,
special attention has to be taken such that it is not attenuated when two particles
get closer to each other. Otherwise, the kernel might cause artificial stiffness and
thereby a clustering artifact [Desbrun and Gascuel (1996)].

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

15

10

5

0

5

10

15
W
W

(a) Spiky

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

W
W

(b) Poly6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

3

2

1

0

1

2

3

W
W

(c) SPH

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

4

2

0

2

4

W
W

(d) Cubic spline

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

1.5

W
W

(e) Quartic spline

Figure 3.3: 1D kernels: The blue line denotes the weight function, and the orange
line its derivative.

(a) Spiky (b) Poly6 (c) SPH (d) Cubic spline (e) Quartic spline

Figure 3.4: 2D kernels

We conducted many experiments with these different kernels. At the end, we
were not able to differentiate the quality of the solution nor the impact on the
convergence rate associated with each one. Our only explanation of this result is
that the choice of the kernel as such a negligible impact that it is lost amongst all
the other factors affecting the numerical simulation.

However, for all tested kernels, the radius of influence h did have a large impact. In
fact, the quality of the solution is greatly dependent on h as this value determines
the size of the support influence of a particle. At the time of this writing, finding
an optimal value for h remains an open problem [T.-P. Fries and Matthies (2003)].
Nevertheless, we found in the literature three different methods to assign a value
to each particle influence radius.

The first one simply consists in assigning the same value h to all particles. This
method works well if the particle density is uniform.

hi = h (3.8)

3.3 Point-based animation 61

With the second method, we find the kth closest neighbors of a particle i, and
multiply the distance between the two by a dilatation factor α (usually between 1
and 3).

hi = αri (3.9)

ri = ‖xi − xk‖

Finally, with the last method, we compute the average between the k closest
neighbors and multiply this value by the dilatation factor.

hi = αri (3.10)

ri =
1
k

k∑

j=1

‖xi − xj‖

3.3 Point-based animation

The first meshless method we have considered is the Point-Based Animation (PBA)
method introduced by Müller, Keiser, et al. (2004) in the context of computer an-
imation of elastic, plastic and melting objects. With this approach, elasticity
equations are solved using a discretization of the domain made of particles only.
We have implemented two versions of the PBA method using both the SPH and
MLS shape functions. Here is the general approach that was used.

Before the simulation, a set of particles are evenly spaced using a grid lattice.
The particles that are found outside of the simulated object’s surface (usually
given by a triangle or quadrangle mesh defining the boundary of the object) are
discarded. Then, choosing one of the three methods from equations (3.8) to (3.10),
we compute the radius of influence hi that a particle i has on its compact domain.
We also choose one of the five kernels from equations (3.3) to (3.7). Note that,
unfortunately, we have not been able to establish a procedure to guide us for the
selection of the support distance and kernels. Most of the time, we simply used a
trial and error approach.

For each particle, the indices of its k nearest neighbors are stored. If the first
method (equation 3.8) for the radius of influence is used, indices will be those of

62 Meshless methods

the k nearest neighbors that have a distance lesser or equal than h. Otherwise, we
use the k nearest neighbors used to compute hi.

3.3.1 Point-based numerical integration

In a certain way, with the Point-Based Animation (PBA) method, the compact
support around a particle could be viewed as a special kind of element, and its
closest neighbors as the element nodes. Hence, the discrete internal elastic residual
and its linearization defined in the last section with equations (2.18) and (2.26)
respectively can be used in the same way as with the FE methods. However, given
the absence of isoparametric elements, numerical volumetric integration and field
approximation methods have to be used.

Let Ωi be the compact support of the particle i from its kernel Wi(X) = W (X −
Xi, hi). As the size of the support closes down on the particle, i.e., hi → 0, we
can assume that the integration of a continuous field f(X) tends to the value of f
evaluated at Xi. Phrased differently, if vi is the volume taken by Ωi (or the area
in 2D), as vi gets smaller, we would have

∫

Ωi

f(X)dX ≈ vif(Xi) (3.11)

where vi is assumed to be the volume of the particle i. In order to approximate vi,
we follow a method given by Müller, Charypar, and Gross (2003) where the mass
mi and the density ρi of a particle (called "phyxel" in Müller, Keiser, et al. (2004))
are used:

vi =
mi

ρi

(3.12)

Let V (X) be the set of particles in the neighborhood of X, i.e., i ∈ V (X)⇔X ∈
Ωi. Following the SPH method, the density of a particle is stated as:

ρh
i = ρh(Xi) =

∑

j∈V (Xi)

mjWj(Xi) (3.13)

3.3 Point-based animation 63

The remaining step required to approximate the volume is to formulate a measure
of a particle’s mass. For that, we first find the average ri of the distance between a
particle i and its k nearest neighbors, i.e., ri = 1

‖V (Xi)‖

∑

j∈V (Xi)(‖Xi −Xj‖). Let
ρ represent the material density of the simulated object. We pose mi = srd

i ρ with
d the dimension of the system (i.e., 1D, 2D or 3D) and s a factor allowing ρi to
get close to ρ. We find s by minimizing the error e =

∑

i(ρi − ρ)2:

de

ds
=

d

ds

∑

i

(ρi − ρ)2

=
d

ds

∑

i

((
∑

j∈V (Xi)

srd
j ρWij)− ρ)2

where Wij = Wj(Xi). Setting de
ds

= 0, we find

s =
∑

i ai
∑

i a2
i

with ai =
∑

j∈V (Xi) rd
j Wij.

This numerical scheme allows us to integrate the elastic potential energy to finally
get a formulation of the internal force vector R, and its jacobian, the tangent
stiffness matrix K. We reuse here the operator

⋃

+ introduced in section 2.6 which
denotes that an assembly process takes place. For an hyperelastic material, we
have

R =
⋃

+
i

∑

j∈V (Xi)

viFiSi ·∇Xφj (3.14)

and

K =
⋃

+
i

∑∑

(k,l)∈V (Xi)

vi [(∇⊺
Xφk)S(∇Xφl)I + B⊺

k❈Bl]
︸ ︷︷ ︸

Kkl

(3.15)

where Fi, Si and Bi are respectively the deformation gradient tensor, the second
Piola-Kirchhoff stress tensor and the Green-Lagrange variational matrix evaluated

64 Meshless methods

at the current position xi, and ❈ = ∂S
∂E

. These quantities have been introduced in
the chapter 2.

The next step consists in formulating both the shape function φi(X) → ℜ of a
particle i, and its derivatives with respect to its material coordinates ∇Xφi(X)→
ℜd. We implemented two shape functions which we will now describe.

3.3.2 Shape function: SPH approximation

The first shape function we have implemented is based on the Smoothed Particle
Hydrodynamics (SPH) method introduced by Lucy (1977) and Monaghan (1992)
for astrophysics simulations, and brought to the field of deformable simulations by
Desbrun and Gascuel (1996), Müller, Keiser, et al. (2004) and Solenthaler, Schläfli,
and Pajarola (2007b).

With this approach, the approximation of the displacement field u(X) based on
the SPH reads as follows:

u(X) =
∑

i∈V (X)

mi

ρi

Wi(X) · ui

=
∑

i∈V (X)

viWi(X) · ui (3.16)

=
∑

i∈V (X)

φi(X) · ui

with vi is the volume of the particle i defined in the last section, and is assumed
constant throughout the simulation. The derivatives of the approximation with
respect of the material coordinates then becomes:

∇u(X) =
∑

i∈V (X)

vi∇Wi(X) · ui (3.17)

=
∑

i∈V (X)

∇φi(X) · ui

The displacement gradient is normally computed on the numerical integration
points. With point-based methods, particles represents both the degrees of freedom
and the integration points, hence many authors prefer to compute the elastic
potential based on a displacement gradient of a locally undeformed configuration.

3.3 Point-based animation 65

Instead of taking the displacement between the current position xi of a particle
and its undeformed position Xi, they use the displacement of the particle relative
to its closest neighbors. In three-dimensional, this yields:

∇u(Xi) = ∇ui =

ui,X ui,Y ui,Z

vi,X vi,Y vi,Z

wi,X wi,Y wi,Z

≈
∑

j∈V (Xi)

φj,X(uj − ui) φj,Y (uj − ui) φj,Z(uj − ui)
φj,X(vj − vi) φj,Y (vj − vi) φj,Z(vj − vi)
φj,X(wj − wi) φj,Y (wj − wi) φj,Z(wj − wi)

=
∑

j∈V (Xi)

uj − ui

vj − vi

wj − wi

 [φj,X φj,Y φj,Z]

=
∑

j∈V (Xi)

uj − ui

vj − vi

wj − wi

viWij,X

viWij,Y

viWij,Z

T

with ui =

ui

vi

wi

, ui,X = du(Xi)

dX
and Wij,X = dWj(Xi)

dX
.

3.3.3 Shape function: MLS approximation

The second shape function we have implemented is based on the Moving Least
Squares (MLS) approximation proposed in Müller, Keiser, et al. (2004). Here,
starting from the scalar components u(X), v(X) and w(X) of the displacement
field u(X) = [u, v, w]⊺, a first order Taylor decomposition is done in the neighbor-
hood of a particle i located at the material coordinate Xi:

u(Xi + ∆X) = ui +∇Xui ·∆X + O(‖∆X‖2)

Then, for any particle j neighbors to i (i.e., j ∈ V (Xi)), we have

ũj = ui + (Xj −Xi)T∇Xui

66 Meshless methods

Using a weighted least squares method, we minimize the approximation error e =
ũ− u with the usual kernel Wij = Wj(Xi):

∇Xe = ∇X

∑

j

(ũj − uj)2Wij = 0 (3.18)

which yields the displacement gradient approximation at a particle i:

∇Xui =

∑

j

(Xj −Xi)(Xj −Xi)T Wij

︸ ︷︷ ︸

A

−1

∑

j

(uj − ui)(Xj −Xi)Wij

=
∑

j

[A−1XijWij]uij

=
∑

j

[∇Xφj]uij (3.19)

Here, A is called the moment matrix and ∇Xφj = [φj,x φj,y φj,z]T is the gradient
of the shape function associated with particle j. As it is usually done with a
Lagrangian description, the inverse of the moment matrix can be precomputed
before the simulation begins.

While this method yields a shape function of 1 degree higher than the SPH shape
function, the fact that it relies on the inverse of a moment matrix means that it is
dependent on the configuration of a neighborhood of particles around a point. In-
deed, if the particles have either a co-linear or coplanar shape, A will become singu-
lar and its inversion will be impossible. Even if the configuration is not completely
co-linear or coplanar, if it sufficiently close to it, A will become ill-conditioned.
In those cases, we can rely on the stable Singular Value Decomposition (SVD)
method proposed in Press et al. (1992). Note that using such decomposition is
not a perfect solution, but it does reduce a little bit the numerical impact of bad
neighborhood configurations.

The final formulation of the displacement gradient ∇Xui at particle i is then
expressed for a three-dimensional domain:

3.3 Point-based animation 67

∇(Xi) = ∇ui =

ui,X ui,Y ui,Z

vi,X vi,Y vi,Z

wi,X wi,Y wi,Z

≈
∑

j∈V (Xi)

φj,X(uj − ui) φj,Y (uj − ui) φj,Z(uj − ui)
φj,X(vj − vi) φj,Y (vj − vi) φj,Z(vj − vi)
φj,X(wj − wi) φj,Y (wj − wi) φj,Z(wj − wi)

=
∑

j∈V (Xi)

uj − ui

vj − vi

wj − wi

 [φj,X φj,Y φj,Z]

=
∑

j∈V (Xi)

uj − ui

vj − vi

wj − wi

 [Ai

−1XijWij]T (3.20)

3.3.4 Discussion

The PBA approach presented in this section results in a method that relies com-
pletely on particles, both for the displacement field approximation and the numer-
ical integration. This allows for a very quick and easy setup of the simulations, i.e.,
there is no need for a complex mesh generation. It is also quite straightforward
to extend the model to cutting simulations, as we only need to adjust the weight
function to remove the influence a particle has on a neighbor if the latter is located
on the other side of a cut.

There is, however, a strong limitation inherent to this method: its numerical
integration is based on a rough approximation of the volume occupied by a particle.
This strongly impacts the accuracy of the solution. This has been observed in our
experimental runs, the results of which will be described in section 3.11. In fact,
the PBA method is often referred to as a visually plausible method, which means
that its solution looks good, but might be far from the real mechanical solution.
This might not be a problem for computer graphic applications such as animation
movies or video games, but it is definitely not suitable for accurate-dependent
applications such as surgery simulations.

68 Meshless methods

3.4 Meshless Approximation Mesh-Based Integration

The second meshless method that we have implemented aims at reducing the in-
tegration error and the weak consistency of the shape function inherent to the
PBA model. It is based on the Meshless Total Lagrangian Explicit Dynamics
(MTLED) method presented in Horton et al. (2010). Here, however, we propose
an extension of the MTLED that uses the corotational elasticity model and im-
plicit time integration. We will denote our method as the Meshless Approximation
Mesh-Based Integration (MLAMBI) method.

Unlike the PBA method that relies on a point-based volume approximation for its
numerical integration, here we use a background grid made of regular hexahedral
elements that is simply placed on top of the particles cloud. Hence, one could
argue that this method is not 100% meshless. However, using the background grid
does get rid of the difficult step associated with the creation of a conforming mesh
made of well-formed elements, which is the main drawback of FE methods. In
addition, the displacement field approximation used here is still based on meshless
shape functions. But this time, we will use adaptive shape functions with higher-
order basis that, similarly to high order elements in FE methods, enhance the
consistency of the approximation.

With our MLAMBI method, the particles only represent the degrees of freedom,
and the integration points are the standard gaussian quadrature points of the back-
ground grid elements. While this integration scheme is similar to that of the FE
methods, the displacement field approximation at the Gauss points is formulated
with respect to their closest particles which, unlike FEM, are independent of the
integration mesh. Integration points that are found outside of the boundaries of
the simulated object are simply discarded. Differences between the PBA method,
our MLAMBI method and the FE method are illustrated at figure 3.5.

3.4.1 Shape function: MLS approximation

Similarly to the PBA method, we need to construct the shape functions for every
particle in order to approximate the displacement field anywhere on the domain.
While an SPH based shape function could have been used, we decided to follow the
approach proposed by Horton et al. (2010) where shape functions are built using
an Moving Least Squares (MLS) method. Unlike the MLS presented in section
3.3.3, here the approximation isn’t evaluated directly onto a particle, but at any
position in the domain. Hence instead of being used to build an approximation

3.4 Meshless Approximation Mesh-Based Integration 69

(a) Finite element method (b) Point-based method (c) MLAMBI method

Figure 3.5: Relations between the integration points (crosses) and the DOF nodes
(circles) where the green oval represents the simulated object. With the FE
method, each triangular element has one integration point linked to its geometrical
nodes. For the PBA method, each node represents both an integration point and a
DOF node. They use their closest neighbors as DOFs. For the MLAMBI method,
the background two-dimensional quad elements have their usual four integration
nodes, however, each integration point uses its closest particles as DOFs.

of the displacement gradient field, the MLS is used to approximate directly the
displacement field. Without loss of generality , we can split the displacement
vector field u(X) into three scalar fields, namely u(X), v(X) and w(X), with X

being the material coordinates of a position in Ω0. The approach to approximate
each scalar is the same. Using u(X), we have:

uh(X) =
m∑

i=0

pi(X)ai(X) = P T (X)a(X) (3.21)

where pi is a monomial basis function, and ai its coefficient that is discussed just
below. As suggested by Horton et al. (2010), a good starting point for the basis
functions is to choose m monomials in Pascal’s pyramid:

P T (X) = [1|X Y Z|XY XZ Y Z|X2 Y 2 Z2]

For the type of applications we are interested in, we usually choose m monomials,
typically the 1, 4, 7 or 10 first monomials starting from the top of the pyramid.
For example, with m = 4 the basis functions [1, X, Y , Z] are selected. When

70 Meshless methods

m = 1, the resulting approximation order is equivalent to that of the SPH method.
Theoretically, we could use a more complex scheme, by choosing for example basis
functions outside of Pascal’s pyramid that better fit the solution’s space.

To get the coefficients ai(X), the least squares method weighted by a kernel W (X)
(equations 3.3 to 3.7) in the neighborhood of X is used to minimize the approxi-
mation error:

∂

∂a

∑

i∈V (X)

Wi(X, hi)(uh(X)− u(X))2

 = 0 (3.22)

where hi is found using one of the three methods described in section 3.2. By
isolating the coefficients from equation (3.22), we get

a(X) = A−1(X)
∑

i∈V (X)

Wi(X, hi)P (Xi)ui (3.23)

where A(X) =
∑

i∈V (X) Wi(X)P (Xi)P T (Xi) is the moment matrix at position
X and is constant throughout the simulation.

Substituting equation (3.23) into (3.21) yields

uh(X) =
∑

i∈V (X)

P (X)A−1(X)Wi(X, hi)P (Xi)ui (3.24)

=
∑

i∈V (X)

φi(X)uj

where φi(X) = P (X)A−1(X)Wi(X)P (Xi) is the shape function of particle i
evaluated at material coordinates X.

Since the deformation tensor F depends on the displacement gradient ∇u, the
derivatives of the shape function with respect to material coordinates X, Y and Z
have to be calculated. We present here the equation for the derivative of the first
scalar but again, the process is exactly the same for the v and w components.

3.5 Linear elasticity 71

φi,X(X) = [P,XA−1Wi + P (A−1
,X Wi + A−1Wi,X)]Pi

= [P,XA−1Wi + P ((A−1A,XA−1)Wi + A−1Wi,X)]Pi

= [P,XA−1Wi + P ((A−1

∑

j∈V (X)

Wj,XPiP
T
i

A−1)Wi + A−1Wi,X)]Pi

(3.25)

Here, the consistency of the approximation depends on the degree of the basis
functions P and two factors must be considered. Firstly, if m is the number of
basis functions in P , and n is the number of particles in the neighborhood of X,
then n must be greater or equal to m for the moment matrix to be non-singular.
In Horton et al. (2010), authors estimate that n should double the quantity of
basis function, n ≈ 2m. Secondly, an integration point must also have more than
one particle support, or else it might receive too much stress.

3.5 Linear elasticity

Similar to FE methods, and because the continuous integration terms of the po-
tential energy are discretized into a sum over the integration points, the continuous
system is now reduced to a set of smaller systems of equations to be solved for each
neighborhood around an integration element (or particle in the case of the PBA
method). In chapter 2, we have seen that when a non-linear relationship between
the stress tensor and the displacement gradient is used, a set of Newton–Raphson
(NR) iterations have to be executed where the tangent stiffness matrix K has to
be re-evaluated and inverted at each iteration. This can become quite expensive
has the number of particles or integration points grows.

If we were to use the small strain assumption, which implies that the deformations
of the simulated body are expected to remain very small, then the stress tensor
would become linear in u, yielding

∫

Ω0

P : ∇Xwdv ≈
∫

Ω0

σ : ∇Xwdv (3.26)

where σ = λ tr(ǫ)I + 2µǫ is the Cauchy stress tensor and ǫ = 1
2
(F + F⊺) is the

small strain tensor. The discrete elastic residual vector R of equation (3.14) then
becomes

72 Meshless methods

R =
⋃

+
i

∑

j∈V (Xi)

viσi ·∇Xφj (3.27)

for the PBA method, and

R =
⋃

+
e

∑

I∈int(e)

∑

i∈V (XI)

wIσi ·∇XφidetJI (3.28)

for the MLAMBI method with int(e) the set of integration points of element e,
wI the Gaussian weight of the integration point I, and JI the jacobian of the
transformation T : Ωe → Ω0.

By deriving the elastic residual with respect to the displacement, we get the tangent
stiffness matrix K

K =
⋃

+
i

∑∑

(k,l)∈V (Xi)

vi [B⊺
Lk❈BLl]

︸ ︷︷ ︸

Kkl

(3.29)

for the PBA method, and

K =
⋃

+
e

∑

I∈int(e)

∑∑

(i,j)∈V (XI)

wI [B⊺
Li❈BLj] detJI

︸ ︷︷ ︸

Kij

(3.30)

for the MTLED method. Here, BLi is the linear part of the deformation Green-
Lagrange strain tensor variation δE defined in equation (2.16), and

❈ =
∂σ

∂F
= λ(I ⊗ I) + 2µ(I

¯
⊗̄I) =

λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

(3.31)

is the material matrix.

The tangent stiffness matrix K is linear in u, and can therefore be precomputed
and inverted before the simulation starts. If no other non-linear terms are used in

3.6 Corotational elasticity 73

the simulation, the system can be solved directly without requiring any NR itera-
tions. This is, of course, the ideal scenario as it will enable very fast computation
of each time steps. However, in the next section, we will see that the small strain
assumption made here can present strong numerical artifacts.

Note that, here, the use of a constant tangent stiffness matrix is no different
than with tradition FE methods. However, depending on the kernel support and,
thereby, the number of particles in each neighborhood, the resulting matrix might
become much denser than its FE counterpart using the same number of degrees
of freedom, hence resulting in a more computationally expensive method. This is
a non-negligible drawback of the meshless methods in general [Belytschko et al.
(1996)].

3.6 Corotational elasticity

Normally, a rigid transformation (translation or rotation) of a simulated body
should not generate any elastic force since there is no strain involved. Indeed, as
we have seen in section 2, the deformation tensor F is defined as the product of
an orthogonal tensor R (representing the rotation part of the deformation) and a
symmetric tensor U (representing the "changes of shape" part of the deformation),
i.e., F = RU. When using the non-linear Green-Lagrangian deformation tensor,
the rotational part of F cancels out, leaving

E =
1
2

(F⊺F− I) =
1
2

(U⊺R⊺RU− I) =
1
2

(U2 − I)

However, when a small strain assumption is made, the linear small strain tensor ǫ =
1
2
(F+F⊺) does not have such property. This is because the small strain assumption

intrinsically assumes an infinitesimal rotation. Hence, using this assumption for a
simulation that has small deformations, but large rotation (like the deformation
of a bent beam), will produce incorrect elastic forces as the rotations are viewed
themselves as strain forces. These incorrect forces are often called ghost forces
and are usually quickly identified: as the simulated object rotates, a large volume
expansion takes place at the same time (see figure 3.6a).

There has been a lot of research on this numerical phenomenon, especially for
real-time applications since the small strain assumption is computationally very
efficient and therefore quite desirable. One solution consists of using corotational

74 Meshless methods

(a) Ghost forces prevent the cylinder
from rotating correctly.

(b) The corotational approach alleviates
the effects of ghost forces by remov-
ing rotations before the computation of
elastic forces.

Figure 3.6: Simulation of a cylinder fixed at the left and deformed by gravity
(downward along the Y-axis).

elasticity models. This approach has been documented in the context of FE simu-
lations in Carlos A Felippa (2000); Müller, Dorsey, et al. (2002); Carlos A. Felippa
and Haugen (2005).

The general idea behind corotational methods is to extract the rotational part R

of the displacement before computing the internal elastic forces, leaving only the
part of the displacement that induces a change of shape. The tangent stiffness
matrix then becomes

K =
⋃

+
i

∑∑

(k,l)∈V (Xi)

vi [RiB
⊺
Lk❈BLlR

⊺
i]

︸ ︷︷ ︸

Kkl

(3.32)

for the PBA method, and

K =
⋃

+
e

∑

I∈int(e)

∑∑

(i,j)∈V (XI)

wI [RIB⊺
Li❈BLjR

⊺
I] detJI

︸ ︷︷ ︸

Kij

(3.33)

for the MLAMBI method. Hence the rotational part is removed from the dis-
placement before computing the Cauchy stress tensor, and the resulting stiffness

3.6 Corotational elasticity 75

(or internal elastic force) is rotated back afterward, avoiding any numerical ghost
forces as we illustrated in figure 3.6b.

The most natural way to extract the rotation matrix R is to separate the two
parts (rotational and the change of shape) of the deformation gradient tensor F via
either a polar or Singular Value Decomposition (SVD) decomposition. However,
when a neighborhood around an integration point approaches a co-linear or a
coplanar configuration, the jacobian of the deformation tensor tends to zero. In
this case, both the polar and the SVD models will struggle to decompose the
tensor. To alleviate this numerical problem, we implemented the stable SVD
method proposed in Press et al. (1992). However, when very high forces are
exerted on the simulated body, we saw that at a certain time step, the solver can
still produce a solution whereby the neighborhood is completely coplanar or co-
linear, or even inverted. The jacobian of the deformation becomes zero or negative,
and even the stable SVD method fails to decompose the tensor. When reaching
this point, the simulation must abort as it can no longer recover from this erratic
configuration. This problem has motivated some authors to propose alternative
methods to extract a rotation matrix. For example, Nesme, Payan, and Faure
(2005) proposed an approach for FE methods where a transformation matrix is
built from three edges of an element:

A = [e0
1 e0

2 e0
3]

−1[e1 e2 e3]

where each ei is one edge around an element’s node. The stable SVD method is
then used to decompose A = UΣV T , and the rotation matrix becomes R = UV T .
This approach, however, will only produce a rough approximation of the rotation
for the whole element, and might not be valid for some of the integration points that
are far from the element’s node chosen to build A. It is also not usable for PBA
methods since in this case, as no element are used for the integration of the internal
elastic energy. In our work, we used a method based on Müller, Heidelberger, et al.
(2005) which was made for shape matching applications, and later used by Becker,
Ihmsen, and Teschner (2009b) for PBA applications. The method consists of
building the transformation matrix A from the distance between a point cloud
and its center of mass

A =

(
∑

i

mi(xi − xcm)(x0
i − x0

cm)T

)(
∑

i

mi(x0
i − x0

cm)(x0
i − x0

cm)T

)−1

76 Meshless methods

When substituting the center of mass by an integration point, the transformation
matrix can then be reformulated as

Ai =
∑

j

mjWj(Xi)(xj − xi)(Xj −Xi)T (3.34)

for the PBA method, and

AI = wI

∑

j

Wj(XI)(xj − xI)(Xj −XI)T (3.35)

for the MLAMBI method. This transformation matrix is sufficiently robust for
neighborhood inversions, and is also computationally efficient. A single rotation
matrix can also be extracted at the center of the element and used to approximate
the rotation for all integration points inside the same element to further reduce
the computational time required to build the tangent stiffness matrix. This will
usually yield better results than the technique of extracting the rotation at a single
element’s node as proposed in Nesme, Payan, and Faure (2005).

3.7 Surface mapping

Up until now, our discussion has been concentrated on the volumetric part of the
simulated object. We will now discuss its boundary representation. This repre-
sentation may be required to impose the boundary conditions on our models, or
simply to display the object’s surface to the end user. For an implicit surface
representation such as a level-set iso function, an explicit surface tessellation is
usually created before the simulation, using for example a marching cube algo-
rithm. The resulting surface tessellation is normally a mesh made of triangular or
quadrangular elements.

Let Ms be a surface mesh containing ns nodes. In order to approximate the dis-
placement at any nodes in Ms, we use the shape functions of neighboring particles
(figure 3.7). Hence, the same principle used for interpolating the displacement
gradient at the location of an integration point is reused here for a surface mesh
node. Let Xs

i be the position vector of the ith surface node, and V (Xs
i) the set of

neighboring particles. The displacement vector at this surface node is given by

us
i =

∑

j∈V (Xs
i

)

φj(Xs
i)uj (3.36)

3.7 Surface mapping 77

Figure 3.7: Three-dimensional mapping example of a surface mesh where the dis-
placement of its nodes is approximated from the displacement of neighboring par-
ticles.

with φj the shape function evaluated from either the SPH method (equation 3.16)
or the MLS method (equation 3.24).

In practice, we build a sparse and rectangular matrix H of size 3n×3ns called the
mapping matrix where n is the number of particles in the domain. Let 0 ≤ i ≤ n
be the index of a particle neighbor to a surface node of index 0 ≤ j ≤ ns, i.e.
Xi ∈ V (Xs

j), we define

Hij = Iφi(Xs
j) (3.37)

as the 3 × 3 mapping sub-matrix of H . It is also sometimes more efficient to
directly interpolate the position vector of the surface nodes. Let P be the 3n× 1
position vector of the particles. The 3ns×1 position vector Ps of the surface nodes
is obtained with

Ps = H⊺P (3.38)

and can be computed efficiently with sparse matrix to dense vector multiplication
routines.

78 Meshless methods

Note that, unless topological changes occur, particle neighborhoods of the surface
nodes and the resulting mapping matrix H can both be precomputed since they
will not change during the simulation, thanks to the Lagrangian formulation of
the system.

3.8 Neumann boundary condition

In classical Finite Element methods, the boundary of the discretized domain is
represented directly by the faces of the elements lying on the surface of the mesh.
Hence, the Neumann boundary conditions are applied by integrating the surface
traction term of the weakened equation (2.11) on these faces. Here, however,
the boundary is represented by a surface tesselation that is embedded inside the
particle point cloud, as shown in figure 3.7. A specific scheme has to be built
to project the tractive forces applied to the embedded mesh to the surrounding
particles embedding it. This particularity is also found in Immersed boundary
(IB) methods, which will be discussed in detail in chapter 4. The difference being
that, here, the surface mesh is not embedded into a background mesh of elements,
but is instead embedded inside a background point cloud.

The imposition of Neumann boundary condition is done in two steps. First, we
accumulate a surface traction vector T s of size 3ns × 1 with

T s =
⋃

+
es

ne
s∑

i=1

∫

Ωes

t ·N es

i

︸ ︷︷ ︸

ts
i

dΩes
(3.39)

where es is a surface element (for example, a triangle or quad) containing ne
s nodes,

and where N es

i is the ith shape function of es with respect to material coordinates.

Next, we propagate these tractive forces to neighboring particles using the same
mapping matrix H defined earlier, leading to

T = HT s (3.40)

where T is the global 3n × 1 traction vector of the system. Again, this can be
pre-assembled before the simulation in case of a constant traction, or at each load
increment otherwise.

3.9 Dirichlet boundary condition 79

3.9 Dirichlet boundary condition

For a number of reasons, the essential boundary conditions such as the strict im-
position of Dirichlet displacements on parts of the boundary constitute a challenge
with meshless methods. First, contrary to Finite Element (FE) methods, shape
functions based on point clouds such as the SPH or the MLS presented in this
chapter do not possess the Kronecker delta function property. This means that
an approximation of a field function does not go through nodal values. In addi-
tion, and this was the case with the Neumann conditions in the last section, our
boundary representation is immersed, and thereby is not represented explicitly by
particles.

Various methods have been introduced to overcome these issues. Some will adapt
the shape functions in order to recover the Kronecker delta property on boundary
nodes [Gosz and W. K. Liu (1996); Chen et al. (1996); Mostt and Bucher (2005)].
Others will instead change the variational formulation in order to add new terms
to enforce the Dirichlet conditions. This is the case, for example, with Lagrange
multiplier based methods [Ted Belytschko, Y. Y. Lu, and L. Gu (1994)], Penalty
based methods [Zhu and Atluri (1998)] or Nitsche’s based methods [Griebel and
Schweitzer (2003); Fernández-Méndez and Huerta (2004)]. Methods based on La-
grange multipliers are probably the most frequently used. They consist of adding
a new set of unknown variables to the system, the Lagrange multipliers, that serve
to enforce field values on boundary nodes. They, however, bring a non-negligible
computational cost, especially when large portions of boundary nodes are present.
Penalty methods, on the other hand, are quite efficient and work by adding a
stiffness penalty force term. The stiffness factor is usually chosen to be very large
and can produce an ill-conditioned system. Similarly, the Nitsche’s method, also
works by adding a penalty term, but this time the scalar value is chosen relative to
each particular problem, and is usually not trivial to determine [Fernández-Méndez
and Huerta (2004)]. Finally, some methods will simply blend their meshless ap-
proximation with a FEM discretization near the boundary region [T. Belytschko,
Organ, and Y. Krongauz (1995); Günther and Wing Kam Liu (1998); Huerta and
Fernández-Méndez (2000); G. Y. Zhang et al. (2014)].

For the models developed in this work, we first chose to explore a penalty based
imposition of Dirichlet boundary conditions, as it is by far the simplest and quick-
est to implement. Throughout our experimentation, this method has proven to
generate an accuracy that is more than acceptable and we did not observe any ill-
conditioning problem. Given these results, we concluded that it was not necessary
to spend more effort on alternative methods.

80 Meshless methods

The steps to impose a penalty force on a Dirichlet boundary are similar to the
surface traction process that was described in the last section. We first accumulate
a surface force vector Ss (of size 3ns× 1 for a surface mesh having ns nodes). Let
Sd be the set of surface nodes lying on a Dirichlet boundary. We define

Ss =
⋃

+
i∈Sd

kI
∥
∥
∥uk

i − ud
∥
∥
∥ (3.41)

where k is the penalty parameter, uk
i is the current displacement of the ith surface

node, and ud is the imposed displacement. This penalty can be seen as if we were
attaching elastic springs of stiffness k between a surface node and its imposed
position (see figure 3.8).

Figure 3.8: Penalty method where displacements are imposed on surface nodes
that are embedded into surrounding particles.

To transfer the surface penalty forces back to the neighboring particles, we use the
mapping system defined in section 3.8:

S = HSs (3.42)

This time, however, the forces are dependent on the current displacement, which
means that in order to use the NR algorithm, the tangent stiffness matrix of those

3.10 Solving the dynamic system 81

forces is required. For the surface force, the derivation is straightforward

Ks
s =

⋃

+
i∈Sd

kI (3.43)

The stiffness contribution to the global matrix of the fictitious grid is again com-
puted using the mapping matrix, i.e.:

Ks = HKs
sH⊺ (3.44)

3.10 Solving the dynamic system

So far, we have described all the elements required to build the complete discrete
system of equations needed to balance the linear momentum introduced in chapter
2. We have seen how the elastic forces are accumulated into a residual vector R

that contains the internal nodal forces. Using a mapping between an immersed
surface mesh and the internal particles of our meshless discretization, Neumann
boundary conditions were imposed naturally using the integration of a traction
function over the surface mesh. The displacement essential boundary conditions
were replaced by natural boundary conditions using a penalty method. Combin-
ing all of these components together into the general equation (2.21), the system
becomes as follows

Mü + Du̇ + R(u) + S(u) = B + T

where M and D are respectively the mass and damping matrix presented in
section 2.6.

This problem can be written as a system of first order differential equations using

v =
du

dt
, a =

dv

dt

where the acceleration a and the velocity v have been introduced as independent
variable. Similarly to what we have done previously in discretizing a continuous
domain into a finite set of subdomains, we can split a continuous function of time
into a series of steps t0, . . . , tn, called time steps. The previous system of equations
is therefore replaced by a discrete system to be solved at a given time ti+1:

82 Meshless methods

Mai+1 + Dvi+1 + R(ui+1) + S(ui+1) = Bi+1 + Ti+1 (3.45)

where the indices i denotes that a quantity is taken at the time step ti.

To solve this discrete equation, we have to rely on numerical methods. These can
be classified into two distinct branches. Explicit methods are numerical procedures
which give the solution of equation (3.45) at a time step ti+1 using only quantities
computed at the time step ti. When both the mass matrix and the damping
matrix are diagonal, i.e., when using lumped matrices, explicit methods are very
computationally efficient. The central difference scheme is a popular example of
such explicit method, and is the one we have implemented. Posing vi+1 and ai+1

as

vi+1 =
ui+1 − ui−1

2∆t

ai+1 =
ui+1 − 2ui + ui−1

(∆t)2

and inserting them into the equation (3.45) gives the following linear system of
equations:

(M +
∆t

2
D)ui+1 = (∆t)2(Bi + Ti −R(ui)− S(ui))

+
∆t

2
Dui−1 + M(2ui − ui−1) (3.46)

where ∆t = ti−1 − ti is the time between two time steps.

Since both the mass matrix and the damping matrix are constant, the left-hand
side component can be pre-inverted and only the right-hand side of the equation
has to be computed at each time step.

Explicit methods present a disadvantage as very small time steps are required
to generate a stable solution (one of our four key requirements). Conversely, the
second branch of numerical methods to solve equation (3.45), the implicit methods,
is unconditionally stable and therefore can handle larger time steps. Here, the
solution of the system depends on quantities at the current time step ti as well as

3.11 Results 83

the unknown time step ti+1. A popular choice of implicit method is the Newmark
method, where the following approximations are made:

ui+1 = ui + ∆tvi +
(∆t)2

2
[(1− 2β)ai + 2βai+1]

vi+1 = vi + ∆t [(1− γ)ai + γai+1]

where 0 ≤ β ≤ 0.5 and 0 ≤ γ ≤ 1 are constant scalar parameters. In this work,
we have used β = 0 and γ = 1

2
which derives to the central difference formulation.

The system to be solved hence becomes

(M + γ∆tD)ai+1 + R(ui+1) + S(ui+1)−Bi+1 − Ti+1 = 0

When the elastic residual component R(ui+1) is non-linear, the Newton–Raphson
(NR) algorithm presented in section 2.7 has to be used.

3.11 Results

One of the main interests throughout this work was, of course, to establish how
the meshless approach described in this chapter positions itself with respect to
the traditional FE method. We therefore performed a series of experiments on
different scenarios using the PBA method with the SPH and MLS shape functions
described earlier. We also repeated these experiments with our MLAMBI method.

All our experiments were implemented within the Simulation Open Framework
Architecture (SOFA) framework [Allard et al. (2007)]. The implementation of our
meshless models has been made as a SOFA plugin. No multithreading maneuvers
were used, hence leaving the place for future speed improvements. Computation
times are given and were measured on an Intel(R) Core(TM) i7-6700K CPU @
4.00 GHz computer with 16 GB of memory.

84 Meshless methods

Performance of the PBA method

We ran a series of experiments with the Point-Based Animation (PBA) method
using either an explicit or implicit Euler time integration scheme. The behavior
of the method was evaluated with respect to two simulation scenarios: stretching
and bending.

Stretching simulations

For this first scenario, the experiment consisted of observing the effect of gravity on
a simulated parallelepiped beam having its top face fixed. The particle placement
was done using a lattice grid of 10 × 40 × 10 nodes. The simulated material
was Saint-Venant-Kirchhoff with a mass density of 6.23, Young’s modulus of 2000
[Pa] and a Poisson coefficient of 0.3. Time integration was done using a Central
Difference scheme with a time step of 5 milliseconds for a total of 3 seconds of
simulation. Results of the simulation with the SPH approximation method are
shown in figure 3.9 and are compared against a 4-nodes tetrahedron FE method
using the same number of nodes.

The results of this first experiment illustrates one of the main issues with the PBA
method. Here, we can see that using only 10 neighbors per particles translates to a
very weak force propagation. As the neighborhood increases, the simulated beam
is able to stretch a bit more, getting a little closer to the reference solution. How-
ever, the low order of the approximation is restraining the beam from getting to its
complete stretched shape. Furthermore, having too many particles in a neighbor-
hood makes the approximation fail completely, creating numerical artifacts and, at
some point, makes the simulation diverge. Note that to make sure these artifacts
were not coming from the explicit integration scheme, we reran the experiments
using this time steps of 0.05 [ms] and an implicit scheme using steps of 5 [ms],
both of which resulted in exactly the same solution and artifacts.

As expected, a higher approximation order can improve the accuracy of the solu-
tion. The same stretching experiment was repeated with exactly the same con-
figuration, but this time using the MLS shape function. The results shown in
figure 3.10 indicate that starting with 10 neighbors, the beam is allowed to stretch
further than with the SPH shape function. However, the same numerical artifact
arises when using larger neighborhood.

Mean computational times for these experiments are provided in table 3.1 for both

3.11 Results 85

40 [cm]

20 [cm]
20 [cm]

Fixed

Gravity

Mass density 6.23

Total mass ~100kg

Young modulus 2000 Pa

Poisson ratio 0.3

(10 neighbors)

SPH FEM
(20 neighbors)

SPH
(30 neighbors)

SPH

Figure 3.9: Stretching of a parallelepiped beam of 10× 40× 10 particles: from left
to right, SPH approximation with respectively 10, 20 and 30 neighbors for each
particle. At the complete right, a reference FEM solution with the same number
of nodes and same material.

86 Meshless methods

the PBA and the MLAMBI methods. Without any surprise, the computation
time increases with the size of influences of the particles. For the MLAMBI
method, the number of integration points per background elements also plays a
major role. Under-integration using only one integration point per element does
improve the computation time of the internal residual assembly, but decreases the
stiffness matrix conditioning, hence requiring more conjugate gradient iterations
to solve the linear system of equation.

Bending

For the bending simulation scenario, we were interested in the behavior of the PBA
method when the simulated object undergoes a large rotation. Using the same
configuration as per the stretching experiments, we simply changed the direction
of gravity in order to deform the beam sidewise.

Similarly to the stretching experiment, bending the beam using large neighbor-
hoods creates numerical artifacts close to the fixed part of the beam (top face).
However, here we are able to observe another drawback due to the lack of con-
sistency associated with the shape functions. When using the non-linear Green-
Lagrangian strain tensor E, which normally should be insensible to rotation, ghost
forces similar to those obtained with a small strain assumption arise. We suspect
that the weakness of the approximation is at fault here. Figure 3.11 shows the
results of the bending experiment with the MLS shape function. Similar results
were obtained with the SPH method.

To validate our suspicions on the weakness of the shape functions, we borrowed
the MLS shape functions of the MLAMBI method. This allowed us to enrich the
solution by adding monomial basis function of higher degree to the approximation’s
space. However, contrarily to MLAMBI method, we kept the nodal integration of
the PBA method. Results of the bending experiment with the non-linear Green-
Lagrangian strain tensor are presented in figure 3.12.

A rapid observation of the deformed shapes is enough to confirm the lack of accu-
racy of the PBA method compared to a FE solution and that, for both stretching
and bending experiments. As we will see in the next section, the rough approx-
imation of a particle’s volume which is the ground of the numerical integration
method is clearly not enough. Nevertheless, the PBA method remains interest-
ing for applications that merely require visually plausible deformations or when
complex meshing scenarios which are typically addressed by FE methods, are not
required.

3.11 Results 87

40 [cm]

20 [cm]
20 [cm]

Fixed

Gravity

Mass density 6.23

Total mass ~100kg

Young modulus 2000 Pa

Poisson ratio 0.3

(10 neighbors)

MLS FEM
(20 neighbors)

MLS
(30 neighbors)

MLS

Figure 3.10: Stretching of a parallelepiped beam of 10×40×10 particles: from left
to right, MLS approximation with respectively 10, 20 and 30 neighbors for each
particle. At the complete right, a reference FEM solution with the same number
of nodes and same material.

88 Meshless methods

40 [cm]

20 [cm]
20 [cm]

Fixed

Gravity

Mass density 6.23
Total mass ~100kg
Young modulus 2000 Pa
Poisson ratio 0.3

(1
0

 n
e

ig
h

b
o

rs
)

M
L

S
F
E

M
(2

0
 n

e
ig

h
b

o
rs

)

M
L

S
(3

0
 n

e
ig

h
b

o
rs

)

M
L

S

a)

d)

g)

j)

b)

e)

h)

k)

c)

f)

i)

l)

Figure 3.11: Bending of a parallelepiped beam of 10× 40× 10 particles: compari-
son between the non-linear Saint-Venant-Kirchhoff material, the corotated Cauchy
material and the linear Cauchy material. a-c) MLS 10 neighbors, d-e) MLS 20
neighbors, g-i) MLS 30 neighbors, j-l) FEM

3.11 Results 89

a)

d)

g)

b)

e)

h)

c)

f)

i)

[1|X Y Z|XY XZ Y Z|X2 Y 2 Z2]
7 monomials 4 monomials10 monomials

[1|X Y Z|XY XZ Y Z] [1|X Y Z]

Figure 3.12: Bending of a parallelepiped beam of 10× 40× 10 particles with 3159
integration points using MLS approximations of different orders: a-c) 10 neighbors,
d-f) 15 neighbors, g-i) 20 neighbors

Performance of the MLAMBI method

We will now look at how the MLAMBI model proposed in this chapter performs
in comparison to the PBA and FE methods. We also wish to validate that our
implementation is adequate from a numerical point of view by analyzing its conver-
gence characteristics from the reference FE solution. The main results presented
here are also available in Brunet, Magnoux, et al. (2019).

As we did for the PBA analysis, our performance evaluation involved the bending
and stretching experiments. In this case, however, we evaluated metrics over the
displacement field instead of a simple visual validation. To remove any numerical
error from the time integration, we analyzed static solutions using a maximum of
100 Newton–Raphson iterations. Here, we modeled a rectangular beam of 20×20×
200mm3 placed horizontally and having its top face fixed. For the constitutive law,
we relied on the linear Cauchy elasticity using the corotational approach described
in section 3.6 with a Young modulus of 50N/mm2 and a Poisson ratio of 0.45.
For the bending experiment, we applied a downward traction field of 12N/mm2

on the end-face of the beam. For the stretching experiment, we applied a traction
field of 1500N/mm2 in the direction of the face normal. The reference solution

90 Meshless methods

was obtained for both scenarios using the corotated FE method of Nesme, Payan,
and Faure (2005) with approximately 70k hexahedrons.

We started our analysis by measuring the convergence rate of the method. As we
can see in figure 3.13, as the number of nodes increases, our MLAMBI method
converges towards a unique solution. The accuracy of the solution is irrelevant for
this first metric as we only wish to validate that the method converges at a constant
rate, which is the case for both the stretching and the bending experiments.

Having confirmed that the method converges, we can now look at how close we get
to FE solutions using the same material formulation. This is done in figure 3.14,
where the distance of the center point of the beam at the end of the simulation
from the center point in the reference solution is provided. Note that for the
bending experiment, we also provided the solution produced by the nodal SPH-
based integration of the PBA method equipped with the MLS approximation
of the MLAMBI method. We can see from these results how the integration of
the elasticity over a nodal volume approximation can impact the accuracy of the
simulation. Computation times for each simulation are provided in figure 3.14c.

3.11 Results 91

10
2

10
3

10
4

Num ber of DOF

10
− 3

10
− 2

10
− 1

10
0

L
2

-n
o

r
m

 o
n

 u
R

e
la

ti
v
e

Linear MLAMBI (stretching)

Corotated MLAMBI (bending)

Corotated MLAMBI (stretching)

Linear MLAMBI (bending)

Figure 3.13: Relative L2-norm of the displacement error between the solution with
n Degrees Of Freedom (DOF) and the solution with (n-1) DOF for stretching and
bending scenarios, using a linear elasticity material with and without our corotated
approach.

Table 3.1: Computational time - Linear elasticity

Step time [ms] Conjugate gradient
Method

Nb of
neighbors

Internal forces
assembly [ms] Explicit Implicit Nb iterations Solve time

10 3.5 5.64 47.54 12 40.70
20 6.52 8.47 101.40 13 87.97SPH
30 9.99 10.71 167.29 14 146.69
10 3.26 5.81 50.16 13 43.44
20 6.80 8.30 109.4 14 95.53

PBA

MLS
30 10.48 11.98 183.20 15 161.30
10 2.19 2.94 37.63 29 33.92
15 2.96 3.60 63.28 30 58.06

1 integration pt.
per hexahedron

20 3.53 4.22 56.18 20 49.88
10 6.35 6.61 41.21 9 32.86
15 7.91 7.75 56.05 9 45.32

MLAMBI
8 integration pt.
per hexahedron

20 10.06 10.50 84.05 19 69.93
FEM 1.55 2.34 45.44 34 42.39

Mean step time for the stretching experiments using 10 × 40 × 10 particles (cf. figures 3.10).

92 Meshless methods

10
2

10
3

10
4

Num ber of DOF

10
0

10
1

10
2

D
is

t
a

n
c
e

 f
r
o

m
 r

e
fe

r
e

n
c
e

 s
o

lu
t
io

n

Corotated FEM

Corotated MLAMBI

FEM

MLAMBI

PBA

(a) Bending experiment

10
2

10
3

Num ber of DOF

10
− 2

10
− 1

D
is

t
a

n
c
e

 f
r
o

m
 r

e
fe

r
e

n
c
e

 s
o

lu
t
io

n

Corotated FEM

Corotated MLAMBI

FEM

MLAMBI

(b) Stretching experiment

102 103 104

Num ber of nodes

101

102

103

104

105

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

s
)

MLAMBI (stretching)

MLAMBI (bending)

Corotated MLAMBI (stretching)

Corotated MLAMBI (bending)

(c) Simulation times

Figure 3.14: Accuracy of solutions compared against the corotated FE reference
solution.

Table 3.2: Computational time - Corotated elasticity

Step time [ms] Conjugate gradient
Method

Nb of
neighbors

Internal forces
assembly [ms] Explicit Implicit Nb iterations Solve time

10 7.17 9.11 51.88 12 40.93
20 12.71 12.83 108.16 13 88.36SPH
30 18.43 18.57 176.85 14 147.64
10 6.52 8.08 53.67 13 45.55
20 11.96 12.52 108.15 14 94.51

PBA

MLS
30 17.17 17.93 175.23 15 155.98
10 3.55 4.12 42.55 29 37.70
15 4.02 4.96 67.70 30 59.91

1 integration pt
per hexahadron

20 4.17 5.49 70.12 25 64.27
10 7.49 8.29 51.25 9 45.36
15 8.25 8.91 62.23 10 58.44

MLAMBI
8 integration pt
per hexahadron

20 9.99 10.45 91.11 20 71.89
FEM 3.06 3.75 58.01 34 53.06

Mean step time for the bending experiments using 10 × 40 × 10 particles (cf. figures 3.11).

3.12 Discussions 93

3.12 Discussions

In this chapter, the first category of the simulation models considered in this
thesis, the meshless methods, has been analyzed. These represent an alternative
to traditional Finite Element (FE) methods that rely on a mesh made of well-
formed and well-placed elements and that must comply with the boundaries of the
simulated domain. The idea of using a method that can discretize in a Galerkin
way a domain by simply filling it with a cloud of points sounded quite appealing.

Unfortunately, we quickly encountered many issues and challenges. The first one
is associated with the complexity of the underlying theory. While many references
can be found for FE methods based on standard iso-parametric elements, the
situation is different with meshless methods. Most of the relevant literature was
pertaining to the field of computational mechanics, which is usually not adequate
for the type of interactive simulations we are interested in. The other drawback
comes from a more technical aspect: most of the models analyzed in this chapter
had to be implemented from scratch. The available FE software we found to sup-
port us during this first part of the thesis were extremely strict as to the extensions
allowed, especially as soon as we were stepping outside of the usual iso-parametric
element-based discretization area. Thus, our comparison between computation
times from our meshless implementations and the finite element method should
be considered with some reservations as the latter was computed using a highly
optimized software.

Nevertheless, for an equal number of nodes and order of approximation, our ex-
periments have shown that meshless methods will generally require more compu-
tational time compared to the FE methods since their approximations of a given
field function are usually dependent on more degrees of freedom (neighboring par-
ticles) than with geometrical iso-parametric elements. Moreover, having a variable
number of nodes per integration point will impact the computational performance
as it prevents many useful optimization strategies for the assembly of the stiffness
matrix. For example, the vectorization of CPU operations, or a strict alignment
of computer memory blocks to avoid cache misses, become almost impossible to
implement with this approach.

We chose to start our analysis of meshless methods with the PBA model because
of its popularity in the research community and more importantly, because it is
physically driven and aimed at interactive simulations. However, we saw that even
if the basic rules of continuum mechanics are applied, the resulting model will not
necessarily produce physically accurate solutions. In this case, while producing

94 Meshless methods

visually pleasing simulations, the weakness of both the approximation space and
the volumetric integration schemes turned out to be too inaccurate and definitely
not adapted for surgical application involving large deformations.

To overcome these inaccuracies, the approach documented in Horton et al. (2010)
looked interesting and has led us to the implementation of our MLAMBI method.
This one relies on an MLS method where the approximation space can be enriched
by adding monomial basis functions. As we described in this chapter, instead of
doing a nodal integration based on an SPH-based volume estimation, we used
a background grid of regular hexahedral elements where the standard gaussian
quadrature can be used. We have proposed a way to apply a corotational ap-
proach to efficiently simulate large displacement with a linear elasticity, hence
greatly improving the computational speed. Since our simulation context depends
mostly upon low frequencies modes from large deformation induced by the sur-
geon’s manipulations on the liver, we have shown how an implicit time integration
scheme, which is optimal for these kinds of problems [Wriggers (2008)], can be
formulated.

While we were quite satisfied with our results and believed our implementations
represented real contributions, we decided to put aside meshless methods for the
rest of this thesis. The meshing difficulties found in traditional FE methods are
undoubtedly avoided here, but the complexity inherent to meshless methods has
pushed us to reconsider our initial objectives. We realized that creating FE meshes
is problematic only when boundaries have to be rigorously represented by the mesh.
A method in which this constraint could be relaxed and where the advantages of
the FE approach would be retained would constitute a significant contribution
for our type of application. For example, such method could allow us to create a
coarse FE mesh where geometrically challenging boundaries are simply embedded
inside the mesh. The problem of meshing these boundaries would therefore be
transformed to the problem of correcting the computation over elements cut by
the boundary. Handling such discontinuity brings us into a totally new branch of
numerical methods referred to as fictitious domain methods. These are also called
the immersed boundary methods and will be the subject of the next chapter.

Chapter

4

IMMERSED BOUNDARY METH-

ODS

4.1 Literature review . 96

4.2 The choice of background element type 99

4.3 Immersed-boundary discretization and integration 101

4.4 The Finite Cell approach . 102

4.5 The Weighted Cell method . 105

4.6 Neumann boundary condition 107

4.7 Dirichlet boundary condition 108

4.8 Preliminary validation of the Weighted Cell method 110

4.9 Experiments performed on an in-vivo porcine liver 118

4.10 Experiment performed on an ex-vivo human liver 123

4.11 Discussions . 125

The Immersed boundary (IB) methods, sometimes referred to as embedded domain
methods, consist of a subset of the Finite Element (FE) methods in which the
concept of fictitious domains is applied. Here, the simulated object is placed
directly into a computational background mesh (the fictitious domain) generally
made of regular and simple elements (figure 4.1b). As we discussed in the previous
chapters, with the traditional FE approach, the computational mesh needs to
closely match the boundary of the simulated domain. With the IB methods, the
numerical operations are executed on a set of elements that may not conform
geometrically to the boundaries of the domain of interest.

96 Immersed boundary methods

Since their first introduction in the work of Peskin (1972) which was aimed at solv-
ing flow patterns around heart valves, IB methods have evolved to a wide range
of fluid-fluid, fluid-solid and solid-solid implementations. Because the computa-
tional mesh does not conform to its embedded objects, the main challenges of IB
methods reside within the computation of a background element that is cut by the
boundaries region. We call the boundary interface of any element the representa-
tion of the cut surface that separates the region inside the simulated object from
the outside domain. The accurate identification and representation of this inter-
face inside a background element constitute the first step of the method and is not
always trivial to implement. The exact location of a boundary interface within an
element can be provided by an explicit representation (usually by means of parti-
cles or geometric descriptions). An implicit representation which uses a volumetric
scalar-valued field function (such as those found in level-set methods) may also be
used. In this case, a threshold will define whether the field value at a given position
is considered inside, or outside of the domain. Note that the concept of interfaces
with IB methods are not restricted to the inside/outside domain boundaries. They
can also be extended to interfaces that separate a given simulated material against
another. For instance, an interface could separate an elastic material whereby the
stiffness is different whether it is evaluated on one side of the discontinuity or the
other. It can also be extended to model different anisotropic directions or even
scenarios which involves objects with material laws that are completely different
such as a hyperelastic material on one side, and a fluid material on the other side.

We will begin this chapter with a review of the literature associated with IB
methods. We will then present two implementations. The first one, the Finite Cell
(FC) method, is a well-known embedded domain method [Parvizian, Düster, and
Rank (2007)]. The second one, the Weighted Cell (WC) method is an extension
of the FC method which we have designed based on the key requirements of our
application. An analysis and preliminary validation of these two methods are
provided. Finally, a more thorough set of simulation tests are performed using
porcine and human livers. We conclude this chapter with a discussion of our
results and the observations we have made throughout this second part of this
thesis.

4.1 Literature review

The main challenge associated with the IB approach arises when the immersed
object does not fit entirely in some of the underlying computational elements.
These elements must therefore be separated in two regions: the region associated

4.1 Literature review 97

(a) Single boundary con-
forming mesh.

(b) Boundary immersed into
a fictitious (background)
grid.

Figure 4.1: Simplified example of a simulated liver 2D cross-section where both
the parenchyma and the internal vessels must be taken into account, each having
a distinct material description

with the interior of the simulated object, and the region which is outside. The
underlying computational element is therefore cut in two parts and must be treated
as two distinct subspaces. The geometry of these two subspaces and their material
must obviously be taken into account. This can be done by introducing a continuity
constraint on the interface boundary between the two regions: there must be no
jump on the solution field (in our case, the displacement field) with respect to both
regions. Simply put, near (in a limit sense) the interface between these regions,
the displacement must be equal on both sides.

Many approaches have been used in the past to address this constraint. Most
of them are based on the following three methods: the penalty method [Bishop
(2003); Ramière, Angot, and Belliard (2007)], the Lagrange multiplier method
[Burman and P. Hansbo (2010); Glowinski and Kuznetsov (2007)] and the Nitsche’s
method [Nitsche (1971); A. Hansbo and P. Hansbo (2002); Dolbow and Harari
(2009); Burman and P. Hansbo (2012); Schillinger and Ruess (2015)]. These meth-
ods may also serve as a means to impose essential boundary conditions when the
external region is the empty space.

98 Immersed boundary methods

For cut elements, an integration scheme must also be defined to account for the
two subspaces separated by their boundary interface. As documented in [Düster
et al. (2008)], this is usually done by representing the geometry inside an element
through a set of quadrature points which are usually refined until a prescribed
accuracy is achieved. When both regions of the element are filled with linear
materials, and when the boundary interface can be approximated into a set of
surface elements (usually through triangular tessellation), the volume integrals
can be converted to surface integrals using the divergence theorem [Mirtich (1996);
Bishop (2003); T. P. Fries and Omerović (2016)]. The benefit of this approach is
that the underlying weak equations can be integrated exactly.

Over the past 20 years, many combinations of these fictitious domain approaches
have been proposed which resulted in some efficient methods for discretizing com-
plex geometries. One of the most popular, the Finite Cell Method (FCM) [Parvizi-
an, Düster, and Rank (2007)], uses a background grid of high order regular hex-
ahedral elements and are often coupled with Nitsche’s method [Nitsche (1971)]
to impose Dirichlet boundaries. An adaptive gaussian quadrature scheme is then
used to integrate the weak formulation of the partial differential system. In Ruess
et al. (2012), the FCM was used to predict the bone mechanical response of the
human femur where a patient-specific model is built directly from CT images.
By using hierarchical splines, Verhoosel et al. (2015) reconstructed the smooth
geometry of trabecular bone from voxel-based images and simulated the elastic
body through the FCM. In Elhaddad et al. (2018), an hp-refinement scheme is
added to the FCM in order to simulate a vertebra-implant model. An exhaustive
review of finite cell methods can be found in Schillinger and Ruess (2015). We will
implement a version of the FCM later in this chapter.

Burman and co-workers proposed another combination of the immersed bound-
ary concepts called cutFEM [Burman and P. Hansbo (2012); Burman, Claus, et
al. (2015)]. Similar to the FCM approach, they use a background grid made of
iso-parametric elements to compute the approximate solution of PDEs. They en-
rich the weak formulation on cut elements with a ghost penalty parameter that
improves the robustness of the method by making the conditioning of the ma-
trix independent of the way the boundary cuts the computational mesh. A good
overview of different strategies to deal with ill-conditioning matrices due to some
background cells that intersect the physical domain on a very small fraction of
their volume can be found in the work of Prenter et al. (2017).

For interactive simulations, which must quickly provide updated solutions in re-
sponse to new boundary interactions in time (usually from collisions or external
data constraints), linear background elements are usually preferred. In Nesme,

4.2 The choice of background element type 99

Payan, and Faure (2006) , authors embed non-homogeneous corotated elastic ma-
terials inside regular hexahedral elements. The stiffness matrix of an element is
integrated on a finer grid of sub-cells, each of them matching exactly one voxel that
contains the material properties at this location. The contribution of these smaller
sub-cells are then propagated back to their parent coarse cell. This process, which
falls under the branch of homogenization methods, was later extended by Nesme,
Kry, et al. (2009) by proposing shape functions on the coarse cells that consider
the heterogeneous parts of their sub-cells. By setting kinematic constraints on the
sub-cells nodes (seen as virtual nodes, as they are not represented in the system’s
set of unknowns), the elastic properties of their coarse parent cell are solved in
a pre-simulation stage such that the displacement on both the coarse and finer
nodes matches.

In both Nesme, Payan, and Faure (2006) and Nesme, Kry, et al. (2009), the inte-
gration of the weak equations were done on corotated sub-cells with respect to the
coarse hexahedron local frame. The authors of Jeřábková et al. (2010) proposed a
framework aimed at medical simulations and based on a similar multigrid coars-
ening approach that enables interactive cutting of the underlying mesh. To do so,
they built a connectivity graph between each coarse cells and their subcells. They
proposed a simpler homogenization method to quickly update coarse stiffness and
mass matrices after a topology change. These homogenization methods were then
extended by the work of Torres, Espadero, et al. (2014) with a more flexible strat-
egy that avoids the need for multiresolution meshes. Later on in Torres, Rodríguez,
et al. (2016), they demonstrated that all of these corotated coarsening strategies
fail to correctly represent boundary constraints when imposed on the finer sub-
cells. They proposed a method to better handle some of these constraints, at the
cost of being too complex to handle non-linear material or topological changes.

More recently, C. Paulus et al. (2017) demonstrated that, instead of subdividing
each hexahedron into sub-cells, when linear materials are used, the divergence
theorem can be applied to accurately integrate the element stiffness by tesselating
the cut hexahedrons into a set of planar facets.

4.2 The choice of background element type

While the use of regular cuboid elements remains a popular choice in the research
community, the concept of fictitious domain may also be extended to other geomet-
rical element types. In three dimensions, the usual alternative is the Tetrahedral
Finite Cell Method (TFCM) [Stavrev et al. (2016); Xu et al. (2016); Varduhn et

100 Immersed boundary methods

al. (2016)]. The problem of choosing between tetrahedral or hexahedral elements
is not a new one and is definitely not exclusive to the FC method. Comparison
between the two types of iso-parametric elements have been done numerous times.
The rationale behind using tetrahedral elements is generally because it is much
simpler to automatically generate a mesh that conforms to the domain’s bound-
aries [Shepherd and Johnson (2008); Burkhart, Andrews, and Dunning (2013)].
Some advanced methods might be able to recombine groups of tetrahedra into
hexahedral elements, yielding hybrid meshes. However, as soon as sharp features
are found within the simulated domain, it becomes extremely difficult to mesh
the domain with only hexahedral elements [Sokolov et al. (2016)]. The difficulty
of meshing with hexahedral elements is quite unfortunate, as they often require
4 to 10 times fewer elements than a tetrahedral mesh to reach the same level
of accuracy [Shepherd and Johnson (2008)]. We observed this phenomenon while
simulating the bending of a three-dimensional rectangular beam (figure 4.2). More-
over, tetrahedral elements are known to be less accurate due to their high stiffness
and predisposition to locking [Benzley et al. (1995); Tadepalli, Erdemir, and Ca-
vanagh (2011); Raut (2012)]. Following the conclusions of Burkhart, Andrews,
and Dunning (2013), we believe that hexahedral meshes should be used whenever
biological structures and soft tissue material have to be modeled.

Fortunately, in the case of IB methods, the computational mesh does not need
to be aligned with the simulated domain. It therefore seems natural to incline
our choice of background elements towards hexahedrons as we are not affected
by the constraints inherent to standard FE meshes. Moreover, as we will see
in the following sections, using a three-dimensional Cartesian grid of rectangular
hexahedral cells turns out to be quite convenient. They are easily refined around
the regions of interest through octree algorithms. The mapping transformation
function from the material coordinates into the canonical base is linear, hence its
Jacobian is constant and its inverse can be computed directly. Moreover, these
two characteristics make it a very good candidate for efficient geometry-based
hierarchical solvers. Finally, since the model is built from pre-operative images
of the patient made of rectangular voxels, it seems natural to use a grid made of
regular hexahedral elements that could easily match the voxels.

4.3 Immersed-boundary discretization and integration 101

0 5k 10k 15k 20k

0

0.02

0.04

0.06

0.08

0.1

Hexahedron

Tetrahedron

Number of nodes

L
2

 n
o

r
m

Figure 4.2: Comparison of a 3D beam of rectangular cross section modeled with
an hyperelastic Saint-Venant-Kirchhoff material. The beam is fixed at one side
and pulled down on the other side. The L2-norm of the displacement against
a 10 nodes tetrahedral mesh solution is shown at different mesh sizes for both
tetrahedral meshes and hexahedral meshes.

4.3 Immersed-boundary discretization and integration

Our next objective is to develop a model that can discretize the simulated liver with
a computational background grid composed of rectangular hexahedral elements as
discussed in the previous section. Often call cells, these elements, completely
engulf the boundaries of the simulated object. The nodes of the cells represent
the Degrees Of Freedom (DOF) of the system, as would any elements generated
in traditional FE methods. To make this possible, we simply rely on an advanced
technique to accurately integrate the hyperelasticity equations described in chapter
2 on the partially filled cells. Hence, the first step of the process consists simply
in placing a regular grid on top of the pre-operative segmented surface mesh of
the liver. Elements lying completely outside of the surface are removed from the
simulation.

For the elements lying completely inside the surface, the simulation is done as
per the standard hexahedral FE method. For cells that are cut by the boundary,
another approach must be used. In the following sections, we analyze two of them.

102 Immersed boundary methods

The first one is based on the FCM method mentioned earlier and will be referred
to as the FC method in the rest of this chapter. The second one is based on a
new approach that led us to our proposed Weighted Cell (WC) method.

4.4 The Finite Cell approach

The mapping from the local (or canonical) coordinates ξ = [ξ, η, ζ]⊺ of a point
inside the reference hexahedral element (section 2.8) to its material coordinates in
Ω is given by X = T (ξ) with

T (ξ) =
8∑

i=1

Ni(ξ)Xi (4.1)

and where Ni(ξ) = 1
8
(1+ξiξ)(1+ηiη)(1+ζiζ) is the trilinear shape function of the

element’s ith node which is located at the initial position (in material coordinates)
Xi.

The inverse mapping ξ = T −1(X) is often useful to compute the intersection
between the immersed boundary mesh and the grid. Since the shape functions
are not linear, the local coordinates ξ can be approximated with an iterative
Newton–Raphson (NR) algorithm. Starting at an initial guess ξ0 (usually the
center point of the element or its first node), we then have:

ξk+1 = ξk + J−1(X − T (ξk)) (4.2)

where J is the jacobian of the transformation T (ξk) at the kth iteration. The
iterations usually stop when |X−T (ξk)|

|X−T (ξ0)|
< ǫ for a given threshold ǫ.

However, from our choice of a regular background grid, the transformation can be
simplified to

T (ξ) =

Xm + Hx

2
ξ

Ym + Hy

2
η

Zm + Hz

2
ζ

(4.3)

where Xm = [Xm, Ym, Zm]⊺ is the center (middle) point of the cell, and H =

[Hx, Hy, Hz]⊺ its size. Its jacobian is then given by J = 1
2

[Hx 0 0
0 Hy 0
0 0 Hz

]

and is constant.

4.4 The Finite Cell approach 103

Thus, the inverse mapping is resolved from

T −1(X) =

2
Hx

(X −Xm)
2

Hy
(Y − Ym)

2
Hz

(Z − Zm)

(4.4)

and can therefore be computed directly.

The numerical integration of a vector field f(X) over an element e is done using
a Gauss quadrature scheme:

∫

Ωe

f(X)dΩe ≈
8∑

I=1

f(T (ξI))wI det(JI) (4.5)

with wI the Gauss weight at an integration point located at local coordinates
ξI , and JI the Jacobian of its transformation T (ξI). For elements cut at the
boundary or at an interface between two materials, the Gauss quadrature does
not hold anymore since the integrand is discontinuous. However, the regularity
of the hexahedral cells can be exploited again, this time allowing for an easy way
to split cells cut by the boundary into sub-cells. This technique is known as the
Finite Cell Method (FCM) [Düster et al. (2008)].

With this technique, cut elements are recursively split into 8 sub-cells, each one
having 1/8 of their parent cell dimensions, a well-known process called an octree
decomposition. This is illustrated in Figure 4.3 for a two-dimensional quad element
(4 sub-cells in this case). The transformation between local coordinates inside a
sub-cell (sc) to its coordinates inside its parent cell (pc) is given by

ξpc = T sc(ξsc) =

Xsc
m + Hsc

x

2
ξsc

Y sc
m + Hsc

y

2
ηsc

Zsc
m + Hsc

z

2
ζsc

(4.6)

The integration of a cell (c) can thereby be formulated with respect to its sub-cells
with

∫

Ωc

f(X)dΩc ≈
8∑

sc=1

8∑

I=1

f(T c(T sc(ξsc)))wIdetJsc
I detJc

I (4.7)

The integration of the element (e) is done by performing the Gauss quadrature on
its leaf cells (lc), which consists of the sub-cells that have not been subdivided. Let

104 Immersed boundary methods

T lc→e = T e◦· · ·◦T pc◦T lc be the transformation of local coordinates relative to the
leaf cell lc to its material coordinates in Ω. Let also detJlc→e

I = detJe
I×· · ·×detJlc

I

be the product of all Jacobian determinants of the transformations in T lc→e. The
integration on an element (e) that has nlc leaf cells then becomes

∫

Ωe

f(X)dΩe ≈
nlc∑

lc=1

8∑

I=1

f(T lc→e(ξlc))wIdetJlc→e
I (4.8)

Figure 4.3: A quad element is recursively subdivided into sub-cells when it inter-
sects the boundary. The numerical integration on the element is done by a Gauss
quadrature on the integration points (red crosses) of its leaf cells.

While the FC approach described here provides an accurate integration over cut
cells (given enough subdivisions), it remains unusable for real-time simulations of
non-linear materials. Indeed, when the internal virtual work in equation (2.11)
is non-linear, the system must be solved using a Newton–Raphson (NR) method,
leading to the following set of iterative equations

K(Uk) ·Uk+1 = R(Uk) + B + T (4.9)

where Uk is the displacement vector at iteration k, B and T are respectively the
body forces and surface traction vectors. Recall here the operator

⋃

+ introduced

4.5 The Weighted Cell method 105

in section 2.6 which denotes that an assembly process takes place. The tangent
stiffness matrix K(Uk) and residual vector are finally defined as

K(Uk) =
⋃

+
e

8∑

i=1

8∑

j=1

∫

Ωe

[

(∇⊺
XNi)S(∇XNj)I + B⊺

i

∂S
∂E

Bj

]

︸ ︷︷ ︸

Kij

dΩe (4.10)

R(Uk) =
⋃

+
e

8∑

i=1

∫

Ωe

FS ·∇XNi

︸ ︷︷ ︸

Ri

dΩe (4.11)

S and F are respectively the Second Piola-Kirchhoff (SPK) stress tensor and the
deformation tensor evaluated with Uk. Here, ∇XNi is the derivative vector of the
ith shape function with respect to the material coordinates.

With the FC approach, the integration on elements is done by evaluating the
integrand of equation (4.10) at each integration points on the leaf cells. The
computational effort hence grows exponentially (≈ 2n) with the level of subdivision
of the elements. In fact, it isn’t unusual that the assembly of the matrix K(Uk)
takes even more time that the resolution of the system itself! This would not be a
problem if K(Uk) was constant, as it could be evaluated only once at the beginning
of the simulation. However, because we are using a non-linear strain tensor E, this
matrix must be re-evaluated at each NR step.

We therefore have to find a middle ground that provides us a with good integration
over cut elements while not increasing the time required to build the system of
equations. This is covered by the WC approach that we will now introduce.

4.5 The Weighted Cell method

After only a few simulations with the the FC method, it became quite evident
that the number of integration points per elements must remain small if we wish
to achieve an acceptable computational performance. From a pure technical point
of view, it would be even preferable to keep the same quantity of integration points
in each cut element. This would allow us to align the integration points in the
computer’s memory, hence enabling various CPU optimizations. We recall that
this is not possible with the Finite Cell method as the number of integration points
in each cut elements depends on how the element is cut. In fact, a cut element
could have more integration points than its neighborhood.

106 Immersed boundary methods

During our experiments, we found a quite simple alternative which was surprisingly
very close to the Finite Cell method. We named it the Weighted Cell (WC)
method. The general idea behind this method is to keep the initial 8 integration
points of cut hexahedral elements and try to find integration weights that better
represent the portion of an element that lies inside the simulated object. Doing so
allows us to use existing Finite Element software tools that are very well optimized
for 8-nodes/8-integration points elements.

The first level of subdivision yields 8 sub-cells, each one containing one integration
point. We can thereby use the subsequent subdivisions of these 8 sub-cells to
compute their volume portion lying inside the boundaries. Let tc be a top-level
(first level of subdivision) sub-cell. We approximate its volume within the element
using

vtc ≈
nlc(tc)
∑

lc=1

8∑

I=1

1 · wIdetJlc→tc
I (4.12)

where nlc(tc) is the number of leaf cells inside the top-level cell tc. Figure 4.4
illustrates this where the red crosses are the integration points of the element.
The small circles are the integration points of the leaf cells and are only used to
compute the volume vtc of a top-level integration point (red crosses).

The integration of a vector field f(X) over an element e becomes

∫

Ωe

f(X)dΩe ≈
8∑

I=1

f(T (ξI))wIvI
tcdetJI (4.13)

where vI
t c is the volume of the top-level sub-cell containing the integration point

I.

4.6 Neumann boundary condition 107

Figure 4.4: A quad element is recursively subdivided into sub-cells when it inter-
sects the boundary. The numerical integration is done by a quadrature on the
integration points (red crosses) of the element. The weight of an integration point
is adjusted to better represent its portion lying inside the boundaries using the
subsequent subdivisions of the top-level sub-cell containing it.

4.6 Neumann boundary condition

Imposing boundary conditions on parts of the surface embedded in the fictitious
grid is a key process which has received a lot of attention from the scientific
community over the last decade. One frequent approach consists of applying the
Neumann boundary conditions by integrating the surface traction term of equation
(2.11) on the surface tessellation. In our case, however, the nodes of the surface
mesh do not necessarily match those of the underlying fictitious computational
grid. We are therefore proposing the following workaround which involves two
basic steps. First, we accumulate a surface traction vector T s (of size 3ns × 1 for
a surface mesh having ns nodes) from a traction field t(X) with

T s =
⋃

+
i∈es

ne
s∑

i=1

∫

Ωes

t ·N es

i

︸ ︷︷ ︸

ts
i

dΩes
(4.14)

108 Immersed boundary methods

where es is a surface element containing ne
s nodes and N es

i is the ith shape function
of es with respect to material coordinates.

Next, using the inverse mapping T−1 defined in the equation (4.4), we can prop-
agate the traction vector ts

i of a surface node i to the nodes of its enclosing cell.
Let Se be the set of surface nodes that lie inside the fictitious grid element e. We
construct the traction vector T of equation (4.10) using

T =
⋃

+
e

8∑

i=1

∑

is∈Se

ts
i ·Ni (4.15)

where Ni is the ith shape function of element e evaluated at the local coordinates
T−1

e (Xis
). In practice, we build a sparse and rectangular matrix H of size 3n×3ns

called the mapping matrix. Let 0 ≤ i ≤ n and 0 ≤ j ≤ ns, and let ej be the
hexahedral element that contains the jth surface node. We define

Hij =

N
ej

i 0 0
0 N

ej

i 0
0 0 N

ej

i

 (4.16)

as the 3×3 mapping sub-matrix where N
ej

i is the element ej shape function at node
i evaluated at local coordinates T −1(Xj). The traction vector T finally becomes

T = HT s (4.17)

which can be pre-assembled before the simulation.

4.7 Dirichlet boundary condition

The methods used to apply the Dirichlet conditions vary between the penalty meth-
ods [Bishop (2003); Ramière, Angot, and Belliard (2007)], the Lagrange multiplier
methods [Burman and P. Hansbo (2010); Glowinski and Kuznetsov (2007)] and
Nitsche’s based methods [Nitsche (1971); A. Hansbo and P. Hansbo (2002); Dolbow
and Harari (2009); Burman and P. Hansbo (2012); Schillinger and Ruess (2015)].
The Lagrange multiplier and Nitsche’s methods are usually the preferred approach
when very accurate solutions around these boundaries must be found. However,
they often require a considerable amount of computational time, and adding their
implementation into a simulation framework can rapidly become complex.

For our type of application, a strict compliance of Dirichlet conditions is rarely nec-
essary since the state of liver boundaries reconstructed during a surgery (usually

4.7 Dirichlet boundary condition 109

from stereo or RGB-D images) are usually incomplete and roughly approximated.
Therefore, we selected a penalty method that has proven to be more than enough
for our needs. Moreover, we finally ended up with a penalty method that has a
useful property that is not available with the Lagrange multiplier and Nitsche’s
approaches: it is more robust under non-physical displacement impositions. As
we will see in chapter 5, the non-rigid registration between a simulated liver and
an intra-operative reconstruction can often be resolved by imposing displacements
towards a noisy point cloud. Some of these displacements might not make any
sense from a physical point of view, and a strict imposition method such as La-
grange multipliers and Nitsche’s methods would probably prevent the simulation
to converge. With our penalty method, we can dynamically vary the penalty pa-
rameter in order to match the global shape of the point cloud, without having the
whole surface clipping it perfectly.

The steps to impose a penalty force on a Dirichlet boundary are similar to what
we have done with the surface traction in the last section. We first accumulate a
surface force vector Ss (of size 3ns × 1 for a surface mesh having ns nodes). Let
Sd be the set of surface nodes lying on a Dirichlet boundary. We define

Ss =
⋃

+
i∈Sd

kI
∥
∥
∥uk

i − ud
∥
∥
∥ (4.18)

where k is the penalty parameter, uk
i is the displacement of the ith surface node

at the current NR iteration, and ud is the imposed displacement. This penalty
can be seen as if we were attaching elastic springs of stiffness k between a surface
node and its imposed position (see figure 4.5).

To transfer the surface penalty forces back to our computational fictitious grid, we
use the same mapping system defined in section 4.6:

S = HSs (4.19)

However, this time the forces are dependent on the current displacement, which
means that in order to use the NR algorithm, the tangent stiffness matrix of those
forces is required. For the surface force, the derivation is straight forward

Ks
s =

⋃

+
i∈Sd

kI (4.20)

The stiffness contribution to the global matrix of the fictitious grid is computed
using again the mapping matrix, i.e.:

Ks = HKs
sH⊺ (4.21)

110 Immersed boundary methods

Figure 4.5: Penalty method where displacements are imposed on surface nodes
that are embedded into one of the grid’s cells.

Adding equations (4.19) and (4.21) into (4.9) gives the final set of equations

[K(Uk) + Ks] ·Uk+1 = R(Uk) + S(Uk) + B + T (4.22)

and has to be solved at each NR iteration k.

4.8 Preliminary validation of the Weighted Cell method

Intuitively, we expect that adjusting the weight of integration points while keeping
their original positions within an element, as it is done with our proposed method,
will reduce the accuracy of the solution. The exact numerical integration of a
2n − 1 degree polynomial used with a Gaussian quadrature of an n integration
points element is no longer possible. Having fixed location for the points will also
impact the quality of the displacement field representation. When keeping the
original locations of the integration points of the regular 8-node hexahedron for an
element that is only partially filled, some sections lying inside will probably not
be well represented. The Finite Cell method is usually not impacted as much by
this since it is adding a large number of integration points inside these regions.

4.8 Preliminary validation of the Weighted Cell method 111

However, it is important to put this accuracy drawback into perspective. While
the solutions of the WC method may not be as accurate as the ones generated by
the FC method, they could very well be within the acceptable error margin set by
the surgeon during the simulation.

To measure the impact of our approximation over the FC method, we performed
some preliminary experiments on some simple shapes. The objective of these
experiments was to get a clear picture of the underlying properties of the method.
In particular, we were interested in the accuracy of the solution for the following
two deformation modes which are to be expected on a liver undergoing surgical
manipulations : bending and stretching of the overall global shape of the organ. In
both cases, the convergence rate and stability of the numerical process have been
analyzed. The experiments have been done on cylindrical shape which allowed us
to highlight the properties associated with a good diversity of cut elements, while
keeping global proportions (length/width) that resemble those of a human liver.

Cylinder bending

Using a homogeneous neo-Hookean material with a Young’s modulus of 5000 [Pa]
and a Poisson’s ratio of 0.3, we fixed the base of a cylinder having a radius of
5 [cm] and a length of 60 [cm]. Next, we applied a traction going down of 30
[Pa] at its top face (opposite face of the base). We computed a solution of the
deformation (cf. figure 4.6) using a fine mesh of about 25k 10-nodes quadratic
tetrahedral elements (~38k nodes). The relative L2-norm of the displacement error
(‖u− usol‖0,Ωsol

/ ‖usol‖0,Ωsol
) between our method (8-nodes regular hexahedrons),

the Finite Cell method (8-nodes regular hexahedrons) and a 4-nodes tetrahedral
mesh is shown in the figure 4.6.

As we increase the number of subdivisions of cut cells, both our method and the
FC method tend to converge faster towards the solution. At an equivalent num-
ber of subdivisions, our method stayed within a 5% error from the Finite Cell
method. However, the time required to compute the stiffness matrix of equation
(4.10) remains the same with our method for any level of subdivisions. This is
a very important distinction against the FC method where the time required by
the later to build the system is directly related to both the number of subdivi-
sions and the number of cut cells in the mesh. Figure 4.7 illustrates the average
computational time (in milliseconds) taken to update the stiffness matrix at each
Newton–Raphson (NR) iterations. Note that the 0-level of subdivision, often
called a sparse grid, is simply a regular grid where hexahedral elements lying com-
pletely outside the surface are removed, and where elements cut by the boundary

112 Immersed boundary methods

2k 4k 6k 8k 10k

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of nodes

R
e
la

ti
v
e
 L

2
 n

o
rm

 o
n
 u

Tetrahedron

Weighted Cell - 0 subdivision (Sparse Grid)

Finite Cell - 1 subdivision

Finite Cell - 2 subdivisions

Finite Cell - 3 subdivisions

Weighted Cell - 1 subdivision

Weighted Cell - 2 subdivision

Weighted Cell - 3 subdivision

Figure 4.6: Comparison of a 3D cylinder modeled with an hyperelastic Neo-
Hookean material, fixed at its base and bent by traction on its top face.

are treated as if they were lying completely inside the surface. As we refine the
mesh, the sparse grid will sometimes fall into a configuration where many of its
cells are badly cut by the surface. Because any cut cells are viewed as fully inside
the surface, the solution at a given mesh size will often be worse than a coarser
mesh where less badly cut elements were found, resulting in spikes in the conver-
gence graph (as can be seen between the 2.5k and 7k nodes). These oscillations
are rapidly smoothed out as the number of subdivisions grows.

4.8 Preliminary validation of the Weighted Cell method 113

0

1000

2000

3000

4000

5000

6000

7000

10k2k 4k 6k 8k
Number of nodes

M
e
a
n
 t

im
e

[m
s
]

Tetrahedron

Weighted Cell - 0 subdivision (Sparse Grid)

Finite Cell - 1 subdivision

Finite Cell - 2 subdivisions

Finite Cell - 3 subdivisions

Weighted Cell - 1 subdivision

Weighted Cell - 2 subdivision

Weighted Cell - 3 subdivision

Figure 4.7: Mean time taken to update the stiffness matrix for the cylinder bending
experiments.

Cylinder stretching

Stretch deformations are very interesting to study as they introduce a higher de-
gree of complexity. Unlike bending, which introduces high displacements but low
deformations, stretching rapidly produce high deformations which results in a nu-
merical challenge. Using the same material as with the bending experiment, but
this time setting the length of the cylinder to 5 [cm], we imposed a displacement
on both the base and the top faces in the direction of their normals for a total
expansion of 3 times its initial length (cf. figure 4.8). Again, the relative L2-norm
of the displacement error between our method (8-nodes regular hexahedrons), the
Finite Cell method (8-nodes regular hexahedrons) and a 4-nodes tetrahedral mesh
is shown in the figure 4.8.

Here the accuracy curve looks similar to the one from the bending experiment, but
this time with much lower relative displacement errors: the ratio between the num-
ber of elements and the length of the cylinder is higher, meaning that the meshes
were finer compared to those used in the bending experiment. This is because it
was not possible to create a sparser and boundary-conforming mesh (figure 4.1a)

114 Immersed boundary methods

10k2k 4k 6k 8k 12k 14k

0.01

0.02

0.03

0.04

0.05

0.06

Number of nodes

R
e
la

ti
v
e
 L

2
 n

o
rm

 o
n
 u

Tetrahedron

Weighted Cell - 0 subdivision (Sparse Grid)

Finite Cell - 1 subdivision

Finite Cell - 2 subdivisions

Finite Cell - 3 subdivisions

Weighted Cell - 1 subdivision

Weighted Cell - 2 subdivision

Weighted Cell - 3 subdivision

Figure 4.8: Comparison of a 3D cylinder modeled with an hyperelastic Neo-
Hookean material. Both faces are imposed a displacement for a total expansion of
3 times the initial length of the cylinder.

using tetrahedral elements without creating degenerate elements. Degenerate ele-
ments have a tendency to rapidly create close to zero Jacobian of the deformation,
which invalidates constitutive models that depend on it such as the NeoHookean
material. Close to zero Jacobian can be viewed as having an element completely
crushed. When the Jacobian becomes negative, the element is inverted (concave
at a quadrature point).

These results highlight another important issue: large deformations increases the
difficulty to numerically solve the system. As the mesh gets finer, smaller elements
become more sensible to large deformation since the Jacobian quickly reaches an
invalid state. The usual workaround is to split the imposed displacement into
smaller increments. Since NR iterations have to be run at each increment, reaching
the final solution will take significantly more time. Looking at the figure 4.9, we
can see that as the mesh get finer, smaller displacement increments are required.
This is even worse for the tetrahedral mesh. Note that we haven’t included the
Finite Cell method with more than two subdivisions. This is because, even when
going as far as 150 increments, the method was always diverging at some point
during the simulation. In fact, to compute the L2-norm presented in the figure 4.8
for the Finite Cell method, we had to remove cells that had less than 5% of their
volume inside the boundary. Our Weighted Cell (WC) method stayed stable for

4.8 Preliminary validation of the Weighted Cell method 115

Number of nodes

N
u
m

b
e
r

o
f
in

c
re

m
e
n
ts

0 5k 10k 15k 20k

0

5

10

15

20

25

30

35

40

45

Tetrahedron

Weighted Cell - 0 subdivision (Sparse Grid)

Weighted Cell - 1 subdivision

Weighted Cell - 2 subdivision

Weighted Cell - 3 subdivision

Finite Cell - 1 subdivision

Finite Cell - 2 subdivisions

Figure 4.9: Minimum number of increments needed for the stretching experiment.
Larger increments create negative jacobians and make the simulation diverge.

all levels of subdivisions without the need to remove any cells.

Preconditioning

To solve equation (4.22), an iterative linear solver such as the Conjugate Gradient
(CG) method is preferred as it allows us to balance out the accuracy of the so-
lution against the maximum computational time allowed by the application. It is
also a great method to produce an approximate solution for a given displacement
increment when, for example, the system is considered as under-constrained by a
direct solver. This happens quite frequently with our type of applications as the
boundary conditions are imposed using penalty forces.

Immersed boundary methods face a numerical hindrance when they involve a CG
solver. When cells are cut by the boundary such that only a very small portion
of their volume remains inside the simulated object, the tangent stiffness matrix
becomes ill-conditioned. A large number of CG iterations are then required to
achieve convergence. We ran an experiment where, using the same bending cylin-
der beam as in figure 4.6, we simply scaled the fictitious grid while keeping the
same number of cells and embedded surface. Figure 4.10 illustrates this process.
In the first configuration, all cut cells are considered as well cut by the boundary.

116 Immersed boundary methods

The second configuration contains cells that are moderately cut. Finally, the third
configuration contains cells that are badly cut by the boundary. The residual of
the CG is shown for all three configurations.

We can see that, as the outside region of a cut cell grows, the CG requires a lot
more iterations per NR steps in order to converge. At the end of the simulation,
all three configurations converged to the same solution. However the second and
third configurations took a lot more time to compute than the first one. A good
review of the source of this ill-conditioning behavior and some numerical methods
that can alleviate it can be found in Prenter et al. (2017).

In our case, however, the tangent stiffness matrix is sparse and diagonally domi-
nant. Hence, we found that some simple global preconditioners such as the diagonal
(often called Jacobi) preconditioner and the Incomplete Cholesky preconditioner
were more than enough to damp the numerical effect of badly cut cells on the CG
convergence rate (figure 4.10). In fact, a diagonal preconditioner was used for all
our experiments since it is computationally very efficient and holds comparable
results as the Incomplete Cholesky. We are aware that more advanced methods
such as the ghost penalty method [Burman, Claus, et al. (2015)] might be more ap-
propriate for some scenarios. This is something that should be looked at in future
research. However, throughout this work, we have not found any configuration for
which the diagonal preconditioner was not sufficient.

4.8 Preliminary validation of the Weighted Cell method 117

1e−8

1e−6

1e−4

0.01

1

100

1e−8

1e−6

1e−4

0.01

1

1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

0.01

0.1

1

10

In
c
o

m
p

le
te

C
h

o
le

sk
y

C
G

 r
e

si
d

u
a

l

D
ia

g
o

n
a

l

C
G

 r
e

si
d

u
a

l

N
o

 p
re

c
o

n
d

it
io

n
n

e
r

C
G

 r
e

si
d

u
a

l

Newton-Raphson iterations

Configuration #1

#1 #2 #3 #4 #5 #6 #7 #8

Newton-Raphson iterations

Configuration #2

#1 #2 #3 #4 #5 #6 #7 #8

Newton-Raphson iterations

Configuration #3

#1 #2 #3 #4 #5 #6 #7 #8

Figure 4.10: Convergence of the conjugate gradient algorithm for the beam experi-
ment. By expanding the size of the grid, we can control how bad the surface of the
cylinder is cutting elements. All three configurations yield the same solution. How-
ever, when no preconditioner are used, the number of CG iterations required for a
Newton-Raphson step to converge grows as the quality of cut elements degrades.

118 Immersed boundary methods

4.9 Experiments performed on an in-vivo porcine liver

In order to validate our method on a more complex geometry, we used the data
from three in-vivo porcine liver trials. For each trial, CT images were acquired
before and after pneumoperitoneum set at 13 mmHg. Details on how these images
were acquired is provided in chapter 5.

Figure 4.11: Pre-operative CT and intra-operative CT surface reconstructions for
all three trials.

The general idea of the exercise was to embed the surface mesh of a pre-operative
surface reconstruction into IB meshes of different sizes, and to generate large
deformation by imposing displacements over its whole surface. Hence, the liver
deformation caused by the pneumoperitoneum constituted an excellent candidate
to this type of analysis as well as providing us with some real-life scenarios.

Generating a set of imposed displacements to deform a model from one surface
reconstruction to another is a very complicated process. In fact, this process
constitutes a complete branch of research in itself and is called the non-rigid regis-
tration. This will be the main focus of chapter 5. Here, however, we simply wanted
to analyze the convergence rate of our method without incorporating errors which
are inherent to the registration methods. In other words, we wanted to analyze
how our two methods behave under a perfect registration between the pre-and
intra-operative surface reconstructions. Also, for this validation exercise, we were
not interested in the consequences of the choice of material on the accuracy of the
solution. This analysis will be done in chapter 5 using intra-operative data and a
more accurate validation process.

The experiments with porcine livers have allowed us to analyze our methods using
realistic synthetic solutions which were generated as follows. Using a very fine
IB mesh, a bio-mechanical model of the pre-operative reconstruction has been de-
formed using a non-rigid ICP registration method that we will describe in chapter
5 (see algorithms 3). The resulting deformed mesh was then stored and labeled

4.9 Experiments performed on an in-vivo porcine liver 119

as our "synthetic intra-operative" solution. This workflow is illustrated in figure
4.12. Here, the deformed fine mesh gives us a complete displacement field solution
which can then be used for an h-refinement convergence analysis. In addition, we
can use the resulting displacement field as a way to impose the displacements over
the initial and undeformed surface mesh of the liver. The accuracy of our penalty
method can thereby be analyzed properly.

Figure 4.12: Workflow of the in-vivo porcine liver experiment (trial 1)

For each of the three trials, the experiment was conducted as follows. First, the
pre-operative surface reconstruction was immersed into a coarse IB grid having a
resolution of n× n× n nodes. The dimensions of the grid boundaries were simply
set to the dimensions of the surface mesh’s bounding box. The model was then
initialized using the Weighted Cell (WC) approach presented in section 4.5 with
four levels of subdivisions. A Saint Venant–Kirchhoff material (section 2.3.1) was
selected with a Young modulus set to 5000 [MPa] and Poisson’s ratio set to 0.499.
Using our displacement field solution from the very fine IB mesh, we stored the
displacement vectors of each of the immersed surface nodes. These displacement
vectors were imposed as Dirichlet conditions using our penalty method presented in
the section 4.7. The stiffness of the penalty factors was initially set to a low value of
about 100 [MPa], and then incrementally increased following an exponential curve
discretized into 30 increments towards a maximum of 1e7 [MPa]. Between each
penalty increment, our Newton–Raphson implementation (algorithm 1) was used
to solve the system with a maximum of 10 iterations and a convergence criterion
set to 1e−8. This scenario was repeated for different grid resolutions, i.e., using

120 Immersed boundary methods

resolutions of (n + i)× (n + i)× (n + i) with i = {1, 2, . . . }.

The displacement field solution of the fine mesh was used afterwards to compute a
full volumetric assessment of the approximation error between the different mesh
sizes. If we let u(X) be the solution field of one of the meshes, and ufine(X) the
solution field of the fine mesh, then the relative L2-norm of the error as defined by

e =

(∫

Ω (u− ufine)
2

∫

Ω u2
fine

) 1
2

(4.23)

is illustrated in the figure 4.13 for all grid resolutions. We have also performed the
same experiment with a FE method using meshes of different sizes and composed
of linear tetrahedrons. The tetrahedral meshes were generated using the CGAL
library 1. Since we did not implement any IB method for tetrahedrons, special
attention has been made to make sure these meshes were strictly following bound-
aries of the surface mesh. We also made sure that all generated elements were well
formed. For this reason, we were not able to generate tetrahedral meshes that are
as coarse as those made by the grids of our WC method, which highlight again a
net benefit of IB methods.

From the error measurement provided in figure 4.13, we can see that even in
the worst case, the convergence rate is similar to the one of the standard finite
element method. For the third trial, our method converges much faster than the
FE approach, i.e., a prescribed accuracy would be achieved even if fewer nodes
are used.

Figure 4.14 illustrates the mean error of the position of every node on the em-
bedded surface mesh with respect to the expected solution. Using this additional
measurement, we can further evaluate the performance of our displacement im-
position method. It is quite surprising to observe such a small error when very
coarse grids are used. For example, using merely 500 nodes, our method can pro-
vide an average error of less than 1.5 [mm] when compared to our solution made
of approximately 18k nodes, or 54k degrees of freedom.

1https://www.cgal.org/

4.9 Experiments performed on an in-vivo porcine liver 121

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600
0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

Number of nodes

R
e
la

t
iv

e
L
2
-
N

o
r
m

 e
r
r
o
r
 o

n
 u

IBM-WC

Tetrahedron

(a) Trial 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000 7200

0.02

0.04

0.08

0.025

0.03

0.035

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.085

0.09

0.095

Number of nodes

R
e
la

t
iv

e
L
2
-
N

o
r
m

 e
r
r
o
r
 o

n
 u

IBM-WC

Tetrahedron

(b) Trial 2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

0.08

0.075

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

Number of nodes

R
e
la

t
iv

e
L
2
-
N

o
r
m

 e
r
r
o
r
 o

n
 u

IBM-WC

Tetrahedron

(c) Trial 3

Figure 4.13: L2-norm of the error between different mesh sizes and the solution of
the same method using a very fine mesh.

122 Immersed boundary methods

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of nodes

M
e
a
n
 n

o
d
a
l
e
rr

o
r

[m
m

]

IBM-WC

Tetrahedron

(a) Trial 1

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000 7200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of nodes

M
e
a
n
 n

o
d
a
l
e
rr

o
r

[m
m

]

IBM-WC

Tetrahedron

(b) Trial 2

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of nodes

M
e
a
n
 n

o
d
a
l
e
rr

o
r

[m
m

]

IBM-WC

Tetrahedron

(c) Trial 3

Figure 4.14: Mean position error of all surface nodes against the solution of the
same method using a very fine mesh and four levels of subdivision.

4.10 Experiment performed on an ex-vivo human liver 123

4.10 Experiment performed on an ex-vivo human liver

To pursue one step further our analysis with a realistic synthetic solution, we con-
ducted the exact same experiment but this time using an ex-vivo human liver (the
details of the acquisition process that was used for this experiment are provided
in 5.5). In this case, an initial CT scan was taken with the organ lying at rest
on a table (figure 4.15a). Two other scans were then taken after generating two
distinct deformations (figures 4.15b and 4.15c).

(a) Initial

(b) Deformation #1 (c) Deformation #2

Figure 4.15: CT surface reconstructions made before and after deformation

The purpose of this additional experiment was twofold. First, the shape of a
human liver is less complex than that of a porcine liver. The porcine liver has a
concave shape due to the discontinuities between its lobes, while the shape of a
human liver is globally more convex [Nykonenko, Vávra, and Zonča (2017)]. We
were therefore interested to see the accuracy of our WC method when applied
to a simpler shape. Secondly, we were interested in analyzing deformations that
are as close as possible to those observed in an open surgery. Instead of having
a uniform pressure field which was generated by the pneumoperitoneum in our
previous experiment, here the liver is simply pulled up from either the tip of its
lobe (figure 4.15c) or directly underneath it (figure 4.15b).

As it was done with the porcine trials, the human liver was initialized using
our Weighted Cell (WC) approach and four levels of subdivisions. An Saint
Venant–Kirchhoff material (section 2.3.1) was selected with a Young modulus set
to 5000 [MPa] and Poisson’s ratio set to 0.499.

124 Immersed boundary methods

0 1000 2000 3000 4000 5000 6000 7000

0.2

0.4

1.2

0.3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.3

1.4

1.5

1.6

1.7

1.8

IBM-WC

Tetrahedron

Number of nodes

M
e
a
n
 n

o
d
a
l
e
rr

o
r

[m
m

]

(a)

0 1000 2000 3000 4000 5000 6000 7000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

IBM-WC

Tetrahedron

Number of nodes

M
e
a
n
 n

o
d
a
l
e
rr

o
r

[m
m

]

(b)

60000 1000 2000 3000 4000 5000 7000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

IBM-WC

Tetrahedron

Number of nodes

R
e
la

t
iv

e
 L

2
-
N

o
r
m

 e
r
r
o
r
 o

n
 u

(c)

0 1000 2000 3000 4000 5000 6000 7000

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

IBM-WC

Tetrahedron

Number of nodes
R
e
la

t
iv

e
 L

2
-
N

o
r
m

 e
r
r
o
r
 o

n
 u

(d)

Figure 4.16: (a)-(b) Mean position error of all surface nodes against the solution.
(c)-(d) L2-norm of the error between different mesh sizes and the solution. (a)-(c)
Deformation #1 (b)-(d) Deformation #2

Figures 4.16a and 4.16b show the mean surface nodal error for the first and second
deformations respectively. Similarly, figures 4.16c and 4.16d show the relative
L2-norm error (equation 4.23) of the displacement field for the first and second
deformations respectively. These results suggest once more that the converge rate
of both our WC method and a standard FE are within the same order. However,
the results yielded by the standard FE method appears to be slightly better. Since
the human liver had a less complex shape, tetrahedral meshes were easily created
for various sizes. The higher quality meshes would explain these better results
from the standard FE method.

Although we would have preferred higher convergence rates, the results generated
by our IB method are still very much in line with our initial objectives. Having
a convergence rate so close to the FE one without having to build boundary-fit
meshes is a very satisfying result.

4.11 Discussions 125

4.11 Discussions

In this chapter, we have analyzed the Immersed boundary methods which are
the second category of simulation models considered in our work. Contrary to
the meshless methods studied in chapter 3, IB methods reuse the iso-parametric
paradigm found in standard FE models for both the interpolation and the integra-
tion of a field function. This proximity to the FE methodology gives access to a
rich research literature and allows us to reuse available software codes, which sim-
plifies considerably the implementation effort. But unlike standard FE methods,
the IB methods are allowed to use a computational mesh that does not conform
to the boundaries of the simulated domain. This represents a substantial relief for
the end user. In fact, the challenging work associated with the discretization of
the domain of interest is reduced to a simple process of adding a background grid
over the simulated object. To get finer solutions, the resolution of the grid needs
only to be refined. Thenceforth, the only remaining difficulty pertains to those
elements that are cut by the boundaries.

Our preliminary validation using simple shapes has shown that the Finite Cell
method produces very accurate solutions while maintaining a better convergence
rate compared to a standard FE method using tetrahedral elements. However,
the time required for the assembly of the tangent stiffness matrix rapidly increases
with the number of cell subdivisions. Since we are looking to simulate non-linear
materials, this assembly has to be carried out at every NR iterations. Hence, the
addition of many integration points required for cut cells results in computational
time requirement that is definitely not appropriate for our type of applications.

On the other hand, the preliminary validation performed on our proposed WC
method have shown that it can surprisingly produce a solution very close to the
FC method, without the need for having additional integration points. Further-
more, its implementation can be easily integrated with existing FE software and
thereby inherit the various computational optimizations made for standard 8-node
8-integration points elements. The results also demonstrated that the method
is sufficiently robust against large load increments, even with the use of a Neo-
Hookean material which is very sensitive to element inversions.

Our analysis involving more complex shapes such as the three porcine livers and
the human liver revealed interesting results as well as some drawbacks that had
not been observed during our preliminary tests. Contrary to our expectations, the
WC method is not sufficiently robust for simulations involving a Neo-Hookean
material. When very large penalty forces were imposed, some of the cut cells were

126 Immersed boundary methods

often reaching a degenerate state, which in turns resulted in a zero or negative
jacobian of the deformation tensor. We are still not sure if this issue can be re-
solved. One solution could be to use another approach to impose displacements
on the immersed boundary such as Lagrange multipliers. Restricting the material
with addition constraints in order to have a fully incompressible behavior might
also be a good candidate solution. However, this solution would add consider-
able computational effort. Note that our FE solutions also suffered from these
numerical difficulties.

Finally, in all the trials performed on a real liver, large displacement impositions
had to be broken into many smaller increments otherwise the results would be
just too far from the expected solution and the number of Newton–Raphson iter-
ations would increase dramatically. This is a non-negligible drawback and further
research will have to be considered in order to allow bigger increments, especially
for non-rigid registrations from a pre-operative liver reconstruction into a highly
deformed shape occurring during the intervention. Since coarse grids were able
to converge with much higher increment steps, we believe that some hierarchi-
cal schemes would be appropriate here as a good starting point. For instance,
a coarse grid could be first solved as an approximate solution to an embedded
finer grid. This approximation would then be used for the initial state of the NR
method. It is important to note here that this drawback is not unique to our
proposed method and is also present in the standard FE methods or in alternative
IB methods. However, the implementation of hierarchical schemes is much more
straightforward to implement on a lattice geometry. This is because a mapping
between coarse and finer grids of rectangular hexahedral cells can be naturally
prescribed. This constitutes a net advantage of our method.

Overall, although further research will be required, we are confident that our simple
yet quite efficient WC approach constitutes a very good alternative to standard
FE methods.

Chapter

5

IMPLEMENTATION OF A

NON-RIGID REGISTRATION

PIPELINE

5.1 Surface reconstruction . 128

5.2 Initial rigid registration . 129

5.3 Deformable registration . 132

5.4 Experiments performed on in-vivo porcine livers 139

5.5 Experiments performed on an ex-vivo human liver 144

5.6 Experiments mixing IBM and machine learning techniques . . 148

5.7 Discussions . 153

We now move to the final phase of our work which is the implementation of a
complete algorithm for our non-rigid registration pipeline. We will start with a
quick introduction of the various techniques that are commonly used to reconstruct
a three-dimensional point cloud from the partial surface of an organ viewed by a
camera during surgery. We will then present a first rigid registration algorithm to
rigidly align the pre-operative model of the liver to the augmented reality display
using only simple rotations and displacements. We will explain how we expanded
this algorithm to cover non-rigid transformations using a biomechanical model, and
more specifically our WC method. The resulting non-rigid pipeline will finally be
evaluated using real clinical scenarios involving in-vivo porcine and ex-vivo human
livers.

This chapter also includes a brief discussion of some of the artificial intelligence

128 Implementation of a non-rigid registration pipeline

and machine learning concepts that are taking up more and more place in the
literature. We will describe how this approach can be integrated in our proposed
non-rigid pipeline to rapidly solve the deformed state of our biomechanical model.
More importantly, we will show how the numerical methods developed in this
thesis can be used to efficiently train a deep neural network.

5.1 Surface reconstruction

The concept of boundary conditions aforementioned in the previous chapters is one
of the key elements that allow our model to be guided towards a unique deformed
solution. The process used to transform the acquired intra-operative information
into a point cloud, which can then be used to imposed boundary conditions is
therefore the first component that needs to be addressed.

Extracting information on the state of the patient’s liver during surgery brings a
number of technical challenges. Some operation rooms are equipped with advanced
3D medical images tools such as 3D Ultrasound (US) probes, intra-operative CT
scans located directly at the operation table, and sometimes even an MRI is even
available just next door to the OR. This type of setup remains, however, quite
rare and, even if it was more accessible, the time required to acquire the 3D images
and go through the whole segmentation process would be simply too long for our
workflow.

In laparoscopic interventions, a valuable source of information is directly available:
the laparoscope stereo camera. In the case of open surgery, adding a camera on
top of the patient is also a great way to acquire the same type information. In
this case, special types of camera - 3D RGB-D (Red Green Blue - Depth) - can
even be used to retrieve a lot more information on the deformed state of the
patient’s liver. The size of RGB-D cameras is, however, too large for any uses
in laparoscopic interventions. Hopefully, this will change in the future as RGB-D
cameras are getting smaller.

The general idea here is therefore to extract and reconstruct the partially visible
part of the liver captured by a camera. As a starting point, matches between pairs
of stereo images acquired at the same time are located and used to extract depth
information [Scharstein and Szeliski (2002); Brown, Burschka, and Hager (2003);
Hartley and Zisserman (2004)]. To circumvent some issues found in laparoscope
images such as occlusions from surgical tools, homogeneous textures of the or-
gan, and light reflections, specific methods targeted to CAI applications in MIS

5.2 Initial rigid registration 129

Figure 5.1: 3D point cloud reconstruction of the visible surface from laparoscope
stereo images

were developed [Stoyanov et al. (2010); Röhl et al. (2012); Bernhardt, Abi-Nahed,
and Abugharbieh (2012); Wang et al. (2018)]. Once correspondences are found,
a triangulation process takes place, yielding a 3D point cloud. Post-processing
algorithms are often used for smoothing and to remove outliers from the noisy
point cloud [Haouchine, Roy, et al. (2016); Dey and Giesen (2001)].

Constructing 3D shapes from 2D images and producing accurate point clouds
is in itself a complete field of research and was outside the scope of our work.
The experiments performed on in-vivo porcine livers were done using a stereo
reconstruction technique from Wang et al. (2018). For the experiments on the
ex-vivo human liver, the point clouds were generated directly from an RGB-D
camera.

5.2 Initial rigid registration

The 3D point cloud reconstructed from the visible surface part of the liver will
initially lay inside its own coordinate system which is relative to the camera point
of view. The original positioning will therefore be quite different from the one of
the pre-operative biomechanical model. Phrased differently, the point cloud might
be far and unaligned with respect to the position and orientation of the virtual
model. As we have seen in chapter 2, deformations of a non-linear hyperelastic
material are solved using a Newton–Raphson (NR) iterative method which requires
that the simulated solution and the deformed virtual model are relatively close to
each other. It would therefore be difficult, if not impossible, to directly impose the
point cloud as the displacement constraints. An initial rigid registration method
is therefore required to estimate the rigid motion (translation and rotation) that
will project the coordinates of both the biomechanical model and the point cloud
into a unified space where both representations are well aligned and oriented. This
usually boils down to a minimization problem between two finite sets of points:

130 Implementation of a non-rigid registration pipeline

the source point cloud S, in our case the pre-operative liver surface, and the target
point cloud T , the intra-operative surface reconstruction. We then seek to find
the rigid transformation T such that the distance between T (S) and the target is
small. The distance measure, defined as meas : T (S) × Ωs → ℜ, is application
specific and will give an approximation of how close the overall shape of the source
is to the target one. In other words, we wish to find the optimal transformation
that rigidly moves (i.e., the distance between two points does not change) the
source’s points cloud closer to the target:

arg min
T

[meas(T (S), T)] (5.1)

A popular choice for the distance measure is the square of Euclidian distance
between every pair of closest points, i.e.:

meas(M,N) =
∑

m∈M

‖m− n′‖2
2 with n′ = arg min

n∈N
‖m− n‖2

2 (5.2)

We found that the most frequently used method to extract the transformation
is the Iterative closest point (ICP) method [Besl and McKay (1992); Plantefève,
Peterlik, Haouchine, et al. (2016)]. It usually goes as follows:

1. Initialize T = (R, t) where R ∈ ℜ3×3 is a rotation matrix, and t ∈ ℜ3 is a
translation vector

2. Compute the initial distance measure d0 = meas(T (S), T)

3. For each point in the source S, find its closest point in the target T

4. Update alignment parameters (R, t)

5. Compute the current distance measure d = meas(T (S), T)

6. If d
d0 > ǫ where ǫ is a given relative residual threshold, go back to 3

Many variants of the ICP method exist to improve either its execution time or its
accuracy depending on the applications. For example, Z. Zhang (1994) proposed
to improve the closest point search using a k-d tree algorithm. In Masuda and

5.2 Initial rigid registration 131

Yokoya (1995), random point sampling sets are used together with an Least median
of squares (LMS) estimator to find correspondences. Weighted distance measures
are also often used. In Clements et al. (2008), they improve the ICP by adding
weigh between correspondent anatomical features detected in the intra-operative
image and the pre-operative reconstruction. A similar technique was proposed
in Plantefève, Peterlik, Haouchine, et al. (2016) where the umbilical notch, the
anterior margin of the liver, and the vena cava were used as landmarks to guide
the ICP towards a more accurate solution.

In all cases, the outliers are usually removed by comparing the distance between
corresponding points. We have used the following approach to identify outliers:
a correspondence between two points is assumed to be an outlier if the Euclidian
distance between them is greater than twice the standard deviation of the distance
found for all correspondences.

Figure 5.2: Initial rigid registration based on an optical tracking system. Image
taken from Teatini et al. (2019).

When available, we also used an optical tracking system to compute the initial
transformation before starting the ICP iterations. Based on the work of Teatini
et al. (2019), we tracked the laparoscope by fixing physical markers on it, and
using an optical camera inside the OR to locate it in space. Figure 5.2 illustrates
this process where the initial transformation is given by

132 Implementation of a non-rigid registration pipeline

Tinit = T M
C · T O

M · (T O
P)−1 · T I

P (5.3)

Here, M is the laparoscope’s frame with respect to the optical camera’s frame O

and calibrated using Z. Zhang (2000), P is the operation table frame, C is the
point cloud frame, and I is the pre-operative reconstruction frame. The resulting
ICP implementation version is provided in Algorithm 2.

Algorithm 2 Rigid ICP registration

1: procedure RIGID_ICP(S, T , ǫ)
2: T ← Tinit ⊲ Using eq. (5.3)
3: S ← T (S)
4: d0 ← meas(S, T) ⊲ Using eq. (5.2)
5: d← d0

6: while d
d0 > ǫ do

7: N ← find_closest(S, T) ⊲ Using k-d tree
8: N ← remove_outliers(N)
9: T ← update_transformation(S, T ,N)

10: S ← T (S)
11: d← meas(S, T) ⊲ Using eq. (5.2)

5.3 Deformable registration

Even with a perfect surface reconstruction of the intra-operative data and an
optimal rigid transformation, chances are that the registration of the pre-operative
model onto the intra-operative reconstruction will not be fully representative of
the current shape of the patient’s liver. This is because a rigid registration does
not account for the deformation undergone by the liver either before or during
the surgery. For example, the pneumoperitoneum in MIS will impose a surface
pressure of about 13[mmHg] (133[Pa]). Gravity might also play its part in the
difference of shapes since pre-operative images are often taken when the patient is
lying in a position that will be quite different than its position during the surgery.

Figure 5.3 shows an example of the deformation undergone by a porcine liver
from the pneumoperitoneum. A CT scan was taken both before and during the
surgery. The rigid registration described in the previous section was used to align
both surface reconstructions together. We can see that the overall shape of the

5.3 Deformable registration 133

(a) Bottom view (b) Side view

Figure 5.3: Rigid registration of a porcine liver using algorithm 2. The red mesh
is the surface reconstruction from the intra-operative CT scan. The blue mesh is
the surface reconstruction of the pre-operative CT scan.

liver changes significantly after the pneumoperitoneum. More importantly, the
deformed shape of the liver makes the internal structures of the registered pre-
operative reconstruction completely useless for a CAI. We clearly see that some
sections of the virtual model do not match the actual shape of the liver.

Non-rigid registration methods are extended versions of the rigid registration tech-
niques. On top of rigid motions such as rotations and translations, they can also
address affine (rotation, translation, scale and shear), projective or curve transfor-
mations. Registration techniques that handle a curve transformation extraction
are commonly called deformable registration or elastic registration methods. For
the registration between medical image modalities, two types of curved techniques
are typically used [Oliveira and Tavares (2014)]. The first ones are the Free-form
methods that can extract any type of deformations between a source and a target
domain using curved-fitting techniques such as b-spline [Sotiras, Davatzikos, and
Paragios (2013)]. The second ones are the Guided methods that will typically be
restricted to deformations that correspond to specific mechanical behavior such as
soft tissue elasticity or viscoelasticity and fluids [Sotiras, Davatzikos, and Para-
gios (2013); Oliveira and Tavares (2014)]. We selected this second approach to let
the hyperelastic behavior of the liver’s parenchyma guide the registration process

134 Implementation of a non-rigid registration pipeline

between modalities.

Injecting partial knowledge of the deformed state into the biomechanical model
is not a new concept. It has been studied in many ways and forms in the past
two decades either by altering the biomechanical itself or by improving the intra-
operative surface reconstruction using correspondence with some specific anatom-
ical features. In Miga et al. (2003), authors have described a non-rigid registration
method where a human liver is modeled using a homogeneous corotated linear elas-
tic material [Müller, Dorsey, et al. (2002); Carlos A. Felippa and Haugen (2005)].
The intra-operative partial reconstruction was done using a laser-range scan (LRS)
of the liver surface performed during an open surgery. A rigid registration using
ICP was initially done to align the biomechanical model to the first reconstructed
point cloud. Cash et al. (2005) later improved this method by proposing an incre-
mental FEM approach coupled with better correspondences between point clouds
for the application of boundary conditions. Speidel et al. (2011) investigated the
impact of using linear elasticity to model deformations induced by respiratory mo-
tion and instrument collision using a comparison with a non-linear Neohookean ma-
terial. Haouchine, Dequidt, et al. (2013) introduced a semi-heterogeneous model
where large blood vessels are modeled through homogeneous anisotropic elastic
beams [Duriez et al. (2006)] and the rest of the parenchyma with homogeneous
corotated elastic tetrahedrons. They used elastic springs to couple both materi-
als. Similarly, Courtecuisse et al. (2014) used the same semi-heterogeneous model
but proposed a Lagrange multipliers approach instead of springs for the coupling.
In Plantefève, Peterlik, Haouchine, et al. (2016), a similar model was used for the
non-rigid registration, but using the Glisson’s capsule in order to add an additional
level of heterogeneity. For this purpose, constant strain triangular elements were
used. Homogeneous corotated linear elastic materials were used for the Glisson’s
capsule and the parenchyma without blood vessels. C. J. Paulus et al. (2017) pro-
posed a method to handle topological changes induced by a surgical cut of an organ
during laparoscopic procedures. Their method automatically detects cuts using a
Euclidian distance criterion between two feature points. Local linear tetrahedral
remeshing is then performed in cut regions. Experiments were done on ex-vivo
porcine kidneys and in-vivo porcine liver, both modeled using corotated linear
elastic materials.

The approach that we used for our non-rigid pipeline is very similar to the one
presented in these papers except, of course, for the biomechanical model that we
used. As we will see in sections 5.4, 5.5 and 5.6 we actually tested our pipeline
with different organs and also different biomechanical models. But in all cases, the
non-rigid process follows the same structure. We first start with an initial rigid
registration performed with algorithm 2. The resulting transformation is then

5.3 Deformable registration 135

applied to the entire biomechanical mesh. At this point, the biomechanical model
should be fairly close to the desired shape except for the differences caused by the
intra-operative deformation. Next, a procedure similar to the rigid ICP is started.
From the point of view of the rendering (virtual) camera, the set of visible nodes
from the biomechanical model’s surface mesh is extracted and labeled as the source
point cloud S. This step can be done quite efficiently by filtering visible triangles
using the z-buffer of the 3D rendering pipeline. If the z-buffer isn’t accessible, a
ray can be traced between each surface nodes and the rendering camera. If the
ray does not intersect any triangles, the node is marked as visible and appended
to the source cloud S. For each node in S, its closest neighbor in the target intra-
operative point cloud T is found, ignoring outliers. The same procedure is done for
each target point, which is, its closest neighbor in the source cloud. Unlike the rigid
ICP algorithm which uses these neighborhoods to extract a rigid transformation,
here they are used to impose displacements as the boundary conditions of the
biomechanical model. However, instead of imposing the displacement of a source
node directly to its closest target point, we smooth this displacement using the set
of target points from which this source node is an immediate neighbor. This can be
expressed mathematically as follows. Let Ns : S → T be a function which returns
the closest target point of any source points, and Nt : T → S the equivalent for
any target points. Let also p : S × T → Ω be the current position of a node from
the source or the target point cloud. We define the imposed displacement at the
ith source node with

ui = α [p(Ns(i))− p(i)] +
1

‖V(i)‖
∑

j∈V(i)

(1− α)[p(j)− p(i)] (5.4)

with

V(i) = {j ∈ T | i = Nt(j)}
α : [0, 1]

and where V(i) is the set of target nodes for which i is their closest neighbor, and
α is called the blending factor and determines the ratio between the attraction of
the closest targets point of i against its projection to Ns(i). Figure 5.4 illustrates
how the imposed projected displacement is blended to the attraction of five close
target points. The blending factor can be used in cases of local minimum energy
where the density of the point cloud around the nearest neighbor is different of
the density around a source node.

When a FE method is used, the liver volume is discretized with a boundary
fitting mesh composed of iso-parametric elements. In this case, the source nodes

136 Implementation of a non-rigid registration pipeline

surface mesh
(source)

pre-operation
reconstructed PC

(target)

intra-operation

Attraction

Projection

x

Imposed displacement

Figure 5.4: The imposed displacement is found by blending (α = 0.75) the attrac-
tion of the five target neighbors against the projection to the nearest neighbor.

are simply the one located at the boundary of the mesh and the displacements
are imposed directly on them. When using a non-fitting boundary method such
as the meshless methods or our proposed Immersed boundary (IB) approach,
the source nodes are taken from a surface mesh embedded inside the simulated
domain. In this case, the location of source nodes are interpolated at each step of
the simulation from their embedding elements and special care has to be taken for
the imposition of the displacement. In any cases, we chose to impose displacements
using a penalty method.

The method we have chosen consists of increasing progressively the stiffness of
the penalty term until the relative displacements of the biomechanical model are
almost unchanged between two non-rigid ICP iterations. When the relative dis-
placements between two iterations are sufficiently close, the non-rigid ICP iter-
ations are stopped and the method is ready to compute the next intra-operative
target point cloud. The reasoning here is that even with a good outliers pruning,
the target point cloud might still contain noisy data. Similarly, closest neigh-
bors of the source nodes might be found within a local minimum of the target
point cloud. A strict displacement imposition such as with a Lagrange multiplier
method or with a penalty method using a large stiffness would incorrectly try to
match the target nodes that are not making any physical sense. Solving the system
of equations would then become difficult, or even impossible as the linear solver
would diverge. The same thing happens if the target neighbors are simply too far
away from the source nodes. In this case, it is the Newton–Raphson solver that
would diverge as the deformed solution would be too different from the current

5.3 Deformable registration 137

state of the model. We usually increase the stiffness of the penalty following an
exponential curve such that as the source almost matches the target point cloud,
the displacement imposition gets stricter. The complete procedure is summarized
in Algorithm 3.

138 Implementation of a non-rigid registration pipeline

Algorithm 3 Non-rigid ICP registration

1: S: Source surface nodes
2: T : Target points cloud
3: u: Current displacement vector of the biomechanical model
4: k0: Starting penalty stiffness
5: k1: Maximum penalty stiffness
6: np: Maximum number of penalty increments
7: ni: Maximum number of ICP iterations
8: nn: Maximum number of NR iterations
9: ǫ: Convergence criterion

10: α: Blending factor
11:

12: procedure NONRIGID_ICP(S, T , u, k0, k1, np, ni, nn, ǫ, α)
13: T ← Tinit ⊲ Using eq. (5.3)
14: S ← T (S)
15: u0 ← u

16: ui ← u

17: while i ≤ np do

18: k ← k0 ∗ 2
i∗log2(k1−k0)

np ⊲ Penalty stiffness
19: while j ≤ ni do
20: Sv ← visible_from_camera(S)
21: Ns, Nt ← find_closest(Sv, T), f ind_closest(T ,Sv) ⊲ Using k-d

tree
22: Ns, Nt ← remove_outliers(Ns), remove_outliers(Nt)
23: ud ← imposed_displacements(Ns, Nt, α) ⊲ Using eq. (5.4)
24: Kp ← I ∗ k
25: δu← 0
26: while n ≤ nn do
27: fp ← k · (u + δu)
28: fe ← R(u + δu) ⊲ Using eq. (2.18)
29: Ke ←K(u + δu) ⊲ Using eq. (2.26)
30: solve [(Ke + Kp) · δu = fe + fp]
31: if ‖fe+fp‖

‖f0
e +f0

p‖ ≤ ǫ then ⊲ NR converged

32: break
33: n← n + 1
34: u← u + δu

35: if uj

u0 ≤ ǫ then ⊲ ICP converged
36: j ← j + 1
37: if ui

ui−1 ≤ ǫ then ⊲ Plateau reached
38: i← i + 1

5.4 Experiments performed on in-vivo porcine livers 139

5.4 Experiments performed on in-vivo porcine livers

We evaluated our proposed pipeline with real clinical scenarios using the same in-
vivo porcine livers as for the experiments of the previous chapter. As mentioned
before, the liver weighted between 59 and 70 kilograms and the CT images were
acquired before and after pneumoperitoneum set at 13 mmHg. Semi-automatic
segmentation was done on both the liver’s parenchyma and blood vessels for all
trials using ITK-SNAP [Yushkevich et al. (2006)] and 3D Slicer [Kikinis, Pieper,
and Vosburgh (2014)]. Surgical navigation was conducted using an optical tracking
camera and the hand-eye calibration was computed as described Teatini et al.
(2019). After the pneumoperitoneum, a stereo reconstruction of the liver was
computed based on Wang et al. (2018) using a laparoscope camera. Figure 5.5
shows the side and bottom views of these reconstructions.

Figure 5.5: Pre-pneumoperitoneum CT reconstruction and post-
pneumoperitoneum CT and PC reconstructions for our three porcine trials.

Only one stereo Points Cloud (PC) reconstruction was performed for our experi-
ments since the objective was to validate the accuracy of the biomechanical model
for the initial deformable registration of the porcine liver before and after the
pneumoperitoneum. This first registration process is usually the one that encoun-
ters the most deformation since subsequent reconstructions benefit from temporal
proximity between point clouds.

The biomechanical model was discretized using a background grid made of regular
hexahedrons and filled with a neohookean material. The hyperelastic stiffness
matrix update at each Newton–Raphson (NR) iteration of the algorithm 3 was
done using our Weighted Cell (WC) method. We annotated 15 vessels bifurcation
intersections in both the pre-operative and intra-operative CT reconstructions
for each trial. We then performed both rigid and non-rigid ICP registrations.

140 Implementation of a non-rigid registration pipeline

Table 5.1 contains Euclidian target registration errors at the vessels bifurcation
intersections.

Vessel Bifurcation Evaluation

mean median min max std

Trial 1
Rigid registration 19.80 17.77 5.17 55.31 14.38
Non-rigid registration 22.66 22.79 6.53 34.84 7.24

Trial 2
Rigid registration 28.47 21.65 6.57 67.29 16.12
Non-rigid registration 27.35 26.97 9.14 57.40 14.61

Trial 3
Rigid 17.27 12.04 4.33 60.67 14.88
Non-rigid registration 26.56 24.75 15.96 43.32 7.40

Table 5.1: Results of the rigid and non-rigid registrations using the vessel bifurcation
target registration errors, in [mm].

At first glance, these results are quite surprising. Using the mean target regis-
tration error as the reference, the rigid registration appears to outperform the
non-rigid solution. Maximum error and standard deviation values are, however,
much lower for the non-rigid method. To get a better view of what is actually
causing this surprising behavior, figure 5.6 illustrates the visual output obtained
from these two registration methods.

Figure 5.6: Rigid (blue) and non-rigid (green) registrations towards the recon-
structed PC against the intra-operative CT reconstruction (red) for our three
porcine trials.

Here we see that both the rigid and non-rigid registrations are not performing
very well. While the use of a biomechanical model does induce a deformation
that resembles the one from the intra-operation reconstruction, it is clear that the
reconstructed PC is missing too much information. Looking again at figure 5.6,

5.4 Experiments performed on in-vivo porcine livers 141

the back of the liver is completely unconstrained, while in real life it would be
restrained by the portal vein and the back of the pork. Hence, the biomechanical
model does find a minimal energy solution that matches the reconstructed PC, but
due to the lack of boundary conditions on the back of the liver, the solution is not
in line with the real deformation undergone by the liver. Had the reconstructed
PC been provided with more information, the non-rigid approach would have
generated better results.

To validate this hypothesis, we decided to observe the solution produced by the
model when using the non-rigid ICP method against the full intra-operative sur-
face reconstruction instead of the incomplete reconstructed PC. We were thereby
introducing a large number of boundary conditions. We were also ignoring the
error from a misalignment of the reconstructed PC against the intra-operative
CT reconstruction over which we had no control (recall that in a real-life scenario,
intra-operative reconstruction is usually not accessible during the intervention). In
the end, this approach allowed us to isolate the real error induced by the biome-
chanical model.

Vessel Bifurcation Evaluation

mean median min max std
Trial 1 10.90 9.85 3.22 29.50 6.46

Trial 2 18.80 17.70 7.75 35.70 7.40

Trial 3 7.75 7.38 2.20 14.40 3.31

Table 5.2: Vessel bifurcation target registration errors of the non-rigid registrations
using the whole intra-operative surface reconstruction as the target, in [mm].

Table 5.2 contains the target registration errors between vessel bifurcations when
using the whole intra-operative surface reconstruction as the target PC, i.e., a
scenario where a perfect reconstruction of the surface would be available during
the intervention. As expected, the non-rigid registration achieved much better
results and outperformed the rigid process. Surprisingly, some vessel bifurcations
still remain quite far off from their intra-operative counterparts. For example, in
trial #2, one bifurcation was found at about 3.5 centimeters from the real solution.
Moreover, looking at figures 5.7, 5.8 and 5.9, it is clear that the non-rigid ICP
procedure successfully completed its task: the surfaces of both the biomechanical
model and the intra-operative reconstruction match almost perfectly. However,
internal blood vessels do not match. Note that this experiment was performed
using a mesh size located at the convergence pivot point of the mesh refinements. In
other world, we successively refined the background grid and reran the experiment

142 Implementation of a non-rigid registration pipeline

until the difference between the solutions generated by a mesh with element sizes
of h and a finer mesh with element sizes of h/2 was negligible.

It is important to mention that we managed to produce similar results using a
standard FE method with tetrahedral meshes. This suggests that these errors
are not derived from the method itself, nor from the quality of the discretization,
but instead from the heterogeneous behavior of the liver largely due to internal
blood vessels. To overcome this, one would have to accurately model the different
substructures of the liver. We note that this is in contradiction with Plantefève,
Peterlik, and Cotin (2017) where authors claimed that the influence of the liver’s
heterogeneity on the registration process was marginal. Unfortunately, we were
not able to find other studies to further validate our hypothesis.

Figure 5.7: Non-rigid (green) registration towards the intra-operative CT reconstruction (red) for our trial #1.

5.4 Experiments performed on in-vivo porcine livers 143

Figure 5.8: Non-rigid (green) registration towards the intra-operative CT reconstruction (red) for our trial #2.

Figure 5.9: Non-rigid (green) registration towards the intra-operative CT reconstruction (red) for our trial #3.

144 Implementation of a non-rigid registration pipeline

5.5 Experiments performed on an ex-vivo human liver

We also conducted additional experiments using the same human liver that we used
in the previous chapter to test our WC method. As already mentioned, the human
liver was ex-vivo and, therefore, was not subject to pneumoperitoneum. It was also
not possible to inject the liver with a radio-contrast; hence the vessel bifurcations
could not be used as validation points. Instead, before any medical images were
produced, we placed ten very small lead balls at different locations inside the liver’s
parenchyma. Since these balls would normally retain their position following a
deformation, they were therefore used as the physical markers required to validate
our method. The liver was placed on a flat table as depicted in figure 5.10a, and an
initial CT scan which we labeled as our "pre-operative" data was performed. Two
other scans were then taken after generating two distinct deformations (figures
5.10b and 5.10c). For each of those two deformations, a partial reconstruction of
the liver was reconstructed using an RGB-D camera, resulting in a three-dimension
point cloud.

(a) Initial "undeformed"

(b) Deformation #1 (c) Deformation #2

Figure 5.10: Pictures of the liver made before and after the two deformations

For this experiment, we denoted the first deformation of the liver as trial #1 and
the second deformation as trial #2, even though both trials were conducted from

5.5 Experiments performed on an ex-vivo human liver 145

the same undeformed liver. We also labeled the reconstructed partial 3D point
clouds and the CT scan reconstructions as our "intra-operative" data. Figure 5.11
shows both the side and bottom views of these reconstructions.

Figure 5.11: Pre-deformation CT reconstruction and post-deformation CT and
PC reconstructions for our human trials.

As per the porcine experiments, the biomechanical model was discretized using a
background grid made of regular hexahedrons and filled with a Neohookean mate-
rial. The Young’s modulus and Poisson’s ratio were set to 5000 [MPa] and 0.499,
respectively. The hyperelastic stiffness matrix update at each Newton–Raphson
(NR) iteration of the algorithm 3 was done using our Weighted Cell (WC) method.
Table 5.3 provides the Euclidian target registration errors at the marker positions.

Markers Evaluation

mean median min max std

Trial 1
Rigid registration 21.63 16.47 8.10 60.17 17.23
Non-rigid registration 6.56 6.37 4.00 9.35 1.84

Trial 2
Rigid registration - - - - -
Non-rigid registration - - - - -

Table 5.3: Results of the rigid and non-rigid registrations using the marker target
registration errors, in [mm].

This time, we clearly see that the non-rigid registration generates a more accurate
solution. The maximum error found at a marker position is less than 1 [cm] and

146 Implementation of a non-rigid registration pipeline

the standard deviation stays within a 2 [mm] margin. To better illustrate the
advantage of the non-rigid approach, figure 5.12 provides visual output obtained
from the two registration methods.

Figure 5.12: Rigid (blue) and non-rigid (green) registrations towards the recon-
structed PC against the intra-operative CT reconstruction (red).

From these images, we see that the shape of the top surface of the biomechanical
model matches accurately the top surface of the intra-operative ground truth.
This suggests that the quality of the reconstructed point cloud from the RGB-
D camera was better than that of the reconstructed point cloud from the stereo
reconstructions produced in our three porcine trials. We also notice that there
is still a maximum error of almost 1 [cm], which again, is most probably due
to the partial surface reconstruction. In order to remove this component of the
error, we followed an approach similar to the one used in the porcine experiment.
Using the whole intra-operative surface reconstruction as the target point cloud,
we thereby introduced a large amount of boundary information in the model, hence
overcoming the error relative to the use of a partial surface reconstruction. We were
also preventing possible errors associated with a misalignment of the reconstructed
PC against the intra-operative CT reconstruction thus allowing us to identify the
portion of the error that is truly attributable to the biomechanical model. The
target registration errors are provided in table 5.4.

These results confirm once more the net advantage of the non-rigid registration
algorithm. This is further illustrated in figures 5.13 and 5.14 where we clearly
see that the non-rigid ICP procedure has again successfully achieved its task: the
surfaces of both the biomechanical model and the intra-operative reconstruction

5.5 Experiments performed on an ex-vivo human liver 147

Markers Evaluation

mean median min max std
Trial 1 2.22 2.19 0.34 4.25 1.09

Trial 2 8.35 8.43 3.07 12.54 2.90

Table 5.4: Marker target registration errors of the non-rigid registrations using the
whole intra-operative surface reconstruction as the target, in [mm].

match almost perfectly. However, this is not the case for some of the internal
markers. As per the results of the porcine trials and based on our observations,
these errors do not result from the method itself nor from the quality of the dis-
cretization but are a direct consequence of the heterogeneous behavior of the liver.

Figure 5.13: Non-rigid (green) registration towards the intra-operative CT reconstruction (red) for our trial #1.

148 Implementation of a non-rigid registration pipeline

Figure 5.14: Non-rigid (green) registration towards the intra-operative CT reconstruction (red) for our trial #2.

5.6 Experiments mixing IBM and machine learning tech-
niques

The accuracy of the biomechanical model used in our non-rigid registration algo-
rithm comes with a non-negligible price. The non-linearity of the model requires
that a series of Newton–Raphson iterations be ran at each step of the ICP routine,
which implies that a complete linear system must be solved numerous times be-
tween each reconstructed intra-operative surface PC. This obviously impacts the
speed time of our pipeline. To address this issue, one avenue currently considered
is to substitute certain parts of the registration process by Machine Learning (ML)
techniques.

Morooka et al. (2008) was one of the first to propose a ML approach to learn
the relationship between external forces applied to a liver and the resulting de-
formations. Using a Principle Components analysis (PCA) approach to encode
deformation modes, they trained a complete Neural Network (NN) based on syn-
thetic data generated by a non-linear FE method. They showed that their method
can generate an accurate deformation from an input vector of forces in about 0.3
[ms]. Following the same concept, Tonutti, Gras, and Yang (2017) was able to
predict deformations of brain tumors in real time from an applied load using FE
simulations to generate synthetic training data.

5.6 Experiments mixing IBM and machine learning techniques 149

We constructed an experimental version of our pipeline using the well-known U-Net
approach. To generate the synthetic training data, imposed displacements were
used as input instead of the external force framework of Tonutti, Gras, and Yang
(2017). The following presents an overview of the setup and findings. The complete
results have been documented in [Pfeiffer et al. (2019); Brunet, Mendizabal, et al.
(2019); Mendizabal et al. (2020)].

U-Net architecture

As the starting point of the ML approach, we note that the 3D point cloud gen-
erated by the intra-operative reconstruction provides sparse and partial views of
the surface of the organ. In its simplest form, our problem can therefore be ex-
pressed as finding the function f that produces the best estimation of the internal
deformation of the organ from this point cloud. The function f can be obtained
by minimizing the expected error over a training set {(un

s , un
v)}N

n=1 of N samples:

min
θ

1
N

N∑

n=1

‖f(un
s)− un

v‖2
2. (5.5)

where θ is the set of parameters of the network f , and us and uv are the surface
input and the volumetric output displacement fields of each sample.

To characterize f , the U-Net approach of Ronneberger, Fischer, and Brox (2015)
was used. This a modified fully convolutional network initially built for medical
image segmentation applications. As depicted in figure 5.15, the network is similar
to an auto-encoder, with an encoding path to transform the input space into a low-
dimensional representation, and a decoding path to expand it back to the original
size. Additional skip connections transfer detailed information along the matching
levels from the encoding path to the decoding path.

The encoding path consists of k sequences of two padded 3 × 3 × 3 convolutions
(k = 4 in Ronneberger, Fischer, and Brox (2015)) and a 2 × 2 × 2 max pooling
operation (see figure 5.15). At each step, each feature map doubles the number
of channels and halves the spatial dimensions. In the bottom part, there are two
extra 3 × 3 × 3 convolutional layers leading to a 1024-dimensional array. In a
symmetric manner, the decoding path consists of k sequences of an up-sampling
2× 2× 2 transposed convolution followed by two padded 3× 3× 3 convolutions.
The features of the encoding path at the same stage are cropped and concatenated
to the up-sampled feature maps. At each step of the decoding path, each feature
map halves the number of channels and doubles the spatial dimensions. There is a

150 Implementation of a non-rigid registration pipeline

3
2
x
4
0
x
1
6

3 128 3

3
2
x
4
0
x
1

1
6
x
2
0
x
8

1
6
x
2
0
x
8

256

3
2
x
4
0
x
1
6

128256

512 256

1
2
x
2
0
x
8

8
x
1
0
x
4

512 1024

8
x
1
0
x
4

512

I
N

P
U

T
 G

R
I
D

O
U

T
P

U
T
 G

R
I
D

1
6
x
2
0
x
8

1
6
x
2
0
x
8

3
2
x
4
0
x
1
6

3
2
x
4
0
x
1
6

8
x
1
0
x
4

4
x
5
x
2

4
x
5
x
2 1024

2 conv 3x3x3 with ReLU

copy and crop

max pool 2x2x2

up-conv 2x2x2

conv 1x1x1

Figure 5.15: U-Net architecture with 3 steps and 128 channels in the first layer of
a padded input grid of size 32× 40× 16× 3.

final 1× 1× 1 convolutional layer to transform the last feature map to the desired
number of channels of the output (3 channels in our case).

A key observation here is that both the up-sampling and down-sampling processes
imply the use of a grid-like structure for encoding the displacement information.
On the other hand, our Immersed boundary approaches are based on a sparse grid
made of rectangular hexahedral elements. Intuitively, this common property made
the WC method a natural candidate to be used as network training technique for
the U-Net pipeline.

Data generation and training using the WC method

To train the network, many samples consisting of a volumetric output displacement
field uv are generated from a nearly random input displacement us. In other words,
as many pairs as possible of partial input surface displacement → complete output
volumetric displacement are generated. These pairs are then fed to the network
for it to learn the complex relationship between inputs and outputs. Clearly, the
accuracy of the training data will impact the reliability of the network when used
to predict an unknown input. Hence, using a biomechanical model to generate the
training data will greatly enhance the efficiency of the network. In addition, the
model must also by computationally efficient. Even if the training of the network
could theoretically run forever, in practice only a couple of hours would be allowed.
For example, a patient-specific network could be trained between the acquisition
of initial pre-operative medical image and the surgery procedure.

5.6 Experiments mixing IBM and machine learning techniques 151

Using the biomechanical model, a data set of pairs (us, uv) is therefore generated
where the surface displacement corresponds to the mapped point cloud. We assume
that, at most, half of the organ surface is visible from the camera. Hence, we
uniformly sample 100 points on the visible surface mesh. Hundred simultaneous
forces are then applied to this virtual point cloud with random amplitudes and
directions. In order to generate a series of surface deformations (see figure 5.16b),
these random forces are applied to their enclosing grid nodes using their barycentric
coordinates. Patient-specific parameterization of the biomechanical model is not
required here since for homogeneous materials, the relation between the surface
and the volumetric displacements is independent of the stiffness of the object
Karol Miller and J. Lu (2013), and only depends on the Poisson’s ratio. As a
result, a SVK material was used for the experiments given its relative simplicity,
computational efficiency and robustness (see section 2.3.1 for more detail on this
material). The Poisson’s ratio was set to 0.49.

Results on ex-vivo human liver

The results obtained from our U-Net pipeline experiments have also been generated
using an ex vivo human liver data set for which the surface data was obtained with
an RGB-D camera and the ground truth data was acquired at different stages of
the deformation using a CT scan [Brunet, Mendizabal, et al. (2019)]. Markers
were embedded in the liver to compute Target Registration Errors (TRE).

Experiments using controlled synthetic deformations To validate
the accuracy of the network, we first compared the predictions of the displacement
field with those of the IB simulations generated by our WC method described
in section 4. We generated 1, 000 samples and used N = 800 samples to train
the network by minimizing equation (5.5). The minimization was performed using
the Adam optimizer: a stochastic gradient descent procedure with parameter-wise
adjusted learning rates. The remaining 200 samples were then used for validation.
For each sample, the average TRE was computed over 10 virtual markers. Overall,
the average TRE obtained over the entire validation set was TRE = 1.96 ± 3.46
mm.

Results in an augmented reality environment With a PyTorch imple-
mentation of the U-Net running on a GeForce 1080 Ti, the network was capable
of predicting the volumetric deformation of the liver in only 3 ms. A prediction

152 Implementation of a non-rigid registration pipeline

(a) (b)

Figure 5.16: (a) U-Mesh prediction in green, co-rotational FEM based registration
in blue and ground truth in red. A mean TRE of 2.92 mm is achieved over the 10
markers in about 3ms. (b) Samples of the generated deformations using our FE
method. The rest shape is shown in gray.

can thus be applied each time the RGB-D camera generates a point cloud. Before
computing the displacement field, the point cloud needs to be cropped to the por-
tion of the surgical image that contains the liver. This is done by segmenting the
associated color image, similar to what was done in Petit, Lippiello, and Siciliano
(2015). The RGB-D point cloud is then interpolated onto the grid to obtain the
per-node displacements on the surface (i.e. us). Given this input, the network
predicts the volumetric deformation, and the next point cloud can be processed.
When compared to our ex vivo ground truth, the average TRE at the 10 markers
was of 7.5 mm with a maximal value of 10.5 mm. Our non-rigid pipeline that is
based on the same WC method that was used to train our model produced nearly
the same error. This was obviously expected. But the pipeline generated a much
longer computation time (a total of 1550ms) even when using a very efficient linear
solver (Pardiso1).

Limitations of our U-Net network

Despite its incredible computational speed, the U-Net architecture has a non-
negligible limitation. The accuracy of the U-Net prediction of a deformed object

1https://pardiso-project.org

5.7 Discussions 153

from an unknown input is directly influenced by the amount of training the network
has received for this type of deformation. In order words, the network is a priori
very efficient to interpolate a solution between deformation modes it was trained
with, but remains quite inaccurate when we need to extrapolate a prediction in
a solution space it has never been encountered before. The generation of a large
and rich enough panorama of deformation modes required to adequately train
the network is not trivial. At this stage of the research, it is still impossible to
determine if the learning process of the network can be sufficiently enhanced to
predict intra-operative deformations that are accurate enough when partial surface
reconstruction is used.

5.7 Discussions

The experiments performed on our two registration algorithms using real clinical
scenarios have clearly demonstrated the net superiority of the non-rigid approach
over its rigid counterpart. But we also observed that the organ surface reconstruc-
tion process occurring during the surgery will have a major impact on the accuracy
of the deformations produced by the algorithm. In fact, for both porcine and hu-
man liver experiments, we saw that a simple partial surface reconstruction of the
organ was not enough to accurately predict the deformation inside the organ. We
also observed that even if a complete and accurate reconstruction of the whole
surface is imposed for the displacement calculation, some portions within the liver
may not be accurately simulated.

Obviously, this may be viewed as a major drawback of the overall non-rigid pipeline
as it would simply be impossible for a surgeon to rely on the predicted location
of a tumor or an important vessel if the model is not capable of limiting the
maximum error to a few millimeters. However, it is important to put these ob-
servations in perspective. As aforementioned in the introduction of this thesis,
without any computed-aided numerical registration, a surgeon has to mentally
find the correspondences between pre-operative medical images and the partial
view of the organ’s surface during the surgery. One of the first objectives of a
dynamic registration process is to assist the surgeon in this task and provide an
approximate alignment of the three-dimensional pre-operative reconstruction of
the liver onto the augmented reality images. A process that would not account
for the intra-operative deformation undergone by the liver would result in highly
different superposed shapes which would not be very useful to the medical staff.
Hence, the ability of our non-rigid pipeline to account for the organ’s deformation
presents a real advantage.

154 Implementation of a non-rigid registration pipeline

Moreover, we saw that the biomechanical model used in our pipeline can be built
with minimal effort by simply placing a background computational grid over the
three-dimensional surface reconstruction of the patient’s liver, resulting in a quasi-
automatic workflow for the medical staff. Therefore, even if the resulting position
for some internal structures of the overlaid deformed model is not precise down
to the millimeter, the effort currently required by the surgeon to mentally register
different medical modalities altogether would be considerably reduced.

Nonetheless, our non-rigid registration process could be further refined and its ac-
curacy improved by simply injecting additional information into the model. This
could be done in two different ways. Firstly, the model could be extended such
that the behavior of the liver’s internal structures are correctly simulated. Al-
though this contradicts the conclusions of Plantefève, Peterlik, and Cotin (2017),
we believe that incorporating heterogeneity into the model in the form of dif-
ferent stiffness values and anisotropy around the vessels and the Gibson capsule
could considerably improve the solution inside the liver. Since the traditional FE
method requires a fine mesh around these structures, our IB approach would ob-
viously constitute an interesting alternative here. Secondly, a small amount of
local knowledge about the deformed state inside the liver could be injected into
the model during surgery. This could considerably improve the solution if this
additional information is provided for a region close to the region of interest, for
example a tumor or a vessel. Since Ultrasound (US) probes are usually accessible
in most operation rooms, some US images could possibly be registered and added
as additional constraints to the model.

Finally, the issue relative to very partial surface reconstruction could be overcome
by introducing additional boundary conditions such as the organs surrounding the
liver and soft tissues connected to it. These boundary conditions could be esti-
mated prior to the surgery from the pre-operative images. During the surgery,
these estimations could be automatically refined using observations from the cam-
era or US images. Following the approach used in Nikolaev, Peterlik, and Cotin
(2018), the refinement through intra-operative observations could be implemented
using a reduced-order unscented Kalman filtering approach [Moireau and Chapelle
(2011)].

Chapter

6

CONCLUSION

In this thesis, we addressed the problem of soft-tissue simulations in the context
of computer-aided liver surgery. More specifically, we were interested in the de-
velopment of an efficient and automated biomechanical model that incorporates
physical characteristics of the patient’s liver to enhance the registration process
between pre- and intra-operative medical images. Our development work was ar-
ticulated around four basic research guidelines. Most importantly, the model had
to be capable of producing an accurate and patient-specific three-dimension vir-
tual representation of a liver’s deformations for the medical team. The model also
had to be able to generate stable solutions within a timeframe that meets the
requirements of a real-time environment. Finally, the model had to be designed
to minimize the development effort and ensure a minimum involvement from the
medical staff.

We began our work with a thorough review of the basic theoretical hyperelasticity
principles and the well-documented finite element method which is used in a wide
range of biomechanics simulations. We quickly realized that the implementation
of a discretization scheme outside of the traditional isoparametric approach was
not possible with most of the software tools currently available. In fact, these
tools were simply not adequate for our application which required that the intra-
operative data be dynamically injected into the simulation process. A complete
set of numerical algorithms was therefore derived and implemented. These have
been made available in an advanced simulation software library 1 which turned out
to be a valuable asset for the entire research team and the stepping stone for the

1https://github.com/jnbrunet/caribou

156 Conclusion

development of new meshless and immersed-boundary discretization approaches.

The Point-Based Animation (PBA) model is the first of the two meshless ap-
proaches that we investigated. This model is gaining a lot of popularity in the
research community as it is physically driven and aimed at interactive simulation
applications. Unfortunately, while the model is built on a solid continuum me-
chanic basis, we saw that it rarely produces accurate solutions due to the approx-
imations used for the shape functions and the integration scheme. To overcome
these inaccuracies, the MTLED approach documented in Horton et al. (2010)
was then considered. This allowed us to implement our Meshless Approximation
Mesh-Based Integration (MLAMBI) method that relies on the MLS model which
we have enriched by simply adding monomial basis functions. Instead of doing a
nodal integration based on an SPH-based volume estimation, we used a back-
ground grid of regular hexahedral elements. We have also proposed a corotated
approach to efficiently simulate objects undergoing large rotations but moderate
deformations. However, we saw that while we can adjust the approximation space
by avoiding particles outside of the simulated domain, the proposed method would
still suffer from inaccuracies resulting from the integration over the elements that
are cut by the boundary.

The issue related to the cut elements took us to a different category of numer-
ical models: the Immersed boundary (IB) methods. Contrary to the meshless
approach, IB methods reuse the isoparametric paradigm inherent to the standard
FE method. We presented two IB implementations. The first one, the Finite Cell
(FC) method, recursively adds integration points near the cut interface inside the
background elements. The second one, the Weighted Cell (WC) method, uses the
added integration points of the FC method to adjust the weights of the regular
height quadrature points found in traditional hexahedral elements. With both
methods, the discretization of the domain is transposed into a two-stage process
that consists of creating a three-dimensional lattice grid of regular hexahedron and
recursively subdividing cells cut by the boundaries.

Validation tests performed on simple shapes have shown that the Finite Cell
method produces very accurate solutions with convergence rates comparable to
a standard FE method using four nodes tetrahedral elements. However, the time
required for the assembly of the tangent stiffness matrix rapidly increases with
the number of cell subdivisions. On the other hand, the same tests on our pro-
posed WC method has shown that it can produce a solution very close to the FC
method, without the need for additional integration points. The WC method also
produced positive results when tested on some more complex scenarios including
experiments with porcine and the human livers. But the tests also highlighted

157

some limitations that will need to be addressed. We saw for example that the
WC method is not appropriate for simulations involving a Neo-Hookean material.
When very large penalty forces are imposed, some of the cut cells are often reach-
ing a degenerate state, which in turns results in a zero or negative jacobian of the
deformation tensor.

Nevertheless, we successfully completed the implementation of a complete non-
rigid registration pipeline for our surgical workflow using the well-known Iterative
closest point (ICP) method and the proposed WC method as the backbone of the
biomedical model. The performance of the pipeline has been thoroughly evaluated
using both in-vivo porcine and ex-vivo human livers. A comparison of our methods
and some of the emerging artificial intelligence and machine learning techniques
have also been documented.

Overall, the meshless methods considered in this thesis and the immersed boundary
WC method that we have proposed have shown interesting and promising results
over simple shapes and even more realistic simulation scenarios. But we saw that
the use of an arbitrary cloud of nodes in the meshless approach introduces more
complex shape functions which in turn complicate the configuration process. The
real impact of our approximation of the volumetric integration based on weighted
integration points is also still unclear and will require further investigation.

Future work

Throughout this work, we have treated the meshless methods and IB methods
as two separated entities. It would be interesting to investigate the use of an IB
integration paradigm paired with a meshless shape function to further enforce the
representation of the discontinuities introduced by the boundaries of an immersed
object. Also, all the numerical methods considered in this work (standard FE
model, the meshless methods or an IB approach) require that large displacement
impositions be broken into many smaller increments. This was a direct conse-
quence of the nonlinearity characteristic of the system of equations used by our
biomechanical model. Further research will be required to investigate methods
that allow bigger increments, in particular for non-rigid registrations which in-
volves the reconstruction of highly deformed shapes during the intervention. Since
coarse grids are able to converge with much higher imposed displacements, we be-
lieve that some hierarchical schemes would be appropriate here as a good starting
point of the investigation. For instance, a coarse grid could be first solved as an
approximate solution to an embedded finer grid. This approximation would then
be used as the initial state of the NR method. Such hierarchical schemes can be

158 Conclusion

naturally implemented on a lattice geometry and would therefore constitute an
advantage that our propose WC method could exploit. Similarly, as we saw in
our brief look at neural networks, machine learning techniques, such as the U-Net
architecture, could be used in this case to quickly produce an approximate first
solution for the NR method, hence allowing it to quickly converge to an accurate
final solution.

Finally, throughout our experiments, we noticed that using partial knowledge of
the liver’s current shape has a major impact on the overall registration process. A
better approximation could be generated if additional information and knowledge
about the liver and its surrounding structures would be used. For example, the
sketching of an approximate atlas of these structures could be included in the pre-
operative data. During surgery, this atlas could be stochastically refined through
real-time acquired observation and inserted in the model as additional boundary
conditions.

Chapter

7

BRIEF SUMMARY IN FRENCH

7.1 Introduction

La simulation numérique de divers phénomènes physiques est maintenant large-
ment ancrée dans notre société. Dans cette thèse, nous nous intéressons à une
application très spécifique de la simulation: la simulation des tissus mous pour la
réalité augmentée en chirurgie du foie. Cette recherche a été réalisée dans le cadre
d’un projet européen “European Innovative Training Network (ITN)” nommé High
Performance Soft Tissue Navigation (HiPerNav) et financée par une action Marie
Skłodowska-Curie du programme européen pour la recherche et le développement
Horizon 2020 (H2020).

Traditionnellement, les chirurgiens établissent le plan de l’opération à partir d’imag-
es médicales prises avant l’opération. Ces images sont généralement générées à par-
tir d’appareil de tomodensitométrie (computerize tomography (CT) scan) ou bien
d’appareil à résonance magnétique, et permettre d’assembler la séquence d’images
en une reconstruction trois dimensionnelle des structures anatomiques du patient.
Durant l’opération, les chirurgiens utilisent cette reconstruction préopératoire pour
suivre le plan initial et guider l’intervention en cours. Or, la forme du foie durant
l’opération est généralement très différente de sa forme initiale. En effet, le patient
n’a pas la même position que lors de la prise d’images. De plus, certaines chirur-
gies dites minimalement invasives ou laparoscopique sont effectuées en insufflant du
dioxyde de carbone dans la cavité de l’abdomen (cavité péritonéale), créant ainsi
un espace de travail. L’opération est alors effectuée à partir d’instruments insérés

160 Brief summary in French

dans la cavité à l’aide de petites incisions faites au patient. Un laparoscope est in-
séré dans l’une de ces incisions et projette en continu des images prises à l’intérieur
de la cavité, guidant ainsi le chirurgien dans ses manoeuvres. L’insufflation de gaz
à l’intérieur de l’abdomen crée un pneumopéritoine artificiel et déforme consid-
érablement le foie du patient. Ayant seulement accès à un plan d’opération fait
avant l’opération, le chirurgien doit alors mentalement faire le lien entre les im-
ages reconstruites initialement, et les images observées durant l’opération. Dans
le but d’assister le chirurgien dans cette démarche, nous nous intéressons à la mise
en correspondance automatique d’images prises avant et pendant l’opération, un
processus appelé recalage. Pour ce faire, un modèle biomécanique virtuel du foie
est construit à partir de l’image 3D initiale et permet de lier ensemble les données
préopératoires spécifiques au patient et les données acquises en temps réel pendant
la chirurgie. Le modèle est alors déformé et une représentation visuelle de celui-ci
est superposée aux images de réalité augmentée montrées à l’équipe médicale. La
figure 7.1 illustre les étapes typiques réalisées dans une application de recalage non
rigide.

Figure 7.1: Étapes typiques pour un recalage non rigide en chirurgie laparoscopique.

Le modèle biomécanique peut être vu comme une boîte noire ayant en entrée la
reconstruction surfacique initiale du foie et ses paramètres d’élasticité. Pour cette
raison, le modèle est souvent appelé un modèle spécifique au patient. Lorsque cer-
taines informations partielles du foie sont données au modèle pendant l’opération,
ce dernier propose une estimation de l’état complet déformé. La méthode des élé-
ments finis a été l’approche numérique de références pour la modélisation rigoureuse
de divers organes. Cependant, cette méthode nécessite un processus de discréti-
sation où les frontières de l’organe sont représentées géométriquement. Pour la
simulation du foie, ce processus devient rapidement fastidieux puisque ses fron-
tières contiennent fréquemment des bords abrupts. C’est encore pire lorsque les
structures internes sont également à modéliser. À cet égard, nous avons dédié ce
travail de recherche à l’étude des méthodes numériques alternatives capables de
modéliser un foie spécifique au patient tout en suivant des directives de recherche

7.2 Méthodes sans maillage 161

clés établies pour une application de réalité augmentée à l’intérieur d’une salle
d’opération: i) la précision de la solution, ii) la vitesse à laquelle cette solution est
obtenue, iii) la stabilité du modèle, et iv) sa simplicité de mise en œuvre. Ainsi,
la première partie de cette thèse est consacrée aux méthodes sans maillage où la
discrétisation du domaine simulé est effectuée en remplissant simplement le vol-
ume à l’aide de voisinages de points, souvent appelés particules. Deux approches
basées sur les méthodes sans maillage sont proposées. Pour la première approche,
les termes d’approximation et d’intégration numérique utilisés dans l’équation dis-
crète du problème d’hyperélasticité sont complètement sans maillage et se basent
uniquement sur l’influence d’une particule par rapport à son voisinage. La seconde
approche utilise également une approximation numérique basée sur des particules,
mais où cette fois l’intégration numérique est construite à l’aide d’un maillage
d’éléments placé en arrière-plan. La deuxième partie de cette thèse est dédiée à
l’étude des méthodes aux frontières immergées où le concept de domaines fictifs est
appliqué. Encore une fois, nous présentons deux implémentations. La première, la
méthode des cellules finies, ajoute récursivement des points d’intégration près de
l’interface de coupe à l’intérieur des éléments. La seconde, la méthode des cellules
pondérées, utilise quant-a-t-elle les points d’intégration ajoutés par la méthode des
cellules finies pour simplement ajuster les poids des points de quadrature normale-
ment utilisés dans les éléments hexaédriques réguliers. Enfin, la dernière partie
de cette thèse conclut ce travail de recherche avec une évaluation des concepts
associés au recalage non rigide entre les informations préopératoires et peropéra-
toires. Une routine complète utilisant nos méthodes numériques est implémentée
et validée dans un contexte de chirurgie réaliste utilisant des données cliniques
réelles.

7.2 Méthodes sans maillage

La première partie de cette thèse est consacrée aux méthodes sans maillage. Ici,
la discrétisation du domaine à simuler est effectuée simplement en remplissant le
volume de points, souvent appelés particules. Similairement aux noeuds des élé-
ments dans la méthode des éléments finis, ces particules forment l’ensemble des
degrés de liberté (inconnues) du système à résoudre. Ainsi, là où les méthodes tra-
ditionnelles d’éléments finis nécessitent une discrétisation complexe, les méthodes
sans maillage semblent très attrayantes.

Lorsque l’animation par ordinateur en était qu’à ses tout débuts, Reeves (1983) a
introduit une particule comme étant un simple point pouvant bouger dans l’espace
de simulation et mourant après un certain temps donné. En remplissant un objet

162 Brief summary in French

de particules, le chercheur arrive à produire visuellement différents phénomènes
tels que du feu ou de la fumée. Ici, les particules n’interagissent pas entre elles et
sont plutôt dirigées par un modèle stochastique. L’interaction entre particules sera
plus tard introduite par Luciani et al. (1991) et Szeliski and Tonnesen (1992) en
ajoutant des forces de répulsion et d’attraction basées sur des potentiels d’énergie.
Bien que ces techniques ont été les pionnières du domaine de la discrétisation sans
maillage, c’est les travaux de Desbrun and Gascuel (1996) qui a d’abord introduit
une méthode appelée Smoothed Particle Hydrodynamics (SPH) (provenant des
recherches de Lucy (1977) et Monaghan (1992) en simulations astrophysiques) pour
des animations d’objets déformables pilotés entièrement par les forces. Ces travaux
ont établi une importante étape dans le domaine des simulations déformables sans
maillage pour les animations informatiques. Ce concept a été repris par la suite
dans diverses applications d’animation par ordinateur en introduisant cette fois
la théorie d’élasticité linéaire comme potentiel d’énergie entre particules [Müller,
Keiser, et al. (2004); Solenthaler, Schläfli, and Pajarola (2007b); Becker, Ihmsen,
and Teschner (2009a)].

L’introduction de méthodes sans maillage pour les applications de simulation
chirurgicale est plus récente. Dans Horton et al. (2010), une méthode de sim-
ulation sans maillage est proposée pour modéliser certains comportements non
linéaires de déformations de tissus mous en cadre opératoire. Bien qu’aucune
mention n’ait été faite concernant les temps de calcul, tout indique qu’ils ont été
les premiers à proposer une solution sans maillage assez rapide basée sur une ap-
proche de Galerkin. Depuis, leurs travaux ont été étendus à diverses applications
chirurgicales [K. Miller et al. (2012); G. Y. Zhang et al. (2014); Dehghan et al.
(2016); Dong et al. (2016); Wittek et al. (2016)].

7.2.1 Animation basée sur les points (Méthode PBA)

Il existe plusieurs approches pour résoudre la dynamique d’élasticité d’un objet dé-
formable. La première que nous avons considérée est la méthode d’animation élas-
tique basée sur les points introduite dans Müller, Keiser, et al. (2004). Tout comme
la méthode des éléments finis, les méthodes sans maillage permettent d’estimer
un déplacement à une position quelconque du domaine. Cependant, plutôt que
d’utiliser les propriétés géométriques d’un élément pour interpoler ce déplacement,
les méthodes sans maillage utilisent un nuage de points où chaque point, ou partic-
ule, comporte un support compact d’influence, communément appelé le domaine
d’influence. L’approximation d’une valeur à une position du domaine est alors
obtenue à l’aide d’une fonction d’approximation, dite fonction de forme, qui est

7.2 Méthodes sans maillage 163

évaluée pour chaque particule voisine. Le support de la fonction de forme d’une
particule est généralement bâti à partir d’une fonction de poids (souvent appelée
la fonction “noyau”, ou “fenêtre”). Cette fonction est monotone et décroit de façon
proportionnelle à la distance d’influence d’une particule. Pour notre projet, nous
avons choisi une formulation lagrangienne. Ainsi, le poids d’une position dans le
support compact d’une particule restera constant tout au long de la simulation et
sera précalculé une seule fois au départ de la simulation.

Au début de la simulation, nous déterminons pour chaque particule le support de
celle-ci en choisissant l’une des trois méthodes de calcul d’une distance d’influence
(équations 3.8 à 3.10) ainsi qu’une des cinq méthodes de calcul du noyau (équa-
tions 3.3 à 3.7). Une fois le support d’influence obtenu, nous gardons pour chaque
particule un vecteur de particules voisines ainsi que le poids (l’influence) de cha-
cune. Le support des particules servira à établir les fonctions de formes de ces
dernières.

Dans ce projet de recherche, nous avons implémenté deux fonctions de formes. La
première est basée sur l’approximation du déplacement d’une particule à l’aide de
la méthode SPH [Desbrun and Gascuel (1996)]. L’approximation du gradient du
déplacement est obtenue en dérivant simplement la fonction de forme par rapport
aux coordonnées du système. La seconde approche que nous avons implémentée
utilise plutôt directement l’approximation du gradient du déplacement d’une par-
ticule au sens des moindres carrées pondérées, fréquemment appelée Moving Least
Squares (MLS) en anglais. Dans les deux cas, les fonctions de formes sont de
degré 1, et donc ne peuvent approximer exactement que des champs linéaires.

D’une certaine manière, avec la méthode PBA, le support compact autour d’une
particule pourrait être considéré comme un type d’élément particulier, et ses plus
proches voisins en tant que nœuds de cet élément. Par conséquent, les termes de
gauche et de droite du système discret à résoudre (équations 2.18 et 2.26) peuvent
être utilisés respectivement de la même manière qu’avec les méthodes des éléments
finis. Cependant, compte tenu de l’absence d’éléments isoparamétriques, nous
devons définir une méthode d’intégration numérique sur le support d’une particule.
Ici, nous avons utilisé la méthode proposée par Müller, Keiser, et al. (2004) où
la densité d’une particule est déterminée à l’aide de la méthode d’approximation
SPH. Le volume du support compact en est alors déduit, et l’intégration numérique
revient à calculer la valeur d’une fonction à la position d’une particule et de la
multiplier par ce volume.

L’approche PBA aboutit à une méthode qui repose entièrement sur les partic-
ules, tant pour l’approximation du champ de déplacement que pour l’intégration

164 Brief summary in French

numérique. Cette caractéristique lui vaut une configuration très rapide et facile: il
n’y a pas besoin de génération complexe d’un maillage d’éléments. Également, il
est facile de voir qu’une extension aux applications de découpes interactives se fait
naturellement en ajustant la fonction de poids pour supprimer l’influence d’une
particule sur un voisin situé de l’autre côté de la coupure. Il existe cependant une
forte limitation inhérente à cette méthode: son intégration numérique est basée
sur une approximation grossière du volume occupé par une particule. Cette ap-
proximation a un impact important sur la précision de la solution, une observation
faite durant nos essais expérimentaux dont les résultats sont décrits dans la section
3.11. En fait, la méthode PBA est souvent décrite comme étant une méthode vi-
suellement plausible. Ses solutions semblent bonnes visuellement, mais pourraient
être loin de la vraie solution au sens mécanique.

7.2.2 Approximation sans maillage, intégration avec maillage

La deuxième méthode sans maillage que nous avons implémentée vise à réduire
l’erreur d’intégration et la faible cohérence de la fonction de forme inhérente à la
méthode précédente. Elle est basée sur la méthode MTLED présentée dans Horton
et al. (2010). Ici, cependant, nous proposons une extension de cette méthode visant
l’utilisation d’un modèle d’élasticité linéaire couplant le principe corotationel. Con-
trairement à la méthode PBA, nous proposons d’intégrer les termes des équations
(2.18) et (2.26) en utilisant une grille d’éléments hexaédriques réguliers placée
en arrière-plan, donc superposée au domaine de simulation. Par conséquent, on
pourrait soutenir que cette méthode n’est pas à 100% sans maillage. Cependant,
l’utilisation de la grille d’arrière-plan élimine l’étape difficile associée à la création
d’un maillage conforme qui est le principal inconvénient des méthodes des élé-
ments finis. De plus, nous proposons d’utiliser des fonctions de formes adaptatives
qui, de la même manière que les éléments d’ordre élevé, améliorent la cohérence
de l’approximation ainsi que la convergence de la résolution du système. Pour
ce faire, nous reprenons le concept de minimisation d’une erreur d’approximation
au sens des moindres carrés. Cependant, ici nous minimisons l’approximation du
champ de déplacement, et non son gradient.

Avec notre méthode MLAMBI, les particules ne représentent que les degrés de
liberté, et les points d’intégration sont les points de quadrature gaussienne stan-
dard des éléments d’arrière-plan. Alors que ce schéma d’intégration est similaire à
celui des éléments finis, l’approximation du champ de déplacement à chaque point
de Gauss est formulée par rapport à ses particules voisines. Les différences entre
la méthode PBA, notre méthode MLAMBI et la méthode des éléments finis sont

7.3 Méthode aux frontières immergées 165

illustrées à la figure 7.2.

(a) Méthode des éléments fi-
nis

(b) Méthode PBA (c) Méthode MLAMBI

Figure 7.2: Relations entre les points d’intégration (croix) et les noeuds DOF
(cercles) où l’ovale vert représente l’objet simulé.

Un comparatif entre nos différentes implémentations sans maillage est décrit à la
section 3.11. À partir de ces résultats, nous déterminons que, parmi les méth-
odes sans maillage étudiées, la méthode mixte utilisant des éléments d’arrière-plan
pour l’intégration fournit la meilleure précision. Or, l’intégration sur les éléments
coupés par la frontière immergée reste source d’erreurs numériques. Pour pallier
ces erreurs, une méthode d’intégration plus adéquate doit être trouvée.

7.3 Méthode aux frontières immergées

La deuxième partie de cette thèse est dédiée à l’étude des méthodes aux fron-
tières immergées (“Immersed boundary (IB)”) où le concept de domaines fictifs
est appliqué. Ici, nous revenons aux éléments finis où un maillage d’éléments
isoparamétriques est utilisé autant pour l’approximation du déplacement que pour
intégrer les termes des équations à résoudre. Par contre, contrairement aux méth-
odes traditionnelles des éléments finis, l’objet simulé est immergé dans une grille
d’éléments isoparamétriques réguliers. C’est cette grille qui sera utilisée pour ré-
soudre le problème initial. La difficulté de maillage d’une surface complexe en
méthode des éléments finis est donc transposée à la prise en charge des éléments
de la grille coupés par la surface de l’objet.

Depuis leur première introduction dans le travail de Peskin (1972) visant à résoudre
l’écoulement vasculaire autour des valves cardiaques, les méthodes aux frontières

166 Brief summary in French

immergées ont évolué à une large gamme d’implémentations fluide-fluide, fluide-
solide et solide-solide. Le principal défi associé aux méthodes IB se pose lorsque
l’objet immergé ne rentre pas entièrement dans certains éléments de la grille de
calcul. Ces éléments doivent donc être séparés en deux régions: la région associée
à l’intérieur de l’objet simulé, et la région qui est à l’extérieur. La géométrie de ces
deux sous-espaces et leurs matériaux respectifs doivent alors être pris en compte.
Cela peut être fait en introduisant une contrainte de continuité sur l’interface
entre les deux régions. De nombreuses approches ont été utilisées dans le passé
pour résoudre cette contrainte. La plupart de celles-ci sont catégorisées en trois
branches de méthodes: la méthode de pénalité [Bishop (2003); Ramière, Angot,
and Belliard (2007)], la méthode des multiplicateurs de Lagrange [Burman and
P. Hansbo (2010); Glowinski and Kuznetsov (2007)] et la méthode de Nitsche
[Nitsche (1971); A. Hansbo and P. Hansbo (2002); Dolbow and Harari (2009);
Burman and P. Hansbo (2012); Schillinger and Ruess (2015)]. Celles-ci peuvent
également servir de moyen d’imposer des conditions aux limites essentielles lorsque
la région externe est l’espace vide.

Une attention particulière doit également être donnée à l’intégration numérique
sur les éléments coupés par la frontière. Comme documenté dans [Düster et al.
(2008)], cela se fait généralement en représentant la géométrie à l’intérieur d’un
élément par un ensemble de points de quadrature qui sont raffinés jusqu’à ce
qu’une précision prescrite est obtenue [Parvizian, Düster, and Rank (2007); Ruess
et al. (2012); Verhoosel et al. (2015); Elhaddad et al. (2018); Schillinger and Ruess
(2015)]. Lorsque les deux régions de l’élément sont remplies avec des matéri-
aux linéaires, et lorsque l’interface frontière peut être discrétisée en un ensemble
d’éléments géométriques, les intégrales peuvent être converties en intégrales de
surface en utilisant le théorème de la divergence [Mirtich (1996); Bishop (2003);
T. P. Fries and Omerović (2016)].

L’utilisation d’une grille de calcul apporte de nombreux avantages. Déjà, elle
ne comporte que des parallélépipèdes, qui sont bien formés par construction et
convergent rapidement. Ensuite, elle permet naturellement une extension aux
méthodes de décomposition de domaines. Tout comme avec les méthodes sans
maillage, nous proposons deux implémentations. La première, la méthode des
cellules finies, ajoute récursivement des points d’intégration près de l’interface de
coupe à l’intérieur des éléments. La seconde, la méthode des cellules pondérées,
utilise quant à elle les points d’intégration ajoutés par la méthode des cellules finies
pour simplement ajuster les poids des points de quadrature normalement utilisés
dans les éléments hexaédriques réguliers.

Pour notre type d’application, un respect strict des conditions de Dirichlet est

7.3 Méthode aux frontières immergées 167

(a) Méthode des cellules finies (b) Méthode des cellules pondérées

Figure 7.3: Un élément quadrilatère est récursivement subdivisé en sous-cellules
lorsque ce dernier intersecte l’interface frontière. L’intégration numérique est ef-
fectuée à l’aide d’une quadrature sur les points d’intégration (croix rouges). Pour
la méthode des cellules pondérées, les poids de quadrature sont ajustés pour mieux
représenter la portion de l’élément à l’intérieur de la frontière.

rarement nécessaire. En effet, la reconstruction des frontières du foie durant une
chirurgie (généralement à partir d’images stéréo ou RGB-D) est souvent incomplète
et grossièrement approximée. Par conséquent, nous avons opté pour une méthode
de pénalité qui s’est avérée plus que suffisante pour nos besoins. D’ailleurs, cette
méthode apporte une propriété utile qu’on ne retrouve pas avec les méthodes plus
strictes (multiplicateurs de Lagrange et méthode de Nitsche): elle est plus robuste
en cas d’imposition de déplacement non physique. Ce type d’imposition arrive
fréquemment lors d’application de recalage non rigide où la reconstruction de la
partie visible du foie est donnée sous forme de nuage de points souvent bruité.
Lorsque nous utilisons ce nuage de points pour imposer les conditions de Dirich-
let, certains déplacements imposés pourraient ne pas avoir de sens du point de
vue physique et mécanique. Une imposition stricte via la méthode des multipli-
cateurs de Lagrange ou bien la méthode de Nitsche empêcherait probablement la
simulation de converger.

Notre validation préliminaire (section 4.8) utilisant des formes simples a mon-
tré que la méthode des cellules finies produit des solutions très précises tout en
conservant une meilleure convergence par rapport à une méthode standard des
éléments finis utilisant des éléments tétraédriques. Cependant, le temps nécessaire

168 Brief summary in French

à l’assemblage des la matrice de rigidité augmente rapidement avec le nombre de
subdivisions. Puisque nous cherchons à simuler des matériaux non linéaires, cet as-
semblage doit être réalisé à chaque itération de l’algorithme de Newton-Raphson.
La validation préliminaire effectuée sur notre approche des cellules pondérées a
montré quant à elle que cette méthode peut étonnamment produire des solutions
très proches de celles obtenues avec les cellules finies, sans pour autant augmenter
le temps de calcul. De plus, sa mise en oeuvre peut être facilement intégrée dans
un logiciel d’éléments finis standard, héritant ainsi des diverses optimisations faites
pour les éléments hexaédriques à 8 noeuds et 8 points d’intégration.

Notre analyse portant sur des formes plus complexes telles que la reconstruction
complète de la surface de trois foies de porc et un foie humain a révélé des ré-
sultats intéressants ainsi que certains inconvénients qui n’avaient pas été observés
lors de nos tests préliminaires. Contrairement à nos attentes, la méthode des
cellules pondérées n’était pas suffisamment robuste pour les simulations impli-
quant un matériau Néo-Hookéen. Lorsque des forces de pénalité très importantes
étaient imposées, certaines des cellules coupées par la surface atteignaient un état
dégénéré, ce qui entraînait à son tour un jacobien nul ou négatif du tenseur de
déformation.

Ensuite, l’imposition de grands déplacements a dû être divisée en plusieurs petits
incréments sans quoi la solution se retrouvait trop loin de la configuration actuelle
du modèle et l’algorithme de Newton-Raphson n’arrivait pas à converger. Ceci est
un inconvénient non négligeable et des recherches supplémentaires devront être
envisagées afin de permettre des incréments plus importants, en particulier pour
une application de recalage entre une reconstruction hépatique préopératoire et sa
forme largement déformée en peropératoire.

7.4 Application à la chirurgie

Au chapitre 5, une évaluation des concepts associés au recalage non rigide en-
tre les informations préopératoires et peropératoires est effectuée. Une routine
complète utilisant nos méthodes numériques est implémentée et validée dans un
contexte de chirurgie réaliste utilisant des données cliniques réelles. D’abord, une
reconstruction complète de trois foies de cochons est réalisée avant et après pneu-
mopéritoine. Une reconstruction partielle de la partie visible des foies est effectuée
à l’aide des images laparoscopiques après pneumopéritoine. Les résultats d’un
recalage non rigide du modèle biomécanique vers la reconstruction partielle sont
comparés à la reconstruction complète post-pneumopéritoine. L’expérience est

7.4 Application à la chirurgie 169

répétée en utilisant cette fois un foie humain ex vivo où deux déformations sont
manuellement induites. Finalement, nous démontrons comment le modèle biomé-
canique peut être résous à l’aide d’un algorithme d’apprentissage d’un réseau de
neurones. Ici, notre méthode des domaines fictifs est exploitée pour générer des
milliers de champs de déformation d’un foie. Ces déformations sont utilisées pour
la phase d’apprentissage du réseau. L’objectif est alors de prédire les déformations
à l’intérieur d’un foie à partir de la déformation partielle de la surface visible.

Nos expériences ont montré que la reconstruction d’une simple partie de la surface
du foie pendant la chirurgie ne suffit pas à permettre au modèle de prédire avec
précision l’état de déformation à l’intérieur du foie. En fait, même en utilisant
la surface complète du foie à l’état déformé, le recalage n’était toujours pas en
mesure de prédire avec précision la position de certains marqueurs. Évidemment,
c’est un inconvénient non négligeable puisque la précision de la solution est l’un des
principaux objectifs de l’application. Pour améliorer la précision du processus de
recalage, nous avons vu que des informations supplémentaires doivent être injec-
tées dans notre modèle. Cela pourrait être fait de deux manières. Premièrement,
le modèle pourrait être modifié de sorte que le comportement du foie du patient
prenne bien en compte ses structures internes. Ainsi, bien que cela va à l’encontre
des conclusions faites par Plantefève, Peterlik, and Cotin (2017), nous pensons que
l’intégration de l’hétérogénéité du modèle pourrait considérablement améliorer la
solution. Puisque les méthodes des éléments finis traditionnelles nécessitent un
maillage fin autour de ces structures, notre approche des frontières immergées
constituerait un net avantage. Deuxièmement, une petite quantité de connais-
sances pourrait être injectée à l’intérieur du modèle pendant l’opération. Par
exemple, puisque des sondes ultra-son sont généralement accessibles dans la plu-
part des salles d’opération, certaines images provenant de telles sondes pourraient
éventuellement être recalées et ajoutées en tant que contraintes supplémentaires.
Ces deux recommandations nécessiteront une étude approfondie et devraient faire
l’objet de recherches complémentaires.

Bibliography

Allard, J. et al. (2007). “SOFA-an open source framework for medical simulation”.
In: Studies in Health Technology and Informatics.

Arruda, Ellen M. and Mary C. Boyce (1993). “A three-dimensional constitutive
model for the large stretch behavior of rubber elastic materials”. In: Journal of
the Mechanics and Physics of Solids. doi: 10.1016/0022-5096(93)90013-6.

Bajwa, Sukhminder Jit Singh and Ashish Kulshrestha (2016). Anaesthesia for
laparoscopic surgery: General vs regional anaesthesia. doi: 10.4103/0972-

9941.169952.
Bathe, Klaus Jürgen and Lingbo Zhang (2017). “The finite element method with

overlapping elements – A new paradigm for CAD driven simulations”. In: Com-
puters and Structures. doi: 10.1016/j.compstruc.2016.10.020.

Becker, Markus, Markus Ihmsen, and Matthias Teschner (2009a). “Corotated sph
for deformable solids”. In: Natural Phenomena, pp. 27–34. doi: 10.2312EG/

DL/conf/EG2009/nph/027-034.
— (2009b). “Corotated SPH for Deformable Solids.” In: NPH. Citeseer, pp. 27–34.
Belytschko, T et al. (1996). “Meshless Methods: An Overview and Recent Devel-

opments”. In: Computer Method in Applied Mechanics and Engineering 139,
pp. 3–47. doi: 10.1016/S0045-7825(96)01078-X.

Belytschko, T., D. Organ, and Y. Krongauz (1995). “A coupled finite element-
element-free Galerkin method”. In: Computational Mechanics. doi: 10.1007/

BF00364080.
Belytschko, Ted, Yury Krongauz, et al. (1996). “Meshless methods: an overview

and recent developments”. In: Computer methods in applied mechanics and
engineering 139.1-4, pp. 3–47.

Belytschko, Ted, Yun Yun Lu, and Lei Gu (1994). “Element-free Galerkin meth-
ods”. In: International Journal for Numerical Methods in Engineering 37.2,
pp. 229–256.

Benzley, Steven E et al. (1995). “A comparison of all hexagonal and all tetrahedral
finite element meshes for elastic and elasto-plastic analysis”. In: Proceedings,

https://doi.org/10.1016/0022-5096(93)90013-6
https://doi.org/10.4103/0972-9941.169952
https://doi.org/10.4103/0972-9941.169952
https://doi.org/10.1016/j.compstruc.2016.10.020
https://doi.org/10.2312EG/DL/conf/EG2009/nph/027-034
https://doi.org/10.2312EG/DL/conf/EG2009/nph/027-034
https://doi.org/10.1016/S0045-7825(96)01078-X
https://doi.org/10.1007/BF00364080
https://doi.org/10.1007/BF00364080

172 Bibliography

4th international meshing roundtable. Vol. 17. Sandia National Laboratories
Albuquerque, NM, pp. 179–191.

Bernhardt, Sylvain, Julien Abi-Nahed, and Rafeef Abugharbieh (2012). “Robust
dense endoscopic stereo reconstruction for minimally invasive surgery”. In: In-
ternational MICCAI workshop on medical computer vision. Springer, pp. 254–
262.

Besl, Paul J and Neil D McKay (1992). “Method for registration of 3-D shapes”.
In: Sensor fusion IV: control paradigms and data structures. Vol. 1611. Inter-
national Society for Optics and Photonics, pp. 586–606.

Bishop, J (2003). “Rapid stress analysis of geometrically complex domains using
implicit meshing”. In: Computational Mechanics 30.5, pp. 460–478. doi: 10.

1007/s00466-003-0424-5.
Bray, Freddie et al. (2018). “Global cancer statistics 2018: GLOBOCAN estimates

of incidence and mortality worldwide for 36 cancers in 185 countries.” In: CA:
a cancer journal for clinicians 68 6, pp. 394–424.

Brown, Myron Z, Darius Burschka, and Gregory D Hager (2003). “Advances in
computational stereo”. In: IEEE transactions on pattern analysis and machine
intelligence 25.8, pp. 993–1008.

Brunet, Jean-Nicolas, Vincent Magnoux, et al. (2019). “Corotated meshless im-
plicit dynamics for deformable bodies”. In: 27th International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision.
doi: 10.24132/csrn.2019.2901.1.11.

Brunet, Jean-Nicolas, Andrea Mendizabal, et al. (2019). “Physics-Based Deep Neu-
ral Network for Augmented Reality During Liver Surgery”. In: Medical Image
Computing and Computer Assisted Intervention – MICCAI 2019. Ed. by Ding-
gang Shen et al. Cham: Springer International Publishing, pp. 137–145.

Burkhart, Timothy A., David M. Andrews, and Cynthia E. Dunning (2013). Fi-
nite element modeling mesh quality, energy balance and validation methods: A
review with recommendations associated with the modeling of bone tissue. doi:
10.1016/j.jbiomech.2013.03.022.

Burman, Erik, Susanne Claus, et al. (2015). “CutFEM: Discretizing geometry and
partial differential equations”. In: International Journal for Numerical Methods
in Engineering. doi: 10.1002/nme.4823.

Burman, Erik and Peter Hansbo (Oct. 2010). “Fictitious domain finite element
methods using cut elements: I. A stabilized Lagrange multiplier method”. In:
Computer Methods in Applied Mechanics and Engineering 199.41-44, pp. 2680–
2686. doi: 10.1016/J.CMA.2010.05.011.

— (Apr. 2012). “Fictitious domain finite element methods using cut elements:
II. A stabilized Nitsche method”. In: Applied Numerical Mathematics 62.4,
pp. 328–341. doi: 10.1016/J.APNUM.2011.01.008.

https://doi.org/10.1007/s00466-003-0424-5
https://doi.org/10.1007/s00466-003-0424-5
https://doi.org/10.24132/csrn.2019.2901.1.11
https://doi.org/10.1016/j.jbiomech.2013.03.022
https://doi.org/10.1002/nme.4823
https://doi.org/10.1016/J.CMA.2010.05.011
https://doi.org/10.1016/J.APNUM.2011.01.008

Bibliography 173

Cash, D M et al. (Nov. 2005). “Compensating for intraoperative soft-tissue defor-
mations using incomplete surface data and finite elements”. In: IEEE Trans-
actions on Medical Imaging 24.11, pp. 1479–1491. doi: 10.1109/TMI.2005.

855434.
Chamberland, É, A Fortin, and M Fortin (2010). “Comparison of the performance

of some finite element discretizations for large deformation elasticity problems”.
In: Computers and Structures 88.11, pp. 664–673. doi: https://doi.org/10.

1016/j.compstruc.2010.02.007.
Chen, Jiun Shyan et al. (1996). “Reproducing Kernel Particle Methods for large

deformation analysis of non-linear structures”. In: Computer Methods in Ap-
plied Mechanics and Engineering. doi: 10.1016/S0045-7825(96)01083-3.

Clements, Logan W. et al. (2008). “Robust surface registration using salient anatom-
ical features for image-guided liver surgery: Algorithm and validation”. In: Med-
ical Physics. doi: 10.1118/1.2911920.

Courtecuisse, Hadrien et al. (2014). “Constraint-based simulation for non-rigid
real-time registration”. In: Studies in Health Technology and Informatics. doi:
10.3233/978-1-61499-375-9-76.

Dehghan, Mohammad Reza et al. (2016). “A three-dimensional large deformation
model for soft tissue using meshless method”. In: International Journal of Med-
ical Robotics and Computer Assisted Surgery 12.2. doi: 10.1002/rcs.1682.

Desbrun, Mathieu and Marie-Paule Gascuel (1996). “Smoothed particles: A new
paradigm for animating highly deformable bodies”. In: Computer Animation
and Simulation’96. Springer, pp. 61–76.

Dey, Tamal K and Joachim Giesen (2001). “Detecting undersampling in surface
reconstruction”. In: Proceedings of the seventeenth annual symposium on Com-
putational geometry, pp. 257–263.

Dolbow, John and Isaac Harari (2009). “An efficient finite element method for em-
bedded interface problems”. In: International Journal for Numerical Methods
in Engineering 78.2, pp. 229–252. doi: 10.1002/nme.2486.

Dong, Yi et al. (2016). “A Nonlinear Viscoelastic Meshless Model for Soft Tis-
sue Deformation”. In: 2016 International Conference on Virtual Reality and
Visualization (ICVRV), pp. 204–211. doi: 10.1109/ICVRV.2016.42.

Duriez, C. et al. (2006). “New approaches to catheter navigation for interven-
tional radiology simulation”. In: Computer Aided Surgery. doi: 10 . 1080 /

10929080601090623.
Düster, Alexander et al. (Aug. 2008). “The finite cell method for three-dimensional

problems of solid mechanics”. In: Computer Methods in Applied Mechanics and
Engineering 197.45-48, pp. 3768–3782. doi: 10.1016/J.CMA.2008.02.036.

Elhaddad, Mohamed et al. (2018). “Multi-level hp-finite cell method for embedded
interface problems with application in biomechanics”. In: International Journal

https://doi.org/10.1109/TMI.2005.855434
https://doi.org/10.1109/TMI.2005.855434
https://doi.org/https://doi.org/10.1016/j.compstruc.2010.02.007
https://doi.org/https://doi.org/10.1016/j.compstruc.2010.02.007
https://doi.org/10.1016/S0045-7825(96)01083-3
https://doi.org/10.1118/1.2911920
https://doi.org/10.3233/978-1-61499-375-9-76
https://doi.org/10.1002/rcs.1682
https://doi.org/10.1002/nme.2486
https://doi.org/10.1109/ICVRV.2016.42
https://doi.org/10.1080/10929080601090623
https://doi.org/10.1080/10929080601090623
https://doi.org/10.1016/J.CMA.2008.02.036

174 Bibliography

for Numerical Methods in Biomedical Engineering 34.4, e2951. doi: 10.1002/

cnm.2951.
Felippa, Carlos A (2000). “A systematic approach to the element-independent

corotational dynamics of finite elements”. In: Center for Aerospace Structures
Document Number CU-CAS-00-03, College of Engineering, University of Col-
orado.

Felippa, Carlos A. and Bjorn Haugen (2005). A unified formulation of small-strain
corotational finite elements: I. Theory. doi: 10.1016/j.cma.2004.07.035.

Fernández-Méndez, Sonia and Antonio Huerta (2004). “Imposing essential bound-
ary conditions in mesh-free methods”. In: Computer Methods in Applied Me-
chanics and Engineering. doi: 10.1016/j.cma.2003.12.019.

Feudner, Elisabeth M et al. (2009). “Virtual reality training improves wet-lab
performance of capsulorhexis: results of a randomized, controlled study”. In:
Graefe’s Archive for Clinical and Experimental Ophthalmology 247.7, p. 955.

Fong, Zhi Ven and Kenneth K Tanabe (2014). “The clinical management of hepa-
tocellular carcinoma in the United States, Europe, and Asia: A comprehensive
and evidence-based comparison and review”. In: Cancer 120.18, pp. 2824–2838.
doi: 10.1002/cncr.28730.

Fortin, André and André Garon (2018). Les éléments finis : de la théorie à la
pratique.

Fries, Thomas Peter and Samir Omerović (2016). “Higher-order accurate integra-
tion of implicit geometries”. In: International Journal for Numerical Methods
in Engineering. doi: 10.1002/nme.5121.

Fries, Thomas-Peter and Hermann G Matthies (2003). “Classification and overview
of meshfree methods”. In: Department of Mathematics and Computer Science,
Technical University of Braunschweig.

Gilg, Stefan et al. (2017). “Mortality-related risk factors and long-term survival
after 4460 liver resections in Sweden—a population-based study”. In: Langen-
beck’s archives of surgery 402.1, pp. 105–113.

Glowinski, R. and Yu. Kuznetsov (Jan. 2007). “Distributed Lagrange multipli-
ers based on fictitious domain method for second order elliptic problems”. In:
Computer Methods in Applied Mechanics and Engineering 196.8, pp. 1498–
1506. doi: 10.1016/J.CMA.2006.05.013.

Gosz, J. and W. K. Liu (1996). “Admissible approximations for essential bound-
ary conditions in the reproducing kernel particle method”. In: Computational
Mechanics. doi: 10.1007/bf02824850.

Griebel, M. and M. A. Schweitzer (2003). “A Particle-Partition of Unity Method
Part V: Boundary Conditions”. In: Geometric Analysis and Nonlinear Partial
Differential Equations. doi: 10.1007/978-3-642-55627-2_27.

https://doi.org/10.1002/cnm.2951
https://doi.org/10.1002/cnm.2951
https://doi.org/10.1016/j.cma.2004.07.035
https://doi.org/10.1016/j.cma.2003.12.019
https://doi.org/10.1002/cncr.28730
https://doi.org/10.1002/nme.5121
https://doi.org/10.1016/J.CMA.2006.05.013
https://doi.org/10.1007/bf02824850
https://doi.org/10.1007/978-3-642-55627-2_27

Bibliography 175

Günther, Frank C. and Wing Kam Liu (1998). “Implementation of boundary con-
ditions for meshless methods”. In: Computer Methods in Applied Mechanics
and Engineering. doi: 10.1016/S0045-7825(98)00014-0.

Haller, Guy et al. (2009). “Rate of undesirable events at beginning of academic
year: retrospective cohort study”. In: Bmj 339, b3974.

Haluck, R S et al. (2001). “Are surgery training programs ready for virtual reality?
A survey of program directors in general surgery.” In: Journal of the American
College of Surgeons 193, pp. 660–665.

Hansbo, Anita and Peter Hansbo (Nov. 2002). “An unfitted finite element method,
based on Nitsche’s method, for elliptic interface problems”. In: Computer Meth-
ods in Applied Mechanics and Engineering 191.47-48, pp. 5537–5552. doi: 10.

1016/S0045-7825(02)00524-8.
Haouchine, Nazim, Jeremie Dequidt, et al. (2013). “Image-guided simulation of

heterogeneous tissue deformation for augmented reality during hepatic surgery”.
In: 2013 IEEE International Symposium on Mixed and Augmented Reality, IS-
MAR 2013. doi: 10.1109/ISMAR.2013.6671780.

Haouchine, Nazim, Frederick Roy, et al. (2016). “Using contours as boundary
conditions for elastic registration during minimally invasive hepatic surgery”.
In: IEEE International Conference on Intelligent Robots and Systems. doi:
10.1109/IROS.2016.7759099.

Hartley, Richard and Andrew Zisserman (2004). Multiple View Geometry in Com-
puter Vision. doi: 10.1017/cbo9780511811685.

Horton, Ashley et al. (2010). “A meshless Total Lagrangian explicit dynamics algo-
rithm for surgical simulation”. In: International Journal for Numerical Methods
in Biomedical Engineering 26.8, pp. 977–998. doi: 10.1002/cnm.1374.

Huerta, Antonio and Sonia Fernández-Méndez (2000). “Enrichment and coupling
of the finite element and meshless methods”. In: International Journal for Nu-
merical Methods in Engineering. doi: 10.1002/1097- 0207(20000820)48:

11<1615::AID-NME883>3.0.CO;2-S.
Jeřábková, Lenka et al. (2010). “Volumetric modeling and interactive cutting of

deformable bodies”. In: Progress in Biophysics and Molecular Biology. doi:
10.1016/j.pbiomolbio.2010.09.012.

Kikinis, Ron, Steve D Pieper, and Kirby G Vosburgh (2014). “3D Slicer: A Plat-
form for Subject-Specific Image Analysis, Visualization, and Clinical Support”.
In: Intraoperative Imaging and Image-Guided Therapy. Ed. by Ferenc A Jolesz.
New York, NY: Springer New York, pp. 277–289. doi: 10.1007/978-1-4614-

7657-3_19.
Lancaster, Peter and Kes Salkauskas (1981). “Surfaces generated by moving least

squares methods”. In: Mathematics of computation 37.155, pp. 141–158.

https://doi.org/10.1016/S0045-7825(98)00014-0
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1109/ISMAR.2013.6671780
https://doi.org/10.1109/IROS.2016.7759099
https://doi.org/10.1017/cbo9780511811685
https://doi.org/10.1002/cnm.1374
https://doi.org/10.1002/1097-0207(20000820)48:11<1615::AID-NME883>3.0.CO;2-S
https://doi.org/10.1002/1097-0207(20000820)48:11<1615::AID-NME883>3.0.CO;2-S
https://doi.org/10.1016/j.pbiomolbio.2010.09.012
https://doi.org/10.1007/978-1-4614-7657-3_19
https://doi.org/10.1007/978-1-4614-7657-3_19

176 Bibliography

Li, Fei-yan et al. (2018). “A Constitutive Model of Soft Tissue Deformation for Vir-
tual Surgical Simulation: A Literature Review”. In: International Conference
on Physics, Mathematics, Statistics Modelling and Simulation. Pmsms.

Li, Hui et al. (2017). “Laparoscopic VS open hepatectomy for hepatolithiasis: An
updated systematic review and meta-analysis”. In: World journal of gastroen-
terology. doi: 10.3748/wjg.v23.i43.7791.

Luciani, Annie et al. (1991). “An unified view of multitude behavior, flexibility,
plasticity and fractures balls, bubbles and agglomerates”. In: Modeling in Com-
puter Graphics. Springer, pp. 55–74.

Lucy, L. B. (1977). “A numerical approach to the testing of the fission hypothesis”.
In: The Astronomical Journal. doi: 10.1086/112164.

Luo, Suhuai, Xuechen Li, and Jiaming Li (2014). “Review on the Methods of Auto-
matic Liver Segmentation from Abdominal Images”. In: Journal of Computer
and Communications. doi: 10.4236/jcc.2014.22001.

Malukhin, Kostyantyn and Kornel Ehmann (Mar. 2018). “Mathematical Modeling
and Virtual Reality Simulation of Surgical Tool Interactions With Soft Tissue:
A Review and Prospective”. In: Journal of Engineering and Science in Medical
Diagnostics and Therapy 1.2, pp. 20802–20823.

Marchesseau, Stéphanie, Simon Chatelin, and Hervé Delingette (2017). “Non linear
Biomechanical Model of the Liver”. In: Biomechanics of Living Organs. Ed. by
Yohan Payan and Jacques Ohayon. Elsevier. Chap. 10, p. 602.

Masuda, Takeshi and Naokazu Yokoya (1995). “A robust method for registration
and segmentation of multiple range images”. In: Computer vision and image
understanding 61.3, pp. 295–307.

Mendizabal, Andrea et al. (2020). “Data-Driven Simulation for Augmented Surgery”.
In: Developments and Novel Approaches in Biomechanics and Metamaterials.
Ed. by Bilen Emek Abali and Ivan Giorgio. Cham: Springer International Pub-
lishing, pp. 71–96. doi: 10.1007/978-3-030-50464-9_5.

Miga, Michael I et al. (2003). “Intraoperative registration of the liver for image-
guided surgery using laser range scanning and deformable models”. In: Medical
Imaging 2003: Visualization, Image-Guided Procedures, and Display. Ed. by
Robert L Galloway Jr. Vol. 5029. International Society for Optics and Photon-
ics. SPIE, pp. 350–359. doi: 10.1117/12.480216.

Miller, K. et al. (2012). “Beyond finite elements: A comprehensive, patient-specific
neurosurgical simulation utilizing a meshless method”. In: Journal of Biome-
chanics 45.15, pp. 2698–2701. doi: 10.1016/j.jbiomech.2012.07.031.

Miller, Karol and Jia Lu (2013). “On the prospect of patient-specific biomechanics
without patient-specific properties of tissues”. In: Journal of the Mechanical
Behavior of Biomedical Materials. doi: 10.1016/j.jmbbm.2013.01.013.

https://doi.org/10.3748/wjg.v23.i43.7791
https://doi.org/10.1086/112164
https://doi.org/10.4236/jcc.2014.22001
https://doi.org/10.1007/978-3-030-50464-9_5
https://doi.org/10.1117/12.480216
https://doi.org/10.1016/j.jbiomech.2012.07.031
https://doi.org/10.1016/j.jmbbm.2013.01.013

Bibliography 177

Mirtich, Brian (1996). “Fast and Accurate Computation of Polyhedral Mass Prop-
erties”. In: Journal of Graphics Tools 1, pp. 31–50. doi: 10.1080/10867651.

1996.10487458.
Moireau, Philippe and Dominique Chapelle (2011). “Reduced-order Unscented

Kalman Filtering with application to parameter identification in large-dimensional
systems”. In: ESAIM - Control, Optimisation and Calculus of Variations. doi:
10.1051/cocv/2010006.

Monaghan, Joe J (1992). “Smoothed particle hydrodynamics”. In: Annual review
of astronomy and astrophysics 30, pp. 543–574.

Mooney, M. (1940). “A theory of large elastic deformation”. In: Journal of Applied
Physics. doi: 10.1063/1.1712836.

Morooka, Ken’Ichi et al. (2008). “Real-time nonlinear FEM with neural network
for simulating soft organ model deformation”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). doi: 10.1007/978-3-540-85990-1-89.

Mostt, Thomas and Christian Bucher (2005). “A Moving Least Squares weighting
function for the Element-free Galerkin Method which almost fulfills essential
boundary conditions”. In: Structural Engineering and Mechanics. doi: 10 .

12989/sem.2005.21.3.315.
Müller, Matthias, David Charypar, and Markus Gross (2003). “Particle-based fluid

simulation for interactive applications”. In: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Eurographics As-
sociation, pp. 154–159.

Müller, Matthias, Julie Dorsey, et al. (2002). “Stable real-time deformations”. In:
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation - SCA ’02 166.2, p. 49. doi: 10.1145/545261.545269.

Müller, Matthias, Bruno Heidelberger, et al. (2005). “Meshless deformations based
on shape matching”. In: ACM transactions on graphics (TOG) 24.3, pp. 471–
478.

Müller, Matthias, Richard Keiser, et al. (2004). “Point based animation of elastic,
plastic and melting objects”. In: Proceedings of the 2004 ACM SIGGRAPH/-
Eurographics symposium on Computer animation, pp. 141–151. doi: 10.1145/

1028523.1028542.
Nesme, Matthieu, Paul G. Kry, et al. (2009). “Preserving topology and elasticity

for embedded deformable models”. In: ACM Transactions on Graphics. doi:
10.1145/1531326.1531358.

Nesme, Matthieu, Yohan Payan, and François Faure (2005). “Efficient, physically
plausible finite elements”. In: Eurographics.

— (2006). “Animating Shapes at Arbitrary Resolution with Non-Uniform Stiff-
ness”. In: VRIPHYS. Madrid, Spain.

https://doi.org/10.1080/10867651.1996.10487458
https://doi.org/10.1080/10867651.1996.10487458
https://doi.org/10.1051/cocv/2010006
https://doi.org/10.1063/1.1712836
https://doi.org/10.1007/978-3-540-85990-1-89
https://doi.org/10.12989/sem.2005.21.3.315
https://doi.org/10.12989/sem.2005.21.3.315
https://doi.org/10.1145/545261.545269
https://doi.org/10.1145/1028523.1028542
https://doi.org/10.1145/1028523.1028542
https://doi.org/10.1145/1531326.1531358

178 Bibliography

Newman, Timothy S and Hong Yi (2006). “A survey of the marching cubes algo-
rithm”. In: Computers & Graphics 30.5, pp. 854–879.

Nikolaev, Sergei, Igor Peterlik, and Stéphane Cotin (Sept. 2018). “Stochastic Cor-
rection of Boundary Conditions during Liver Surgery”. In: CVCS 2018 - 9th
Colour and Visual Computing Symposium 2018. NTNU: Norwegian University
of Science and Technology. Gjovik, Norway.

Nitsche, J. (1971). “Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen
bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen
sind”. In: Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg. doi: 10.1007/BF02995904.

Nykonenko, Andriy, Petr Vávra, and Pavel Zonča (2017). Anatomic peculiarities
of pig and human liver. doi: 10.6002/ect.2016.0099.

Ogden, R W (2013). Non-Linear Elastic Deformations. Dover Civil and Mechanical
Engineering. Dover Publications.

— (1973). “LARGE DEFORMATION ISOTROPIC ELASTICITY - ON THE
CORRELATION OF THEORY AND EXPERIMENT FOR INCOMPRESS-
IBLE RUBBERLIKE SOLIDS.” In: Rubber Chemistry and Technology. doi:
10.5254/1.3542910.

Oliveira, Francisco P M and João Manuel R S Tavares (2014). “Medical image
registration: a review”. In: Computer Methods in Biomechanics and Biomedical
Engineering 17.2, pp. 73–93. doi: 10.1080/10255842.2012.670855.

P.-L., Manteaux et al. (June 2016). “Adaptive Physically Based Models in Com-
puter Graphics”. In: Computer Graphics Forum 36.6, pp. 312–337. doi: 10.

1111/cgf.12941.
Parvizian, Jamshid, Alexander Düster, and Ernst Rank (2007). “Finite cell method”.

In: Computational Mechanics 41.1, pp. 121–133. doi: 10.1007/s00466-007-

0173-y.
Paulus, Christoph et al. (Sept. 2017). “An Immersed Boundary Method for Detail-

Preserving Soft Tissue Simulation from Medical Images”. In: Computational
Biomechanics for Medicine. Quebec.

Paulus, Christoph J. et al. (2017). “Handling topological changes during elastic
registration: Application to augmented reality in laparoscopic surgery”. In: In-
ternational Journal of Computer Assisted Radiology and Surgery 12.3, pp. 461–
470. doi: 10.1007/s11548-016-1502-4.

Peskin, C S (1972). “Flow patterns around heart valves: A digital computer method
for solving the equations of motion”. In: Flow Patterns Around Heart Valves:
A Digital Computer Method for Solving the Equations of Motion.

Petit, Antoine, Vincenzo Lippiello, and Bruno Siciliano (2015). “Real-time tracking
of 3D elastic objects with an RGB-D sensor”. In: IEEE International Confer-
ence on Intelligent Robots and Systems. doi: 10.1109/IROS.2015.7353928.

https://doi.org/10.1007/BF02995904
https://doi.org/10.6002/ect.2016.0099
https://doi.org/10.5254/1.3542910
https://doi.org/10.1080/10255842.2012.670855
https://doi.org/10.1111/cgf.12941
https://doi.org/10.1111/cgf.12941
https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1007/s11548-016-1502-4
https://doi.org/10.1109/IROS.2015.7353928

Bibliography 179

Pfeiffer, Micha et al. (2019). “Learning soft tissue behavior of organs for surgical
navigation with convolutional neural networks”. In: International Journal of
Computer Assisted Radiology and Surgery 14.7, pp. 1147–1155. doi: 10.1007/

s11548-019-01965-7.
Plantefève, Rosalie, Igor Peterlik, and Stéphane Cotin (2017). “Intraoperative

Biomechanical Registration of the Liver: Does the Heterogeneity of the Liver
Matter?” In: IRBM.

Plantefève, Rosalie, Igor Peterlik, Nazim Haouchine, et al. (2016). “Patient-Specific
Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Sur-
gery”. In: Annals of Biomedical Engineering 44.1, pp. 139–153. doi: 10.1007/

s10439-015-1419-z.
Prenter, F. de et al. (Apr. 2017). “Condition number analysis and preconditioning

of the finite cell method”. In: Computer Methods in Applied Mechanics and
Engineering 316, pp. 297–327. doi: 10.1016/J.CMA.2016.07.006.

Press, William H et al. (1992). Numerical Recipes in C: The Art of Scientific
Computing (; Cambridge.

Ramière, Isabelle, Philippe Angot, and Michel Belliard (Jan. 2007). “A fictitious
domain approach with spread interface for elliptic problems with general bound-
ary conditions”. In: Computer Methods in Applied Mechanics and Engineering
196.4-6, pp. 766–781. doi: 10.1016/J.CMA.2006.05.012.

Raut, Padmakar (2012). “Impact of mesh quality parameters on elements such as
beam, shell and 3D solid in structural analysis”. In: International Journal of
Engineering Research and Applications.

Reeves, William T (1983). “Particle systems—a technique for modeling a class of
fuzzy objects”. In: ACM Transactions on Graphics (TOG) 2.2, pp. 91–108.

Rivlin, RS (1948). “Large elastic deformations of isotropic materials IV. further de-
velopments of the general theory”. In: Philosophical Transactions of the Royal
Society of London. Series A, Mathematical and Physical Sciences 241.835,
pp. 379–397. doi: 10.1098/rsta.1948.0024.

Röhl, Sebastian et al. (2012). “Dense GPU-enhanced surface reconstruction from
stereo endoscopic images for intraoperative registration”. In: Medical physics
39.3, pp. 1632–1645.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolu-
tional networks for biomedical image segmentation”. In: International Confer-
ence on Medical image computing and computer-assisted intervention. Springer,
pp. 234–241.

Ruess, Martin et al. (2012). “The finite cell method for bone simulations: verifica-
tion and validation”. In: Biomechanics and Modeling in Mechanobiology 11.3,
pp. 425–437. doi: 10.1007/s10237-011-0322-2.

https://doi.org/10.1007/s11548-019-01965-7
https://doi.org/10.1007/s11548-019-01965-7
https://doi.org/10.1007/s10439-015-1419-z
https://doi.org/10.1007/s10439-015-1419-z
https://doi.org/10.1016/J.CMA.2016.07.006
https://doi.org/10.1016/J.CMA.2006.05.012
https://doi.org/10.1098/rsta.1948.0024
https://doi.org/10.1007/s10237-011-0322-2

180 Bibliography

Scharstein, Daniel and Richard Szeliski (2002). “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms”. In: International journal
of computer vision 47.1-3, pp. 7–42.

Schillinger, Dominik and Martin Ruess (2015). “The Finite Cell Method: A Review
in the Context of Higher-Order Structural Analysis of CAD and Image-Based
Geometric Models”. In: Archives of Computational Methods in Engineering
22.3, pp. 391–455. doi: 10.1007/s11831-014-9115-y.

Selvander, Madeleine and Peter Åsman (2012). “Virtual reality cataract surgery
training: learning curves and concurrent validity”. In: Acta ophthalmologica
90.5, pp. 412–417.

Seymour, Neal E et al. (2002). “Virtual reality training improves operating room
performance: results of a randomized, double-blinded study”. In: Annals of
surgery 236.4, pp. 458–464.

Shepherd, Jason F and Chris R Johnson (2008). “Hexahedral mesh generation
constraints”. In: Engineering with Computers 24.3, pp. 195–213. doi: 10.1007/

s00366-008-0091-4.
Sokolov, Dmitry et al. (2016). “Hexahedral-dominant meshing”. In: ACM Trans-

actions on Graphics. doi: 10.1145/2930662.
Solenthaler, Barbara, Jürg Schläfli, and Renato Pajarola (2007a). “A unified par-

ticle model for fluid–solid interactions”. In: Computer Animation and Virtual
Worlds 18.1, pp. 69–82.

— (2007b). “A unified particle model for fluid-solid interactions”. In: Computer
Animation and Virtual Worlds. Vol. 18. 1, pp. 69–82. doi: 10.1002/cav.162.

Sotiras, A, C Davatzikos, and N Paragios (2013). “Deformable Medical Image Reg-
istration: A Survey”. In: IEEE Transactions on Medical Imaging 32.7, pp. 1153–
1190. doi: 10.1109/TMI.2013.2265603.

Speidel, S et al. (2011). “Intraoperative surface reconstruction and biomechani-
cal modeling for soft tissue registration”. In: Proc. Joint Workshop on New
Technologies for Computer/Robot Assisted Surgery.

Stavrev, Atanas et al. (2016). “Geometrically accurate, efficient, and flexible quadra-
ture techniques for the tetrahedral finite cell method”. In: Computer Methods
in Applied Mechanics and Engineering. doi: 10.1016/j.cma.2016.07.041.

Stoyanov, Danail et al. (2010). “Real-time stereo reconstruction in robotically as-
sisted minimally invasive surgery”. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, pp. 275–282.

Szeliski, Richard and David Tonnesen (1992). Surface modeling with oriented par-
ticle systems. Vol. 26. 2. ACM.

Tadepalli, Srinivas C., Ahmet Erdemir, and Peter R. Cavanagh (2011). “Compar-
ison of hexahedral and tetrahedral elements in finite element analysis of the

https://doi.org/10.1007/s11831-014-9115-y
https://doi.org/10.1007/s00366-008-0091-4
https://doi.org/10.1007/s00366-008-0091-4
https://doi.org/10.1145/2930662
https://doi.org/10.1002/cav.162
https://doi.org/10.1109/TMI.2013.2265603
https://doi.org/10.1016/j.cma.2016.07.041

Bibliography 181

foot and footwear”. In: Journal of Biomechanics. doi: 10.1016/j.jbiomech.

2011.05.006.
Teatini, Andrea et al. (2019). “The effect of intraoperative imaging on surgical

navigation for laparoscopic liver resection surgery”. In: Scientific Reports. doi:
10.1038/s41598-019-54915-3.

Tonutti, Michele, Gauthier Gras, and Guang-Zhong Yang (2017). “A machine
learning approach for real-time modelling of tissue deformation in image-guided
neurosurgery”. In: Artificial intelligence in medicine 80, pp. 39–47.

Torres, Rosell, Jose M Espadero, et al. (2014). “Interactive Deformation of Het-
erogeneous Volume Data”. In: Biomedical Simulation. Ed. by Fernando Bello
and Stéphane Cotin. Cham: Springer International Publishing, pp. 131–140.

Torres, Rosell, Alejandro Rodríguez, et al. (Nov. 2016). “High-resolution Inter-
action with Corotational Coarsening Models”. In: ACM Trans. Graph. 35.6,
211:1–211:11. doi: 10.1145/2980179.2982414.

Udupa, Jayaram K and Gabor T Herman (1999). 3D imaging in medicine. CRC
press.

Varduhn, Vasco et al. (2016). “The tetrahedral finite cell method”. In: Interna-
tional Journal for Numerical Methods in Engineering. doi: 10.1002/nme.5207.

Verhoosel, C.V. et al. (Feb. 2015). “Image-based goal-oriented adaptive isogeo-
metric analysis with application to the micro-mechanical modeling of trabecu-
lar bone”. In: Computer Methods in Applied Mechanics and Engineering 284,
pp. 138–164. doi: 10.1016/J.CMA.2014.07.009.

Viganò, Luca et al. (2009). Laparoscopic liver resection: A systematic review. doi:
10.1007/s00534-009-0120-8.

Wang, Congcong et al. (2018). “Liver surface reconstruction for image guided
surgery”. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Inter-
ventions, and Modeling. Vol. 10576. International Society for Optics and Pho-
tonics, 105762H.

Wittek, Adam et al. (2016). “From Finite Element Meshes to Clouds of Points:
A Review of Methods for Generation of Computational Biomechanics Models
for Patient-Specific Applications”. In: Annals of Biomedical Engineering. doi:
10.1007/s10439-015-1469-2.

Wriggers, Peter (2008). Nonlinear finite element methods. doi: 10.1007/978-3-

540-71001-1.
Wu, Xunlei et al. (2001). “Adaptive nonlinear finite elements for deformable body

simulation using dynamic progressive meshes”. In: Computer Graphics Forum.
doi: 10.1111/1467-8659.00527.

Xu, Fei et al. (2016). “The tetrahedral finite cell method for fluids: Immersogeo-
metric analysis of turbulent flow around complex geometries”. In: Computers
and Fluids. doi: 10.1016/j.compfluid.2015.08.027.

https://doi.org/10.1016/j.jbiomech.2011.05.006
https://doi.org/10.1016/j.jbiomech.2011.05.006
https://doi.org/10.1038/s41598-019-54915-3
https://doi.org/10.1145/2980179.2982414
https://doi.org/10.1002/nme.5207
https://doi.org/10.1016/J.CMA.2014.07.009
https://doi.org/10.1007/s00534-009-0120-8
https://doi.org/10.1007/s10439-015-1469-2
https://doi.org/10.1007/978-3-540-71001-1
https://doi.org/10.1007/978-3-540-71001-1
https://doi.org/10.1111/1467-8659.00527
https://doi.org/10.1016/j.compfluid.2015.08.027

182 Bibliography

Yushkevich, Paul A et al. (2006). “User-Guided 3D Active Contour Segmentation
of Anatomical Structures: Significantly Improved Efficiency and Reliability”.
In: Neuroimage 31.3, pp. 1116–1128.

Zhang, G. Y. et al. (2014). “A three-dimensional nonlinear meshfree algorithm for
simulating mechanical responses of soft tissue”. In: Engineering Analysis with
Boundary Elements 42, pp. 60–66. doi: 10.1016/j.enganabound.2013.08.

014.
Zhang, Jinao, Yongmin Zhong, and Chengfan Gu (2017). “Deformable models for

surgical simulation: a survey”. In: IEEE reviews in biomedical engineering 11,
pp. 143–164.

Zhang, Jinao, Yongmin Zhong, Chengfan Gu, and Peter Coloe (2017). “Deformable
Models for Surgical Simulation: A Survey”. In: IEEE Reviews in Biomedical
Engineering PP.99, p. 1. doi: 10.1109/RBME.2017.2773521.

Zhang, Zhengyou (1994). “Iterative point matching for registration of free-form
curves and surfaces”. In: International journal of computer vision 13.2, pp. 119–
152.

— (2000). “A flexible new technique for camera calibration”. In: IEEE Transac-
tions on pattern analysis and machine intelligence 22.11, pp. 1330–1334.

Zhu, T. and S. N. Atluri (1998). “A modified collocation method and a penalty
formulation for enforcing the essential boundary conditions in the element free
Galerkin method”. In: Computational Mechanics. doi: 10.1007/s004660050296.

https://doi.org/10.1016/j.enganabound.2013.08.014
https://doi.org/10.1016/j.enganabound.2013.08.014
https://doi.org/10.1109/RBME.2017.2773521
https://doi.org/10.1007/s004660050296

List of publications

Publication 1 Brunet J.N., Magnoux V., Ozell B., Cotin S. “Corotated mesh-
less implicit dynamics for deformable bodies” 27th International
Conference in Central Europe on Computer Graphics, Vi-
sualization and Computer Vision 2019

Publication 2 Brunet J.N., Mendizabal A., Petit A., Golse N., Vibert E., Cotin S.
“Physics-Based Deep Neural Network for Augmented Reality During
Liver Surgery.” Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2019

Publication 3 Mendizabal A., Tagliabue E., Brunet J.N., Dall’alba D., Fiorini
P., Cotin S. “Physics-based Deep Neural Network for Real-Time
Lesion Tracking in Ultrasound-guided Breast Biopsy” Computa-
tional Biomechanics for Medicine XIV 2019

Publication 4 Teatini A., Brunet J.N., Nikolaev S., Wang C., Edwin B., Cotin S.,
Elle O.J. “Use of stereo-laparoscopic liver surface reconstruction to
compensate for pneumoperitoneum deformation through biomechan-
ical modeling.” Virtual Physiological Human (VPH) 2020

	Chapter 1 Introduction
	Liver surgery simulation
	Augmented reality for liver surgery
	Key requirements
	Accuracy
	Speed
	Stability
	Simplicity

	Objectives of this thesis
	Contributions
	Outline

	Chapter 2 Continuum mechanics, finite elements and implementation design
	Lagrangian description of a deformation
	Hyper-elasticity: a relation between strains and stresses
	Hyperelastic materials
	St-Venant-Kirchhoff
	Neo-hookean

	Balance equations
	Lagrangian description of the weak formulation
	Discretization of the weak formulation
	Linearization of the weak formulation
	Isoparametric elements
	Development of a generic and efficient library
	Discussion

	Chapter 3 Meshless methods
	Literature review
	Kernel and shape functions
	Point-based animation
	Point-based numerical integration
	Shape function: SPH approximation
	Shape function: MLS approximation
	Discussion

	Meshless Approximation Mesh-Based Integration
	Shape function: MLS approximation

	Linear elasticity
	Corotational elasticity
	Surface mapping
	Neumann boundary condition
	Dirichlet boundary condition
	Solving the dynamic system
	Results
	Discussions

	Chapter 4 Immersed boundary methods
	Literature review
	The choice of background element type
	Immersed-boundary discretization and integration
	The Finite Cell approach
	The Weighted Cell method
	Neumann boundary condition
	Dirichlet boundary condition
	Preliminary validation of the Weighted Cell method
	Experiments performed on an in-vivo porcine liver
	Experiment performed on an ex-vivo human liver
	Discussions

	Chapter 5 Implementation of a non-rigid registration pipeline
	Surface reconstruction
	Initial rigid registration
	Deformable registration
	Experiments performed on in-vivo porcine livers
	Experiments performed on an ex-vivo human liver
	Experiments mixing IBM and machine learning techniques
	Discussions

	Chapter 6 Conclusion
	Chapter 7 Brief summary in French
	Introduction
	Méthodes sans maillage
	Animation basée sur les points (Méthode PBA)
	Approximation sans maillage, intégration avec maillage

	Méthode aux frontières immergées
	Application à la chirurgie

	bibliography
	List of publications

