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Abstract. Tensegrity is a network of bars and cables that maintains its structural
integrity with tension present in its cables. Other than typical structural failure
mechanisms, tensegrity may fail due to slacking of cables or buckling of bars. Real-
life tensegrities are an assemblage of component modules. Large tensegrities require
excessive computation for model-based structural health monitoring (SHM), which
may sometimes make the problem ill-posed. Instead of the entire domain, only a sub-
structure can be investigated explicitly. Substructures decouple the structure into in-
dependent components that can be monitored individually, provided the sub-domain
interface is measured. Yet the integration of substructures within predictor-corrector
model-based SHM algorithms needs special investigation from consistency, stability,
and accuracy perspectives. To consider system uncertainties Bayesian filtering-based
SHM approaches have been employed in this study. The need for interface mea-
surement has been circumvented through an output injection approach. To increase
computational efficiency, the domain decomposition approach is coupled with an in-
teracting filtering-based approach that employs Ensemble Kalman filter (for state
estimation) within an envelope of Particle filter (for health parameter estimation).
This facilitates simultaneous estimation of state and parameters while enabling full
parallelization capability.

The proposed approach is tested on a six-stage tensegrity tower made of compo-
nent simplex modules.

Keywords: Tensegrity · Substructuring · Structural Health Monitoring · Interacting
Particle Ensemble Kalman Filter · Damage Detection.

1 Introduction

Tensegrity structures/mechanisms are an assembly of compression elements (struts/
bars) afloat in a network of tension elements (cables). Tensegrities are characterized
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by the presence of at least one infinitesimal mechanism stabilized by the prestress
present in the cables, and the existence of multiple stable configurations. To ac-
commodate external load, a tensegrity may change its configuration from one stable
state to another leading to a change in its global stiffness. Evidently, tensegrity can
have different stiffness for the same undamaged configuration due to difference in the
prestress levels [1]. This is not common with regular structures where alteration in
stiffness is considered a clear sign of damage, rendering structural health monitoring
(SHM) for tensegrities a complicated problem. Besides, uncertainties due to unknown
input force, model, measurement, etc. affect tensegrity SHM to the same extent as
they affect the regular SHM problems. A probabilistic SHM approach can therefore
be a practical solution in this regard.

Bayesian filtering approaches have been established as a good alternative for sim-
ilar objectives in several researches. Bayesian filters, such as Kalman filter (KF),
define system dynamics in state-space form with two probabilistic models, i.e., pro-
cess and measurement. A set of unobserved system state defines the system dynamics
by evolving in time through Chapman-Kolmogorov belief propagation strategy. The
updated states are then observed through a measurement model mapping states
to measurable responses. The predicted measurement when compared to the actual
measurement gives the error/innovation which updates/corrects the propagated state
estimate through Bayes’ inferencing. By augmenting the health parameters/indices
(HIs) along side the regular state, damage in the structure can be estimated simulta-
neously. However, HIs inducted additionally into the state vector eventually need a
nonlinear mapping (measurement model) to be observed, making the SHM problem
nonlinear.

Nonlinear filter variants, such as, Extended (EKF), Unscented (UKF), Ensemble
(EnKF) Kalman filters and Particle filter (PF) have been successfully employed in
the literature for state and damage estimation. However augmentation of the health
indices increases the dimensionality of the state, thereby increasing the computation
cost. Interacting filtering strategies, like interacting particle Kalman filter (IPKF),
have been a breakthrough in this endeavor in which PF estimates the parameters
while KF, nestled inside the PF, estimates the state variables [2,3]. However, since
both the process and measurement models for tensegrity are nonlinear, KF needs to
be replaced by EnKF [4] for SHM of tensegrity.

Real-life tensegrities are complex and large compared to the simpler tensegrity
modules (simplex, octahedron, etc.). With model based approach in which a recursive
simulation call is mandatory, involvement of a high dimensional model may render
the approach computationally uneconomical. Moreover extracting measurement data
(acceleration, strain, etc.) from all the element members is tedious and impractical.
Substructure identification techniques significantly reduce the resources required for
SHM by analysing the structure in parts; first part being the elements critical to the
overall health of the structure.
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Initially employed for system identification via model reduction approach [5], sub-
structuring is also effective for the SHM of large complex structures [6]. Similar to
structural dynamics, substructuring can be described in physical (mass, stiffness,
etc.), frequency (fourier transform) or modal (eigen value decomposition) domain.
The substructures are predominantly defined in modal domain [6] with a few ex-
ceptions [7]. Typically with these approaches, the interfaces need to be measured
extensively which is not always possible due to accessibility constraints. Further, in
real-life problems, the input is hardly known/measured either explicitly or statisti-
cally, and therefore mostly estimated as additional states [8,9], which however makes
the estimable state dimension larger.

The current study focuses on local SHM of tensegrity (requires nonlinear mod-
elling) with the help of substructuring in physical/time domain wherein interface/
boundary forces are rejected by employing output injection technique [2,3], which
substantially reduces the sensor, equipment, etc. requirement and computational cost.

2 System Model

Tensegrity members undergo large deformation under external loading, which can
be modelled by introducing geometric nonlinearity to the finite element modeling
(FEM). In this article an explicit representation of the strain-displacement relation-
ship is adopted following [4], which gives the locally linearized tangent stiffness ma-
trix, Km(t) as follows,

Km(t) =
Amlm

2

∫ 1

−1

∂(BmTσm(r, t))

∂qm(t)
dr (1)

where, Bm is the sum of linear (Bm
L ) and nonlinear (Bm

NL) strain displacement ma-
trices, σm(r, t) is the second Piola-Kirchhoff stress, qm(t) is the global displacement
vector, Am is the uniform cross section and lm is the length of element m. Numeri-
cal integration is obtained through Gauss-Quadrature method with one Gauss-point.
Further, the governing differential equation (gde) for tensegrity is defined by the
following,

Mq̈(t) +C(t)q̇(t) +K(t)q(t) = f(t) (2)

with M being the time invariant global mass matrix, K(t) is the global tangential
stiffness, and C(t) is the Rayleigh damping [4]. External ambient force, f(t) is mod-
eled as zero mean white Gaussian noise (WGN). q(t), q̇(t) and q̈(t) are n× 1 order
displacement, velocity and acceleration response at the nodes.

3 Substructuring approach

For substructure estimation with Bayesian filters, the sub-domain needs to be decou-
pled from the rest and be posed as an independent system. Gde of the full domain
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(Ω), can further be decomposed for Ns independent non-overlapping sub-domain
{Ωs}, s = 1, 2. · · · , Ns, denoted as substructures. Each substructure Ωs can further
be defined with two domains: internal Ωsi and interface boundary Ωsb involving ni

and nb internal and boundary degrees of freedom (dof s) respectively. Except for the
nodes lying on Ωsb , all the nodes of the component substructures belong exactly to
one substructure. Accordingly, the gde for sth substructure can be isolated as:
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where subscript i and b signifies internal and boundary dof s of order ni and nb respec-
tively and superscript s denotes the pertinent substructure. The notation to denote
time dependence (i.e., (t)) of the variables are dropped for the sake of readability.
Decoupling the dynamics of the substructure s is achieved by compensating with
the interface forces gs

b(t). The equivalence between global model and the component
substructures is ensured through compatibility and equilibrium conditions. While
compatibility ensures that the substructures have identical displacements in the con-
nected dof s, the force equilibrium condition enforces that forces at the boundary
dof s of neighbouring substructures cancel each other (c.f. [10] for the details).

From Equation 3, the dynamics of the internal dof s can further be decoupled as:
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iiq
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b +Ks
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b (4)

with the right side of Equation 4 collectively considered as external force acting on
the substructure, s. [7] further represented the responses at internal dof s, i.e., qs

i (t),

as a summation of a “quasi-static” (qs,d
i ) and a “relative” (qs,r

i ) components. qs,d
i can

further be obtained by forcing all the force components and time-derivative terms in
Equation 3 to zero while assuming the boundary to be free [7],

qs,d
i = −Ks−1

ii Ks
ibq

s
b = ηsqs

b (5)

Here ηs can be considered as a transmissibility matrix correlating boundary to inter-
nal responses. Next, substituting qs

i (t) in Equation 4 with qs,d
i and qs,r

i , and ignoring
the negligible damping forces, the following can be obtained,
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and in state space form with Fs(t)2ni×2ni
=
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}
as,
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ẋs(t) = Fs(t)xs(t) +Bs(t)us(t) +Es(t)q̈s
b(t) + vs(t) (7)

The additional term vs(t)2ni×1 represents process uncertainty originating from model
inaccuracies and unmodelled inputs. The measurable acceleration responses q̈s

i cor-

respond to total acceleration due to pseudo-static (q̈s,d
i ) and relative (q̈s,r

i ) response
components combined as ys(t)m×1,

ys(t) = q̈s,r
i + q̈s,d

i = q̇s,r
i + ηsq̈s

b(t)
= S{Hsxs(t) +Dsus(t) + Lsq̈s

b(t) +ws(t)} (8)

Here, Hs
ni×2ni

=
[
−Ms

ii
−1Ks

ii −Ms
ii
−1Cs

ii

]
, Ds = M−1

ii , Ls = −M−1
ii Mib and

ws(t) denoting measurement noise. Sm×ni
represents the Boolean selection matrix

defining the measured dof s. Since in reality, responses are discretely sampled, Equa-
tion 7 and 8 can also be presented in discrete time with continuous variables repro-
duced with their corresponding discrete time entities.
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Evidently, the sth substructure can be isolated from the full system domain and
estimated independently using measurements recorded from the substructure domain
only.

4 Output injection approach

To eliminate the requirement of the interface measurement, q̈s
b,k, [11]’s output injec-

tion technique can be exploited. By suitably injecting a part of the measured output
in the state transition model, the state transition can be made independent of q̈s

b,k.
Owing to the measurement equation (cf. Equation (9)), the following holds true for
an arbitrary bounded matrix Gs

k ∈ R2ni×m,
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Adding Equation (9) with Equation (10) and further setting Ls
k = I2ni
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s
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Equation (9) can be modified as,
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†, with † denoting Moore-Penrose
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Pseudo-inverse operation, Ẽs
k renders to a null matrix and Equation (11) will be

robust to q̈s
b,k. Thus, substructure s can be estimated without measuring the interface

response.

STATE AND PARAMETER ESTIMATION - IPENKF

With the substructured system definition, interacting filtering is employed for
simultaneous estimation of system parameters, θ and response states xs

k. Relative
efficiency of the conditional estimation through interacting filtering approaches has
already been established [2]. Following the interacting filtering technique for tenseg-
rity [4], state and parameters are estimated for sth substructure (notation dropped
for readability). The PF estimates the parameters while the EnKF nested inside the
PF, estimates the state variables. Initially, particle evolution in time is considered as
a Gaussian perturbation around the current estimate of the particle θh

k−1,

θh
k = αθh

k−1 +N (δθk;σ
θ
k) (12)

where, α is a hyper-parameter that controls the turbulence in the estimation.
The particles, are then put through the nested EnKF for state estimation. Within
EnKF, Ne state ensembles are propagated through the system (cf. Equation (9)). For
this, current estimate for the stiffness matrix Kk is obtained, (cf. Equation (1)), and

prior state ensembles are propagated to the next time step, xg,h
k|k−1. Subsequently,

the propagated ensembles are observed through measurement predictions, yg,h
k|k−1,

(cf. Equation (9)).

Next, the predicted measurement, yg,h
k|k−1, is compared with the actual measure-

ment and innovation ϵg,hk is obtained. Further, ensemble mean of innovation, ϵhk , prop-
agated state estimates, xh

k|k−1, and predicted measurements, yh
k|k−1, are obtained

with the measurement prediction covariance, Ch,yy
k and cross-covariance, Ch,xy

k [4].

The innovation error covariance, Sh
k , and EnKF gain, Gh

k , are then obtained as

Sh
k = Ch,yy

k + R and Gh
k = Ch,xy

k (Sh
k)

−1. With this gain, the state ensembles are
updated as,

xg,h
k|k = xg,h

k|k−1 +Gh
kϵ

g,h
k (13)

Finally, likelihood of each particle, i.e. L(θh
k), is calculated based on the innovation

mean, ϵhk , and co-variance, Sh
k following,

L(θh
k) =

1

(2π)n
√

|Sj
k|
e−0.5ϵjk

T
Sj

k

−1
ϵjk (14)
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The normalized weight for each hth particle is further obtained using corresponding
likelihood,

w(θh
k) =

w(θh
k−1)L(θ

h
k)∑N

j=1 w(θh
k−1)L(θ

h
k)

(15)

The particle approximations for the states and parameters are then estimated as
their weighted mean.

5 Numerical Experiment

In the following, the proposed algorithm is tested on a 6-stage tensegrity tower, which
is composed of 18 bars and 81 cables (cf. Figure 1). The coordinates, and connectivity
and element type details are given in Table 1 and Table 2, respectively.

Fig. 1: 6-stage tensegrity tower and tensegrity substructure.

Initial distribution type for HIs is set as Gaussian, with a mean of 1 (undamaged)
and a standard deviation of 0.02, with α chosen as 0.90 (cf. Equation (12)). For clarity,
the HI of the damaged member is compared to the HI (= 1) of undamaged member
57. 1500 filter particles are selected for PF while 50 ensembles are chosen for EnKF.
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Table 1: Nodal coordinates of 6-stage tensegrity tower.
Node 1 2 3 4 5 6 7 8 9 10 11 12

X 0.031 0.029 -0.06 -0.11 -0.054 0.164 0.09 -0.13 0.04 0.19 -0.098 -0.093
Y 0.052 -0.053 0.001 -0.126 0.158 -0.033 -0.098 -0.028 0.127 -0.003 -0.164 0.166
Z -0.03 -0.03 -0.03 0.002 0.002 0.002 0.012 0.012 0.012 0.04 0.04 0.04

Node 13 14 15 16 17 18 19 20 21 22 23 24

X 0.057 0.054 -0.112 0.204 -0.034 -0.199 -0.112 0.23 -0.118 -0.258 0.265 0.094
Y 0.096 -0.097 0.002 0.201 -0.381 0.2 0.181 -0.003 -0.198 0.099 0.261 -0.359
Z 0.03 0.03 0.03 0.05 0.05 0.05 0.06 0.06 0.06 0.1 0.1 0.1

Node 25 26 27 28 29 30 31 32 33 34 35 36

X -0.155 -0.055 0.21 -0.207 0.04 0.167 0.045 -0.172 0.127 0.113 -0.113 0
Y -0.153 0.211 -0.058 -0.073 0.216 -0.142 -0.173 0.047 0.125 -0.065 -0.065 0.13
Z 0.09 0.09 0.09 0.12 0.12 0.12 0.13 0.13 0.13 0.15 0.15 0.15

Table 2: Elemental connectivity and type - 6-stage tensegrity tower.
Element 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Node 1 1 2 1 1 1 2 2 3 3 4 6 4 5 5 6 5 6 4 6 4 5 10 12 10 11
Node 2 2 3 3 4 8 5 9 6 7 7 7 8 8 9 9 13 11 12 14 15 10 13 13 14 14

Type c

Element 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1st Node 12 11 10 11 12 13 14 15 16 18 16 17 17 18 16 17 18 19 20 21 22 24 22 23 23
2nd Node 15 15 20 21 19 19 20 21 19 19 20 20 21 21 26 27 25 25 26 27 25 25 26 26 27

Type c

Element 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

1st Node 24 23 24 22 24 22 23 28 30 28 29 29 30 28 32 29 33 30 31 34 35 34 7 8 9
2nd Node 27 31 29 30 32 33 28 31 31 32 32 33 33 34 34 35 35 36 36 35 36 36 15 13 14

Type c

Element 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

1st Node 25 26 27 16 17 18 1 2 3 4 5 6 10 11 12 16 17 18 22 23 24 28 29 30
2nd Node 33 31 32 24 22 23 7 8 9 13 14 15 19 20 21 25 26 27 31 32 33 34 35 36

Type c b

A 70% damage is induced in the 51st member, 0.1s after the simulation starts.
A substructure including nodes 16-33 is selected, which houses the damage member
(elem 51). Acceleration data is obtained from internal dof s only (corresponding to
nodes 22-27 in x- , y-, z- directions), and sampled at 100 Hz for 10.24 seconds.
The tensegrity tower is fixed at its bottom nodes (1-3) with ambient Gaussian force
applied on all free dof s.
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Figure 2 shows the proposed algorithm’s capability of detecting and quantifying
damage in the structure while using substructural information only. An HI of about
0.3 is estimated for the 51st element that corresponds to the induced 70% damage.
The proposed algorithm is found to be precise and accurate in detecting damage
in the substructure, with a single false positive alarm in elem 76 which is in close
vicinity of the damaged member. Further, the promptness of the algorithm can be
improved by increasing the number of particles and ensembles [4].
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Fig. 2: Damage detection by the proposed approach - Tensegrity substructure.

6 Conclusion

SHM of large complex structures requires substantial amount of computational re-
sources and dense (and therefore costly) instrumentation. Instead, analysing only
the critical part of the structure, to monitor its health, can be an efficient op-
tion. However since classical substructuring requires the interface (such as bound-
ary force/displacements) to be measured, its integration within traditional SHM
approaches are complicated. Hence a novel approach is proposed in the context
of tensegrity SHM in which substructure interface measurement has been circum-
vented with an output injection approach following [11]. While with substructure,
the imperative need of monitoring complete structural domain has been avoided, the
employment of output injection approach is also benefited with reduction in the re-
quired sensor densities. Overall, the proposed method is found to be accurate, precise
and prompt based on its performance on a numerical 6-stage tensegrity tower.
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