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Abstract. In this paper, we consider the problem of learning a corre-
lated equilibrium of a finite non-cooperative game and show a new adap-
tive heuristic, called Correlated Perturbed Regret Minimization (CPRM)
for this purpose. CPRM combines regret minimization to approach the
set of correlated equilibria and a simple device suggesting actions to the
players to further stabilize the dynamic. Numerical experiments support
the hypothesis of the pointwise convergence of the empirical distribu-
tion over action profiles to an approximate correlated equilibrium with
all players following the devices’ suggestions. Additional simulation re-
sults suggest that CPRM is adaptive to changes in the game such as
departures or arrivals of players.

Keywords: Game theory · Correlated equilibrium · Online learning.

1 Introduction

Since their introduction [1] [2] as a solution concept for non-cooperative games,
correlated equilibria have gradually emerged as an appealing generalization of
Nash equilibria. Correlated equilibria build upon the idea of correlated strate-
gies, allowing for a non-independent randomization over actions by the players.
More formally, a correlated equilibrium is defined as an equilibrium of a game
extended with a structure defined by a probability space and a collection of
player-specific events. Some of these structures known as "canonical" [3] lead to
an interpretation in terms of a mediator [4] drawing an action profile according
to a probability distribution and privately suggesting each player its compo-
nent. After receiving this recommendation, the player chooses her action. It was
shown in [2] that the canonical structures are sufficient to generate all correlated
equilibrium distributions.

We consider the problem of learning a correlated equilibrium of a non-
cooperative game with simple rules of behaviour known as adaptive heuristics
(e.g. fictitious play, regret minimization procedures) [5]. These rules may not
be rational in the sense that they may not choose the action maximizing the
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player’s expected utility but may lead to rational outcomes in the long run. Par-
ticularly, several adaptive heuristics imply the (almost sure) convergence of the
empirical distribution over action profiles to the set of correlated equilibria [5–8]
under relatively mild assumptions (e.g. every player may only know her utility
function and the history of play). However, no adaptive heuristic implies a point-
wise converge (more generally, a stabilization close) to a correlated equilibrium
distribution.

The main objective of this paper is to address the latter issue by introduc-
ing a new adaptive heuristic called Correlated Perturbed Regret Minimization
(CPRM) leading to such results. In CPRM, players adaptively alternate be-
tween playing a regret minimization strategy to reduce the distance between the
empirical distribution over action profiles and the set of correlated equilibrium
distributions and following the suggestions of a device sampling from this distri-
bution. In the long-run, the empirical distribution is expected to stabilize close
to a correlated equilibrium with players following the device’s suggestion.

1.1 Related work

The majority of the literature on learning in games [9] [10] studies the problem
of learning pure and mixed Nash equilibria [11–16] with some contributions
focusing on the convergence to equilibria satisfying properties such as Pareto
efficiency [17] [18] or welfare maximization [19] [20].

The problem of learning correlated equilibria has received less attention in
spite of a growing interest in the topic and the importance of the solution concept.
In [6], Hart & Mas-Colell use Blackwell’s approachability theory [21] to minimize
players’ regrets and show convergence of the empirical probability distribution
over action profiles to the set of correlated equilibria. Similar guarantees are
offered by calibration [8] [22] but none of these procedures guarantee pointwise
convergence of the trajectories to equilibrium points. In [23], Greenwald et al.
presented correlated-Q, a multi-agent reinforcement learning algorithm with an
equilibrium selection feature in which a linear program is solved at each iteration
to compute the polytope of correlated equilibria. This requires from every player
a perfect knowledge of the game being played (payoff and actions of all players
involved). In [24], Borowski et al. proposed an uncoupled learning rule with
a public signal such that, in the long-run and as the perturbation term tends
to zero, the process spends most of the time at the efficient coarse correlated
equilibrium if feasible. It is not shown that the players’ joint strategy is an
efficient coarse correlated equilibrium at any time. See [5,6,8,25] for other works
on learning coarse correlated equilibria. Recent contributions consider learning
correlated equilibria in more general dynamic games such as [26] [27] for games
in extensive form.

Finally, from an application perspective, correlated equilibria are relevant
in engineering [28, 29]. Particularly, [30] shows an algorithm using a correlation
signal to synchronize the players’ decisions so that they play a correlated equi-
librium. The proposed approach seems to be limited to the considered system.
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1.2 Outline

In Section 2, we define the model and provide the necessary preliminaries such
as the relationship between correlated equilibria and the notion of regret used in
CPRM. In Section 3 we show the dynamic of the learning algorithm. In Section 4,
we evaluate and discuss numerical performances of our solution and Section 5
concludes this work and shows possible directions of research and improvements.

2 Preliminaries

2.1 Notations

Vectors and tuples are denoted by small bold letters, matrices and random vari-
ables are denoted by capital letters. For M ∈ Rm×n, m(i, j) denotes the entry
in row i and column j and ||M || = maxi,j |m(i, j)|.. The ith component of x is
denoted xi and x ≥ y means xi ≥ yi for every i. We use calligraphic capital
letters for sets and |S| is the cardinality of S. The indicator function of A is
denoted 1A. Table 1 summarizes other notations used in the paper.

Table 1: Table of notations.
Symbol Meaning
R (resp. Q) Set of real (resp. rational) numbers
N Set of players
A Joint action space
∆(A) Set of all probability distributions over the set of action profiles A
q Probability distribution over action profiles in A
ht History of the game up to time t
Ai Player i’s action space
∆(Ai) Set of all probability distributions over Ai

pi Player i’s mixed strategy
pi(ai) Player i’s probability of playing action ai

ui(·) Player i’s payoff function
dti(j, k) Player i’s average difference between payoffs of strategies j and k at t
rti(j, k) Player i’s regret of for not choosing action k when action j is chosen at t
ε Perturbation parameter
γ A parameter defining the order of the perturbation ε
β A parameter that defines the approximate correlated β-equilibrium

2.2 Model

We consider a finite non-cooperative game G = (N , (Ai)i∈N , (ui)i∈N ) such that
player i ∈ N has finite set of actions Ai. Let ai ∈ Ai be a pure action for player
i and pi ∈ ∆ (Ai) be a mixed strategy for player i. The set A =

∏
i Ai is the set



4 O. Boufous et al.

of action profiles and A−i =
∏

j ̸=i Aj is the set of action profiles for players in
N\{i}. Players i’s utility function is ui : A → R such that ui(a) = u(ai,a−i)
is i’s utility for action profile a = (ai,a−i) ∈ A. Player i’s utility for the mixed
strategy profile p = (p1, . . . ,pn) is ui(pi,p−i) =

∑
a∈A

∏
i∈N pi(ai)ui(ai,a−i).

2.3 Correlated equilibria and their approximations

An approximate correlated equilibrium is a probability distribution over action
profiles such that the expected utility of every player is approximately maximal.
Formally, we have the following definition.

Definition 1 (Correlated β-equilibrium, [5]) A probability distribution q ∈
∆(A) is a correlated β-equilibrium if

∀i ∈ N ,∀ai, a′i ∈ Ai

∑

a−i∈A−i

q(a)[ui(a
′
i,a−i)− ui (ai,a−i)] ≤ β. (1)

The case β = 0 corresponds to the usual case of (an exact) correlated equilibrium
[2].

As an example, consider the traffic game and involving two vehicles (players)
at an intersection. At each stage, each player can either cross (action ”Go”) or
wait (action ”Wait”). When both players cross simultaneously, damage is caused
by a collision, both players are penalized and incur a negative utility of (−1,−1).
In this game, there are two pure strategy Nash equilibria (Wait,Go) and (Go,Wait)
and one Nash equilibrium in mixed strategies

(
( 12 ·Wait, 1

2 ·Go), ( 12 ·Wait, 1
2 ·Go)

)
.

Furthermore, the probability distribution P(Go,Wait) = P(Wait,Go) = 1/2,
P(Go,Go) = P(Wait,Wait) = 0 is a correlated equilibrium.

Table 2: Payoff matrix of the traffic intersection game.
Wait Go

Wait (0, 0) (0, 1)
Go (1, 0) (-1, -1)

The pairs of payoffs associated with the Nash equilibria are (0, 1), (1, 0) and
(0, 0) respectively. Observe that pure Nash equilibria result in unfair utility vec-
tors. Similarly, the mixed Nash equilibrium is fair but inefficient. Now assume
that the game is repeated and that both players can receive recommendations
on the action to play before each stage. Particularly, consider a coin toss such
that:

– if player 1 observes ”Head”, she plays Wait else she plays Go.
– if player 2 observes, ”Head” she plays Go, else she plays Wait.

In this configuration, in the long-run, the players play the profile (Wait,Go)
and (Go,Wait) 50% of the time each, thus resulting in an average payoff of ( 12 ,

1
2 )
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which is more satisfactory than the three Nash equilibria and corresponds to a
correlated equilibrium distribution. The idea of recommendations (i.e. players
making decisions using private observations of a single random outcome) as well
as the notion of regret that we introduce in the following paragraphs are both
used in the solution we propose.

2.4 Regret minimization and correlated equilibria

Let ht = (a1, . . . ,at) ∈ At be the history of action profiles until time t with
empirical distribution of play qt such that,

∀a ∈ A, qt(a) =
1

t
|{τ ≤ t : aτ = a}| (2)

Following [6], define the matrix Dt
i = (dti(j, k))(j,k)∈Ai×Ai

, such that dti(j, k) is
the average payoff difference for player i when playing action k every time j was
played.

dti(j, k) =
1

t

∑

τ≤t:aτ
i =j

[
ui

(
k,aτ

−i

)
− ui

(
j,aτ

−i

)]
(3a)

=
∑

a∈A:ai=j

qt(a) [ui(k,a−i)− ui(a)] (3b)

and the matrix Rt
i = (rti(j, k))j,k∈Ai×Ai such that rti(j, k) is the regret of player

i for the action swap j, k ∈ Ai.

∀i ∈ N ,∀j, k ∈ Ai, rti(j, k) = max{0, dti(j, k)} (4)

The regret rti(j, k) is the average gain of utility player i could have obtained if
he had played k instead of j every time he played j in the past t sequence of
moves.

Remark 1. For any β ≥ 0, we have rti(j, k) ≤ β if and only if dti(j, k) ≤ β. Hence,
we deduce from the definition of dti(j, k) in Eq. (3b) that rti(j, k) ≤ β at a given
time t if and only if the empirical distribution qt is a correlated β-equilibrium.

The Proposition 1 below shows the equivalence between low regrets and approx-
imate correlated equilibria,

Proposition 1 ( [6]) Let (at)t=1,2,... be a sequence of plays (i.e., at ∈ A for
all t) and let β ≥ 0. Then: lim supt→∞ rti(j, k) ≤ β for every i ∈ N and every
j, k ∈ Ai with j ̸= k, if and only if the sequence of empirical distributions qt

converges to the set of correlated β-equilibria.

In [6], Hart et al. proposed a regret minimizing strategy using the approacha-
bility of the negative orthant R|Ai|×|Ai|

− by the regret matrix (ri(j, k))(j,k)∈Ai×Ai
.



6 O. Boufous et al.

This learning procedure is an application of Blackwell’s approachability [21] en-
abling player i’s regret to be minimized i.e.

lim
t→∞

d
(
Rt

i,R
|Ai|×|Ai|
−

)
→ 0 a.s (5)

where d(·, ·) is the Euclidean norm. The regret minimization strategy is the
following. At any given time t,

– If Rt
i /∈ R|Ai|×|Ai|

− , player i chooses an action according to the mixed strategy
pti satisfying Eq. (6).

∀j, k ∈ Ai,
∑

j∈Ai

pti(j)r
t
i(j, k) = pti(k)

∑

j∈Ai

rti(k, j). (6)

– Else, i plays randomly (i.e. an action drawn from any distribution)

In the next section, we propose a perturbed variant of this process, in which
players synchronize as they approach the set of correlated equilibria to stabilize
the realized sequence of empirical distribution {qt}t=1,2,....

3 Learning algorithm

3.1 Rationale

In CPRM, at time t, each player i ∈ N is characterized by an individual state xt
i

with two components. The first component is called "mood" [12] and the second
is the empirical distribution qt. In one mood, she implements a regret minimizing
strategy (to decrease her regrets and contribute in decreasing the distance to the
set of correlated equilibria) and in the other she plays her component of an action
profile sampled from qt by a device (thus contributing in stabilizing the sequence
{qt}t=1,2,...).

3.2 Device

We assume a device drawing at time t an action profile at = (at1, ..., a
t
n) with

probability distribution qt as defined in Eq. (2) and recommending to player i
the component ati. By assumption, the device must know qt at t (not necessarily
storing the history of play ht) and must be able to transmit to every player her
component in at. We typically assume that it does not know the players’ utility
functions.

3.3 Players’ states and strategies

At time t, player i ∈ N is characterized by a pair xt
i = (mt

i, q
t) in Xi =

{asyn, syn}×∆(A). The first component mt
i describes the player’s mood at time
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t which can be synchronous (syn) of asynchronous (asyn). The second compo-
nent is the empirical distribution of play qt given by Eq. (2). By definition, the
second component is the same for all players.

If mt
i = syn, then i plays sti = ati (sent by the device), else (mt

i = asyn) player
i plays a realization sti of the random variable with probability distribution ξti
such that ξti is the stationary distribution of matrix of regrets satisfying Eq. (6).

3.4 Players’ states dynamic

Assume that at time t player i is in state xt
i = (mt

i, q
t) and that the profile at

is played (some players implementing the regret minimization strategy, others
following the device’s suggestions depending on their moods). The state xt+1

i of
player i at time t+ 1 is the realization of a random variable Xt+1

i such that,

P(Xt+1
i = (m, q)|Xt

i = xt
i,a

t) = P(mt+1
i = m|Xt

i = xt
i,a

t)×
P(qt+1 = q|Xt

i = xt
i,a

t) (7)

where

P(mt+1
i = m|Xt

i = xt
i,a

t) =





ε||di(q
t)|| if m=syn, and mt

i=asyn

1− ε||di(q
t)|| if m=asyn, and mt

i=asyn

εγ if m=asyn, and mt
i=syn

1− εγ if m=syn,mt
i=syn, and ||di(q

t)||≤β

1− εγ if m=asyn,mt
i=syn, and ||di(q

t)||>β

(8)

where di : ∆(A) → R|Ai|×|Ai| is the function defined in Eq. (3) and

P(qt = q|Xt
i = xt

i,a
t) = 1{q=f(t,qt,at)} (9)

where f : ∆(A) → ∆(A) is the function updating the empirical distribution such
that,

∀x ∈ A, f(t, qt,at)(x) =
t

t+ 1
× qt(x) +

1

t+ 1
1{x=at} (10)

We show below graphical representations of the mood dynamic.

– If player i is in ’mood’ asyn i.e. mt
i = asyn, she moves to mood syn with

probability εC0+||di||,

xt
i =

(
asyn, qt

)
(
asyn, qt+1

)

(
syn, qt+1

)
εC0+||dti||

1− εC0+||dti||
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– If player i is in ’mood’ syn i.e. mt
i = syn, she is faced with three possible

transitions. The first possibility corresponds to the case where the player
experiments with probability εγ , without taking into account her regrets.

xti =
(
syn,qt

)

1− εγ

εγ
(
asyn,qt+1

)

(
asyn,qt+1

)
if ||dti|| > β

(
syn,qt+1

)
if ||dti|| ≤ β

The two other cases deal with the situation where player i does not exper-
iment and monitors her regrets to decide her next move. As long as the
regrets are below β, player i keeps following the recommendation of the
device, otherwise, the player’s mood reverts back to asyn.

We report in Appendix A an implementable version of CPRM algorithm as a
pseudo-code.

It can be shown that the stochastic process {Xt = (Xt
1, . . . , X

t
n)}t (modeling

the state dynamic and where Xt
i is the random state of player i at t) induced by

CPRM is a perturbed non-homogeneous Markov process on a countable state
space. Furthermore, we conjecture that if this process admits an asymptotic
stationary distribution and γ > n2n−1(C0 + β), then S = {x ∈ X : ∀i ∈
N ,mi = syn, ||di(q)|| ≤ β} is the only stochastically stable set of states [31] and
the sequence {qt}t=1,2,... converges implying that in the long-run the players
follow the suggestions of the devices drawing action profiles from a correlated β-
equilibrium distribution. A detailed analysis of this process is beyond the scope
of the paper.

3.5 Adaptive CPRM

The previous learning dynamic assumes a steady environment, with static game
parameters, which is rarely the case in online settings, where a population of
players may be dynamically changing. This characteristic is of paramount im-
portance for many applications such as packet routing or auction systems, but
it is has not yet been thoroughly investigated in the literature. For instance, the
work in [32] examines a repeated n-player game in which players adapt to the
environment. More specifically, each player independently leaves with a certain
probability, but is immediately replaced by an arbitrary new player such that
the total number of players n remains identical. In our work, the total num-
ber of players may evolve with time. We propose an adaptation of CPRM to a
dynamic case to deal with arrival and departure of players. In simulations, we
demonstrate the efficiency of our method on examples.
By assumption, the mediator is aware of the players involved in the game. We



Learning a Correlated Equilibrium with Perturbed Regret Minimization 9

describe how the probability distribution used by the mediator for recommend-
ing actions is adjusted to the play.
Let T0 be the arrival time player n+1. Let bn+1 be an arbitrary action in An+1.
We construct the probability distribution used from T0+1 onwards for all profile
(a1, ..., an):

qT0+1(a1, ..., an+1) =

{
qT0(a1, ..., an), if an+1 = bn+1

0, otherwise
(11)

Similarly, when a player i leaves at time T1, the probability distribution is pro-
jected from ∆(

∏n+1
i=1 Ai) onto ∆(

∏n
i=1 Ai) as follows:

qT1+1(a1, ..., an) =
∑

ai∈Ai

qT1(a1, ..., an+1) (12)

After each player departure or arrival at a given time T , the scaling factor t used
for updating the empirical distribution is re-initialized in the following way:

qt+1(a) =

{ t−τ
t−τ+1q

t(a) + 1
t−τ+1 if at = a

t−τ
t−τ+1q

t(a) otherwise (13)

where τ ≥ 0 is a design parameter that is chosen depending on the desired
responsiveness of the games to changes in player population. For instance, taking
τ = T when a player arrives or leaves at time T essentially means that the
players start a new learning phase for the new game, which is independent from
the previous learning period. On the other hand, a large value of τ signifies that
the updates of the probability distribution are small, thus making the game less
prone to rapid changes, and resulting in a slower learning and convergence. The
constant τ can therefore be interpreted as the inertia of the learning with respect
to changes, making it more or less responsive to arrival and departures of players
in the game being played. The other parts of the algorithm remain unchanged.

4 Numerical results

In this section, we evaluate the performances of CPRM. First, we consider a sim-
ple two-players matrix game to compare our solution to other adaptive heuris-
tics such as a regret-minimization based on Blackwell’s strategy [6] and Regret
Matching [6]. Then, we consider arrivals and departures of players in the game
to observe how CPRM may adapt and conclude this performance evaluation on
a congestion game with larger sets of actions and player-specific cost functions.
For all experiments, the parameters in Table 3 were used.

4.1 Matrix games

Static setting We first consider the problem of learning a correlated equi-
librium for the 3 × 2 matrix game shown in Table (4) admitting two mixed
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Table 3: Numerical experiments parameters.
Value Signification

β 0.05 Approximation factor
ε 0.01 Perturbation rate
γ 5 Perturbation order
T 5× 105 Number of iterations
C0 1 Offset

Table 4: Payoff matrix of the 2-player game.
D E

A (2, 29) (16, 7)
B (4, 7) (6, 13)
C (4, 4) (6, 6)

Nash equilibria (1/12, 0, 11/12), (5/6, 1/6) and (3/14, 11/14, 0), (5/6, 1/6) with
respective utilities (13/3, 73/12) and (13/3, 82/7).

We consider the evolution in time (0 ≤ t ≤ T ) of the empirical probability
distribution qt, maximal regrets (||Rt

i||)i∈N and players’ moods (mt
i)i∈N .

Fig. 1a to 2c show the evolution in time of maximal regrets and the empirical
distribution over action profiles induced by Regret Matching, Blackwell’s regret
minimization and CPRM. In Figs. 1, we observe that regrets decrease below
the threshold β = 0.05 for each dynamic. This confirms the convergence of
three algorithms to the set of β-correlated equilibria (as expected from [6]).
However, if both players apply the Blackwell regret minimization strategy or the
Regret-Matching procedure, the regret trajectories do not stabilize implying that
the empirical distribution over action profiles does not converge to a correlated
equilibrium.

Fig. 1c shows that the regrets induced by CPRM stabilize below the target
threshold (even if not converging to zero), which confirms that the empirical
distribution approaches the set of correlated equilibrium distributions and may
converge. Furthermore, Fig. 2c shows very stable trajectories for the probabilities
of each action profile, thus supporting the hypothesis of convergence. This is not
the case for the the trajectories induced by the Regret-Matching procedure on
Fig. 2a or Blackwell’s regret minimization strategy on Fig. 2b which do not
stabilize on the graphs and at even larger timescales (not shown).

We provide an example of a sample path generated by CPRM in terms of
expected utility in Fig. 3. The plot shows the evolution in time of the pairs
(ū1(q

t), ū2(q
t)) where ūi(q

t) is the expected utility ūi(q
t) =

∑
a∈A qt(a)ui(a)

for player i. The gray area represents the feasible pairs of utilities in the game.
Starting from the initial action profile (A,D) with utilities (2, 29), the trajectory
stabilizes at a point in the vicinity of the convex hull of the two mixed Nash
equilibria depicted by the red segment.

Fig. 4 shows the evolution in time of the players’ moods as a scatter-plot. In
the first thousands time steps, the two players are mostly asynchronous (value
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Fig. 1: Evolution of players regrets for the three algorithms: a) Regret Matching
b) Blackwell-based regret minimization and c) CPRM algorithm.

"1" on the plot), thus implementing a regret minimizing strategy. Around 4.104

time steps, both players are synchronous, thus playing the action profile sug-
gested by the device and drawn from qt. In this regime, asynchronous realizations
typically come from the fact that players "explore" regardless of their regrets
due to the perturbation εγ in the dynamic.

Fraction of time spent in a correlated β-equilibrium In this section, we
consider the impact of the perturbation on the long-run behaviour of CPRM for
the previous two-players game. Let q∗(ε) be the correlated β-equilibrium exper-
imentally reached with perturbation ε (last distribution in Fig.2c). In Fig 5, we
show the fraction of time the players are synchronous (thus following the sug-
gestions of the device) and the empirical probability distribution implemented
by the latter is within a η-neighborhood (taking η = 0.01) to q∗(ε). The comple-
mentary proportion of time, corresponds either to a distribution at a distance
greater than η from q∗(ε) or to the case where at least one player explores as a
consequence of the perturbation.

Fig. 5 is an experimental evidence of the existence of a long-run regime such
that both players follow the suggestions drawn from the correlated β-equilibrium
q∗(ε). Furthermore, the plot shows that the smaller decreasing the perturbation
ε implies increasing the proportion of time. This is consistent with the type of
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Fig. 2: Evolution of the empirical distribution over action profiles for the three
algorithms: a) Regret Matching b) Blackwell’s regret minimization and c) CPRM
algorithm.

convergence expected from the perturbed Markov process and the conjecture
stating that in the low perturbations regime the process should spend most the
time close to a correlated equilibrium with synchronous players (playing profiles
drawn from this distribution).

Dynamic setting Previously, we have assumed that the same stage game is
played at every iteration. This is rarely the case in applications such as packet
routing in networks where the set of players (or their population) may change
over time. In this section, we study the flexibility of CPRM w.r.t. such updates
and how the previous convergence results may be impacted as new players join
or leave the game and utility functions change. CPRM cannot be used as is and
must be slightly adapted to handle the arrival and departure of players (typically,
players must update their regret matrices in the regret-minimization strategy ate
every arrival or departure to allow for the equilibrium of the ongoing game to be
approached). We do not enter the details of this second version of CPRM but
show the numerical results demonstrating the potential efficiency to be studied
in future works.

Assume that players start playing the game in Table 4 expanding into a
three player game before evolving later on into a two-player game and eventually
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Fig. 3: Trajectory (in blue) of the expected payoffs starting from the initial action
profile (A,D) and reaching a correlated β-equilibrium (close to the red segment).
Utilities at mixed Nash equilibria (MNE1 and MNE2) are shown as yellow
circles.

reverting back to the same three-player case afterwards as shown in Table 5. In
the three-players game, the first two players keep their original sets of actions
while the third player chooses the matrix (X or Y ). The first new player joins
the game at T1 = 509583 and leaves at T2 = 1019541 while the second arrives
at T3 = 1529892. Fig. 6a shows the evolution with time of the maximal regrets
of the players while Fig. 6b shows the evolution of probabilities for each profile.
The arrival and departure of a player perturbs other players’ regrets (red and
blue curves correspond to the initial two players). It appears in Fig. 6a that
for each game, the regrets are stabilized below the threshold β (dashed line) on
the corresponding time interval. It can also be observed in Fig. 6b that for each
game, the probability distributions over action profiles seem to converge on the
corresponding time interval. These results show that CPRM may also be used
in environments with arrivals and departures as long as each game is played for
sufficiently long.

4.2 Congestion Game

As a final example of numerical experiment, we consider the problem of learning
a correlated equilibrium in a congestion game [33] (a class of games particu-
larly relevant w.r.t. network applications and resource allocation problems) with
player-specific cost functions and larger action sets (the considered example has
108 action profiles) to test how relevant CPRM may be in this setting and its
scalability with regards to the number of action and action profiles. In a con-
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or 1 (mood "sync"). An artificial scattering is used to facilitate data visualization.
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Fig. 5: Evolution in time of the proportion of time spent in the η-neighbourhood
of the correlated β-equilibrium q∗(ε) for η = 0.01.

gestion game with player-specific cost functions, each player selects a feasible
subset of some resources and "pays" a cost defined as the sum over her selected
resources of resource-based costs depending on the resource itself, the player
and the total number of players selecting the resource. We consider the case
where the resources are edges in a network, each player picking a subset of edges
defining a path connecting a player-specific (source, destination) pair of nodes.
Formally, this game is defined by the following collection of objects,

– a network G = (V, E) with vertices and edges,
– a finite set N = {1, . . . n} of n players,
– for every player i, a source-destination pair (si, ti) ∈ V × V,
– for every player i, an action set A⟩ defined as the set of paths connecting

source node si with target ti,
– for every player i and every edge e ∈ E , a non-decreasing delay function

dei : N → R.
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Table 5: Sequence of stage games considered in the dynamic case. The stage
game does not necessarily evolve at every iteration.

D E
A (2, 29) (16, 7)
B (4, 7) (6, 13)
C (4, 4) (6, 6)

↓
D E

A (2, 29, 2) (16, 7, 8)
B (4, 7, 2) (6, 13, 0)
C (4, 4, 1) (6, 6, 5)

D E
A (9, 4, 0) (4, 1, 4)
B (8, 0, 1) (6, 7, 2)
C (11, 9, 3) (2, 0, 4)

X Y↓
D E

A (2, 29) (16, 7)
B (4, 7) (6, 13)
C (4, 4) (6, 6)

↓
D E

A (2, 29, 2) (16, 7, 8)
B (4, 7, 2) (6, 13, 0)
C (4, 4, 1) (6, 6, 5)

D E
A (9, 4, 0) (4, 1, 4)
B (8, 0, 1) (6, 7, 2)
C (11, 9, 3) (2, 0, 4)

X Y

Let fe : ×i∈AAi → {0, . . . , N} be the congestion function of edge e such
that fe(a) = |{i ∈ N : e ∈ ai}|, i.e. the number of players using edge e. Given a
strategy profile a ∈ A, player i has cost ci(a) =

∑
e∈ai

dei (fe(a)).
Particularly, we consider the 4-player game with graph and pairs defined in

Fig. 7 with cost functions dei (x) = x for all i ̸= 2 and dei (x) = x2 for i = 2 and
action sets,

– A1 = {′′BCDEF
′′,′′ BDEF

′′,′′ BADEF
′′}

– A2 = {′′BCDE
′′,′′ BDE

′′,′′ BADE
′′}

– A3 = {′′DCB
′′,′′ DEFAB

′′,′′ DECB
′′}

– A4 = {′′FDE
′′,′′ FADE

′′,′′ FABCDE
′′,′′ FABDE

′′}

As before, we first have an interest in a constant stage game and then allow for
the stage game to change because of arrival and departure of players.

Fig. 8a shows the evolution with time of the empirical distribution qt. Since
we cannot show the 108 curves (one per action profile), we plot only the curves
of the five action profiles with highest probabilities in the long-term. As in the
previous example of the two-players matrix game, the curves support the conjec-
tured convergence of the empirical distribution. This is to be put into perspective
with the evolution of regrets shown in Fig. 8b, indicating that this long-run dis-
tribution is indeed a correlated β-equilibrium distribution. Then, in the long-run,
the players follow a correlated equilibrium routing policy of this game.
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Fig. 6: Evolution of regrets (a) and the empirical distribution over action profiles
(b) with arrival and departure of players (at times indicated with vertical dotted
lines). The approximate equilibrium threshold is marked with horizontal dashed
line on the left figure.
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Fig. 7: Network graph of the game (left) and source-destination nodes of each
player (right).

To conclude, we assume that some players join or leave the congestion game.
As commonly considered in network applications, we assume stochastic depar-
tures and arrivals following a Poisson process with rate λ = 1/27236. We show
the results for a realization of this process such that a player 5 with pair (B,D)
arrives at T1 = 54377 and players 3, 5 and 4 leave at respectively T2 = 81434,
T3 = 108702 and T4 = 135882 as shown in Fig. 9. As expected, in the interval
0 ≤ t ≤ T1, the regret curves are similar to the case without arrivals and depar-
tures of Fig. 8b as the game being played in the considered time frame is the
same.

It can be observed from Fig. 10 that in the third, fourth and last phase, the
correlated β-equilibrium played is an approximate pure Nash equilibrium as only
one profile is played with a probability close to 1. In all cases, regrets in Fig. 9
remain below the approximation threshold β.
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Fig. 8: (a) Evolution of the empirical distribution over the (five main) action
profiles. (b) Evolution of the maximum regret for each player (curves of players
3 and 4 are not plotted because of low regrets and the logarithmic scale).
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cated with vertical dotted lines). The approximate equilibrium threshold corre-
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5 Conclusion

In this paper, we considered the problem of learning a correlated equilibrium
in finite non-cooperative games with a particular focus on the open problem of
convergence of the empirical probability distribution (over action profiles) in-
duced by an adaptive heuristic to a correlated equilibrium distribution. We pro-
posed a new adaptive heuristic, called CPRM, combining regret minimization
to approach the set of correlated equilibria and a simple device drawing samples
from the empirical distribution. Numerical experiments support the conjecture
that approximate correlated equilibrium distributions (the approximation factor
being a parameter of the dynamic) with all players following the devices’ sugges-
tions are the only stochastically stable states and that the empirical distribution
converges point-wise. Additional experiments show that CPRM can be adapted
to be compliant with a time-varying game (e.g. arrivals and departures of play-
ers, changing utilities). In future research, we plan to prove the conjecture to
confirm the results obtained in this paper.
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A Appendix: Numerical implementation of CPRM

Algorithm 1: Numerical implementation of CPRM
Let G = (N , (Ai)i∈N , (ui)i∈N ), ε > 0, β > 0, C0 > 0, γ ≥ n2n−1(β + C0)
Initialize moods (m0

i )i∈N , history h0 = (a0) and compute (d1i )i∈N
for t = 1, 2, ... do

/* Compute the empirical distribution of action profiles qt */
∀ a ∈ A, qt(a)← 1

t
|{τ ≤ t : aτ = a}|

Draw an action profile bt = (b1, ..., bn) from qt

for i ∈ N do
/* Play according to player i’s mood & update mood */
Draw uniformly a number in [0, 1] : var ← Uniform(0, 1)
if mt

i = asyn then
if ε||d

t
i|| > var then mt+1

i ← syn
Play the realization of the mixed strategy of Eq. (6)

else
if εγ > var or ||dti|| > β then mt+1

i ← asyn
Play bi

end
end
/* Update the vector of the average payoff differences */
∀i ∈ N , ∀(j, k) ∈ Ai ×Ai, d

t+1
i (j, k)← 1

t

∑
τ≤t
aτ
i =j

[
ui

(
k,aτ

−i

)
− ui

(
aτ
i ,a

τ
−i

)]
ht+1 ← (ht,at+1)

end
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