
HAL Id: hal-03862220
https://hal.inria.fr/hal-03862220

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Affine Multibanking for High-Level Synthesis
Ilham Lasfar, Christophe Alias, Matthieu Moy, Rémy Neveu, Alexis Carré

To cite this version:
Ilham Lasfar, Christophe Alias, Matthieu Moy, Rémy Neveu, Alexis Carré. Affine Multibanking
for High-Level Synthesis. IMPACT’22 - 12th International Workshop on Polyhedral Compilation
Techniques, Jun 2022, Budapest, Hungary. �hal-03862220�

https://hal.inria.fr/hal-03862220
https://hal.archives-ouvertes.fr

Affine Multibanking for High-Level Synthesis
Ilham Lasfar, Christophe Alias, Matthieu Moy, Rémy Neveu, Alexis Carré

Laboratoire de l’Informatique du Parallélisme
CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, France

Firstname.Lastname@inria.fr

Abstract
In the last decade, FPGAs appeared as a credible alternative
for big data and high-performance computing applications.
However, programming an FPGA is tedious: given a function
to implement, the circuit must be designed from scratch by
the developer. In this short paper, we address the compilation
of data placement under parallelism and resource constraints.
We propose an HLS algorithm able to partition the data
across memory banks, so parallel accesses will target distinct
banks to avoid data transfer serialization. Our algorithm is
able to reduce the number of banks and the maximal bank
size. Preliminary evaluation shows promising results.

Keywords High-Level Synthesis, Multibanking
ACM Reference Format:
Ilham Lasfar, Christophe Alias, Matthieu Moy, Rémy Neveu, Alexis
Carré. 2022. Affine Multibanking for High-Level Synthesis. In Pro-
ceedings of 12th International Workshop on Polyhedral Compilation
Techniques (IMPACT’22). ACM, New York, NY, USA, 3 pages.

1 Introduction
Since the end of Dennard scaling, the energy efficiency (flop/J)
of computers has become a major challenge as soon as the
energy budget is limitated. The best solution is to rely on
specialized circuits, which ultimately trade energy efficiency
for programmability. In the last decade, FPGAs appeared
as a credible alternative for big data and high-performance
computing applications. However, programming an FPGA is
tedious: given a function to implement, the circuit configura-
tion must be built from scratch by the developer. Hence the
emergence of high-level circuit compilers (high-level synthe-
sis, HLS) [1, 3, 6, 7, 9], able to translate a C program to an
FPGA circuit configuration. Unlike software parallelisation,
there is no parallel runtime to place the computation and
the data among processing elements: all the parallelization
decisions must be taken at compile-time.

In this short paper, we outline a source-to-source transfor-
mation to address themultibanking problem: data aremapped
to distinct memories (banks) so parallel access will target dis-
tinct banks to avoid data transfer serialization. Given a pro-
gram and a schedule prescribing parallelism, we are able to
infer a complete reorganization of the data into banks and to
generate the transformed program accordingly. This problem
has been investigated for simple kernels with perfect loop

IMPACT’22, June 20, 2022, Budapest, Hungary
2022.

nests [4, 10, 11], usually on convolution-like kernels with dif-
ferents patterns. In a different context, approaches for false
sharing removal [12] expose interesting ideas – though not
directly transposable. We outline a general HLS algorithm
which subsumes these approaches and makes the following
contributions:

• We propose a novel and general formalization of the
multibanking problem, which subsumes the previous
approaches.

• We propose a complete algorithm to compute our multi-
banking transformation using the polyhedral model.

• Our approach reduces the number of banks and the
maximal bank size, without hindering parallel accesses.

This paper is structured as follows. Section 2 illustrates the
problem of multibanking on a motivating example. Section 3
outline the main ideas of our algorithm for multibanking. For
a complete description, the reader is refered to [8]. Section 4
outlines our preliminary results. Finally, Section 5 concludes
this paper and outlines future work.

2 Multibanking
We illustrate the problem on the 2D convolution product,
depicted in Figure 1.(a). The loop is assumed to be executed
in sequence. For each iteration, array accesses are done in
parallel. Because of memory limitation, parallel references
must be mapped to different banks. A solution depicted on
Figure 1.(b) is to put each reference in(i, j) into memory
bank bankin(i, j) = 3i + j mod 9 at offset offsetin(i, j) = i
mod N . In general, we seek affine mappings banka : ®i 7→
ϕa(®i) mod σ (®N) and offseta : ®i 7→ ψa(®i) mod τ (®N) for
each array a whereϕa ,ψa ,σ and τ are affine functions. These
functions define an affine multibanking. Note that those re-
allocation functions map different arrays to a common ar-
ray memory organized with outer bank dimensions and in-
ner offset dimensions. The size of that common memory is
Πdσ

d (®N) × Πdτ
d (®N), where σd (®N) denotes the d-th dimen-

sion of vector σ (®N).

3 Overview of our multibanking algorithm
This section outlines our multibanking algorithm, we present
the intuitions behind the derivation of the bank mapping
and the offset mapping. For a deeper level of detail, reader is
refered to [8].

IMPACT’22, June 20, 2022, Budapest, Hungary Ilham Lasfar, Christophe Alias, Matthieu Moy, Rémy Neveu, Alexis Carré

for(i=1; i<N-1; i++)

for(j=1; j<N-1; j++)

out[i,j] =

in[i-1,j-1]+in[i-1,j]+in[i-1,j+1]+

in[i,j-1] +in[i,j] +in[i,j+1] +

in[i+1,j-1]+in[i+1,j]+in[i+1,j+1]; //S

(a) 2D convolution product

i

j

0

1

2

3

0 1 2 3

bank 0
bank 1
bank 2
bank 3
bank 4
bank 5
bank 6
bank 7
bank 8

(b) Bank mapping

Figure 1. Motivating example

Bank mapping We first outline the polyhedral formula-
tion to obtain a correct bank mapping. Then we outline a
general formulation to minimise the number of banks.
A bank mapping banka(®i) = ϕa(®i) mod σ (®N) is correct

w.r.t. the parallel execution prescribed by a schedule θ iff
two different memory cells a(®i) and a(®j) accessed at the same
time belong to different banks:

a(®i) ∥θ b(®j) ∧ ®i , ®j ⇒ banka(®i) , bankb (®j)

We relax the formulation to postpone the computation of
the modulo:

a(®i) ∥θ b(®j) ∧ ®i ≪ ®j ⇒ ϕa(®i) ≪ ϕb (®j)

ϕa(®i) ≪ ϕb (®j)means that there exists a dimensiond such that
ϕda (®i) < ϕ

d
b (
®j) and both vectors are identical above: ϕℓ

a(®i) =

ϕℓ
b (
®j) for all ℓ < d . Hence, the dimensions of ϕ might be

computed incrementally across dimensions d , as an affine
schedule would be. Once a dimension ϕd is found, we focus
on the unresolved parallel conflicts (still in the same bank)
with ϕda (®i) = ϕdb (®j). And we iterate on the next dimension
until all conflicts are resolved.

The number of banks might be estimated with maximum
difference ϕdb (®j) − ϕ

d
a (®i) for conflicting cells a(®i) and b(®j). It

gives the modulo value σd , along dimension d :

a(®i) ∥θ b(®j) ∧ ®i ≪ ®j ⇒ ϕdb (
®j) − ϕda (®i) ≤ σd (®N)

The coefficients of the affine form σd might be minimized
lexicographically, under the constraints of correctness ex-
posed above. Iterating the process for each dimension yield
a general, correct and efficient bank mapping. These con-
straints are turned to existentially guarded affine constraints

Kernel Latency BRAM DSP FF LUT
conv2D-simple original 79380 0 0 471 981
conv2D-simple opt 31763 0 0 1013 1692

Table 1. Synthesis results

thanks to the affine form of Farkas lemma, following the
lines of [5], formalized as a domain-specific language in [2].

Offset mapping Finding the offset in a bank might be
achieved by the same algorithm, on different constraints.
An offset mapping offseta(®i) = ψa(®i) mod τ (®N) is correct
w.r.t. a schedule θ iff two array cells a(®i) and a(®j) mapped to
the same bank and whose liveness conflict (a(®i) ▷◁θ a(®j)) are
mapped to different offsets:

banka(®i) = bankb (®j) ∧ a(®i) ▷◁θ b(®j) ∧ ®i , ®j ⇒

offseta(®i) , offsetb (®j)

The dimensions ofψa and τ (®N) are computed incrementally
in the same way as the bank mapping, with similar modulo
minimization constraints. All the details are given in [8].

4 Preliminary results
This section presents the preliminary results obtained with
our multibanking approach.
We have applied our algorithm using the fkcc scripting

tool [2] on the motivating kernel, assuming a sequential ex-
ecution and the arrays references to be accessed in parallel
for each iteration. The synthesis results were obtained us-
ing VivadoHLS 2019.1, targeting a Kintex 7 FPGA (xc6k70t-
fbv676-1). We transformed each array reference A[u(®i)] as
Â[bankA(u(®i)),offsetA(u(®i))]. Then, we used the VivadoHLS
array partitioning pragma on the bank dimension.

Our results are depicted on Table 1. The tool indicates the
memory contention for the base kernel (base) are resolved
on the transformed kernel (opt). The additional resources
are due to the multibanking circuitry (steering logic). The
overall latency is reduced from 79380 cycles to 31763 cycles.
We suspect the speedup to be mitigated by the cost of the
multibanking circuitry.

5 Conclusion
In this paper, we have outlined a unified, general HLS al-
gorithm for multibanking, using the polyhedral model. Our
approach reduces the overall size of memory banks, with-
out hindering parallel memory accesses. Preliminary results
encourage to pursue with this approach.
In the future, we plan to extend the field of experimen-

tal validation to more general linear algebra kernels under
pipelining constraints. Also, we plan to explore how to mini-
mize bank size separately as well as the trade-off surface/gain
through a unified parametric formulation.

Affine Multibanking for High-Level Synthesis IMPACT’22, June 20, 2022, Budapest, Hungary

Acknowledgments
This work has been partially funded by the fond recherche
ENS-Lyon through the HLSIMU project.

References
[1] 2009. Nios II C2H Compiler User Guide. Version 9.1. http://www.altera.

com.
[2] Christophe Alias. 2019. fkcc: the Farkas Calculator. In 10th Workshop

on Tools for Automatic Program Analysis (Lecture Notes in Computer
Science). Springer, Porto, Portugal. https://hal.inria.fr/hal-02414224

[3] CatapultC [n. d.]. Mentor CatapultC High-Level Synthesis. http:
//www.mentor.com/products/esl/high_level_synthesis.

[4] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. 2011. Automatic memory
partitioning and scheduling for throughput and power optimization.
ACM Transactions on Design Automation of Electronic Systems 16, 2
(2011). https://doi.org/10.1145/1929943.1929947

[5] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling
Problem, Part II: Multi-Dimensional Time. International Journal of
Parallel Programming 21, 6 (Dec. 1992), 389–420.

[6] Gaut [n. d.]. Gaut: High-Level Synthesis tool From C to RTL. http:
//www-labsticc.univ-ubs.fr/www-gaut.

[7] ImpulseC [n. d.]. Impulse-C, Accelerate Software using FPGAs as
Coprocessors. http://www.impulseaccelerated.com.

[8] Ilham Lasfar, Christophe Alias, MatthieuMoy, Rémy Neveu, and Alexis
Carré. 2021. Affine Multibanking for High-Level Synthesis. Research
Report. Inria. https://hal.inria.fr/hal-03481328

[9] Ugh [n. d.]. Ugh: User-Guided High-Level Synthesis. http://www-asim.
lip6.fr/recherche/disydent/disydent_sect_12.html.

[10] Yuxin Wang, Peng Li, Peng Zhang, Chen Zhang, and Jason Cong.
2013. Memory partitioning for multidimensional arrays in high-level
synthesis. Proceedings - Design Automation Conference (2013). https:
//doi.org/10.1145/2463209.2488748

[11] Yuxin Wang, Peng Zhang, Xu Cheng, and Jason Cong. 2012. An inte-
grated and automated memory optimization flow for FPGA behavioral
synthesis. Proceedings of the Asia and South Pacific Design Automa-
tion Conference, ASP-DAC (2012), 257–262. https://doi.org/10.1109/
ASPDAC.2012.6164955

[12] Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako,
Tobias Grosser, Vivek Sarkar, and Albert Cohen. 2018. Modeling the
conflicting demands of parallelism and temporal/spatial locality in
affine scheduling. In Proceedings of the 27th International Conference
on Compiler Construction. 3–13.

http://www.altera.com
http://www.altera.com
https://hal.inria.fr/hal-02414224
http://www.mentor.com/products/esl/high_level_synthesis
http://www.mentor.com/products/esl/high_level_synthesis
https://doi.org/10.1145/1929943.1929947
http://www-labsticc.univ-ubs.fr/www-gaut
http://www-labsticc.univ-ubs.fr/www-gaut
http://www.impulseaccelerated.com
https://hal.inria.fr/hal-03481328
http://www-asim.lip6.fr/recherche/disydent/disydent_sect_12.html
http://www-asim.lip6.fr/recherche/disydent/disydent_sect_12.html
https://doi.org/10.1145/2463209.2488748
https://doi.org/10.1145/2463209.2488748
https://doi.org/10.1109/ASPDAC.2012.6164955
https://doi.org/10.1109/ASPDAC.2012.6164955

	Abstract
	1 Introduction
	2 Multibanking
	3 Overview of our multibanking algorithm
	4 Preliminary results
	5 Conclusion
	Acknowledgments
	References

