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Abstract
This article introduces our abstract modeling strategy to represent the general features and topology of the kinds of integrated 
and technologically diverse networks that feature in IoT systems. We begin with smart home networks. We generate instances 
of our model and analyze their graph-theoretic properties with an emphasis on the resilience of critical services and connec-
tions to the Global Internet. In addition to considering the network connectivity graph of nodes and links in the model, we 
explain our technology interdependence graph techniques. Technology interdependence graphs allow us to illuminate critical 
interactions in multi-technology systems such as smart homes. Using relatively simple examples we show how our approach 
permits the exploration of the resilience properties of various instances of smart systems involving complex technological 
interdependency. We describe a practical way of approaching the graphs of systems with a wide variety of integrated tech-
nologies and we discuss properties such as connectedness and other metrics. This approach can serve as the basis for tackling 
the challenge of designing resilient IoT-based smart-cities from the point of view of network topologies. We also study smart 
home resilience through path redundancy and heterogeneity of network technologies with graph centrality metrics.

Keywords  Smart home · Science of security · Graph analysis · Modeling · Network resilience · Future networks · Internet 
of Things (IoT)

1  Introduction

The proliferation and variety of technologies in the so-called 
Internet of things (IoT) raises concerns with respect to secu-
rity and resilience. Given the introduction of new attack sur-
faces and their associated vulnerabilities, IoT presents wor-
rying new security threats to critical and often life-sustaining 
systems (Hassija et al. 2019). Because of the complexity of 

IoT systems, understanding the nature of these threats is not 
straightforward. For example, at the level of network analy-
sis, the rapid growth of IoT has complicated matters in a 
variety of ways. IoT has changed edge networks by dramati-
cally increasing the number of nodes and by introducing a 
variety of types of services and functions that are exposed 
to disruption. To date, this new context has proven difficult 
to tractably model. In this article, we examine the relatively 
simple context of smart home technologies in order to pre-
sent strategies for thinking about improving the resilience 
of IoT systems more generally.

Diverse technologies, each with their own distinctive 
sets of vulnerabilities, support the functional requirements 
of so-called smart home and smart building systems. These 
include IEEE 802.11 and 802.3 for high-bit-rate and interac-
tive applications, ZigBee (Alliance 2008), Bluetooth (Blue-
tooth 2015; Bluetooth Special Interest Group 2016) and 
Z-wave (Design Sigma 2018; Johansen 2017) for low-energy 
consumption and low bit rate. Other very-low bit rate and 
long-range technologies such as LoRaWAN (LoRa Alliance 
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2016), Sigfox (Moan 2017; Zuniga and Ponsard 2016), and 
NB-IoT (GSMA 2016) contribute to services requiring very 
low-energy consumption such as structure monitoring, leak 
management and the like. These technologies feature a vari-
ety of network topologies, ranging from star to mesh struc-
tures. Combining these technologies can result in the emer-
gence of complex network properties even in a relatively 
small domain such as a smart home or building (Symons 
et al. 2007).

A typical smart home system is a combination of various 
sensors, actuators, controllers, control networks, and gate-
ways (Paetz 2018). Sensors generate data and send them to 
the controllers through control networks such as ZigBee or 
Z-Wave. Devices in the network containing actuators and 
sensors are managed through the control networks while 
they are connected to the gateways that provide intercon-
nection with other communication networks. Though this is 
the generic structure of a smart home system, in practice a 
range of distinct network technologies are used. The num-
ber of distinct network technologies with distinct topologi-
cal features along with the overall network size contributes 
to the complexity of the system as a whole. Furthermore, 
each technology has unique physical and logical character-
istics including the frequency bands, the network initiation 
process, the network components, the number of supported 
nodes, availability, and security features. With each of these 
features comes the potential for exploitable vulnerabilities.

While there is an understandable and justified concern 
that the heterogeneity of IoT technologies expands the avail-
able attack surface for adversaries and makes systems as a 
whole increasingly fragile, technological diversity need not 
be straightforwardly bad news for security and resilience. As 
we show in this paper, the heterogeneity of the technologies 
in a system can potentially improve resilience given suitable 
design principles. For example, since important aspects of 
each network technology are sometimes self-contained, any 
disruption to the operation of the network technologies ren-
ders only that individual network inaccessible. Furthermore, 
to take a simple example, when devices such as laptops and 
cellphones support more than one network technology, they 
can operate in many networks at the same time. Most obvi-
ously, this redundancy increases the probability that the 
overall system will be available and consequently the resil-
ience of the system as a whole increases. These are simple 
examples, but they speak to a more general point: Under-
standing how diverse networks and technologies interact is 
critical to designing system-wide resilience.

A first step is to provide a general and abstract approach 
to tackling the problem that can be applied to a variety of 
contexts. Our goal is to provide general principles for help-
ing to design resilience into complex and technologically 
diverse systems (Pipa and Symons 2019). To that end, in this 
paper, we present an abstract home network model for smart 

home architectures and perform a graph-theoretic analysis 
on various instances of this model. Our goal here is to dem-
onstrate in simple terms, how to approach to designing resil-
ient multi-technology systems. The paper is organized as 
follows. First, we review some of the available IoT models. 
In Sect. 3, we present our abstract smart home model to 
show the interaction of distinct network technologies. Then 
we generate instances of the model. In Sect. 4, we perform a 
graph-theoretic analysis on one instance of the smart home 
and compare it with two baseline models with star and 
mesh topologies. In Sect. 5, we analyze various instances 
of smart home models to explore the overall behavior of 
the system that results from the addition of devices and 
network technologies. So, for example, studying the addi-
tion of cellphones to the network allows us to consider the 
extent to which these additional devices provide additional 
redundancy and resilience. We conduct similar experiments 
involving the addition of network technologies in order to 
understand the changes that result in the behavior of the sys-
tem as a whole. Finally, we offer some concluding comments 
and some plans for future work in Sect. 6.

2 � Background and related work

IoT is already integral to a range of important endeavors, 
including industrial production and manufacturing, criti-
cal infrastructure, military applications, cities, and homes. 
Several models have been introduced to represent the IoT 
ecosystem (Modarresi and Sterbenz 2017; Streitz 2018; 
Plantevin et al. 2019; De Paola et al. 2019); however, most 
of these models lack important details about the relationship 
between the structure and function of the multi-technology 
networks in systems such as smart homes and cities. Exist-
ing work has provided useful maps and helpful distinctions, 
but it does not permit effective graph theoretic analysis for 
reasons we will explain, nor does it facilitate the kind of 
design that increases resilience in these systems.

The IEEE reference model (Minerva et al. 2015) shows 
IoT systems in three functional layers including sensing, net-
work and data communications, and applications. The ITU 
Y.2060 model (ITU 2012) shows the integration of “things” 
to communication networks. The Internet Engineering Task 
Force (IETF) reference model concentrate on factors for ena-
bling IoT communications. The National Institute of Stand-
ards and Technology (NIST) considers an IoT system as a 
cyber-physical system (CPS) technology to connect smart 
devices (Boutin 2014). Cisco defines the concept of fog 
computing and adds it to its seven-layer IoT model (Lake 
et al. 2012). Other specialized models as part of the IoT 
systems have been introduced for mobile (Fernando et al. 
2013; Dinh et al. 2013), edge (Vaquero and Rodero-Merino 
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2014), and fog computing (OpenFog Consortium Architec-
ture Working Group 2017).

In order to improve the resilience of these networks it 
will be helpful to develop models focusing on the distinc-
tive structural properties of the networks involved in such 
systems. In previous work we have focused particularly on 
the topological features of networks. We have previously 
introduced a reference model for the interaction of technolo-
gies associated with the kinds of services that are likely be 
typical in smart homes in the near future (Modarresi et al. 
2018). We obtain our connectivity graph by converting our 
reference model to a graph model. Our connectivity graph 
led us to our technology interdependence graph where we 
can represent the role of a high-bit-rate technology such as 
WLAN serving as the smart home backbone network. As 
explained below, other network technologies connect to this 
backbone in ways that we can model.

3 � Smart home model

We introduce our abstract smart home model in Part 3.1. 
Then, we present our home network graph representation 
model produced by Python NetworkX (NetworkX develop-
ers 2018) for the smart home network in Part 3.2. At this 
stage, the goal is simply to model a typical smart home net-
work architecture in order to provide a platform for explor-
ing ways to improve its resilience.

3.1 � Abstract smart home modeling

A first step toward creating a graph model that can be used 
for simulation-based analysis (Modarresi and Symons 2020) 
is to create an abstract representation of the smart-home net-
work. The reason for abstracting from the details of particu-
lar networks is to achieve the kind of generalizations that 
apply to a wide range of distinct cases. At the same time, 
it is important to include some of the functionally relevant 
features of the smart home context, most importantly it is 
important to capture the ways in which diverse technolo-
gies interact. A scientifically useful model will be one that 
is abstract enough to provide general insights, but that also 
recognizes the implications of technological heterogeneity 
and interaction. Our smart home abstract model is depicted 
in Fig. 1. This shows the architecture and high-level struc-
ture consisting of the home backbone with other attached 
home edge network technologies introduced below. The 
home backbone is typically a mix of wired Ethernet and 
wireless 802.11 technologies. However, notice that at the 
network layer it appears as a single IP-addressable network. 
In addition to end systems such as laptops (not shown in this 
figure), the home backbone provides connectivity to vari-
ous other home edge network technologies, with disparate 

topology, protocols, and addressing. These edge technolo-
gies generally interconnect only through gateways to the 
home backbone, resulting in a star topology of networks, of 
which two are shown in Fig. 1.

Traditionally, homes have been connected to the Global 
Internet for user access to Web browsing and email. More 
recently, many smart home services use connectivity for 
remote access, e.g. for access to security systems or for con-
trolling lighting and heating when residents are away from 
home. While it is beyond the scope of the current paper to 
address in detail, it is worth noting that many IoT devices 
use cloud-based services, significantly increasing the avail-
able attack surface, while providing poor resilience for those 
systems given that they often cannot operate when discon-
nected from the Internet. While connecting to the Internet 
via an RBB (residential broadband) link such as DSL or 
HFC (hybrid fiber coaxial) has been the norm, increasingly 
LTE mobile networks (evolving to 4G LTE-advanced and 
5G) are providing Internet access to homes. Additional 
connectivity to the Internet obviously enables the increased 
redundancy of a biconnected graph. It also provides diver-
sity with respect to the communication medium such that 
wireless can be used if a cable is damaged, and wired if the 
wireless channel is disrupted by, for example, heavy precipi-
tation or jamming.

3.2 � Technologies in smart home model

As presented in Fig. 2, high-bit-rate LAN technologies 
including Ethernet, 802.11, and 802.11s are used as the 
home backbone. While wireless LANs are the dominant 
technology forming the home backbone, they may suf-
fer interference in a dense urban environment and can be 
jammed to disrupt home services and operation. Each LAN 
technology usually supports a particular topology. IEEE 
802.11 in the infrastructure mode uses a star topology while 
802.11s uses a mesh topology. The range extension capabil-
ity of 802.11s due to the mesh topology makes it preferable 
to basic 802.11 for the home backbone LAN. Furthermore, 
switched Ethernet can construct physical mesh with a logical 
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Global Internet

Technology 1 Technology n
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…

smart home 
network

LPWAN
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Fig. 1   Smart home abstract model
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spanning tree overlay to avoid loops in the network. Consid-
ering network resilience, a mesh network with k-connectivity 
(a connected graph with k separate path between each node 
pair) of k ≥ 2 should be constructed for the home backbone 
LAN. We consider k-connectivity of k = 2 for brevity of the 
model in the backbone structure while k = 2 offers minimum 
network resilience at the backbone.

The mesh nodes comprise a mesh basic service set 
(MBSS). MBSS can be connected to an infrastructure BSS 
through a distribution system by a mesh gateway. Therefore, 
the infrastructure BSS supports other typical and high-speed 
IP services constructing a star topology around each mesh 
station equipped with an access point. Although the access 
points in 802.11 represent a critical point of failure of this 
structure, mobile nodes can connect to other access points 
during failure of their native access point. On the other 
hand, implementing some of the mesh edges with Ethernet 
improves resilience more through the heterogeneity of the 
technologies and diversity of the protocol mechanisms.

Other network technologies are connected to the back-
bone through their gateways. Current technologies, includ-
ing ZigBee and Z-Wave, can construct mesh topology. Other 
technologies including Bluetooth operate via a star topology. 
Notice also that Bluetooth can construct mesh topology by 
changing the role of a slave node to a master node and vice 
versa.

Most of the low-bit-rate technologies such as ZigBee 
support a mesh topology. However, the topology of such 
networks also depends on the density of the nodes in the 

network, the average distance among nodes, and the spe-
cialized nodes that are utilized by a particular technology 
such as coordinators and routers. The topology may be a 
star when all nodes are in the range of the coordinator or 
master node but far from each other, linear when the net-
work coverage is extended, mesh when some nodes are 
in the range of the other nodes, or a combination of these 
options. In most low-bit-rate technologies including ZigBee 
and Z-Wave the battery-operated nodes do not participate in 
the routing or forwarding processes; therefore they are usu-
ally the endpoints of the network graph. We construct this 
part of the network graph by the caveman graph algorithm 
with Python networkX library, which permits us to gener-
ate a particular number of cliques with a specific size. This 
structure can emulate a controlled mesh network. We pro-
cess the produced graph from caveman (Kang and Faloutsos 
2011) algorithm for the number of connected components. 
We eliminate those nodes that are not part of the largest 
component in the graph to generate a graph with one con-
nected component. Since both ZigBee and Z-Wave generate 
a mesh topology in an optimal condition, we consider one 
mesh network for brevity as a sample of these technologies 
in our model; although, many such networks with more com-
plexity and number of nodes can exist simultaneously in a 
larger network. For instance, a simple network can have one 
particular network technology while a multi-story building 
may have various types of networks with more nodes. Since 
these network technologies are low bit rates and self-con-
tained, any structural changes or failure will have minimal 

BT-3

BT-4

2BT-2

BT-1

3

1

BT-0

AP1

m1-2

m1-1

m1-4

m1-6

m1-3

m1-5

5

Phone1

6

9

10

8

AP2

16

12

15

13

AP3 4

11

m1-7

7

14

m1-0

Internet

ISP1

RBB

EPC1

ISP2

Fig. 2   Connectivity graph of the home network model



5829Resilience and technological diversity in smart homes﻿	

1 3

or no effect on the home backbone LAN. Therefore, these 
networks can be studied separately. Notice that an effective 
network analysis involves taking account of the functional 
characteristics of the technology involved here.

Other high-bit-rate technologies, including 4G/LTE/5G, 
can be integrated to the network to increase the path diver-
sity to the Internet. When the network is in the normal opera-
tion, a cellphone can join the network through its 802.11 
interface and act as a wireless station. However, during a 
WAN failure, a tethered cellphone can operate as an access 
point to connect the internal network to the Internet through 
a different path.

LPWAN technologies including NB-IoT and LoRaWAN 
can also be utilized in a smart home network. However, we 
do not use them in our home network graph model; since, 
such technologies are part of larger networks which are 
mainly outside of the smart home network. Many technolo-
gies in this category, including NB-IoT, LoRaWAN, and Sig-
fox, have a star or star of star topologies similar to the topol-
ogy in 4G/LTE/5G technologies. In all of these technologies, 
the center point of the star topology is usually outside of the 
home network. Such networks are connected to the home 
network at the ISP level or even an AS level. Hence, any 
failure in the lower levels of the network hierarchy will not 
affect both networks simultaneously; unless the failure hap-
pens at the same or higher levels of the hierarchy in which 
the two networks are connected. We represent the point 
of connection between the two networks with the Internet 
node in our home network graph model illustrated in Fig. 2 
assuming that the two ISPs are reachable with one hop to 
simplify the structural complexity of the Internet.

4 � Graph‑theoretic representation 
and analysis

The analysis of our model uses a formal graph representa-
tion. We calculate various graph analysis metrics and com-
pare with baseline home network architectures, including 
star and mesh, in order to study properties of our model. 
We perform a similar analysis on our technology interde-
pendence graph. Here again, our goal is to study the logi-
cal representation of the typical technologies employed in 
a smart home with being unnecessarily any constrained 
by the details of a particular network and its associated 
components.

4.1 � Home network model analysis

Given our home network model, we define an edge-colored 
graph �conn = (Vc,Ec,C,�) as the connectivity graph illus-
trated in Fig. 2, such that vi ∈ Vc is a node with a transceiver 
tik of a particular technology and en ∈ Ec is a communication 

link between two adjacent nodes vi and vj . Furthermore, C is 
a set of colors equivalent to the number of employed tech-
nologies in the graph and � ∶ Ec → C is a function to assign 
a color to each edge. More precisely, we can define Ec as 
Ec = {((vi, vj) ∈ Vc × Vc, ci)|�(vi, vj) = ci}.

We start this analysis by evaluating two baseline topolo-
gies: the star and mesh backbones. We consider a star wire-
less LAN implemented with IEEE 802.11 connected to the 
Internet by an Ethernet link through a DSL or HFC cable 
link, typical of many traditional home networks. We then 
enhance the star network to incorporate a full-mesh back-
bone as would occur by replacing a single 802.11 access 
point with three meshed 802.11s nodes (AP1, AP2, AP3). 
Next, we consider our home network graph (Fig. 2) and 
compare it with the other two baseline topologies. Finally, 
we calculate the graph metrics for our home network during 
a failure on the Internet access link (NID ↔ ISP1) that fails 
over to the backup access path through Phone1, illustrated 
in Fig. 3. The number of 802.11 wireless workstations are 
the same in both the baseline models and the home net-
work model. However, the home network model has extra 
nodes representing the network technologies connected to 
the home backbone.

We then consider the following failover mechanism for 
our centrality analysis. If the Internet access link between 
NID and ISP1 in our home network graph fails, the home 
backbone LAN and consequently the rest of the network is 
disconnected from the Internet. While the home network is 
still locally operational, the cloud services are inaccessible. 
Though Phone1 can provide Internet access through the LTE 
network in the tethering mode, this process may partition the 
home network. This is due to the fact that a mesh node (an 
802.11s mesh station) cannot connect to an 802.11 access 
point (a cellphone in the tethering mode) directly. Moreo-
ver, two access points cannot simply connect to each other 
without a distribution system. As a result, the mesh network 
would not have access to the Internet. Two possible options 
for resolving this Internet access disruption in the mesh 
nodes are either using Wi-Fi Direct (Wi-Fi Alliance 2018) 
on the mesh nodes and the cellphone or cellphones equiped 
with 802.11s. Wi-Fi Direct provides a one-hop connection 
between two nodes without a physical access point, while 
802.11s support multi-hop connections. During the failure, 
other network technologies can connect to the second path 
if their gateways have 802.11 interfaces. We do not consider 
these two options in our measurement at this point.

We examine various graph node and edge centrality met-
rics for this analysis, and report the minimum, maximum, 
and mean values in Table 1. Graph centrality metrics can be 
classified into three groups: distance, connectivity, and spec-
tra classes (Hernández and Van Mieghem 2011). Distance 
metric measurements are based on the shortest path and the 
number of hop count over the shortest path. The node-degree 
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values are the main consideration for connectivity-based 
centrality metrics. Finally, eigenvalues and eigenvectors are 
the foundational concepts for the spectra metric measure-
ments. We emphasize that our list of centrality metrics is 
not comprehensive and we consider some of the relative 
metrics to our model from each category. The aim is to find 
appropriate centrality metrics from these groups to describe 
our multi-technology model. One should note that the thick-
ness of each edge in Figs. 2 and 3 represent the value of 
edge-betweenness centrality (number of traversing shortest 
paths) computed by Cytoscape (Shannon et al. 2003). Each 
specific edge color shows a particular technology according 
to our graph model definition.

In the home network graph and consequently the backup 
graph, various network technologies interconnect, which dif-
fer in a number of aspects including topology, node respon-
sibility, link data rate, and failover policy. Node and edge 
attributes may be employed to identify those characteristics, 
but not all can be simply represented as edge weights. Two 
possible options are introducing new role-based centrality 
metrics, or altering existing centrality metrics to consider a 
particular attribute in the calculation. For instance, if a criti-
cal node (such as Bluetooth or Zigbee/802.15.4 controller) is 
located at the edge of network technology, its node degree or 
betweenness can be significantly increased beyond the value 
computed from the graph structure to reflect its importance 
in network operation.

4.1.1 � Distance‑based centrality metrics

We examine diameter, eccentricity, closeness, betweenness, 
and stress from this group in our analysis.

The network diameter is a metric that represents the 
minimum number of hops to connect the farthest pair of 
nodes in a particular network. Regarding the graphs under 
study, the star topology has the shortest diameter among 

baseline models. The mesh network integrated with an 
access point on each mesh node has the next longest diam-
eter. If the number of mesh nodes increases, a one-hop 
distance can be maintained as long as a complete graph is 
constructed among the mesh nodes.

During Internet access link failure, the backbone com-
ponent is partitioned; therefore, the diameter value of the 
larger component decreases, affecting the value of met-
rics that depend on the shortest path metrics. However, 
the shortened diameter, in this case, may not significantly 
change the delay; because, one high-speed component of 
the network has failed, and network technologies with 
low-speed connectivity remain intact. Therefore, diam-
eter alone is not an adequate measurement in a multi-
technology network. It only provides an overall view of 
the network size.

Eccentricity centrality measures the longest of all shortest 
path from each vertex vi to all other vertices to capture the 
reachability of vertex vi . The higher value shows the proxim-
ity of node vi to other nodes. Eccentricity decreases from the 
star topology to our home network graph due to the addition 
of network technologies and consequently the increase of 
the network diameter. However, the higher eccentricity with 
relatively close values of the backbone nodes shows that 
other technology networks are evenly installed around the 
backbone. Therefore, minimizing the maximum length from 
backbone nodes should be a consideration in the design of 
smart home and other IoT systems. We provide the eccen-
tricity results in Table 1.

Closeness centrality is a measure of the average shortest 
path for any node vi to other nodes in a network. Closeness 
centrality deals with the minimum-sum reachability prob-
lem. A network with a larger mean quantity of closeness 
centrality has the smaller average of the shortest path among 
all nodes showing that the nodes are more concentrated 
toward the center of the network.

Fig. 3   Connectivity graph of the 
backup topology
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The center node of the star topology has the maximum 
closeness centrality value. When a network is expanded, 
the node’s closeness centrality values decrease due to 
longer paths as observed in our home network graph. In 
the backup topology, Phone1 has the highest closeness 
value. In addition, the overall closeness values for all nodes 
increase. Since the network gets shorter because of losing 
the backbone nodes. A node with high closeness value and 
high degree centrality has an exceptional position to dis-
seminate information. However, such nodes in communica-
tion networks are vulnerable in targeted attacks. Therefore, 
distributing closeness among all nodes are more favorable in 
communication networks, which makes our home network 
graph more resilient than other topologies.

Edge betweenness centrality is an edge centrality metric 
measuring the fraction of the number of the shortest path 
between every pair of nodes vi and vj that passes over a 
particular edge ek . An edge with a high value of the edge 
betweenness connecting two low degree nodes at both ends 
indicates a bridge in which it connects two parts of a net-
work. Failure of such edges may partition a network.

In our home network graph, all edges that connect a gate-
way to an access point have a high edge betweenness cen-
trality values. Generally speaking, all edges connecting part 
of a network with a different technology to another have a 
high edge betweenness centrality value constructing a bridge 
between two parts of the network. Disruption of such edges 
partitions a network technology from the rest of the network. 
Therefore, such links should be considered critical links; 
although, they do not have the maximum edge betweenness 
centrality in the network. The same condition is observed 
between Phone1 and EPC in the backup topology in which 
the home network is connected to the LTE network dur-
ing the failure. The thickness of the edges in Figs. 2 and 3 
illustrate such edges. Adding diverse paths in proper places 
either through the same or different technology decreases 
edge betweenness centrality on bridges improving the net-
work resilience through increasing technology heterogeneity. 
This is particularly important as a general principle for IoT 
design.

For instance, given a particular gateway, two wired and 
wireless interfaces may decrease the edge betweenness value 
of the connected edge to the gateway. The limitation is easily 
observed during failure since the only high speed and long 
range available technology is LTE. In a smart city with wire-
less access connectivity, one might have another path to the 
Internet with a restriction; because all nodes should connect 
to the citywide wireless network at relatively short ranges.

Although edge betweenness centrality may identify 
important edges that connect technology variants to the 
backbone network, it is not an appropriate measure for rec-
ognizing critical edges connecting important edge nodes. 
All edges connecting edge nodes to other nodes receive 

a low value with this metric while such nodes including 
sensors may gather critical data (think, for example, of a 
smoke detector or similar life-critical sensor). Here we see 
an obvious mismatch between graph theoretic measures and 
other dimensions of importance. One possible solution to 
alleviate the criticality of such nodes would be to install 
redundant nodes in the same area, thereby increasing sys-
tem cost. Another solution is to use a node supporting the 
capacity of different technologies to participate via a range 
of distinct network technologies. This would involve sacri-
fices in energy consumption. Our approach shows how one 
might weigh the various features of trade-offs like these. 
However, as noted throughout our discussion, graph theo-
retic measures alone cannot settle the question of the amount 
of resources to expend on maintaining the functionality of 
particular nodes in the network. Just how critical a particular 
node is judged to be is a matter determined by other means.

Node betweenness centrality, a node centrality met-
ric, measures the fraction of the number of shortest paths 
between every two nodes vi and vj that lies on a particular 
node vk . This value identifies the importance of a particular 
node in communication among other nodes. We provide the 
results of this metric for all models in Table 1.

Stress centrality measures the amount of communication 
that passes through an individual vertex vi . It is measured 
based on the number of the shortest paths through a node 
vi . This metric assumes that all the edges in the network 
have the same bandwidth and that all traffic goes through 
the shortest paths. Therefore, it does not provide an accurate 
result in a multi-technology network when each group of 
links has different bandwidth. For instance, AP1 connected 
to NID handles both the Internet traffic and part of the local 
traffic while it has a lower value than AP2 with more edges. 
Although assigning weights to edges can increase the accu-
racy of the measurement, weight normalization should also 
be considered in a multi-technology network. Here, it is 
important to note that a saturated link in a low-bit-rate tech-
nology has the same effect for that particular technology as 
the corresponding link in a high-bit-rate technology.

4.1.2 � Connectivity‑based centrality metrics

We analyze degree centrality, neighborhood connectivity, 
and k-edge connected metrics from this group.

Degree centrality in the network is a measure of the 
importance of a node with respect to how well-connected 
it is. A higher degree for a particular node in a commu-
nications network suggests that more nodes rely on it for 
their communication. A node with high degree centrality 
in a communication network is a potential vulnerability in 
targeted attacks.

The center point of a star topology has the maximum pos-
sible value for degree centrality ( n − 1 where n is the number 
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of vertices), which makes it the most vulnerable node to any 
attack or failure. In a mesh topology, the WLAN backbone 
is divided among mesh nodes, decreasing degree centrality 
values and, consequently, distributing the effect of any fail-
ure or attack. We observe the same effect in the backbone 
network of our home graph since it has a similar architec-
ture. Although a node failure with high degree centrality in 
the home backbone LAN can disrupt communication, failure 
of a gateway, even with lower degree centrality, in a star or 
mesh network technology can disconnect the entire associ-
ated network technology, which may support critical end 
nodes. Therefore, focusing on the degree centrality value 
alone cannot identify the crucial components of a multi-
technology network.

Neighborhood connectivity measures the average num-
ber of neighbors of all vi ’s neighbors (Maslov and Sneppen 
2002; Jalili et al. 2015). The neighborhood connectivity of 
node vi is small if vi has neighbors with low-degree central-
ity. In contrast, nodes with low degree centrality connected 
to the neighbors with high-degree centrality have high value. 
It shows the capability of any particular node to communi-
cate with other non-neighbor nodes. Therefore, all nodes 
at the center of a star topology have a low neighborhood 
connectivity value. Although this metric cannot consider a 
node criticality value and does not provide a direct connec-
tivity measurement, it can identify a proper indication for 
the connectivity of the edge nodes. Since the edge nodes 
in a low-bit-rate and low-energy consumption technologies 
usually connect to other nodes with a single link, neighbor-
hood connectivity can indicate the well-connectivity of an 
edge node if the first hop is intact.

k-edge connected, or k-connected, graph G is a con-
nected graph with the maximum number of edges ∣ X ∣ 
where X ⊆ E and ∣ X ∣< k such that subgraph G� = (V ,E⧵X) 
is still connected. k-edge connected implies that k separate 
paths exist between each node pair in G such that remov-
ing k edges partitions G. In k-edge connected graph G, it is 
required that k ≤ �(G) where �(G) is the minimum degree of 
vi ∈ V  (Koschützki et al. 2005; Wikipedia 2018). k-vertex 
connected graph is defined similarly.

Given the definition of k-edge connectness, neither of 
the models under study is k-connected; however, subgraph 
G� = (V �,E�) where V � = {AP1,AP2,AP3} is bi-connected 
(k-connected where k = 2 ) makes the mesh baseline model 
and consequently our home backbone network resilient to a 
single link failure.

4.1.3 � Spectra centrality metrics

We examine eigenvector centrality and Katz centrality from 
this group.

Eigenvector centrality is an extension of degree central-
ity that considers the importance of a node as its number of 

connections to the other important nodes (Newman 2010). 
Although this metric can identify an important node based 
on its number of connections in a homogeneous network, it 
cannot recognize such nodes in a multi-technology network. 
This is especially the case for nodes representing battery-
operated devices which have limited capability to establish 
multiple connections.

Katz centrality is an extension of eigenvector centrality. 
Similar to eigenvector centrality, the importance of a node 
vi depends on the number of direct neighbors, and neighbors 
of neighbors. However, the effect of neighbors of neighbors 
over the Katz centrality of vi decreases when the distance 
from vi increases. Katz centrality considers length of a walk 
between two vertices vi and a neighbor vj , and the effect 
of vj over vi (Koschützki et al. 2005; Newman 2010). Katz 
centrality can consider nodes with various importance in the 
measurement. Assigning a proper critical value to each node 
can provide a result considering the importance of nodes. 
We assign a high critical value to all access points and gate-
ways in the models under study. A medium critical value 
is assigned to important nodes and sensors such as smoke 
detectors and routers in a particular network technology. We 
assign the lowest value to other nodes. In contrast to other 
metrics, Katz assigns proper centrality values to the edge 
nodes, if they are important. We show the overall centrality 
results in Table 1.

4.2 � Technology interdependence model analysis

Our technology interdependence graph is the result of a one-
mode projection over the incidence matrix of the bipartite 
node-technology smart home connectivity graph (Modar-
resi et al. 2018). The one-mode projection finds adjacency 
between nodes based-on their connectivity to another group 
of nodes. This graph illustrates the relationship among tech-
nologies in a typical smart home. However, the high-level 
representation of this graph hides the details of particular 
components in the network technologies and shows the 
relationship among technologies in the overall network 
structure. Due to the simplicity of this graph, the centrality 
metrics for the graph analysis provide especially intuitive 
results. We perform the same analysis as we provide in Sub-
section 4.1 and add the results to the last column of Table 1. 
We also interpret the results of some of the important met-
rics and refer the readers to Table 1 for brevity.

Figure 4a illustrates the result of the edge betweenness of 
our technology interdependence graph. The thickness of the 
edges represents the level of betweenness. Both short-range 
technologies used in the home network graph, ZigBee and 
Bluetooth, have equal edge betweenness values. It shows the 
contribution of each network technology to the overall con-
nectivity of the network without considering how nodes in a 
network are connected or how many critical nodes there are. 
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Fig. 4   Technology interdependence graph centrality metrics

Table 1   The graph metrics for 
the various topologies

Graph centrality metrics Model

Star Mesh Home Backup Technology

Diameter Value 4 5 8 8 3

Shortest path Min  1.16 1.71 2.08 1.72 1.67
Mean 2.16 2.66 3.48 3.09 1.72
Max 3.67 4.33 5.19 5.22 2.00

Eccentricity Min 0.25 0.20 0.13 0.13 0.33
Mean 0.27 0.23 0.17 0.18 0.43
Max 0.50 0.33 0.25 0.25 0.5

Closeness Min 0.27 0.23 0.19 0.19 0.5
Mean 0.48 0.39 0.30 0.34 0.6
Max 0.86 0.58 0.48 0.58 0.86

Edge betweenness Min 36 42 8 8 4
Mean 41.11 55.91 126.73 96.18 9
Max 96 114 496 400 12

Node betweenness Min 0 0 0 0 0
Mean 0.07 0.08 0.07 0.07 0.14
Max 0.98 0.57 0.68 0.91 0.7

Stress Min 0 0 0 0 0
Mean 20.95 34.91 98.26 67.03 6
Max 300 238 946 904 26

Degree Min 1 1 1 1 1
Mean 1.89 2 2.16 2.06 2.29
Max 16 9 11 18 5

Neighborhood connectivity Min 1.06 1.50 2 1.44 1.8
Mean 13.35 6.60 5.76 10.16 3.54
Max 16 9 11 18 5

Eigenvector centrality Min 0.013 0.01 0.006 0.002 0.22
Mean 0.19 0.17 0.12 0.13 0.36
Max 0.71 0.53 0.56 0.69 0.59

Katz centrality Min 0.08 0.08 0.08 0.08 0.33
Mean 0.16 0.16 0.14 0.16 0.38
Max 0.59 0.38 0.37 0.49 0.46
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To take a simple example, if a cellphone with a Bluetooth 
interface joins the Bluetooth network (not shown in the fig-
ure) the k-connectivity of the Bluetooth network increases 
to 2 making it more resilient to the failure of technologies. If 
ZigBee technology can be integrated with more devices such 
as cellphones or laptops, we can expect the same resilient 
improvement for ZigBee.

In Fig. 4b the size of each node represents the value of 
node betweenness which can be interpreted as the impor-
tance of the technologies for the overall communication in 
the graph. As discussed, WLAN is the crucial technology 
in the smart home network connecting other technologies 
together. Furthermore, any disruption to the WLAN net-
work partitions the home network into multiple components. 
Therefore, in order to improve the network resilience pro-
tecting WLAN in various ways such as increasing k-con-
nectivity, enforcing higher security, and using dual-band 
connectivity would be essential tasks in the smart home 
improvement. One should note that losing any non-IP net-
work technology does not have an effect on the operation 
of the home backbone. However, having a critical node in 
the disrupted network technology, such as a smoke detector, 
may increase the danger to the home residents. Therefore, 
as discussed above, any node judged to be critical could 
equipped with multiple technologies according to their level 
of importance.

Figure 4c illustrates the node closeness centrality value. 
The figure shows that 802.11 has the smallest average short-
est path to other technologies. This result can confirm that 
802.11 is at the center of the technology network.

5 � Smart home topological analysis

As shown is Sect. 3, Smart home models are relatively small 
networks with complex interactions caused by the presence 
of diverse network technologies. If one fails to consider the 
functionality of nodes one generates misleading characteri-
zations of network properties (Modarresi et al. 2019). This 
is critically important when we are attempting to determine 
the vulnerability of these networks. However, the kind of 
topological analysis of smart home networks that we con-
duct, provides valuable insight into the vulnerabilities of 
such networks. In this section, we analyze the topological 
structure of various smart home networks.

As mentioned, deploying different network technolo-
gies provides path redundancy and diversity to the Internet 
resulting in improving network resilience. In this section, we 
analyze how adding extra cellphones with 4G/LTE/5G and 
WiFi technologies can affect the topological structure of the 
smart home models. This analysis is performed over many 
randomly generated smart home models with a different 

number of nodes in their backbone, resulting in networks 
of various sizes.

In Sect. 5.1, we explain our framework to generate the 
variants of smart home networks to perform our study. In 
Sect. 5.2, we analyze the generated smart home instances 
with conventional centrality metrics. We inspect the effect 
of size, the number of technology networks connected to the 
backbone, and the number of cellphones to understand the 
overall topological structure of a smart home network. In 
other words, we would like to examine how several technolo-
gies incorporated into various nodes such as cellphones that 
improve path redundancy and technological diversity affect 
the smart home models and how conventional centrality met-
rics can capture such changes in the networks.

5.1 � A framework for constructing smart home 
variants

In this section, we explain our method for constructing ran-
domly generated smart home instances corresponding with 
the smart home abstract model proposed in Sect. 3.1. This 
approach can be applied generally, for example to situations 
where one needed to randomly generate instances of larger 
or more complex IoT contexts such as smart cities. We use 
the instances generated by this framework for further analy-
sis of the topological structure of the smart home models. 
Each instance follows the same concepts, as explained in 
Sect. 3.1, with a backbone for each model. Then, the network 
technologies are connected to the backbone. The smart home 
network is connected to the Internet with RBB and 4G/
LTE/5G technologies to provide diverse paths to the Inter-
net. We construct smart home models with varying numbers 
of integrated access points for the backbones. We consider 
three to six integrated access points for the backbones. After 
constructing the backbones, we connect network technolo-
gies to the backbone for two groups of experiments. In the 
first group, we add one star- (representing Bluetooth net-
works) and one mesh- (representing Zigbee/Z-Wave net-
works) networks to the backbones. In the second group, we 
connect two star and two mesh network technologies to each 
backbone. Each generated instance is integrated with one 
to three cellphones to provide redundant network access to 
the Internet.

5.1.1 � Backbone structures

Three integrated access points can construct only two differ-
ent backbones, linear and complete graphs. However, when 
the number of integrated access points increases, the pos-
sible number of backbones increases accordingly. The maxi-
mum number of edges in a network obtains when a node vi 
connects to n − 1 other nodes where n is the total number of 
nodes in graph G resulting in a complete graph with graph 



5835Resilience and technological diversity in smart homes﻿	

1 3

efficiency equal to 1. The efficiency between node vi and vj 
is the multiplicative inverse of the shortest path distance 
between vi and vj (Latora and Marchiori 2001).

In order to generate a controlled environment, we con-
struct 25 different backbones manually in a way that we con-
sider linear, partially completed, and bi-connected networks. 
For each backbone with n nodes, we use the backbone topol-
ogies with n − 1 nodes and add one extra node. This extra 
node contributes to the overall backbone topologies in a way 
that we can generate different range topologies from linear 
to partially completed graph.

Figures 5 and 6 illustrate two samples of our smart home 
instances with three and six nodes in their backbones. Nodes 
AP1 to AP6 construct the backbone graphs in the corre-
sponding figures.

5.1.2 � Network technology structures

The network technologies connect to the backbones through 
their gateways. In a star topology, the center of the star net-
work is considered the gateway. In a mesh topology, the 
first created node in the network is considered the gateway 
labeled with 0 in Figs. 5 and 6. We consider a fixed num-
ber of nodes in the star and mesh topologies in order to 
establish a controlled environment. During the generation 
of the network technologies, they connect to the backbone 
nodes randomly. This process is repeated ten times for each 

backbone to construct randomly generated topologies. It is 
possible that star and mesh networks connect to the same 
backbone node due to this random process.

The number of network technologies affects smart home 
networks in two ways. First, through the topology that each 
type of network technology uses to establish the network, 
and second, by the number of nodes used in each network. 
We generate the same network topology with the identical 
number of nodes for each particular network technology so 
as to generate a controlled environment. In order to study 
the effect of the number of technologies, we perform two 
groups of experiments. In the first group, we consider two 
mesh and two star topologies in each model and compare 
the results. In the second group, we add only one star and 
one mesh network to the models and compare the results 
with the corresponding models constructed in the first group. 
We use Python NetworkX library to construct both star and 
mesh topologies. The Caveman algorithm (Watts 1999) in 
NetworkX is used to build the mesh topology.

5.1.3 � Cellphone integration

As discussed in Sect. 3, cellphones provide additional paths 
to the Internet, improving network resilience against Inter-
net connection failures through redundant paths. In order 
to study the effect of redundant path with the number of 
cellphones on the topological structure of the networks, we 
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connect one to three cellphones to each constructed model 
after integrating the network technologies to the backbone. 
The cellphones are connected to the backbone nodes ran-
domly. There is no restriction with respect to connecting 
multiple cellphones to any particular backbone node. We 
also consider all cellphones have the same provider; there-
fore, they connect to the same ISP through 4G/LTE/5G 
networks.

The generated instances connect to the Internet through 
RBB node to establish diverse path. Spatial diversity through 
connecting to different ISP, and technological diversity 
(wired vs wireless) are the results of the cellphones and RBB 
connections.

We generate 1500 smart home instances with two and 
four network technologies (750 instances for each group) 
with the aforementioned conditions.

5.2 � Analysis of smart home instances

In this section, we analyze generated instances from our 
framework explained in Sect. 5.1 with graph centrality met-
rics. During the analysis, we categorize all instances with the 
same number of nodes in their backbones in one group and 
study the effect of adding cellphones to the models as nodes 
supporting multiple technologies and increasing path redun-
dancy. In Tables 4, 5, 6, 7 and  8, we calculate centrality 

metrics for each group of instances per a particular number 
of cellphone. All instances have the same number of network 
technologies. For each group, the mean centrality value is 
calculated along with a 95% confidence interval.

Furthermore, we study the effect of the number of net-
work technologies in Figs. 8, 9, 10, 11 and 12. In the fig-
ures, instances with four network technologies (two mesh 
and two star networks) are compared with the corresponding 
instances with two network technologies. The figures also 
show the mean values with a 95% confidence interval for 
each corresponding metric.

We start our analysis by measuring general properties 
of the models. Tables 2 and 3 show values for the network 
diameter, average connectivity, algebraic connectivity, and 
efficiency of each group of instances without categorizing 
the calculated values for a particular cellphone number. 
Table 2 shows the results for instances with two network 
technologies while Table 3 shows the corresponding results 
for instances with four network technologies.

Figure 7a illustrates that the network diameters increase 
slowly when the number of nodes in the backbones 
increases; however, the increment is less than a unit. As 
expected, the instances with two network technologies have 
shorter diameter compared with instances with four network 
technologies; however, it shows that adding two network 
technologies with different topologies increases the network 
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diameters nearly one unit. Diameter shows the longest short-
est path in a network and can be utilized as an indicator to 
calculate delay. In small networks with the same size as the 
smart homes delay is negligent; however, when low-speed 
technologies are involved, each extra hop can add significant 
delay. Simulation is an adequate tool in such analysis com-
pared to graph analysis when links have different proper-
ties (Modarresi and Symons 2020).

Figure 7b shows the results of the average connectiv-
ity (Beineke et al. 2002). In the figure, the values of the 

average connectivity decrease when the number of nodes 
increases. This figure also shows that instances with more 
network technologies have smaller connectivity compared 
with instances with fewer network technologies. The trend 
of decreasing network connectivity is slower when more 
access points are added to the network. The plots in Fig. 7b 
always stay above one since the models are connected. Add-
ing more network technologies especially with star topology 
to an instance with a particular number of node decreases 
the current average connectivity. In addition, the results 

Table 2   Graph measurement 
for models with two network 
technologies

No. APs Measurement

Diameter ±� Connect. ±� Algebra. ±� Efficiency ±�

3 APs 8 0.13335 1.12019 0.00388 0.07716 0.00285 0.34604 0.00208
4 APs 8.16667 0.09931 1.10333 0.00276 0.0736 0.00219 0.33642 0.00156
5 APs 8.29722 0.05964 1.096 0.0017 0.07364 0.0013 0.32907 0.00105
6 APs 8.60556 0.12547 1.0908 0.00259 0.06956 0.00228 0.31928 0.00218

Table 3   Graph measurement 
for models with four network 
technologies

No. APs Measurement

Diameter ±� Connect. ±� Algebra. ±� Efficiency ±�

3 APs 8.8 0.16868 1.08989 0.00206 0.06341 0.00324 0.30853 0.00188
4 APs 9.02667 0.12209 1.08008 0.00144 0.06027 0.00208 0.30229 0.00141
5 APs 9.30278 0.08285 1.07492 0.00101 0.05953 0.0013 0.29785 0.00094
6 APs 9.54444 0.13544 1.07186 0.00155 0.05862 0.00203 0.2916 0.00183
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Table 4   Betweenness centrality 
metrics for models

Betweenness

No. Phones 1 Phone 2 Phones 3 Phones

No. APs Mean ±� Mean ±� Mean ±�

3 APs 0.06812 0.007 0.06574 0.00786 0.06348 0.00655
4 APs 0.06285 0.00382 0.06045 0.00323 0.05868 0.00246
5 APs 0.05776 0.0019 0.05583 0.00187 0.05435 0.00178
6 APs 0.05433 0.00431 0.05276 0.00466 0.05123 0.0039
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show that the instances are partitioned approximately with 
one failure even if the backbones are bi-connected in most 
instances. Another conclusion, specifically in our study, is 
that star networks are dominant in the models since most 
of the nodes in star networks have degree one and keep the 
average connectivity low.

Algebraic connectivity in Tables 2 and 3 shows a decreas-
ing trend meaning that the connectivity in the instances is 
getting weaker and the diameter is getting longer. This is 
because the number of nodes with a small degree, mostly 
degree one (edge nodes), is increasing.

Figure 7c illustrates that the values of efficiency has a 
decreasing trend in both groups of instances containing two 
and four network technologies. This is due to the fact that 
all nodes in any network technology connect to other nodes 
through their gateways. Therefore, there is no direct way for 
such nodes to communicate with other nodes outside their 
network.

Table 4 shows the mean values of the betweenness cen-
trality for each group of models per number of cellphones. 
We observe that betweenness values decrease when both 
the number of nodes in the backbones and the number of 
cellphones in the models increase. However, in both cases, 
betweenness values decrease slowly.

Figure 8 illustrates the betweenness results for three-
node-backbone instances with two and four network tech-
nologies, and six-node-backbone instances with two and 
four network technologies. We do not show the results for 
four and five-node-backbone instances in order to prevent 
overwhelming the figure. The results indicate that the value 
of betweenness decreases for all models when the num-
ber of cellphones increases. Moreover, though the overall 
betweenness values for all instances are small, we observe a 
distinct difference between three-node-backbone instances 
with two network technologies, compared with the rest of 
the instances. We can also observe that the slope in the 

Fig. 8   Betweenness results 
for models with two and four 
network technologies
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Table 5   Closeness centrality 
metrics for models

Closeness

No. Phones 1 Phone 2 Phones 3 Phones

No. APs Mean ±� Mean ±� Mean ±�

3 APs 0.25623 0.0209 0.25892 0.0243 0.26138 0.02164
4 APs 0.25176 0.0117 0.25531 0.01049 0.25706 0.00838
5 APs 0.24969 0.00604 0.25256 0.00623 0.25431 0.0061
6 APs 0.24477 0.01418 0.24729 0.01547 0.24947 0.01383
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betweenness plot for the three-node-backbone models with 
two network technologies is steeper compared with other 
models in Fig. 8. We should emphasize that the values in 
Table 4 and Fig. 8 indicate the mean betweenness for all 
nodes. The growth of the number of nodes in the backbones 
increases the probability of establishing new shortest paths 
between each node pair resulting in decreasing the mean 
betweenness value. However, for a fixed number of cell-
phones, the large values belong to the three-node-backbone 
models due to the fewer number of nodes in the models com-
pared with the rest of the models. In other words, increasing 
the number of network technologies decreases the between-
ness values due to integrating more nodes. Regardless of the 
number of network technologies, increasing the number of 
cellphones has a negligible effect on the betweenness values.

Table 5 shows the closeness values for all instances 
per number of cellphones. Closeness shows the average 
shortest path values from any node vi to other nodes. The 

larger value indicates that the nodes are closer to each 
other. The values in Table 5 indicate that neither adding a 
new node to the backbone nor integrating a new cellphone 
has a negligible effect on the closeness values. However, 
reducing the number of network technologies illustrated 
in Fig. 9 changes closeness values noticeably.

Table 6 shows the degree centrality values for all mod-
els per number of cellphones. Degree centrality values 
are relatively small for all models. The results in Table 6 
indicates that the three-node-backbone models have the 
highest and six-node-backbone models have the lowest 
values. Integrated cellphones change the degree central-
ity values very slightly since cellphones have degree 2 in 
the models. The reason for very low mean centrality val-
ues is the number of edge nodes with degree 1. All nodes 
in a star topology except the central node have degree 1. 
Several star topologies have been integrated with each 
model resulting in low mean degree values. Adding more 

Fig. 9   closeness results for 
models with two and four net-
work technologies
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Table 6   Degree centrality 
metrics for models

No. Phones Degree centrality

1 Phone 2 Phones 3 Phones

No. APs Mean ±� Mean ±� Mean ±�

3 APs 0.04764 0.0014 0.04743 0.00134 0.0472 0.0013
4 APs 0.04314 0.00065 0.04296 0.00063 0.04277 0.0006
5 APs 0.03958 0.00039 0.03942 0.00037 0.03926 0.00037
6 APs 0.0364 0.00083 0.03627 0.0008 0.03613 0.00078
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network technologies with a star topology reduces degree 
centrality more.

In contrast, removing technologies with a star topology 
increases mean degree centrality. Figure 10 shows changes 
in the mean centrality values. Furthermore, the number of 
wireless stations connected to the backbone nodes of the 
three-node models is fewer than other models resulting in 
increasing the mean degree centrality values. Figure 10 also 
shows that adding one extra cellphone changes the mean 
centrality values slightly while adding a network such as 
a star with low degree centrality values changes the mean 
centrality values noticeably.

We present the results of the mean eigenvector centrality 
values for all models per number of cellphones in Table 7. 
Since eigenvector centrality is an extension of the degree 
centrality, we observe that the number of cellphones does 
not change the mean eigenvector values sharply. When the 
number of nodes on the backbones increases, the amount of 

centrality values change even slower. In addition, the dis-
tance between the values of each plot decreases from three-
node-backbone to six-node-backbone models. The distances 
between plots are much recognizable when the number of 
network technologies changes, as in Fig. 11, showing the 
results between two and four network technologies.

Katz centrality is an extension of the eigenvector cen-
trality. However, in Katz centrality, the effect of the farther 
nodes in a walk decreases in the calculation of the central-
ity values. In addition, Katz centrality accepts weight for 
nodes to change their effect on the centrality values. Table 8 
presents the value of the mean Katz centrality values. A 
noticeable change between the eigenvector and Katz central-
ity is that the Katz values are larger than eigenvector values. 
Regardless of this change, the trends of the values in both 
Tables 7 and 8 are identical.

The above results show that adding new cellphones 
does not change the centrality metrics values significantly, 

Fig. 10   Degree results for mod-
els with two and four network 
technologies
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Table 7   Eigenvector centrality 
metrics for models

No. Phones Eigenvector centrality

1 Phone 2 Phones 3 Phones

No. APs Mean ±� Mean ±� Mean ±�

3 APs 0.10284 0.0083 0.10208 0.00744 0.10146 0.00731
4 APs 0.09448 0.0035 0.09411 0.00376 0.09357 0.00266
5 APs 0.08758 0.0017 0.08721 0.0015 0.08714 0.00142
6 APs 0.0852 0.00258 0.08536 0.00302 0.08515 0.00293
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although providing duplicate and diverse paths in a model 
improve the network resilience. As we have shown in previ-
ous work, a multilayer model can illustrate duplicate and 
diverse paths better than a single layer model (Modarresi 
et al. 2019).

The results also show that most centrality metrics have 
higher values for models with a small number of nodes in the 
backbone compared with larger networks with more nodes 
in the backbones. The intermediate results also reveal that 
for the most centrality metrics models with larger backbones 
and fewer network technologies have higher centrality values 
compared with the models with smaller backbones and more 
network technologies. For instance, models with five access 
points and two network technologies have higher Katz cen-
trality values than models with three access points and four 
network technologies. We should emphasize that this rela-
tionship is only true for models that are one or two access 
points (nodes in the backbone) apart from each others.

6 � Conclusion and future work

In this paper, we introduce and demonstrate the role of an 
abstract model for understanding the network properties of 
a complex IoT system. We focus on the relatively simple 
context of smart homes. We consider commonly used tech-
nologies and their corresponding network topologies with 
the goal of simplifying the representational complexity of 
networks composed of heterogeneous technologies. Our 
goal is to demonstrate how designers and engineers can 
take network topologies into account so as to develop more 
resilient IoT systems. In our analysis we show how to com-
pare an instance of our model in the normal state and dur-
ing the main Internet connection failure with other base-
line topologies such as star and mesh using various graph 
centrality metrics. Our model represents a multi-technol-
ogy network whose nodes have a variety of functionality 

Fig. 11   Eigenvector results 
for models with two and four 
network technologies
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Table 8   Katz centrality metric 
for models

No. Phones Katz

1 Phone 2 Phones 3 Phones

No. APs Mean ±� Mean ±� Mean ±�

3 APs 0.14327 0.00101 0.1416 0.00112 0.13998 0.0011
4 APs 0.13574 0.00054 0.13431 0.00054 0.13293 0.0005
5 APs 0.12915 0.00034 0.12793 0.00035 0.12671 0.00035
6 APs 0.12367 0.00074 0.12258 0.00076 0.1215 0.00075
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and different bit-rate links. In these contexts, centrality 
metrics typically fail to explain the correct behavior of 
the associated graph of the network. We identify which 
metrics are more applicable in light of the functions and 
importance of the nodes of the network. We perform the 
same analysis on our technology interdependence graph. 
This analysis provides valuable results without requiring 
researchers to consider all the details of intractably com-
plex networks.

We show how to build controlled experimental studies 
of instances of these models and as an example, we ana-
lyze hundreds of instances of our smart home instances 
to study resilience of such networks through path redun-
dancy and diversity when nodes such as cellphones with 
supporting multiple technologies are added. The results 
show that although the engineered home backbones can 
resist multiple node failures, the networks on average are 
one-connected and one failure can partition them. In addi-
tion, redundant paths do not change the mean values of the 
centrality metrics noticeably.

Our plan for the future research is to design centrality 
metrics sensitive to various link interactions. Such cen-
trality metrics consider link diversity in the calculation 
providing more salient results compared to typical central-
ity metrics in which only path redundancy is considered.
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