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Abstract: Friction force microscopy (FFM) explores the interaction in a sliding contact on the nanoscale, 

providing information on the frictional dynamics and lateral contact stiffness with lattice resolution. Recent 

FFM measurements on a NaCl crystal immersed in liquid (ethanol) surroundings displayed an increase of the 

effective contact stiffness, Keff, with the applied load, differently from similar measurements performed under 

ultra-high vacuum (UHV) conditions, where Keff showed negligible load dependency. Additionally, under UHV 

conditions multiple slip length friction with increasing load was reported, while in ethanol surroundings only 

single (lattice unit length) slips were observed. Our current understanding of this behavior relates the transition 

from single jumps to multiple jumps dynamics to the normal load (manifested through the amplitude of the 

interaction potential at the contact, U0) and to the damping of the system. Here we have incorporated the effect 

of the load dependency on both U0 and Keff within Prandtl‒Tomlinson based simulations, accompanied by 

variations in the damping coefficient of the system. Introducing the experimentally observed load dependency 

to Keff resulted indeed in single slip jumps at critical damping, while multiple slip jumps were obtained at 

constant Keff. The average slip length increased with the normal load, particularly when the system became 

underdamped. Our work provides a glimpse on the relation between the characteristic observables in atomic- 

scale sliding friction (maximal slip forces, stiffness, and slip dynamics) with respect to their governing parameters 

(corrugation energy, effective stiffness, and damping). While common understanding in nanotribology relates 

the effect of surrounding media mainly to the interaction potential at the contact, here we show that the media 

can also greatly affect the elastic interaction, and consequently play an important role on the transition from 

single to multiple stick-slip. 
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1 Introduction 

Friction is a phenomenon related to irreversible 

dissipation of energy through the dynamic interaction 

between two surfaces that come into contact and slide 

past each other. The study of friction on the nanoscale 

provides valuable insights on the fundamental 

mechanisms that govern the interaction within single 

junctions formed and broken between the contacting 

surfaces. One of the most useful approaches to probe 

contacts at the single asperity level is friction force 

microscopy (FFM), which is a straightforward extension 

of atomic force microscopy (AFM) [1‒3]. The lateral 

force (friction) between a sharp tip supported by the 

AFM cantilever and a surface of interest is recorded, 

as the tip slides on the last one. The AFM is used to 
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manipulate the base of the cantilever and to scan the 

surface at different rates and under various loadings. 

On a crystal surface these recordings provide friction 

maps and friction loops with lattice resolution 

characterized by stick-slip dynamics [4‒12]. The stick- 

slip pattern results from the tip-surface interaction 

energy landscape, which consists of neighboring 

potential wells where stick events followed by irrever-

sible jumps (slips) over the energy barriers separating 

the wells occur.  

The Prandtl‒Tomlinson (PT) model [13‒15] is 

commonly used to provide a basic mechanistic 

framework to describe stick-slip frictional interaction 

[4, 6, 8, 11, 12, 16]. It accounts for the contact as a 

mass point particle which is elastically driven across a 

(load-dependent) periodic potential with the symmetry 

of the surface lattice. Through this portrayal, the 

recorded stick-slip dynamics reflects instabilities 

occurring during the motion of the tip between con-

secutive minima in the tip-surface interaction potential. 

Essentially, the interplay between the contributions of 

the potential corrugation and the elasticity accounts for 

the nature of the friction dynamics, i.e., continuous, or 

sharp transitions (may they be over a single or several 

lattice constants). A criterion for the transition from 

smooth sliding to stick-slip is set by the PT parameter, 

i.e., the dimensionless quantity [17]: 

2

0

2

eff

4π U

K a
                  (1) 

This parameter physically represents the ratio between 

the amplitude of the interaction potential, U0 (which 

is supposed to be sinusoidal), and the elastic spring 

energy (via Keff, the effective lateral contact stiffness, 

and a, the lattice periodicity). If  > 1, the interaction 

potential dominates over the spring energy, and 

stick-slip motion is observed: The tip persists in the 

minimum of the corrugation potential until it slips 

to a close minimum on the lattice. If , the tip will 

continuously slide over the surface with no stick-slip 

dynamics pattern, and marks the transition 

between the two regimes. 

Long length jumps (“multiple” slips) over more than 

one lattice constant, are predicted by the PT model 

when  assumes high values. In the quasi-static limit 

of the PT model, the number of possible minima in  

the energy landscape can be precisely estimated 

according to . As increases, more and more potential 

wells become accessible to the tip, and longer and 

longer slips are allowed [18]. The damping coefficient 

 also plays an important role in the transition from 

single to multiple slips. It relates to the thermal 

fluctuations at the contact, as indicated by the 

fluctuation-dissipation theorem [18‒22]. Due to the 

coupling of the excitations of surface and tip, single 

slip events are preferred when the contact vibrations 

are overdamped and the dissipated energy rate in a 

slip is fast [19]. As a critical value for the damping 

coefficient, C, one usually takes that of the harmonic 

oscillator corresponding to the tip decoupled from 

the corrugated surface potential but still subject to 

the elastic deformation of the contact [20, 22, 23] 

(see Eq. (7) below). At low damping ( < C), contact 

vibrations are underdamped, and slip can easily 

overshoot over two, three, and more lattice constants 

up to the maximum slip length allowed by . At 

high damping, only single slip events will be likely 

observed (as the damping restrains the tip motion), 

even if more than two minima are present. This means 

that although the value of  predicts the number of 

minima corresponding to the given energy landscape, 

the quantity  will ultimately determine the actual 

dynamics.  

Considerable amount of FFM experiments reporting 

lattice resolution were performed under ultrahigh 

vacuum (UHV) or in other dry environments (for 

instance in N2 or Ar [4, 6, 7, 9]) in order to avoid 

complications that may arise from the presence of 

capillary forces and possible contaminants. An alter-

native to UHV conditions consists in performing FFM 

experiments in liquid surroundings [10, 24‒26]. First 

attempts to compare the stick-slip behavior observed 

in the two environments were performed in the case of 

graphene and NaCl [27, 28]. While FFM measurements 

on NaCl with Si tip in UHV resulted in a consistent 

increase of the PT parameter with the applied load 

[6, 19], a non-monotonous behavior was reported for 

similar measurements in liquid surroundings (ethanol) 

[29]. In both environments the maximal stick forces, 

Fmax, increased monotonously with the applied load, 

as was also reported for graphene in UHV and in 

liquid (water) [27]. Keff, however, showed very little 

variation with the applied load in UHV for NaCl [6, 19], 
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though substantially growing upon measuring in 

liquid surroundings [28, 29]. These different behaviors 

in  and Keff are expected to affect the friction 

dynamics, and indeed, under UHV, multiple jumps 

appeared at increasing loads on both NaCl [19] and 

graphite [18]. However, this was not the case for FFM 

data acquired on NaCl in ethanol [28, 29], where the 

recorded stick-slip signal corresponded to single slip 

lengths over a wide range of normal loads, as can be 

seen in Fig. 1. 

In contrast with the other quantities, measuring the 

contact damping coefficient is very problematic since 

direct detection of the viscous force, –v (where v is 

the tip velocity), requires considerably higher scanning 

velocities than those accessible using AFM [19, 23]. 

Numerical simulations aiming to explore the effect of 

the applied normal load, FN, on the friction dynamics 

 
Fig. 1 Slip length obtained from NaCl measured in ethanol. 
(a) Schematics of the FFM measurement of NaCl immersed in 
ethanol. (b) Slip lengths probability distribution functions (PDFs) 
calculated from NaCl FFM experiments in ethanol under varying 
applied load (FN = 2.3–58.4 nN; V = 60 nm/s). The inset shows 
the moments (mean and standard deviations) of the PDFs, where 
the periodicity of NaCl lattice (a = 0.564 nm) is plotted with a 
purple dashed line. 

(slip lengths) through the interplay between the PT 

parameter and the damping coefficient can provide 

important insights. It must be noted that scanning 

velocity, temperature, and surface disorder also affect 

the transition from single to multiple jumps [21, 23, 30, 

31], however in this study the data was obtained from 

experiments (and simulations) that were performed on 

crystal surfaces at constant velocity and temperature. 

By implementing the experimentally (empirically) 

observed dependency on the applied load in the 

measured lateral forces and stiffness into our simula-

tions, we are able to reproduce the single length 

slip observed in the FFM measurements in ethanol. 

Furthermore, when holding Keff constant while varying 

the damping, we obtain the increasing trend of multiple 

jumps with the applied load, which was reported for 

UHV-FFM measurements on NaCl. 

2 Methods 

FFM dynamics has been simulated with the Langevin 

equation within the framework of the PT model. As 

previously mentioned, the PT model (in 1D) depicts 

the elastically driven AFM tip as a mass point in a 

harmonic potential, Uelastic(x, t), which is being dragged 

by a support moving at constant velocity V over a 

corrugated periodic potential, Uinteraction(x), with an 

amplitude U0 and periodicity a. The total potential is 

thus given by 

interaction elastic
( )( , ,( ))E x t U x U x t                 (2) 

2
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 
    

 
      (3) 

The parameter Keff in Eq. (3) is the aforementioned 

effective stiffness of the system [32], and it is in 

principle load-dependent. The sinusoidal potential 

represents the surface-tip interaction, where x is the 

tip coordinate defining the one-dimensional reaction 

length, and t is time. The time evolution of the system 

can be obtained by solving Eq. (4): 

( , )
( ) ( ) ( )

E x t
Mx t x t t

x
 

   


          (4) 

where M is the effective mass of the tip,  is the 

aforementioned damping coefficient, and (t) is a 
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fluctuating random force, given by the fluctuation- 

dissipation theorem with  (t) = 0, and (t)(t') = 

2kBTδ(t – t') with kB being Boltzmann’s constant, and 

T the absolute temperature.  

It is well-known that the amplitude of the tip-sample 

interaction is considerably affected by the normal 

force [6, 28, 33, 34], i.e., U0 = U0(FN), the precise relation 

being dependent on the geometry and elastic properties 

of the contacting materials. In order to comply with 

FFM measurements on NaCl in both UHV [6] and in 

ethanol [28, 29], we use the general ansatz in Eq. (5): 

N
0 N

0

1( )
F

U F
F




 

  
 

            (5) 

It relates the amplitude of the interaction potential 

to the applied load via the parameters F0, the force at 

which U0 = 0, , which defines the interaction amplitude 

at zero force, i.e.,  = U0(FN = 0) and an empiric 

exponent, which is ~1 here [28, 29]. 

The effective spring constant, Keff, was shown to 

increase with the applied load [16, 28, 29], meaning 

that Keff = Keff(FN). The effect of the normal load on the 

velocity (and temperature) dependency of nanoscale 

friction was recently related to the distribution of 

contact pressure across the interface [35]. The model 

by Ouyang et al. is elegant, but it requires a knowledge 

of parameters, such as the thermal activation rates 

of local bond formation/dissociation (attempting 

frequencies), the corresponding barrier heights for 

these processes, contact pressure, activation volumes, 

etc., that are not easily accessible experimentally.  

For this reason, we use also in this case an empirical 

power-law approximation that was already used to 

describe the dependency of the measured Keff on the 

normal load [28, 29]: 

eff N 0 1 N
~( ) kK F K K F             (6) 

(where K0, K1, and k are fitted parameters). The 

damping coefficient  is difficult to measure directly, 

because the damping force − v is only relevant in 

the fast slip phase. Various estimations [5, 19, 36, 37], 

however, agree within an order of magnitude and yield 

  10−6‒10−5 kg/s. These values are in close proximity 

to the critical damping of the system [20, 38, 39]: 

eff
C

2
K

M
M

                  (7) 

Depending on the experimental conditions, the tip 

motion can be thus expected to be either slightly 

underdamped or overdamped. Furthermore, since 

Keff = Keff(FN), also CC(FN). 

When U0 and Keff are a priori unknown, the PT 

parameter   defined in Eq. (1) can be evaluated 

directly from measured quantities, i.e., the maximal 

stick forces, Fmax, and the derivative of the (lateral) 

spring force FL with respect to the support position  

X = Vt, Kexp = dFL/dX, as in Ref. [6]: 

max
exp

exp

2π
1

F

K a



 

 
               (8) 

Once η (or exp) is known, the effective stiffness can be 

estimated from the local stiffness with the expression 

in Eq. (9) [17]: 

eff exp

1
1K K


 

   
 

               (9) 

To simulate the FFM experiments, the load dependent 

corrugation amplitude and effective stiffness given 

by Eqs. (5) and (6) were substituted into the overall 

tip-sample interaction potential, Eq. (3), which is in 

turn substituted into the general equation of motion, 

Eq. (4). We implemented the numerical solution by 

separating Eq. (4) into two variable equations with 

first order derivatives, which we solved with Verlet 

integration [29, 30]. The following parameters were 

used for the simulations: M = 10–12 kg [39], T = 293 K, 

kBT = 4.1×10–3 nN·nm, V = 60 nm/s, and a = 0.564 nm. 

The parameters for U0(FN) and Keff(FN) were taken as 

the experimentally fitted values [28, 29]: ε = 0.0143 eV, 

F0 = –0.245 nN, υ = 1.084, K0 = 0.95 nN/nm, K1 =   

0.012 nN1–k/nm, and k = 1.69. The time step interval 

for the simulations was taken as 5×10–10 s. The resulting 

time dependent position trajectories, x(t), were 

used to calculate the lateral (friction) force as FL = 

Keff[Vt – x(t)] [19, 29]. 

In the simulations we explored four cases where 

the effective stiffness was varied with the force 

according to Eq. (6) or held at the constant value of 

Keff = 2 nN/nm observed in UHV conditions [6], and 
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the damping was taken at its critical value, as defined 

by Eq. (7), or held constant at  = 2.83×10–6 kg/s 

calculated for Keff = 2 nN/nm (below the load dependent 

critical value). Figure 2 illustrates the four scenarios 

that we explored with the simulations: Keff(FN) and 

(FN) (case 1, corresponding to the parameters reported 

for NaCl in ethanol), Keff(FN) and  = 2.83×10–6 kg/s 

(case 2), Keff = 2 nN/nm and (FN) (case 3), and Keff = 

2 nN/nm and  = 2.83×10–6 kg/s (case 4). Case 2 explores 

the possibility of underdamping, i.e.,  = 2.83×10–6 kg/s < 

[Keff(FN)] for the situation in which Keff = Keff(FN). 

Under UHV, it was reported that the system goes from 

being underdamped into slightly overdamped with 

the increasing of the force [19]. This situation is 

reflected in case 3, while case 4 explores the possibility 

of the system being at critical damping.  

Slip lengths from the experimental and simulated 

data were calculated using Hooke’s law [19, 20], i.e., 

xi = (Fi,max – Fi+1,min)/Kexp,i, where Kexp,i = (Fi,max – Fi,min)/ 

(Xi – Xi–1), with Fi,max being the i-th value of the maximal 

force (with the support positioned at Xi), followed by 

Fi+1,min, which is the minimum force after the consecutive 

slip (located at Xi+1), and Fi,min (located at Xi) is the 

minimal force that precedes Fi,max. This means that each 

slip length is evaluated by the force drop at the slip 

event divided by the recorded local stiffness. 

 

Fig. 2 Representation of the four case studies that were examined 
by changing Keff and  with the normal load. 

3 Results and discussion 

The PT parameter reported for NaCl in UHV under 

loads up to 91 nN reached up to  = 14.5 [19]. 

Comparable high values (displaying different trends) 

were reached for NaCl in ethanol [29]. The NaCl  

in UHV measurements showed increasing slip 

lengths, in accord with the predictions and previous 

observations of single slips occurring at 1 <  < 4.6, 

double slips at 4.6 <  < 7.79 and larger at  > 7.79  

[18, 19], while the NaCl in ethanol showed mostly 

single slips events (Fig. 1(b)). This points towards the 

possibility that the damping in liquid surroundings is 

higher than in UHV. As it was previously mentioned, 

for NaCl Keff showed very little change with the 

applied normal load under UHV [6, 19], while in 

ethanol it displayed a substantial increase [28]. These 

values of and Keff define the region in the parameter 

space, where we are interested in studying the 

interrelations between normal load, damping coefficient, 

and slip-lengths. 

Figure 3(a) shows several simulated stick-slip traces 

under increasing normal load (from bottom to top) 

for case 1, where both Keff and  vary with FN. As can 

be seen, the maximal slip forces and the slopes in the 

 

Fig. 3 FFM simulations with normal force varying and constant 
Keff and . (a) Simulated force traces with Keff(FN) and  (FN) 
(case 1) at FN = 15, 25, 40, and 60 nN. (b) Simulated force traces 
with constant Keff and  (case 4) at FN = 10, 15, 20, and 25 nN. 
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stick-phase slopes (dFL/dX) increase with the load, 

but the slip length remains constant. Some simulated 

stick-slip force traces in the opposite case 4, where 

both Keff and  are held at the previously defined fixed 

values are shown in Fig. 3(b). Here the increase of  

the maximal slip forces is also evident, however the 

stick-phase slopes remain constant, and traces at FN = 

20 nN display a mixed behavior of single and double 

slip lengths, which turn into double slips at FN = 25 nN. 

As can be seen in Fig. 4(a), the mean value of Fmax 

increases with the applied load in a similar way in 

all four cases, with no relation to  nor Keff. This 

implies that mainly the corrugation term, U0, in the 

free energy profile in the PT model determines Fmax. 
This behavior is in concert with previous studies 

that reported similarity in friction signals between 

FFM measurements performed in UHV and in liquid 

surroundings [27, 28]. In the simulations the corrugation 

amplitude, U0, has been increased with FN according 

to the dependency given by Eq. (5). On the other 

hand, the mean slope Kexp at the stick phase, shows a 

different behavior, as seen in Fig. 4(b). This behavior 

strongly builds upon the normal load dependency 

of Keff assumed in the simulations. For cases 1 and 2, 

where Keff = Keff(FN), Kexp increases with the normal 

load. On the other hand, if Keff is kept constant, as in 

cases 3 and 4, Kexp asymptotically tends to Keff, in line 

with the fact that Kexp is equal to Keff multiplied by a 

factor of /( + 1). In Fig. 4(b) this is well seen above 

FN = 15 nN. Note that the difference due to the load 

dependency of  is negligible, which suggests that 

(experimentally) the damping plays almost no role 

not only on Fmax but also on Kexp.  

The dependency of the normal load on U0 and Keff 

manifested on both Fmax and Kexp, is expected to also 

influence the PT parameter. Figure 4(c) shows that 

exp, calculated using Eq. (8), is mostly affected by the 

effective stiffness. This could be expected from the 

observed trends of the maximal slip forces, which did 

not show any change for the four case studies (Fig. 4(a)), 

while Kexp displayed distinct different behaviors for 

Keff(FN) and for Keff = const. (Fig. 4(b)). For Keff = const., 

exp grows with the applied load, as observed for 

NaCl measurements in UHV [6, 19], while for Keff(FN) 

we observe a non-monotonous behavior of exp with 

the applied load similar to that reported for NaCl 

measurements in ethanol [29]. This is the first key 

conclusion of the present work. 

 

Fig. 4 Load effect for the four case-studies. (a) Mean maximal slip forces as a function of the normal load. (b) Interaction stiffness,
Kexp, as a function of the normal load. (c) exp as a function of the normal load. (d) The ratio between exp, calculated from the 
experimental parameters in (a) and (b), and  calculated from U0 and Keff. 
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It should be noted that the expression in Eq. (8) for 

exp provides an approximation for  given by Eq. (1), 

since it is evaluated at zero temperature, while Fmax 
is measured at finite temperature. To evaluate the 

deviation of exp from the actual value of , we plotted 

the ratio between them as a function of the normal load 

in Fig. 4(d). As can be seen, when Keff is constant, the 

differences are mild, and become less than 5% as the 

load increases (at FN > 20 nN). When Keff = Keff(FN), the 

error is larger, yet at FN > 10 nN it remains less than 

20%. It is interesting to notice the effect of the damping 

on this ratio: at FN > 15 nN, the error in exp with respect 

 to slightly increases. Considering these relatively 

moderate differences, and with the intention to approach 

our analysis from an experimental perspective (where 

the ideal U0 and Keff are not always known), we use exp 

instead of  in Eq. (9), and also from here onwards. 

The exemplary simulated force traces shown in the 

opposite case studies presented in Figs. 3(a) and 3(b), 

indicate that the load-dependency of the damping 

(and phenomenologically of Keff, as given by Eq. (7)) 

results in different slip length. We therefore calculated 

the slip-length distribution (normalized by the lattice 

constant) for each case and plotted them in Fig. 5. 

Case 1 shows small variation around single slip, with 

its distribution becoming narrower with the increase 

of FN (Fig. 5(a)). Case 2 shows a transition from a 

single to double slip length with the increase in FN 

(Fig. 5(b)). Case 3 shows transitions from single to triple 

slip lengths with the increase in FN, yet the majority 

of slip lengths are double (Fig. 5(c)). Case 4 exhibits 

an increase up to seven slip lengths (Fig. 5(d)). 

The means and standard deviations from the 

normalized slip-lengths calculated over all applied 

loads in the four cases are shown in Fig. 6(a). All cases 

display single slip events until FN = 15 nN. From 20 nN 

and above, three cases show transitions into multi-slip 

length friction regime. This demonstrates the effect of 

the damping coefficient on the friction dynamics: 

When is related to the effective stiffness, then the 

system remains overdamped at increasing loads, and 

only single slip-events are observed (blue circles). 

Oppositely, when both Keff and are constant, the 

long jumps made possible at increasing load (up to 

seven lattice constants) are observed (green diamonds). 

Between these two extremes: when Keff(FN) and  are 

constant, the jump length is smaller (black squares) 

compared to the situation where Keff does not change, 

and  increases with the load (red triangles). This is 

the second key result of this work. 

 

Fig. 5 Slip length (with respect to the periodicity, a) probability density functions at FN = 5, 20, 40, and 60 nN for (a) Keff(FN) and 
 (FN), (b) Keff(FN) and  = const., (c) Keff = const. and  (FN), and (d) Keff = const. and  = const. 
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Fig. 6 Slip length and its relation to contact stiffness and damping. 
(a) Mean slip lengths for all examined case-studies as a function of 
applied normal load. (b) Kexp/Keff (= ( + 1/exp)

–1) as a function of 
the normal load. 

Multiple length slips can be readily interpreted 

when  assumes high values at sufficiently low Keff or 

high U0. In the quasistatic limit, where ∂E/∂t = 0, the 

number of solutions to (2U0/a)sin(2x/a) = Keff(Vt – x) 

defines the number of possible minima in the energy 

landscape. A single solution is related to smooth sliding, 

two solutions to a single slip length, and above three 

solutions to multiple slip jumps. This affects the overall 

contour of the energy landscape, which comprises all 

the corresponding possible available minima according 

to [18], however,  alone does not disclose enough 

details on the transition between friction regimes with 

the applied load, which is ultimately ruled by the 

damping [19, 20]. 

We therefore plotted in Fig. 6(b) the ratio of Kexp to 

Keff (= ( + 1/)
–1) to obtain additional information on 

the effect of  through Keff. It is evident that until 

FN = 15 nN, where no multiple slips are observed, the 

difference between Keff = const. and Keff(FN) is hardly 

noticeable, while beyond this point  becomes more  

relevant, and a trend similar to Fig. 6(a) (with respect 

to the extent of the multiple jumps occurrence) is 

observed. First, we see that Kexp asymptotically 

approaches Keff, for the situation in which Keff = const. 

(green diamonds and red triangles), while for Keff(FN), 

Kexp remains beneath 90% of Keff when it varies with FN 

(black squares and blue circles). The two cases where 

  (FN) show a slightly smaller Kexp/Keff ratio compared 

to the two cases where  = const. (green diamonds 

and black squares). Although the separation at high 

FN is minor, the comparable value of Kexp/Keff ratio,  

or alternatively, ( + 1/exp
)–1, can thus provide some 

indication on the damping state of the system (as it 

shows better separation compared to exp with FN). 

Figure 7 summarizes the four case-studies by 

plotting the -dependency of the ratio /C, withC 

determined by Eq. (7) with the definition of Keff 

characterizing each case, and  calculated with Eqs. (1), 

(5), and (6). This “blueprint” representation allows us 

to define a sort of “phase diagram” between single- 

and multi-slips dynamics based on the information 

available in Fig. 6. Below  ≈ 11, all cases display 

single-slip dynamics although being under different 

damping. The situation that agrees with the observed 

experimental findings of NaCl in ethanol is the one 

where Keff and  vary with the normal load (blue 

squares, case 1). In this case  remains always below 

11. If  is assigned with a constant value, while Keff 

grows with FN (black squares, case 2) the system is first 

 

Fig. 7 Transition from single- to multi-slip in the 1D simulations 
resulting from the combination of the system parameters expressed 
via the PT parameter, , and the damping (with respect to its 
phenomenological critical value), /C.  
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overdamped and becomes strongly underdamped as 

FN increases, with multiple (double) jumps appearing. 

Also in this case, the PT parameter  < 11 for all values 

of FN. In the opposite case, when Keff is taken as 

constant while increases with the load (red triangles, 

case 3), multiple (up to triple) jumps occur when  > 11 

and the system is highly overdamped. Finally, when 

both Keff and  are kept constant (green diamonds, 

case 4),  grows monotonously with FN, and multiple 

slips up to seven lattice constants are observed. The 

last two cases, for which Keff = const. demonstrate the 

effectiveness of  in driving the system into multiple 

slip regardless of the damping coefficient. While the 

multi slip lengths that were reported for NaCl in 

UHV can be manifested at either relatively small 

underdamping, critical damping, or even at over-

damping [19, 20], the negligible variation of Keff [6, 19] 

and the increase of U0 with the applied load, dominate 

the friction dynamics. 

It remains to understand the physical reasons   

for the different behavior of Keff observed on NaCl 

crystals with a silicon tip under UHV and at liquid 

surroundings (ethanol). We attribute this difference 

to the dissipation of heat generated in the sliding 

contact. Generally speaking, Keff is expected to increase 

with the normal force FN, since the contact area 

becomes larger as FN increases [16]. However, this 

statement holds only if the contact temperature does 

not change in the stick-slip. This is possibly the 

case in ethanol, where convection is very efficient in 

removing the heat generated in the sliding contact. 

Indeed, Keff is experimentally found to increase in this 

environment. In UHV, heat can only be transferred 

by thermal conduction far away from the contact area. 

This mechanism takes place essentially through the 

silicon tip, since NaCl is an insulator, and also slowly, 

since the tip is very sharp. Local heating is therefore 

expected, with the result of decreasing the contact 

stiffness at increasing values of the normal load 

(Young’s modulus decreases with temperature and 

the heat released in the slip phase increases with FN). 

In the case of the experiments by Socoliuc et al. [6]   

it appears that the two effects accidentally balance 

each other, leading to the result that Keff is essentially 

independent of the applied load. Note that, in this 

context of nonequilibrium systems with small heat 

flows that induce spontaneous dynamic fluctuations, 

the concept of effective temperature may be better 

used [40].  

4 Conclusions 

We used numerical FFM simulations based on the 

one-dimensional PT model to study the effect of the 

normal load on frictional compliance (single- and 

multi-slip friction) through the effective lateral stiffness 

and damping. Current understanding of this behavior 

relates these friction regimes to the normal load 

(manifested through the corrugation energy amplitude, 

U0), damping of the system, scanning velocity and 

temperature only. As the latter two were maintained 

constant, we have focused on the effect of the normal 

load and contact damping. In addition to the well- 

known influence of the normal load on the corrugation 

energy, we also introduced an empirical load depen-

dency of Keff on FN based on recent experimental 

results of our group.  

FFM measurements on NaCl in UHV [19] showed 

the transition from single to multiple slip with the 

increase of the applied load, accompanied with the 

increase of . This was explained by the observed 

dependence of U0 with the applied load, and the 

constancy of Keff [6, 19], assuming that the lateral 

contact damping was also constant [19, 20]. In the case 

of NaCl in liquid surroundings (ethanol),  reaches 

high values, which are indeed associated with multiple 

slips, however, by introducing a load dependence 

into the damping, via Keff, we observe from our 1D 

simulations that the lateral vibrations remain damped 

with the increase of loading force (and ), resulting 

with the single slips (that were also observed exper-

imentally). Considering that the thermal conductivity 

of ethanol (~0.15 W/(m·K) [41]) is much lower than 

those of silicon (~150 W/(m·K) [42]) and NaCl (~6 W/ 

(m·K) [43]), and convection is much more efficient 

than thermal conduction in liquids, it is not excluded 

that a considerable fraction of heat is released into the 

liquid environment. This possibility is fully confirmed 

by the different frictional response observed in ethanol 

and in UHV. In the liquid environment the contact 

stiffens with the applied load, and the system remains 

damped. Opposingly, under UHV conditions, the heat 
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is dissipated into the contact, and makes it less stiff. 

As a result, the local stiffness appears to change very 

little with the applied load [6], and the damping of the 

system varies from being somewhat underdamped 

into overdamped [19, 20]. Two out of the four case- 

studies explored here were quite close to experimental 

results of FFM measurements on NaCl crystal in UHV 

and in liquid surroundings. The use of 1D PT model 

enabled to gain insight on the roles of local stiffness 

and interaction energies, however, in practice the 

situation may be more complicated [44]. It should be 

also noted that two important aspects regarding the 

damping should be considered. First, damping is 

particularly influential in the 1D model, which was 

implemented here in the study of the slip length 

since it regulates the energy flux through the single 

reaction coordinate [23]. Second, here we used the 

commonly accepted form for the damping definition 

as a free oscillator [8, 12, 19, 20, 22, 38, 39]. However, 

a more accurate description of the damping should 

consider the contribution of the curvature of the 

potential well in which the slip ends as noticed by 

Fajardo and Mazo in previous work on this topic [31]. 

Summing up the two contributions, Keff in Eq. (7) will 

be approximately replaced with Keff(1 + ) for a slip 

and with more complex expressions for multiple slip, 

where different “landing points” are present. In 2D 

the situation is made even more complicated by the 

zigzag motion of the tip, and a meaningful definition 

of C must also take into account the direction along 

which the landing point is reached. Yet, the physical 

parameter governing the dissipation process is ,  

and here we have shown that experimental results in 

different environments can only be reproduced 

assuming that  can change with the applied load. 

Taking the critical value of this parameter for a free 

oscillator as reference is the simplest approach allowing 

to shed light on a problem, which would also require 

more experimental data for being parameterized 

more accurately.  

Acknowledgements 

R.B. and E.G are grateful for the generous financial 

support of Deutsche Forschungsgemeinschaft (No. 

DFG GN 92/16-1).  

Open Access This article is licensed under a Creative 

Commons Attribution 4.0 International License, which 

permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you 

give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons 

licence, and indicate if changes were made.  

The images or other third party material in this 

article are included in the article’s Creative Commons 

licence, unless indicated otherwise in a credit line to 

the material. If material is not included in the article’s 

Creative Commons licence and your intended use is 

not permitted by statutory regulation or exceeds the 

permitted use, you will need to obtain permission 

directly from the copyright holder. 

To view a copy of this licence, visit 

http://creativecommons.org/licenses/by/4.0/. 

References 

[1] Mate C M, McClelland G M, Erlandsson R, Chiang S. 

Atomic-scale friction of a tungsten tip on a graphite surface. 

Phys Rev Lett 59: 1942–1945 (1987) 

[2] Bhushan B, Israelachvili J N, Landman U. Nanotribology: 

Friction, wear and lubrication at the atomic-scale. Nature 

374: 607–616 (1995) 

[3] Carpick R W, Salmeron M. Scratching the surface: 

Fundamental investigations of tribology with atomic force 

microscopy. Chem Rev 97(4): 1163–1194 (1997) 

[4] Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin 

M, Meyer E, Güntherodt H J. Velocity dependence of atomic 

friction. Phys Rev Lett 84(6): 1172–1175 (2000)  

[5] Sang Y, Dubé M, Grant M. Thermal effects on atomic 

friction. Phys Rev Lett 87(17): 174301 (2001)  

[6] Socoliuc A, Bennewitz R, Gnecco E, Meyer E. Transition 

from stick-slip to continuous sliding in atomic friction: 

Entering a new regime of ultralow friction. Phys Rev Lett 

92(13): 134301 (2004)  

[7] Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, 

Heimberg J A, Zandbergen H W. Superlubricity of graphite. 

Phys Rev Lett 92(12): 126101 (2004)  

[8] Hölscher H, Ebeling D, Schwarz U D. Friction at atomic- 

scale surface steps: Experiment and theory. Phys Rev Lett 

101(24): 246105 (2008)  

[9] Filleter T, Bennewitz R. Structural and frictional properties 

of graphene films on SiC(0001) studied by atomic force 

microscopy. Phys Rev B 81: 155412 (2010) 



226 Friction 11(2): 216–227 (2023) 

 | https://mc03.manuscriptcentral.com/friction 

 

[10]  Labuda A, Paul W, Pietrobon B, Lennox R B, Grütter P H, 

Bennewitz R. High-resolution friction force microscopy under 

electrochemical control. Rev Sci Instrum 81(8): 083701 (2010) 

[11]  Jansen L, Hölscher H, Fuchs H, Schirmeisen A. Temperature 

dependence of atomic-scale stick-slip friction. Phys Rev 

Lett 104(25): 256101 (2010)  

[12]  Pawlak R, Ouyang W G, Filippov A E, Kalikhman-Razvozov L, 

Kawai S, Glatzel T, Gnecco E, Baratoff A, Zheng Q S,  

Hod O, et al. Single-molecule tribology: Force microscopy 

manipulation of a porphyrin derivative on a copper surface. 

ACS Nano 10(1): 713–722 (2016)  

[13]  Prandtl L. Ein gedankenmodell zur kinetischen theorie der 

festen körper. Z Angew Math Mech 8(2): 85–106 (1928)  

[14]  Tomlinson G A. CVI. A molecular theory of friction. Lond 

Edinb Dublin Philos Mag J Sci 7(46): 905–939 (1929)  

[15]  Popov V L, Gray J A T. Prandtl-tomlinson model: History 

and applications in friction, plasticity, and nanotechnologies. 

ZAMM J Appl Math Mech / Zeitschrift Für Angewandte 

Math Und Mech 92(9): 683–708 (2012)  

[16]  Mazo J J, Dietzel D, Schirmeisen A, Vilhena J G, Gnecco E. 

Time strengthening of crystal nanocontacts. Phys Rev Lett 

118(24): 246101 (2017)  

[17]  Gnecco E, Bennewitz R, Gyalog T, Meyer E. Friction 

experiments on the nanometer scale. J Phys Condens 

Matter 13(31): R619 (2001)  

[18]  Medyanik S N, Liu W K, Sung I H, Carpick R W. Predictions 

and observations of multiple slip modes in atomic-scale 

friction. Phys Rev Lett 97(13): 136106 (2006)  

[19]  Roth R, Glatzel T, Steiner P, Gnecco E, Baratoff A, Meyer E. 

Multiple slips in atomic-scale friction: An indicator for the 

lateral contact damping. Tribol Lett 39(1): 63–69 (2010) 

[20]  Gnecco E, Roth R, Baratoff A. Analytical expressions for 

the kinetic friction in the Prandtl-Tomlinson model. Phys 

Rev B 86(3): 035443 (2012)  

[21]  Nakamura J, Wakunami S, Natori A. Double-slip mechanism 

in atomic-scale friction: Tomlinson model at finite tem-

peratures. Phys Rev B 72(23): 235415 (2005)  

[22]  van Baarle D W, Krylov S Y, Beck M E S, Frenken J W M. 

On the non-trivial origin of atomic-scale patterns in friction 

force microscopy. Tribol Lett 67: 15 (2019) 

[23]  Dong Y L, Perez D, Voter A F, Martini A. The roles of 

statics and dynamics in determining transitions between 

atomic friction regimes. Tribol Lett 42(1): 99–107 (2011)  

[24]  Ohnesorge F, Binnig G. True atomic resolution by atomic 

force microscopy through repulsive and attractive forces. 

Science 260(5113): 1451–1456 (1993)  

[25]  Pina C M, Miranda R, Gnecco E. Anisotropic surface coupling 

while sliding on dolomite and calcite crystals. Phys Rev B 

85(7): 073402 (2012) 

[26]  Robinson B J, Kay N D, Kolosov O V. Nanoscale interfacial 

interactions of graphene with polar and nonpolar liquids. 

Langmuir 29(25): 7735–7742 (2013)  

[27]  Vilhena J G, Pimentel C, Pedraz P, Luo F, Serena P A, Pina 

C M, Gnecco E, Pérez R. Atomic-scale sliding friction on 

graphene in water. ACS Nano 10(4): 4288–4293 (2016)  

[28]  Agmon L, Shahar I, Yosufov D, Pimentel C, Pina C M, 

Gnecco E, Berkovich R. Estimation of interaction energy and 

contact stiffness in atomic-scale sliding on a model sodium 

chloride surface in ethanol. Sci Rep 8: 4681 (2018)  

[29]  Skuratovsky S, Agmon L, Berkovich R. Comparative study 

of dimensionality and symmetry breaking on nanoscale 

friction in the Prandtl–tomlinson model with varying effective 

stiffness. Tribol Lett 68(4): 113 (2020)  

[30]  Tshiprut Z, Zelner S, Urbakh M. Temperature-induced 

enhancement of nanoscale friction. Phys Rev Lett 102(13): 

136102 (2009)  

[31]  Fajardo O Y, Mazo J J. Effects of surface disorder and 

temperature on atomic friction. Phys Rev B 82(3): 035435 

(2010)  

[32]  Carpick R W, Ogletree D F, Salmeron M. Lateral stiffness: 

A new nanomechanical measurement for the determination 

of shear strengths with friction force microscopy. Appl Phys 

Lett 70(12): 1548–1550 (1997)  

[33]  Zhong W, Tománek D. First-principles theory of atomic-scale 

friction. Phys Rev Lett 64(25): 3054–3057 (1990). 

[34]  Zaloj V, Urbakh M, Klafter J. Modifying friction by 

manipulating normal response to lateral motion. Phys Rev 

Lett 82(24): 4823–4826 (1999)  

[35]  Ouyang W G, Cheng Y, Ma M, Urbakh M. Load-velocity- 

temperature relationship in frictional response of microscopic 

contacts. J Mech Phys Solids 137: 103880 (2020)  

[36]  Reinstädtler M, Rabe U, Scherer V, Hartmann U, Goldade A, 

Bhushan B, Arnold W. On the nanoscale measurement of 

friction using atomic-force microscope cantilever torsional 

resonances. Appl Phys Lett 82(16): 2604–2606 (2003)  

[37]  Reimann P, Evstigneev M. Nonmonotonic velocity dependence 

of atomic friction. Phys Rev Lett 93(23): 230802 (2004)  

[38]  Hölscher H, Schwarz U D, Wiesendanger R. Modelling   

of the scan process in lateral force microscopy. Surf Sci 

375(2–3): 395–402 (1997)  

[39]  Steiner P, Roth R, Gnecco E, Baratoff A, Maier S, Glatzel T, 

Meyer E. Two-dimensional simulation of superlubricity 

on NaCl and highly oriented pyrolytic graphite. Phys Rev B 

79(4): 045414 (2009)  

[40]  Cugliandolo L F, Kurchan J, Peliti L. Energy flow, partial 

equilibration, and effective temperatures in systems with slow 

dynamics. Phys Rev E 55(4): 3898–3914 (1997) 



Friction 11(2): 216–227 (2023) 227 

www.Springer.com/journal/40544 | Friction 
 

[41]  Vargaftik N B. Handbook of Physical Properties of Liquids 

and Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 

1975. 

[42]  Glassbrenner C J, Slack G A. Thermal conductivity of silicon 

and germanium from 3°K to the melting point. Phys Rev 

134(4A): A1058–A1069 (1964) 

[43]  Håkansson B, Andersson P. Thermal conductivity and heat 

capacity of solid NaCl and NaI under pressure. J Phys 

Chem Solids 47(4): 355–362 (1986)  

[44]  Maier S, Sang Y, Filleter T, Grant M, Bennewitz R, Gnecco E, 

Meyer E. Fluctuations and jump dynamics in atomic friction 

experiments. Phys Rev B 72(24): 245418 (2005) 

 

 

 

Simona SKURATOVSKY. She 

received her bachelor and master 

degrees in chemical engineering 

from Ben-Gurion University of the 

Negev, Israel, in 2017 and 2021, respectively. Her 

research interests include numerical aspects of load 

effect in nanotribology. 

 

 

 

 

 

 

 

Ronen BERKOVICH. He received 

his bachelor degree in chemical 

engineering from the Technion – 

Israel Institute of Technology, 

Israel, in 2002, and his Ph.D. degree 

in chemical physics from Tel-Aviv 

University, Israel, in 2011. He joined the Department 

of Chemical Engineering at Ben-Gurion University 

of the Negev, Israel, as a faculty member from 2013. 

His researches focus on nanoscale physical mechanics, 

nanotribology, and single molecule biophysics. 

 

 

 

 

Enrico GNECCO. He received his 

Ph.D. degree in physics at University 

of Genova, Italy, in 2001. He 

joined the Department of Physics 

at Jagiellonian University Krakow, 

Poland, as a faculty member. His research focuses on 

atomic-scale sliding friction in different environmental 

conditions, scanning probe microscopy manipulation, 

contact mechanics, and abrasive wear processes on 

the nanoscale. 

 

 

 

 

 

 


