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Deep learning to decompose macro-
molecules into independent Markovian
domains

Andreas Mardt1,6, Tim Hempel 1,2,6, Cecilia Clementi 2,3,4 &
Frank Noé 1,2,3,5

The increasing interest in modeling the dynamics of ever larger proteins has
revealed a fundamental problem with models that describe the molecular
system as being in a global configuration state. This notion limits our ability to
gather sufficient statistics of state probabilities or state-to-state transitions
because for large molecular systems the number of metastable states grows
exponentially with size. In this manuscript, we approach this challenge by
introducing a method that combines our recent progress on independent
Markov decomposition (IMD) with VAMPnets, a deep learning approach to
Markov modeling. We establish a training objective that quantifies how well a
given decomposition of the molecular system into independent subdomains
withMarkovian dynamics approximates the overall dynamics. By constructing
an end-to-end learning framework, the decomposition into such subdomains
and their individual Markov state models are simultaneously learned, provid-
ing a data-efficient and easily interpretable summary of the complex system
dynamics. While learning the dynamical coupling between Markovian sub-
domains is still an open issue, the present results are a significant step towards
learning Ising models of large molecular complexes from simulation data.

The understanding of protein function is often interlinked with
understanding protein dynamics. Molecular dynamics (MD) simu-
lations are a valuable tool to study these dynamics on an atomistic
level1–6. However, further methods are necessary to extract the
statistically relevant information and to help overcome the dis-
crepancy between feasible simulation length and the timescales of
relevant processes. A common approach to enhance sampling of a
specific process of interest is to bias the simulation along a reaction
coordinate aligning with the process7–13. In comparison, the Markov
modeling approach14–20 extracts kinetic information and tackles the
sampling problem without requiring the definition of few pre-
defined reaction coordinates by combining arbitrary numbers of
short unbiased distributed simulations to model the long-timescale
behavior of target systems. Consequently, multiple software

packages21,22 have been developed over the last decade providing
assistance in estimating thesemodels. They often include a pipeline
for feature selection21–24, dimension reduction25–31, clustering32–35,
transitionmatrix estimation15,19,36,37, and coarse graining38–44. Markov
state models (MSMs) have been applied to a wide range of mole-
cular biology problems such as protein aggregation45–47 or ligand
binding48–50 and can be a valuable tool to understand experimental
data on the atomistic scale51,52.

The necessity to assess a model’s performance and thereby rank
its quality encouraged the development of variational methods53,54, in
particular the variational approach for Markov processes (VAMP)55.
This variational formulation has allowed us to replace the aforemen-
tioned pipeline with an end-to-end deep learning framework called
VAMPnet56, which simultaneously learns a dimension reduction of the
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molecular system to the collective variables best describing the rare
event processes and anMSMon these variables. The framework can be
used to further drive MD simulations along these learned collective
variables57,58. We can also use this framework to estimate statistically
reversible MSMs and incorporate constraints from experimental
observables59–61.

Despite these developments, there is a fundamental scaling pro-
blem in describing MD in terms of transitions between global system
states: While the assignment of MD configurations to discrete global
states representing themetastable groups of structures is an excellent
model for small cooperative molecular systems, such as small to
medium proteins, larger molecular systems (e.g., proteins with hun-
dreds of amino acids) have an increasing number of subsystemswhose
dynamics are (nearly) independent62 (Fig. 1). Consider, for example, a
solution of N proteins which undergo transitions between their open
and closed states independently when these proteins are dissociated
and these transitions only (partially) couple when they are associated
with other proteins. The number of global system states is 2N, i.e.,
grows exponentially with the number of subsystemsN63,64. This means
any form of simulation or analysis which explicitly distinguishes global
system states will not scale to large molecular systems.

At the same time, the (approximate) independence between
subsystems is also key to the solution of the problem. A scalable
solution needs to address two separate issues: (a) dividing the protein
system into approximately Markovian subsystems and (b) learning the
coupling between them. Olsson & Noé63 made a first attempt at (b), by
learning a dynamic graphical model between predefined subsystems.
This approach leads to a graphical model, or Markov random field,
resembling Ising or Potts models in physics, with the key difference
that both the definition of the individual subsystems or spins aswell as
their transition dynamics need to be learned. In contrast, Hempel
et al.64 proposed a solution for (a) by approximating the global system
dynamics as a set of independent (uncoupled)Markovmodels (termed
Independent Markov decomposition, IMD). They furthermore pro-
pose a pairwise independence score of features, which allows to detect
nearly uncoupled regions where independent Markov state models
can be estimated subsequently.

In this manuscript, we present a joint IMD and VAMP approach
(termed independent VAMPnet, or shorthand iVAMPnet) that sig-
nificantly advances our ability to identify approximately independent

Markovian subsystems (issue a) by generalizing IMD to neural network
basis functions. iVAMPnets are an integrated end-to-end learning
approach that decomposes the macromolecular structure into sub-
systems that are dynamically weakly coupled, and estimates a VAMP-
net for each of these subsystems to promote a comprehensible
analysis of the subsystem dynamics (Fig. 1). In comparison to previous
implementations of IMD, our approach learns an optimal decom-
position into independent subsystems and canfind collective variables
that are nonlinear combinations of the input features.

Results
Markov state models and Koopman models
Markovian dynamics can be modeled by the transition density:

pτðy∣xÞ=Pðxt + τ =y∣xt =xÞ, ð1Þ

which is the probability density to observe configuration y at time t + τ
given that the system was in configuration x at time t. Based on the
transition density we can characterize the time evolution of a prob-
ability density χ as:

χt + τ ðyÞ=
Z

pτðy∣xÞχtðxÞdx: ð2Þ

By discretizing the molecular state space in a suitable way and
defining a transition matrix T between discrete states, we can linearize
this equation as:

χ t + τ ðyÞ=TT
τ χ tðxÞ ð3Þ

This is the equationof aMarkov statemodel,where the element iof the
vector χt+τ(y) is the probability to be in the discrete state i at time t + τ.
Furthermore, the transition matrix elements ðTτÞij describe the tran-
sition probabilities for jumping to state j given state iwithin a time τ. In
the case of fuzzy state assignments, e.g., as with VAMPnets, Eq. (3)
describes the more general Koopman model65 and Tτ becomes the
Koopman matrix. This means that probability densities are still pro-
pagated but the matrix elements cannot be interpreted as transition
probabilities.

The lag time τ is common to all Markovian models and is usually
chosen with the aid of an implied timescales test66. If a too small τ is
chosen, the resulting model is not a valid Markov model (resulting in
errors of the predicted variables)—a too large lag time produces a
model that unnecessarily discards kinetic information. We therefore
usually choose the smallest lag time above which the implied time-
scales are approximately constant.

We now seek to find a state assignment χ andmodel matrixT that
satisfy Eq. (3) and also succeed in predicting the long-time behavior,
i.e., for multiples of the lag time τ. Formally, χ are (initially unknown)
basis functions, i.e., we assume that the relevant dynamic features can
be expressed by a linear combination of them. VAMP55 tells us that an
optimal solution is reached when χ can span the left ðψ1,:::,ψkÞT and
right singular functions ðϕi,:::,ϕkÞT of the transition operator. They can
be found by maximizing the singular values of a matrix that can be
estimated from simulation data (see Eqs. (9)–(13) in “Methods”). In the
case of a VAMPnet56, deep neural networks are trained by maximizing
the VAMP score, so as to represent optimal fuzzy state assignments. In
equilibrium, the singular functions correspond to the eigenfunctions
of theMarkov statemodel and the singular values to its eigenvalues. As
the Koopman model still propagates densities, it is instructive to
inspect the eigenfunctions and implied timescales of T since they
describe the slow dynamics of a given system.

Fig. 1 | The iVAMPconcept asvisualizedbymodelingdynamicsof aprotein that
has two independent, flexible regions separated by a rigid barrel. iVAMPnets
learn an assignment of the C- (blue/top) and N-termini (green/bottom) into inde-
pendent subsystems from molecular dynamics trajectories (left column). More-
over, the dynamics of both termini are modeled with statistically independent
VAMPnets (right column).
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iVAMPnets and iVAMP-score
To implement iVAMPnets, weneed tobridge the gapbetween thedeep
neural networks of VAMPnets and the spatial decomposition of inde-
pendentMarkovmodels. The general idea is to set upmultiple parallel
VAMPnets, each modeling the Markovian dynamics of a separate,
independent subsystem of the molecule, together with an attention
mechanism that identifies these subsystems. Thus, each independent
VAMPnet should only receive the time dependentmolecular geometry
features representing its specific subsystem. For example, such an
attention mechanism could separate different protein domains and
channel the data of individual domains to separate VAMPnets. We,
therefore, develop an architecture that combines a meaningful atten-
tion mechanism and parallel VAMPnets and trains them with a loss
function that simultaneously promotes dynamic independence
between the subsystems and slow kinetics within each subsystem
(Fig. 2). iVAMPnets are designed to optimize both these objectives
simultaneously.

In practice, we extract all time-lagged data pairs xt, xt+τ that con-
tain all molecular geometry features (e.g., distances, contacts, tor-
sions) of our simulation data and pass them through the architecture
presented in Fig. 2. The data is fed through an attention mechanism
(represented by the matrix G) that yields subsystem specific vectors
Yi
t , each of which attends to features relevant for subsystem i. These

vectors then serve as inputs to N parallel feature transformations ηi

(parallel VAMPnets)which transformthose intooutput features χ1,…χN

(with χ iðxtÞ=ηiðYi
tðxtÞÞ) that represent slow collective coordinates or

directly fuzzy assignments to metastable Markov states of each
molecular subsystem. Equipped with the state assignments, we can
compute correlation matrices (Eq. (9)) and derive a Koopman model
matrix from those (Eq. (10)). As in VAMPnets, the feature transforma-
tions η1,…ηN are represented by deep neural networks. In the present
study, we use multilayer perceptrons with a SoftMax output layer
representing fuzzy state assignments. However, other architectures
could be chosen, e.g., graph convolution networks when parameter
sharing is desired67,68, and a linear output layer could be chosen if the
aim is to represent slow collective variable rather than discrete

states57,58. The parameters of the feature transformations η and the
attention matrix are learned end-to-end via backpropagation.

In more detail, given N individual subsystem models, the global
system state can be given by the Kronecker product of all subsystem
states:

χGðxtÞ=
O
i

χ iðxtÞ ð4Þ

and by computing the global correlation matrices ðCG
00,C

G
0τ ,C

G
ττÞ from

Eqs (9) using χG. We note that this step does not require that we have
independentMarkovianmodels, but it is simply a formalism to express
global states in terms of a combination of local states.

Furthermore, we construct a candidate for the global Koopman
model from the subsystem models by combining the individual sin-
gular values and vectors with a Kronecker product64:

K̂
G
=
O
i

Ki Û
G
=
O
i

Ui V̂
G
=
O
i

Vi: ð5Þ

The matrices Û
G
and V̂

G
map the global state assignments onto

the constructed singular functions and are computed from the local
matrices as defined in Eqs. ((11), (12)). The diagonalmatrix K̂

G
encodes

the singular values and is computed from the subsystem singular value
matrices via Eq. (10).

In order to evaluate the performance of the constructedmodel to
predict the dynamics in the global state space, the VAMP-E validation55

score can be exploited,

RG
E = tr 2K̂

GðÛGÞ
T
CG
0τV̂

G�
�

K̂
GðÛGÞ

T
CG
00Û

G
K̂

GðV̂GÞ
T
CG
ττV̂

G
�
:

ð6Þ

TheVAMP-E scoremeasures thedifferencebetween the estimated
Koopman model and the true dynamics. Here, it is evaluated for the

Fig. 2 | Architecture of an iVAMPnet for N subsystems, where trainable parts
are shaded green. Two lobes are given for configuration pairs xt (light) and xt+τ
(dark) where the weights are shared. Firstly, the input features are element wise
weighted �Yt =G� xt with a mask G 2 RD×N , where each subsystem learns its
individual weighting. The mask values can be interpreted as probabilities to which
subsystem the input feature belongs. In order to prevent the subsequent neural
network to reverse the effects of the mask, we draw for each input feature i and
subsystem j an independent, normally distributed random variable

ϵij ∼N ð0,σð1� GijÞÞ. This noise is added to the weighted features Yt = �Yt + ϵ.
Thereby, the attention weight linearly interpolates between input feature and
Gaussian noise, i.e., if the attention weight Gij= 1, Yij carries exclusively the input
feature xi, ifGij=0,Yij is simpleGaussian noise. Afterwards, the transformed feature
vector is split for each individual subsystem Yt = ½Y1

t ,:::,Y
N
t � and passed through the

subsystem specific neural network ηi. We call the whole transformation for a sub-
system i the fuzzy state assignment χ iðxt Þ=ηiðYi

t Þ.
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global state assignments⨂i χ
i (as encoded in CG

00,C
G
0τ ,C

G
ττ) mapped on

the constructed singular functions (as encoded in Û
G
,V̂

G
). If the sub-

systems are independent the constructed singular functions are opti-
mal and the singular valuesof the global systemare indeed theproduct
of singular values of the subsystems (as formalized in Conditions for
independent systems, also see Supplementary Note 1). In this case, the
global VAMP-E score Eq. (6) has a product form

RG
E =

Y
i

Ri
E ð7Þ

that poses a necessary condition for subsystem independence.
To finally train the model, we develop a loss function that (i)

maximizes the global VAMP-E score, assuming that they describe
independent dynamics (Eqs. (4)–(6)), and (ii) minimizes a term that
penalizes statistical dependence between these subsystems (Eq. (7))
scaled by a weighting factor ξ.

We evaluate the scores only pairwise, to escape the growth of the
global state space, and sum over all possible pairs i, j:

L= �
X
i<j

Rij
E + ξ

X
i<j

∣∣Rij
E �Ri

ERj
E ∣∣

Rij
E

: ð8Þ

Here, Rij
E measures the quality of the constructed Koopman

model of subsystems i and j and is computed using Eq. (6). The
weighting factor ξ is a hyperparameter that should be chosen large
enough to find decoupled systems and small enough to not interfer
with the subsystem dynamics. Even though the choice of an appro-
priate ξ depends on the nature of the dynamics and the coupling, it is
directly related to the training procedure as it, briefly, balances focus
of the optimizer between kinetics and decoupling. Further conditions
(Eq. (18)), which evaluate the independence of the singular functions
and values, canbeused as post training validationmetrics for adjusting
ξ and for testing towhich degree dynamically independent subsystems
were found.

Benchmark model with two independent subsystems
The iVAMPnet architecture, which is implemented using PyTorch69, is
depicted in Fig. 2. Generally, various neural network architectures are
possible; we here choose fully connected feed forward neural net-
works with up to 5 hidden layers with 100 nodes each. The scripts to
reproduce the results including the details for the training routine,
choice of hyperparameters, and network architecture can be found in
our GitHub repository. We note that an implementation of VAMPnets
is available in the current version of DeepTime70.

We first demonstrate that iVAMPnets are capable of decomposing
a dynamical system into its independent Markovian subsystems based
on observed trajectory data using an exactly decomposable bench-
mark model (Fig. 3).

Akin to the protein illustrated in Fig. 1, we define a system that
consists of two independent subsystems with two and three states,
respectively. It is modeled by two transition matrices with the corre-
sponding number of states. We sample a discrete trajectory with each
matrix (100k steps)70. The global state is defined as a combination of
these discrete states. The discrete subsystem states are now inter-
preted as the hidden states of hidden Markov models71 that emit to
separate, subsystem-specific dimensions of a 2D space. The output of
each subsystem is modeled with Gaussian noise Nðμi,~σÞ 2 R that is
specific to the state that the system is in, specifiedby themeanμi, and a
constant ~σ. The two state subsystem, therefore, describes a jump
process between Gaussian basins along the x-axis and the three
state subsystem along the y-axis, respectively (Fig. 3a). These variables
compare to collective variables of the green (x) and blue (y) system
depicted in Fig. 1. Please note that while in this benchmark system the
relevant slow collective variables are known, iVAMPnets are generally

capable of finding them (cf. 10D hypercube benchmark model and
Synaptotagmin-C2A).

Since the generative benchmark model consists of perfectly
independent subsystems and the pair already describes the global
system, our method can simply be optimized for the global VAMP-E
score (Eq. (6)) without the need for any further constraints. We train a
model with a two and three state subsystem at a lag time of τ = 1 step.

Once trained, the iVAMPnet yields a model of the dynamics in
each of the identified subsystems. As expected, we find that the esti-
mated transition matrices for both subsystems closely agree with the
ground truth (Fig. 3c). To additionally assess the slow subsystem
dynamics in more detail, we borrow concepts fromMSM analysis and
conduct an eigenvalue decomposition of the iVAMPnet models (cf.
VAMPnets). The analysis of the eigenfunctions demonstrates that, by
construction, the system exhibits one independent process along the
x-axis (λ1 = 0.90) and two along the y-axis (λ2 = 0.89 and λ4 = 0.66)
(Fig. 3d). In contrast, we note that in the picture of global states, two
additional processes would appear as a result of mixing the indepen-
dent processes (cf. SupplementaryNote 2),whichmakes the combined
dynamical model more challenging to analyze, whereas the iVAMPnet
analysis remains straightforward and simple.

Besides the dynamical models, our iVAMPnet yields assignments
between input features and subsystems. We find that the method
correctly identifies the two state system as the x-axis and the three
states as the y-axis feature, respectively (Fig. 3b).

10D hypercube benchmark model
In a next step we test the iVAMPnet approach with ten 2-state sub-
systems, which corresponds to 1024 global states (Fig. 4a, b). As
before, the dynamics is generated by ten independent hidden Markov
state models with unique timescales. The system is split into five pairs
of subsystems, and the two coordinates governing the transition

Fig. 3 | Hidden Markov state model as a benchmark example for independent
subsystems. a 2 subsystems with 2 and 3 states emit independently to an x and y
axis, respectively. The corresponding 2D space embeds all 6 global states. b The
learned mask, depicted in gray-scale from 0 (white) to 1 (black), shows that each
subsystem focuses on one input dimension. c The estimated subsystem transition
matrices are compared with the ground truth (in percent). d Subsystem eigen-
functions (color-coded) and corresponding eigenvalues (number prints) as found
by iVAMPnet. Independent processes are recovered from the 2D data.
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dynamics of each pair are rotated in order tomake themmore difficult
to separate (Fig. 4a). Additionally, we make the learning problem
harder by adding ten noise dimensions such that the global system
lives on a 10-dimensional hypercube embedded in a 20 dimen-
sional space.

Although the subsystems are perfectly independent, we will esti-
mate an iVAMPnetwith theVAMP-E score in apairwise fashion, thereby
avoiding to estimate expensively large correlation matrices in
R1024 × 1024. As this is only justified if all systems are independent, we
additionally enforce Eq. (7) during training by minimizing Eq. (8) and
thereby rule out that any two subsystems approximate the same
process.

The iVAMPnet estimation yields subsystem models which, as
common in MSM analysis, can be validated by testing whether their
implied relaxation timescales are converged in the model lag time τ.
We find that the implied timescales learned by the iVAMPnet are
indeed converged and accurately reproduce the ground truth (Fig. 4d).
We note that in addition to the timescales of the individual subsystems
that are identified by the iVAMPnet, a global model would also contain
all timescales that result from products of eigenvalues, resulting in a
total of 1024 timescales. Thus, the iVAMPnet analysis provides a

much simpler and more concise model than a global MSM or
VAMPnet would.

Furthermore, the subsystem assignment mask indicates that the
method correctly assigns high importance weight to two input fea-
tures for each model (Fig. 4c). Therefore, the method proves its cap-
ability of decomposing a noisy, high dimensional global system into its
independent sub-processes in a data efficient way.

We have generalized the 10-cube system to a variable number of
subsystems (N-cube) to conduct a performance benchmark, finding
that iVAMPnets outperform VAMPnets for this particular system. We
however note that this result may not be generalizable to arbitrary
systems as the N-cube features truely independent 2-state subsystems
(compare Supplementary Note 6 for details).

Synaptotagmin-C2A
Finally, we test iVAMPnets on an all-atom protein system. In compar-
ison to our benchmark examples, we expect the underlying global
dynamics to be only approximately decomposable into independent
subsystems.Our test data consists of 184 μs aggregateMDdata of each
2μs length (92 × 2μs) of the C2A domain of synaptotagmin (Supple-
mentary Note 7) that was described previously72; synaptotagmin plays
a crucial role in the regulation of neurotransmitter release73. It was
shown to consist of approximately uncoupled subsystems containing
the calcium binding region (CBR) and the C78 loop, respectively64.

First, we attempted tomodel the protein with a global model, i.e.,
with a single (regular) VAMPnet. Indeed, this approach failed because
there were not enough simulation statistics to estimate a reversibly
connected transition model between all global metastable states,
resulting in diverging implied timescales (Supplementary Note 3 and
Supplementary Fig. 2). This is exactly the scenario where iVAMPnets
should provide an advantage, by only relying on locally rather than
globally converged transition statistics.

Next, we train an iVAMPnet to seek two subsystems of twelve and
six states, respectively, each at a lag time of τ = 10 ns where we enforce
constraint Eq. (7) to find uncoupled subsystems.

The trained iVAMPnet identifies one subsystem comprising all
three CBR loops (CBR-1, CBR-2, CBR-3; Fig. 5a). The second subsystem
consists not only of the aforementioned C78 loop but also of the loop
connecting beta sheets 3 and 474 (termed C34 henceforth). When
mapping the residue positions on the protein structure it becomes
obvious that the two subsystems are physicallywell separated (Fig. 5a),
supporting the conclusion thatboth regions areonlyweakly coupled64.

The implied timescales of both systems are approximately con-
stant in the model lag time τ. Most timescales are in the range of
1–10μs, with the exception of one much slower process with a 100μs
relaxation time found in the first subsystem (Fig. 5b), which has not
been found previously. Analysis of the structural changes governing
this process reveals that it involves an orchestrated transition of all
CBR loops (Fig. 5c). Such a process could however not be resolved by
the previous study72 where the CBR was modeled as individual loops.
The process of the second system involves a simultaneous movement
of the C78 and C34 loops (Fig. 5c).

iVAMPnets findmetastable structures in the local features that are
comparable to the ones described in our previous work 72. Specifically,
α-helices in two distinct positions and a state burying a methionine
residue (Met173) can be found in the CBR1. In the adjacent CBR2 site,
both tightly bound and loose configurations are identified, and the
C78 site features all three previously described valine residue con-
formations (Val250, Val255). In addition to the featuresmodeled in our
preceding study72, iVAMPnets identify dynamics in a lysine rich cluster
(Lys189-192) that was previously reported as important for membrane
interaction75. Please compare Supplementary Note 4 for a detailed
view on themetastable states and exchange kinetics. In contrast to our
previous work, the kinetic models in the local subsystems are more
complex and incorporate a larger number of dynamic processes,

Fig. 4 | Hidden Markov state model with 1024 global states forming a 10D
hypercube embedded in a 20D space. a The hypercube is composed of ten
independent 2-state subsystems. A pair of two subsystems always lives in a com-
mon rotated 2D-manifold. Therefore, two subsystemsneed the same input features
to be well approximated. b 2D depiction of the hypercube in an orthographic
projection89,90, where the global system can jump freely between all 1024 vertices,
and the ten 2-state models retrieved from it by the iVAMPnet (colors denote sub-
system identity). c Learnedmask, depicted in gray-scale from0 (white) to 1 (black),
assigning inputs to subsystems (color-coded). It shows that for each subsystem, the
network assigns two highly important input features which are shared with exactly
one other subsystem, mirroring the rotated input space. Noise dimensions (x10-
x19) are assigned low importance values. d Implied timescales as a function of the
model lag time (both in arbitrary units, a.u.) of all ten subsystems learned by our
method (dots) approximate the underlying true timescales (lines). Time scales are
color-coded by index.
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providing a more comprehensive picture without the need to define a
partitioning manually. In fact, conducting domain-decomposition and
local kineticmodeling simultaneously has enabled the identificationof
very subtle dynamical features as long as they contribute significantly
to the local VAMP-scores.

Although estimating a global VAMPnet model for synaptotagmin
was not feasible given the sparse data sample, iVAMPnets use the same
data efficiently and estimate a statistically valid dynamical model. This
result is especially striking because the iVAMPnet approach also sim-
plifies the subsequent task of interpreting models by separating
dynamically independent protein domains.

Counterexample: folding of the villin miniprotein
Finally, we conducted an experiment on a villin protein folding tra-
jectory of 125μs length76 as a negative example (Supplementary
Note 7). Small proteins such as villin are typically cooperative, i.e., the
slowest processes related to folding involve all residues (Supplemen-
tary Note 5). Thus, these processes cannot be resolved when decom-
posing the system into several subsystems. Indeed, we find that a
splitting into two subsystemswith two states each results in timescales
that are not converged, andwhose relaxation processes approximate a
partial folding on disjoint areas (cf. Supplementary Fig. 6).

Testing statistical independence of the learned dynamical
subsystems
As constraint Eq. (7) was used as a penalty during training (as inde-
pendence score Eq. (19)), we assess the validity of an estimated sub-
system assignment by evaluating the constraints that were not
enforced during training (Eq. (17)) as post-training independence
scoresMU,MV, andMUV (defined in Eq. (18)). Low values forMU andMV

imply that the constructed left and right singular functions are indeed
valid candidates for singular functions in the global state space. A small
value forMUV indicates that the kinetics in the global state space is well
predictedby theKronecker product of subsystemmodels.We find that

the three metrics are well suited to indicate independence of the
learned subsystems (Table 1). Out of the tested systems only villin
cannotbe split into independent parts (all scores > 0.1). In comparison,
the benchmark models and synaptotagmin can be decomposed into
statistically uncoupled subsystems (all scores < 0.01). The slightly
increased MR-value for synaptotagmin suggests that its subsystems
might be weakly coupled.

Discussion
We have proposed an unsupervised deep learning framework that,
using onlymolecular dynamics simulation data, learns to decompose a
complex molecular system into subsystems which behave as
approximately independent Markov models. Thereby, iVAMPnet is an
end-to-end learning framework that points a way out of the expo-
nentially growing demand for simulation data that is required to
sample increasingly large biomolecular complexes. Specifically, we
have developed and demonstrated iVAMPnets for molecular dynam-
ics, but the approach is, in principle, also applicable to different
application areas, such asfluiddynamics. The specific implementation,

Table 1 | Post-training independence validation

MU MV MUV MR

Benchmark 2 0.0058 0.0059 0.0055 0.0002

10-Cube 0.0039 0.0039 0.0046 0.0005

Synaptotagmin 0.0042 0.0042 0.0044 0.0018

Villin 0.1353 0.1364 0.1493 0.0021

The scores in columns 1–3 (MU, MV, MUV, cf. Eq. (18)) are computed from independence con-
straints that were not enforced during the training. The score in the last column (MR) is used
during the training and shown for reference. The three post-training validation scores MU, MV,
andMUV indicate that the final subsystems of both benchmark examples and synaptotagmin are
indeed independent, whereas the scores for villin strictly oppose this conjunction. The standard
deviations (SD) over 10 different runs are on the order of 10−5 for all systems except villin, which
has an SD ~ 10−4.

Fig. 5 | iVAMPnet of synaptotagmin-C2A with two subsystems and twelve and
six states, respectively. a Importance values of the trainable mask depicted as
color-coded protein secondary structure, indicating assignment to subsystem I (II)
in green (blue). b Implied timescales of the two subsystems with a 90% percentile
over 20 runs (dot markers denote means), color-coded by index. c Superposed
representative structures ofboth extremaof the slowest resolved eigenfunctions of

each subsystem (residues not assigned a high importance value or not showing
significant movement are omitted for clarity). The slowest process of subsystem I
changes between green and gray structures showing an orchestratedmovement of
the full Calcium Binding Region (CBR1, CBR2, and CBR3). The slowest process of
subsystem II occurs between the blue and gray structures and describes a com-
bined movement of the loops C78 and C34.
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such as the representation of the input vectors xt and the neural net-
work architecture of the χ-functions, depend on the application and
can be adapted as needed.

We now have a hierarchy of increasingly powerful models ranging
fromMSMsover VAMPnets to iVAMPnets.MSMs always consist of (1) a
state space decomposition and (2) a Markovian transition matrix
governing the dynamics between these states. VAMPnets provide a
deep learning framework for MSMs, and thereby (3) learn the collec-
tive coordinates in which the state space discretization (1) is best
made. iVAMPnets additionally learn (4) a physical separation of the
molecular system into subsystems, each of which has its own slow
coordinates, Markov states, and transition matrix.

We have demonstrated that iVAMPNets are a powerful multiscale
learning method that succeeds in finding and modeling molecular
subsystems when these subsystems indeed evolve statistically inde-
pendently. Additionally, iVAMPnets are capable of learning from high
dimensionalMD data. To prove that point, we have demonstrated that
the synaptotagmin C2A domain is decomposable into two almost
independent Markov state models. Importantly, we have shown that
this dynamical decomposition of synaptotagmin C2A succeeds while
an attempt tomodel the systemwith a global Markov state model fails
due to poor sampling. This is a direct demonstration that iVAMPnets
are statistically more efficient than VAMPnets, MSMs, or other global-
state models and may indeed scale to much larger systems.

We note, however, that iVAMPnets do not learn how the sub-
systems are coupled, and are, therefore, in their current form, only
applicable to molecular systems that consist of uncoupled or weakly
coupled subsystems. Although most biomolecular complexes are
known to be cooperative, there are examples that have been modeled
very successfully using independent subsystems, such as the Hudgkin-
Huxleymodel of voltage-gated channel proteins77,78. For other systems,
the degree of coupling is a matter of debate, for example, the C2-
tandem (C2A and C2B domains) in synaptotagmins79,80. Since isolated
domains are known to conduct function by themselves in many cases,
we believe that discarding couplings is a first-order modeling
assumption that is suitable to identify thesedomains and their relevant
metastable states.

Following up on ref. 63 and introducing coupling parameters that
describe how the learned MSMs are coupled, is subject to ongoing
research. Furthermore, the weak-coupling assumption is made for the
time-scale of the investigated molecular processes and may not be
generalizable to arbitrary times. E.g., the degree of coupling between
domains found in an MD simulations of a folded protein state may be
very different in its unfolded state, which will be eventually encoun-
tered for a long enough simulation time.

Besides the usual hyperparameter choices in deep learning
approaches, iVAMPnets require the specification of the number of
sought subsystems. This choice canbe guidedby training an iVAMPnet
for different numbers of subsystems and then interrogating the inde-
pendence scores (Eqs. (19) and (18)) to choose a decomposition where
statistical independence is optimal. We suggest to start with decom-
posing the system into two subsystems as a starting point, and to
increase this number subsequently. Non-optimal choices may, e.g.,
reflect in non-converged implied timescales (possibly an incarnationof
the sampling problem thatmaybemitigated by increasing the number
of subsystems) or high independence scores (not possible to split the
system because toomany or non-optimal number of subsystems were
chosen). Furthermore, the choice of the number of subsystems can be
guided by the number of structural domains in a protein (complex) or
by using the network-based approach presented in ref. 64. Further-
more, the number of states in each subsystemsneeds tobalance (a) the
quality of the singular function approximation (higher for few states)
and (b)model resolution (higher formore states). Ultimately, different
choices may yield converged validation measures, and the number

of states may be chosen to yield the desired model resolution in
this case.

iVAMPnets can be improved and further developed in multiple
ways, e.g., by employing more advanced network architectures, e.g.,
graph neural networks, where parameters could be shared across
subsystems. This might result in higher quality models and a greater
robustness against the hyperparameter choice. Very recently, graph
neural networks were indeed successfully combined with VAMPnets,
showing that the resulting method (GraphVAMPnets) is applicable to
MD data and that the estimated models are high quality81.

In summary, iVAMPnets pave a possible path for modeling the
kinetics of large biological systems in a data-efficient and interpretable
manner.

Methods
VAMPnets
Since an iVAMPnet implements multiple parallel VAMPnets represent-
ing the kinetics of separate independent subsystems, we will introduce
VAMPnets first56. VAMPnets are multilayer perceptrons that represent
feature functions χ (weomit the upper subsystem index i for the sakeof
clearness here). Their last layer is often chosen to be a SoftMax func-
tion, i.e., summing over all non-negative outputs yields a 1. Therefore,
the output of a VAMPnet can be interpreted as a fuzzy assignment to a
metastable state. Taking the linear combination of states with equal
weights results in the constant singular functionwith the singular value
1, which will be reflected by the singular values of the Koopmanmatrix
(Eq. (10) with the normalized correlation matrix). Given the feature
functions χ, we can compute the following correlation matrices:

C00 =
1
L

X
t

χðxtÞχðxtÞT

C0τ =
1
L

X
t

χðxtÞχðxt + τÞT

Cττ =
1
L

X
t

χðxt + τÞχðxt + τ ÞT ,

ð9Þ

where L is the number of collected data pairs in the simulations.
Training VAMPnets or iVAMPnets involves the computation of

covariance matrices over minibatches. We, therefore, need to choose
the batchsize to balance large estimator variance obtained for small
batches and high memory requirements for large batches. Instead of
using the trivial covariance estimator (Eq. (9)) which is asymptotically
unbiased55 but has a high-variance, one can employ a shrinkage
estimator82,83 which reduces the overall estimator error by trading
larger bias for lower variance. For the current study, we assume that
our benchmark and MD data has been sufficiently sampled to yield
adequate approximations with the estimator given in Eq. (9).

The approximation of the singular functions and values can be
estimated via the singular value decomposition (SVD) of the following
matrix �K:

�K=C�1=2
00 C0τC

�1=2
ττ =AKBT ð10Þ

K is the diagonal matrix of approximated singular values corre-
sponding to the left and right singular functions:

fT ðxtÞ= χðxtÞTU= χðxtÞTC�1=2
00 A ð11Þ

gT ðxt + τ Þ= χðxt + τ ÞTV= χðxt + τÞTC�1=2
ττ B: ð12Þ

The matrices U and V construct the left and right singular func-
tions from the individual state assignments. The optimal state
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assignments can be found by maximizing the VAMP-E score:

RE = tr½2KUTC0τV�KUTC00UKV
TCττV�: ð13Þ

Given trained state assignments χ(xt) and correlationmatrices Eq.
(9), the Koopman matrix T can then be evaluated as:

T=C�1
00C0τ : ð14Þ

Furthermore, we can estimate the eigenfunctionφ and timescales
ti by its eigendecomposition T =QΛQ−1:

φðxÞ=QTχðxÞ, ð15Þ

ti =
�τ

logð∣Λii∣Þ
: ð16Þ

Please note that this operation is only possible if the eigende-
composition is (approximately) real-valued, a condition that is met for
the presented application cases.

Conditions for independent systems
For Markov independent systems, the singular values and functions
that are constructed by the Kronecker product match the true global
ones,

ðÛGÞ
T
CG
00Û

G
= 1

ðV̂GÞ
T
CG
ττV̂

G
= 1

ðÛGÞ
T
CG
0τV̂

G
= K̂

G
,

ð17Þ

where the first two equations guarantee the orthonormality of the
constructed singular functions. The latter verifies that the left and right
singular functions correlate as predicted by the Kronecker product of
the singular values. These conditions canbe translated to the following
scores:

MU = ∣ðÛGÞ
T
CG
00Û

G � 1∣

MV = ∣ðV̂GÞ
T
CG
ττV̂

G � 1∣

MUV = ∣ðÛGÞ
T
CG
0τV̂

G � K̂
G
∣

ð18Þ

Furthermore, using the identities Eq. (17) and the definition of the
VAMP-E score Eq. (13) yields

MR =
∣RG

E �Q
iRi

E ∣
RG

E

: ð19Þ

The norms denote simple means. The last score, MR, is enforced
during training in a pairwise fashion (cf. Eq. (8)).

Network architecture
Given a global system, which we want to decompose into N sub-
systems, and a time series of input features fxtgt = 1,:::T , xt 2 RD× 1, we
pass the features through amaskG 2 RD×N , which weights each input
differently for each subsystem, before the result are transformed
individually by the N independent state assignment functions ηi. It
should be mentioned that the mask is merely introduced for inter-
pretability reasons and is not essential to find independent sub-
systems. If the mask was omitted, the extraction of the relevant
features would simply be transferred to the downstream neural net-
works, remaining hidden to the practitioner.

The weighted input is assessed by an element wise multiplication
�Yt =G� xt . In order to prevent the neural networks to reverse the
weighting of themask in its consecutive layers, we draw for each input
feature i and subsystem j an independent, normally distributed ran-
dom variable ϵij ∼N ð0,σð1� GijÞÞ. This noise is added to the weighted
features:

Yt = �Yt + ϵ: ð20Þ

Thereby, the attention weight linearly interpolates between input
feature and Gaussian noise, i.e., if the attentionweightGij = 1, Yij carries
exclusively the input feature xi, ifGij =0, Yij is simple Gaussian noise. By
tuning the noise scaling σ, a harder assignment by G can be enforced.
This hyperparameter should be optimized by adjusting it so that the
resulting mask yields clear subsystem assignments without being
binary. Subsequently, the transformed feature vector is split for each
individual subsystemYt = ½Y1

t ,:::,Y
N
t � andpassed through the subsystem

specific neural network ηi resulting in feature transformations
χ iðxtÞ=ηiðYi

tÞ. These features are then used to estimate the Koopman
models.

The training framework and neural network architecture were
implemented in the Python 3 programming language using numpy84

and pyTorch69; benchmark system data was generated using
DeepTime70; data visualization was performed using matplotlib85

and VMD24.

Constructing the mask
To train an interpretable mask, we use the following three premises:
1. A single subsystem should not focus on all input features.
2. Different subsystems compete for high weights for the same

feature.
3. All weights should be in the range [0, 1] and the matrix should be

sparse.

Therefore, themask is constructed by trainableweights g 2 RD×N

which are first processed by a softmax function which normalizes
along the input feature axis g1 = softmaxðg, dim =0Þ. Thereby, if a
subsystem focuses on one part of the features, a lower weight for the
other parts is expected following the first premise.

In a next step, weights which are lower than a threshold θ are
clipped to zero g2 = relu(g1 − θ) to guarantee sparsity. The threshold θ
is a hyperparameter that can beoptimizedby startingwith comparably
small values (i.e., very little cutoff) and subsequently increasing it
without further training—a reasonable cutoff does not alter the results
in this case, as the downstream neural networks still obtain all relevant
information.

Since input features could be negligible for all subsystems,
a dummy system is added which has a constant value c 2 RD× 1 for
all features g3 = [g2, c]. Consequently, the weights of all sub-
systems and the dummy system are normed for each feature
g4 =g3=sumðg3, dim = 1Þ, which together with the clipping fulfills
the premises two and three.

Finally, the mask is given by truncating the dummy system
g4 = ½G,�c�. Beware that only g4 is normalized along the system axis.

Application to protein dynamics
Since for proteins the finalmodel is often expected to be invariantwith
respect to rotations and translations, internal coordinates are
employed as input features. For Markov state modeling, the minimal
heavy atom distance dij between residues i, j has been proven to be a
good descriptor56,86. However, for interpretability, mask weights for
each residue are preferable. Therefore, the mask is of size G 2 RR×N

with the number of residues R. The input features are then scaled
as xij =GiGj expð�dijÞ.
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Furthermore, a smoothing routine is implemented such that
neighboring residues along the chain have similar importanceweights.
W windows of size B are placed along the chain with step size s. Each
window has a trainable weight g 2 RW ×N . Consequently, the softmax
function is taken along the window axis �g= softmaxðg, dim =0Þ.
However, before applying the clipping as before the weight for each
residue g12 RR ×N is calculated as the product of all window weights
the residue is part of (Fig. 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The benchmark data can be generated from the Jupyter notebooks
that have been deposited on GitHub under https://github.com/
markovmodel/ivampnets87. The molecular dynamics data set of
synaptotagmin C2A have been deposited in Zenodo under https://
zenodo.org/record/690807388. The crystal structure of synaptotagmin
C2A is available under PDB ID 2R83 [https://doi.org/10.2210/pdb2R83/
pdb]. The villin headpiece folding data are available under restricted
access and were used under license for this study as courtesy of D.E.
SHAW research76, access can be obtained from the authors upon
request.

Code availability
The code that implements the presented models and reproduces the
presented results has been deposited on GitHub under https://github.
com/markovmodel/ivampnets87.
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