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Abstract

Adaptive Resolution Simulation (AdResS) is a multi-resolution method with open system char-
acteristics for modelling atomistic-level systems. In AdResS, a high-resolution open system is
in contact with a reservoir of particles and energy, and the system is recreating the thermody-
namics and physics of the full atomistic system of reference. In this thesis, the fundamental
characteristics of the AdResS method are studied to provide a better understanding of the sta-
tistical mechanics undergoing within open system.

Among the most relevant results, it is worth underlining the equivalence of the grand poten-
tial, determined theoretically, with the pressure, calculated numerically for the same volume of
the atomistically resolved region. Moreover, such analysis led to a straightforward calculation
of the chemical potential of the liquid under investigation for a wide range of thermodynamic
conditions. It has been shown that the pressure difference resulting from the abrupt change of
resolutions is compensated by the energy provided by the external force (thermodynamic force)
in AdResS. Moreover, the chemical potential of AdResS is related to the chemical potential of
the full-atomistic simulation of reference by calculating different contributions corresponding to
the abrupt change of resolutions.

Next, a fluctuating hydrodynamics (FHD) solver is designed to capture the small-scale fluc-
tuations in the continuum simulations by adding a stochastic flux term to the Navier-Stokes
equation of the compressible flow. Then, this continuum solver is coupled to the previously
developed AdResS simulator through a small interface region by employing a novel coupling al-
gorithm according to the non-equilibrium AdResS simulation. To this aim, a set of pre-calculated
thermodynamic forces is prepared and the information on the continuum side transfers to the
particle subdomain by interpolating proper thermodynamic force. The AdResS-FHD coupling
system is developed and tested for various cases with different conditions and showed satisfac-
tory agreement with the results of the reference continuum and fully atomistic simulations.
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Chapter 1

Introduction

Molecular Dynamics (MD) is a numerical simulation method for modelling the physical mo-
tion of particles in various substances. The atoms and molecules are allowed to interact with
each other through a well-defined interaction potential which determines the evolution of the
system over time [10]. The trajectories of atoms and molecules determine the thermodynamic
and physical properties of the system at the macroscale according to the principles of statistical
mechanics [10, 87]. The atomic resolution requires significantly more computational resources
than macroscale simulation at lower resolutions. Thus, computational costs restrict one to small
size and time scales in molecular dynamics at atomistic resolution. MD simulations are popu-
lar in materials science, chemistry, and physics with applications in problems with important
atomic-level details. MD has been frequently used in e.g., ab-initio prediction of protein and
amino acid conformation [72,109], refinement of protein and macromolecule’s structure based on
experimental constraints from X-ray and NMR [2,90], thin-film growth and ion-subplantation in
physics [53, 82], tribological studies in material science [168], pharmacophore development and
drug design [29], and the chemistry of catalysis [178], to mention just a few.

MD simulations are computationally expensive as they require recording the positions and ve-
locities of every single particle and calculating their inter-particle forces over time. To reduce
the computational costs of the simulations, it is possible to consider some parts of the simulation
domain with atomic-level details and MD resolution and the rest which acts as a reservoir en-
vironment with lower resolution coarse-grained or even continuum descriptions. The Adaptive
Resolution Simulation (AdResS) method was first developed in 2005 to couple different regions
with different particle-based resolutions [156] while there exist some prior works to link regions
with hybrid schemes of coupling MD to a finite element [24, 162, 175] or quantum-mechanical
approaches [32]. In AdResS, particles can change resolution from a full-atom representation
to the coarse-grained region on-the-fly. There are two kinds of AdResS approaches and one of
them is based on the Hamiltonian of the system (H-AdResS) in which all molecules need both
atomistic description and a well-defined mapping point. Thus, in H-AdResS, the Hamiltonian of
the system is adjusted while changing resolution from the all-atom region to the coarse-grained
resolution [88, 155]. In the other approach, where this work is based, instead of adjusting the
Hamiltonian of the system, a weight function is defined for the hybrid region between the all-
atom region and the coarse-grained reservoir. The weight function adjusts the inter-particle
interactions between particles in different regions according to the all-atom and coarse-grained
interactions [114, 132, 156, 160]. However, in the latest version of AdResS, on which this work
is based, the coarse-grained region is replaced with a reservoir of non-interacting particles with
an abrupt change of resolutions and replacing the weight function with a one-body external
force [49]. There are several applications studied by the AdResS method in recent years in-
cluding Path Integral Molecular Dynamics for liquid water [3, 5], macromolecular liquids [150],
ionic liquids [46, 170], hydration of membranes [197], multiphase flow [127], etc. in which the
method showed a well-enough resemblance to the reference set-up with coupling different regions
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at different resolutions.

In recent decades, various attempts to couple a Molecular Dynamics simulator to continuum
hydrodynamics have been done and are reported in the literature [84,147]. In many approaches,
a continuum-particle overlapped region exists that acts as a separation boundary between the
continuum and particle subdomains with different resolutions. For the overlap region, state
variables and flux coupling scheme are introduced to take care of the conservation of bulk mass,
momentum and energy [37,51,63,141,147,193]. An overlap region is needed between the MD and
continuum parts of the domain to avoid the sharp oscillations in density and pressure between
different resolutions similar to the AdResS scheme where the atomistic region is connected to
the reservoir region through a small hybrid region [157].

1.1 Outline of the thesis

In this thesis, after the preparation of the AdResS set-up with the calibration of the parameters,
the influence of different parameters on the convergence of the simulations and quality of results
are systematically studied to allow for a more logical choice of the parameters in later studies.
As the first step, the chemical potential of the AdResS set-up and its reference simulation are
mathematically related to each other by deriving the proper relation of the grand potential
for open systems (a grand canonical ensemble). This explains how the necessary calibrations
contribute to the chemical potential of the system during the abrupt change of the resolution in
AdResS [73]. Later, as a validation of the assumption in the previous step through the grand
potential’s balance of the AdResS set-up, the pressure of the system is calculated rigorously
for both AdResS and its reference set-ups. It shows how the additional tools of the AdResS
scheme (external force) will compensate for the resulting pressure difference due to the change
of resolutions [74]. Finally, to further develop the idea of multiscale modelling, a fluctuating
hydrodynamics solver is developed to capture the fluctuations at the continuum level. This
solver is coupled to the latest version of AdResS with an innovative idea based on the non-
equilibrium properties of an open system.

To this aim and according to the discussion above, the current thesis is designed as the following:
the theoretical backgrounds of Molecular Dynamics and the AdResS scheme are introduced in
the second chapter. In the third chapter, the chemical potential of the system in the AdResS
scheme is mathematically related to the chemical potential of the reference set-up. In the fourth
chapter, the pressure of the fluid is studied in the AdResS and its reference set-up. In the fifth
chapter, the fluctuating hydrodynamic solver is developed and coupled to the AdResS simulation
method by introducing a novel coupling algorithm. Finally, the work is summarized in the last
chapter and the future outlook for the research is described. In the appendix, the simulation
code details for the MD simulation on different packages used in this work and also for the
continuum solver are presented.
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Chapter 2

Theoretical background

2.1 Molecular Dynamics (MD)

In this chapter, the necessary concepts and theories in the field of Molecular Dynamics and
atomistic level related to this work will be introduced. In the MD simulation method, the
trajectory of the particles is calculated by numerically solving Newton’s equation of motion in
which the inter-particle forces are calculated from interatomic potentials or molecular mechanics
force field.

The time evolution of molecular dynamics is used for the calculation of the macroscopic ther-
modynamic properties of the system. A key hypothesis is the ergodic property i.e. the time
average agrees with the microcanonical ensemble average (explained later in this chapter) [164].
In molecular dynamics simulations, the information of the N particles at the microscopic level,
i.e. the positions and velocities, are translated into macroscopic properties such as energy, tem-
perature, pressure, etc. If we represent the set of coordinates and momenta of N particles with r
and p respectively, it reads: r ≡ r1, ..., rN and p ≡ p1, ...,pN where ri and pi are the coordinates
and momenta of ith particle, respectively. The values of these 6N variables define a point in the
6N-dimensional phase space. The instantaneous value of an observable S would be a function
of the microstate, i.e. s(r,p) and its value can be calculated by averaging overtime during a
sufficiently long MD simulation.

S = ⟨s(r,p)⟩time = lim
t→∞

1

t

∫ t

0
s(r,p, t′)dt′ (2.1)

However, in molecular dynamics, the time is divided into several (n) discrete time steps (τ)
which means that the integral in Eq.2.1 will be replaced by a sum,

S = ⟨s(r,p)⟩ = 1

n

n∑
i=1

s(ri,pi, ti) (2.2)

In the most common form of classical molecular dynamics, the initial positions and velocities of
particles will be set at time t = 0. Next, the inter-particle forces are calculated based on the
predefined inter-particle interaction potentials and accordingly, the particles’ acceleration will
determine the new positions and velocities by using an integration algorithm. Then, the new
observables will be calculated and analyzed after some time (depending on the system under
study) to see whether the system has been equilibrated or not; afterwards, the simulation will
proceed to the next time step and repeat the previous steps for reaching the new state. This
general form of the MD algorithm is illustrated in the flowchart of Fig.2.1.

The study of a system at a macroscopic level using molecular dynamics simulation requires sta-
tistical mechanics. At the trajectory level, molecular dynamic simulations generate data such
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Predictor stage:  
rp=r(i)+v(i)Δt+1/2aΔt2+more accurate terms 

vp=v(i)+aΔt+more accurate terms 

Calculate forces: 
F=-∇V(rp)   and    a=F/m

Corrector stage: 
 r(i+1)=rp+some function of (a,Δt) 
v(i+1)=vp+some function of Δt 

apply boundary conditions and
calculate the physical quantities

advance time and iteration step:  
t=t+Δt   and   i=i+1 

set initial r(i=0) and v(i=0) 
choose a small Δt and set a=0

Figure 2.1: A simplified classical molecular dynamic algorithm with a predictor-corrector inte-
grator. The interparticle forces might be calculated by the inter-particle interaction potentials.
The type of integrator has a significant effect on the simulation as some of them may have
higher-order terms or may use both current and prior step variables.

as atomic position and velocities. Statistical mechanics is required to convert microscopic in-
formation into macroscopic attributes such as pressure, energy, thermal properties, etc. In this
sense, the thermodynamic state of a system is generally characterized by a limited number of
parameters, such as temperature (T ), pressure (P ), and particle number (N), where the equa-
tions of state and other fundamental thermodynamic equations can be used to determine various
thermodynamic characteristics.

2.2 Statistical Mechanics

The definition of certain equilibrium and time-dependent distribution functions of fundamental
importance in the theory of liquids, as well as a summary of the principles of classical statistical
mechanics and a discussion of the link between statistical mechanics and thermodynamics, are
provided in this section [87]. In addition, a set of notations that will be used in this thesis are
established here.

2.2.1 Statistical ensemble

A collection of points in phase space that meet the criteria of a specific thermodynamic state is
referred to an ensemble. An ensemble, in other terms, is a collection of all feasible systems with
distinct microscopic states but with the same macroscopic or thermodynamic state. A molecu-
lar dynamic simulation generates a series of points in phase space as a function of time; these
points all belong to the same ensemble and correspond to the system’s various conformations
and momenta [77,110,120,165].

In statistical mechanics, there are three main forms of ensembles. The microcanonical ensemble
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is formed when the system under investigation is isolated, that is, it does not interact with any
other systems. The system’s energy is constant in this situation. The ensemble is considered
a canonical ensemble if the system under investigation is in thermal equilibrium with a heat
reservoir at temperature T . The system’s energy is not constant in this example, but the tem-
perature of the heat bath is (the system’s mean temperature is equal to the temperature of
the heat bath). The ensemble is known as a grand canonical ensemble when the system under
discussion is in touch with both heat and particle reservoirs. The system’s energy and particle
number are not constant in this scenario, but the temperature and chemical potential are.

In all the different ensembles mentioned above, it is crucial to understand the time evolution
of the ensemble’s phase points by statistical mechanics. In this sense, the Liouville theorem
explains the time evolution with regard to the particles’ trajectory.

2.2.2 Time evolution and Liouville theorem

Consider a macroscopic system of N identical, point particles of mass m that are contained in a
volume V and create a 6N-dimensional phase space. Let H be the system’s Hamiltonian, which
can be expressed as

H(rN ,pN ) = KN (pN ) + VN (rN ) + ΦN (rN ) (2.3)

with KN =
∑N

i=0|pi|2/2mi being the kinetic energy, VN the inter-particle potential energy, and
ΦN the external potential field which in its absence, the system would be spatially uniform and
isotropic. Hamilton’s equations define the motion of the phase point along its phase trajectory:

ṙi =
∂H
∂pi

, ṗi = −∂H
∂ri

(2.4)

The distribution of phase points in the ensemble is given by a phase space probability density
f [N ]. The probability that the physical system is in a microscopic condition represented by a
phase point residing in the infinitesimal phase space element drNdpN at time t is given by the
quantity f [N ]drNdpN . According to this definition, probability density f [N ] across all phase
space integrates to one for every t.

The Liouville equation applies to the local density in the vicinity of a point as the point follows
a Hamiltonian flow in the phase space. The Liouville equation can be expressed in two ways.

∂f [N ]

∂t
+

N∑
i=1

(
∂f [N ]

∂ri
· ṙi +

∂f [N ]

∂pi

· ṗi

)
= 0 (2.5)

or, to put it in another way,

∂f [N ]

∂t
= {H, f [N ]} (2.6)

where the Poisson bracket is denoted by the {A,B}:

{A,B} ≡
N∑
i=1

(
∂A

∂ri
· ∂B
∂pi

− ∂A

∂pi

· ∂B
∂ri

)

Alternatively, using the Liouville operator L, which is defined as L ≡ i{H, }, the Liouville
equation takes the following format:

∂f [N ]

∂t
= −iLf [N ] (2.7)
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with the initial specified condition of f [N ](0) and the following formal solution:

f [N ](t) = exp(−iLt)f [N ](0) (2.8)

The Liouville equation can be written as df [N ]/dt = 0. This is known as the Liouville theo-
rem, and it states that the probability density is time-independent. Consider the phase points
contained within a phase space element drN (0)dpN (0) at time t = 0. The element’s form will
vary over time, but no phase points will enter or exit. As a result of the Liouville theorem, the
element’s volume must remain constant. Similarly, it can be proved that the temporal evolution
of any phase space function s(r,p) may be described in terms of the Liouville operator:

s(r,p, t) = exp(iLt)s(r,p) (2.9)

The thermodynamic and physical properties of the system can be expressed in terms of the parti-
cle trajectories and probability density of the phase space by taking time and ensemble averages.

2.2.3 Time and ensemble averages

Some thermodynamic features of a system can be expressed as averaged functions of the particles’
coordinates and momenta. These averages must be time-independent in thermal equilibrium.
When a system is isolated from its surroundings, its total energy remains constant, indicating
that the Hamiltonian is constant. Let S(rN ,pN ) be a function of the phase space variables, and
⟨S⟩ be its average value, where the angle brackets denote an undetermined averaging mechanism.
Newton’s equations of motion, which are a set of 3N second-order differential equations, may be
used to calculate the particles’ location and velocity (in the absence of an external field) at any
time.

Fi = −∇iVN (rN ) = mr̈i (2.10)

where Fi is the total force on ith particle. Then, the time average of S can be written as,

⟨S⟩t = lim
t→∞

1

t

∫ t

0
S(rN (t′),pN (t′))dt′ (2.11)

The average over an appropriately built ensemble is an alternative to the time-averaging ap-
proach stated in Eq.2.11. The coordinates and momenta of the particles fluctuate amongst
ensembles, and the ensemble dynamics are represented by the motion of phase points scattered
in phase space according to the probability density f [N ](rN ,pN ; t). As a result, the equilibrium
ensemble average of the function S(rN ,pN ) is,

⟨S⟩e =
∫∫

S(rN ,pN )f
[N ]
0 (rN ,pN )drNdpN (2.12)

where f
[N ]
0 is the equilibrium probability density.

For a system at equilibrium, the probability distribution function is time independent which
means ∂f [N ](rN ,pN , t)/∂t = 0 (see the previous section). Thus, Eq.2.6 reduces to:

{H, f [N ]} = 0 (2.13)

Thus, the probability distribution function is a function of the system’s Hamiltonian H,

f [N ](rN ,pN ) =
1

QN
F (H(rN ,pN )) (2.14)
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where QN is a normalization factor, known as a partition function, defined as:

QN =

∫
F (H(rN ,pN ))drNdpN (2.15)

The partition function characterizes the statistical features of a system in equilibrium and quan-
tifies the number of microstates in the phase space that are accessible inside the ensemble, and
is specific to the macroscopic parameters used to define the ensemble.

The probability distribution function and the partition function for different ensembles intro-
duced in Sec.2.2.1 are explained in the following.

Microcanonical ensemble(NVE)

In this ensemble, the system is isolated that means for a constant volume, it doesn’t exchange
energy and matter with its surroundings thus the energy and particles’ number remain constant.
The equilibrium probability density for this ensemble is

f
[N ]
0 (rN ,pN ) =

1

QN
δ(H− E) (2.16)

where δ is the Dirac δ-function and QN is

QN =
1

N !h3N

∫
δ(H− E)drNdpN (2.17)

where h is Planck’s constant. The factor 1/h3N is included in these formulations to guarantee

that both f
[N ]
0 drNdpN and QN are dimensionless and form-consistent with the relevant quan-

tum statistical mechanics variables, whereas division by N ! ensures that all states are counted
appropriately.

The probability distribution function in Eq.2.16 selects out those states that have energy E
and discards other states. A microcanonical ensemble is therefore equally distributed across the
phase space corresponding to a total energy E. If the system is ergodic, time and ensemble
averages are identical, which means that once a sufficient amount of time has elapsed, the phase
trajectory of the system will travel an equal number of times through each phase space specified
by Eq.2.16.

Canonical ensemble(NVT)

This ensemble is a closed system that has a constant temperature by exchanging energy with the
reservoir while preserving a constant number of particles for a constant volume. The equilibrium
distribution function for the canonical ensemble is

f
[N ]
0 (rN ,pN ) =

1

QN
exp(−βH) (2.18)

where β is the reciprocal of the system’s thermodynamic temperature β = 1/kBT and the
partition function is:

QN =
1

N !h3N

∫
exp(−βH)drNdpN (2.19)

The equilibrium distribution function in Eq.2.18 is referred to Boltzmann distribution. It is
noteworthy to mention that in the canonical ensemble, the Hamiltonian is not constant as the
system exchanges energy with its surroundings to preserve the temperature.
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Grand canonical ensemble(µVT)

This ensemble represents an open system that exchanges both energy and matter with the
reservoir to have a constant temperature and chemical potential for a constant volume. The
equilibrium probability distribution function for the grand canonical ensemble is

f
[N ]
0 (rN ,pN ) =

1

QN
exp(−β(H− µN)) (2.20)

with µ being the chemical potential. The corresponding partition function is

QN =

∞∑
N=0

1

N !h3N

∫
exp(−β(H− µN))drNdpN (2.21)

2.3 Integrators

During a molecular dynamics simulation as specified in the algorithm of MD in Fig.2.1, the
positions and velocities of particles need to be updated at each step according to Newton’s
equation of motion. This updating step requires the force acting on each particle and it can
be calculated based on the pre-defined inter-particle potentials (Fi(t) = −∇iU(rN )). In the
Hamiltonian of the system, Eq.2.3, in the absence of external force fields and with the inter-
particle potential of U ,

H(rN ,pN ) =

N∑
i=0

|pi|2

2mi
+ U(rN ) (2.22)

employing the relations in Eq.2.4 will result

ṙi =
∂H
∂pi

=
pi

mi
, ṗi = −∂H

∂ri
= −∇iU(rN ) (2.23)

These evolution equations determine the system’s state for the next step which may be calculated
by using some integrator algorithms. In an integration algorithm [188], a discretization of the
equations of motion can be obtained by Taylor expansion:

ri(t+∆t) = ri(t) + vi(t)∆t+
fi(t)

mi

∆t2

2!
+

...
r i(t)

∆t3

3!
+O(∆t4) (2.24)

vi(t+∆t) = vi(t) +
fi(t)

mi
∆t+ v̈i(t)

∆t2

2!
+

...
v i(t)

∆t3

3!
+O(∆t4) (2.25)

where ri and vi are i
th particle’s location and velocity, respectively.

Some of the most common integrating schemes are introduced in what follows.

Euler algorithm

The simplest integration scheme based on the Taylor expansion in Eq.2.24 and Eq.2.25 is the
Euler integration algorithm which reads

ri(t+∆t) = ri(t) + vi(t)∆t+
fi(t)

mi

∆t2

2!
+O(∆t3) (2.26)

vi(t+∆t) = vi(t) +
fi(t)

mi
∆t+O(∆t2) (2.27)

The Euler scheme is neither time-reversible nor volume-preserving in the phase space and hence
is rather unfavourable. Nevertheless, the Euler scheme can be used to integrate other equations
of motion, e.g. the Boltzmann equation [10,92].
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Verlet algorithm

Similar to Eq.2.24 and by expansion of the ri(t−∆t) according to Taylor expansion

ri(t−∆t) = ri(t)− vi(t)∆t+
fi(t)

mi

∆t2

2!
− ...

r i(t)
∆t3

3!
+O(∆t4) (2.28)

By adding and subtracting the updating equations for positions in Eq.2.24 and Eq.2.28, the
following equations for the position and velocity will result.

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
fi(t)

mi
∆t2 +O(∆t4) (2.29)

vi(t) =
ri(t+∆t)− ri(t−∆t)

2∆t
+O(∆t3) (2.30)

In the Verlet algorithm [188], the velocities are not needed to compute the trajectories; however,
they are required to calculate observables like kinetic energy. In the Verlet scheme, the velocities
v(t) are only available once the updated position r(t + ∆t) has been calculated, i.e. one time
step later. Moreover, the updating of positions according to the Verlet scheme gives rise to
numerical imprecision as a small term of order ∆t2 is added to a difference of O(1)-term.

Leap-frog algorithm

The leap-frog scheme [10] contains both the positions and velocities from readily available quan-
tities. The updating equations are:

vi(t+
∆t

2
) = vi(t−

∆t

2
) +

fi(t)

mi
∆t (2.31)

ri(t+∆t) = ri(t) + vi(t+
∆t

2
)∆t (2.32)

In this scheme, the velocities are updated at half-time steps and ’leap’ ahead of the positions,
and the current velocities can be obtained from

vi(t) =
1

2
[vi(t−

∆t

2
) + vi(t+

∆t

2
)] (2.33)

Numerical imprecision is minimized in the leap-frog scheme. However, the velocities are still not
accessible in an ad-hoc manner [10].

Velocity Verlet algorithm

Velocity Verlet scheme [179], which is algebraically equivalent to the original Verlet scheme,
yields the positions, velocities and forces at the same time and is a symplectic integrator, i.e. it
preserves the volume in phase space. In this scheme, the positions and velocities are updated
according to

ri(t+∆t) = ri(t) + vi(t)∆t+
fi(t)

mi

∆t2

2!
+O(∆t3) (2.34)

vi(t+∆t) = vi(t) +
fi(t) + fi(t+∆t)

2mi
∆t+O(∆t3) (2.35)

Despite its simplicity, the Velocity Verlet scheme is very stable and has become the most widely
used integrator in Molecular Dynamics simulations [179].
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2.4. THERMOSTATS

2.4 Thermostats

In an ensemble at the constant temperature where the system is allowed to exchange energy
with its surroundings in MD, it is required to set the temperature of the domain (or a specific
part of it) at a constant value. This constraint can be managed by using a thermostat during
the simulation. To add and remove energy from an MD simulation in a more or less realistic
fashion, several thermostat algorithms are available. Velocity rescaling, Nosé–Hoover thermo-
stat, Berendsen thermostat, Andersen thermostat, and Langevin dynamics are the most popular
ways of controlling temperature by emulating the system in contact with a constant temperature
bath [67,184]. Some of those thermostats are introduced briefly in the following.

The average kinetic energy of the system is related to the temperature by K = 3NkBT/2, thus,
the first idea to keep the temperature is to rescale the particles’ velocity in such a way that it
generates the desired temperature. The most obvious factor for velocity rescaling is

√
Tnew/Told

according to the relation between particles’ velocity (kinetic energy) and the system’s tempera-
ture.

Nosé–Hoover thermostat

The Nosé-Hoover thermostat [94] is a temperature control system that ”strives” to mimic the
canonical phase space distribution. It does this by adding a non-Newtonian factor to the equa-
tions of motion to control the kinetic energy. The modified equation of motion is given by:

dvi(t)

dt
=

Fi(t)

mi
− ζ(t)vi(t) (2.36)

where ζ is the thermodynamic friction coefficient,

dζ(t)

dt
=

1

Q

[∑
mivi(t)

2 − (X + 1)kBT
]

(2.37)

where X is the number of degrees of freedom, and Q is a parameter with the dimensions of
energy× time2 that controls the time scale of the temperature variation [94].

Berendsen thermostat

Berendsen thermostat [19] is another temperature-controlling tool for molecular dynamics sim-
ulations which uses a weak coupling (γi) to an external heat bath of temperature T0. By using
this thermostat, the equation of motion will take the following format,

dvi(t)

dt
=

Fi(t)

mi
+ λ(

T0
T

− 1)vi(t) (2.38)

which represents a rescaling of velocities per time step from v to λv with λ being:

λ =

√
1 +

∆t

τT
(
T0
T

− 1) (2.39)

where τT is a time constant that is associated with the strength of coupling.
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2.5. FORCE FIELDS AND INTERACTION POTENTIALS

Andersen thermostat

The Andersen thermostat [11] connects the system to a heat bath by modifying the kinetic
energy of the atoms through stochastic forces. The duration between collisions, as well as the
number of collisions in a given period, is determined randomly using the PDF of the exponential
distribution:

P (t) = νe−νt (2.40)

where ν is the stochastic collision frequency. The new momentum of the atom is chosen randomly
from a Boltzmann distribution at temperature T after a collision event. In theory, ν can take
any value. There is, however, an ideal solution for the stochastic collision frequency:

ν =
2aκV 1/3

3kBN
=

2aκ

3kBρ∗1/3N2/3
(2.41)

where a is a dimensionless constant and κ is the heat conductivity [11].

Langevin thermostat

In stochastic dynamics, the Langevin equation formulates the Brownian motion of particles in
an ideal solvent [169, 203]. The Langevin equation of motion for a particle is in the following
form:

mi
d2ri(t)

dt2
= Fi(ri(t))− γimi

dri(t)

dt
+Ri(t) (2.42)

where γi is the friction coefficient due to the friction between particles and solvent and Ri(t)
is the random force caused by particles’ interaction with the solvent. In addition to the inter-
particle forces, the equation of motion includes a friction term (γi) which reduces the particles’
kinetic and also a random fluctuation (Ri(t)) which increases the particles’ kinetic. The random
fluctuation term is chosen in such a way that its mean is zero and is uncorrelated in time. As
both the friction and random force terms originate from the interaction of the particles with
the solvent, they are related to each other by the following fluctuation-dissipation relation that
recovers the canonical ensemble,

⟨R(t)R(t′)⟩ = 2kBTmiγiδ(t− t′) (2.43)

In many MD simulations of a solute-solvent system (e.g. DNA, protein, and nanoparticles in
solution) in which the behaviour of the solute is desired, the Langevin equation can be used by
assuming atoms being simulated are embedded in a sea of friction particles.

2.5 Force fields and interaction potentials

A force field is a computational tool used in chemistry and molecular modelling to determine
the forces between atoms. In molecular dynamics, the force field refers to the functional form
and parameters used to find the potential energy of a system of particles. The parameters for
a given energy function might be generated via physics and chemistry experiments, quantum
mechanics calculations, or a combination of both [67].

The interaction potentials in molecular dynamics can be categorized into non-bonded and
bonded interaction potentials between atoms that are separated or bonded to each other. In the
following, different contributions to the interaction potentials are explained.
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2.5. FORCE FIELDS AND INTERACTION POTENTIALS

2.5.1 Non-bonded interactions

The non-bonded interactions act between molecules or atoms that are not bonded to each other
and are assumed to be pairwise additive which means ϕ(r) =

∑
i<j Uij(rij). Consequently, the

inter-particle force is Fi = −Fj = −∇iϕij . The non-bonded interaction includes the Van der
Waals and electrostatic interactions [87].

Van der Waals interactions

The severe repulsion that arises at a short range and is caused by the overlap of the outer
electron shells is the most essential property of the pair potential between atoms or molecules.
The short-range order that is typical of the liquid state is created as a result of these intense
repulsive forces. Attractive forces at large distances fluctuate more gradually with particle
distance and have only a small impact on shaping the structure of the liquid. Instead, they
provide a homogeneous background and generate the cohesive energy needed to stabilize the
liquid [87].

The simplest model for a fluid is the hard-sphere model with the potential function of:

ϕ(r) =

{
∞, r < d

0, r > d
(2.44)

with d being the hard-sphere diameter. The resulting structure of the fluid with the hard-sphere
model does not differ significantly from those resulting from more complicated inter-atomic po-
tentials. However, simulations show that it undergoes a freezing transition at ρ∗ = 0.945 and
the absence of attractive forces makes it a single fluid phase. A simple model that can truly
describe the fluid system is the square-well model which includes an attractive potential part
by introducing ϵ and γ (= 1.5 typically) which are the depth of the well and a constant for the
width of the well, respectively.

ϕ(r) =


∞, r < d

−ϵ, d < r < γd

0, r > γd

(2.45)

An alternative for the square-well potential function is the hard-core Yukawa potential that
theoretically has features of particular interest,

ϕ(r) =

{
∞, r < d

− ϵd
r e

−λ( r
d
−1), r > d

(2.46)

where γ determines the inverse range of the attractive tail of the potential. The shape of the
potentials for square-well and hard-core models are described in Fig.2.2 [87].

A more realistic potential can be constructed by a detailed quantum mechanics calculation in
which at large separations, the attractive contribution varies with r−6 and higher-order terms r−8

and r−12 interactions which are smaller compared to the first term. The short-range interactions
are relatively difficult to calculate but they can be approximated by exp(−r/r0) where r0 is a
range parameter that needs to be modified for the very small r values that should ϕ(r) → ∞.
Thus, for mathematical convenience, it is usual to represent the short-range repulsion by an
inverse power law r−n that n usually is chosen between 9 and 15. With these criteria, the
well-known 12− 6 potential of Lennard-Jones is in the following form:

ϕ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
(2.47)
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2.5. FORCE FIELDS AND INTERACTION POTENTIALS

(a) square-well potential (b) Yukawa potential

Figure 2.2: Simple pair potentials for monatomic systems (a, b). The square-well model (a)
is a modified version of the hard-sphere model with an additional attractive term and the
Yukawa model (b) has a smooth form for the attractive part which makes it more interesting for
theoretical studies. Two examples in case (b) correspond to the different λ values for rare-gas
atoms (λ = 2) and short-range, attractive forces for certain colloidal systems(λ = 8) [87].

This formulation includes two parameters that are the collision diameter σ which is the interpar-
ticle distance where ϕ(r) = 0 and the depth of the potential well at the minimum of interparticle
potential (ϵ). Lennard-Jones interactions are considered to be short-range as the inter-particle
force resulting from it decays fast by increasing the inter-particle distance; thus, a cut-off radius
(rc) is usually considered in which particles do not interact with each other out of this radius [87].

Electrostatic interactions

The electrostatic interactions that occur between charged particles or molecules are long-range
interactions compared to the Lennard-Jones interactions as they decay with r−1 (see Eq.2.48).
Thus, it is not possible to ignore the long-range interactions similar to what is usually done in
Lennard-Jones interactions by considering a cut-off radius.

In the most common methodology for computing electrostatic interactions (Ewald summa-
tion [10]), the interaction is divided into short-range and long-range contributions which are
calculated in real and Fourier space respectively. In another approach, which is known as
Reaction-Field method [182], the interactions are divided into two parts; one inside the cut-off
region and one outside. For the electrostatic interactions within the cut-off distance, one may
use the well-known Coulomb’s law:

ϕ(r) =

N∑
i=1

N∑
j<i

qiqj
r

(2.48)

where r is the inter-particle distance and qi is the charge of ith particle. The particles outside
the cut-off radius are treated as a cloud that produces a reaction field by assuming that they
generate a dielectric medium(ϵs). The total energy from the reaction field outside the cut-off
radius is:

ϕ(r) =
N∑
i=1

∑
j∈rc

1− ϵs
r3c (2ϵs + 1)

µiµj (2.49)

where µ is the dipole moment of each molecule [182].
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2.5.2 Bonded interactions

Bonded interactions [186] are the interaction of atoms within the same molecule and are not
limited to pair interactions but include 3- and 4-body interactions with bond stretching (2-body),
bond angle (3-body) and dihedral angle (4-body) interactions. The bond stretching potential
between two covalently bonded atoms can be calculated by harmonic potential as follows:

Vb(rij) =
1

2
kbij(rij − bij)

2 (2.50)

where the corresponding force would be:

Fi(rij) = kbij(rij − bij)
rij
rij

(2.51)

with kbij being the force constant and bij being the equilibrium bond length.

The vibration of the bond angle between a triple of atoms (i, j, and k) may be represented by
a harmonic potential on the triple atoms angle (θijk),

Va(θijk) =
1

2
kθijk(θijk − θ0ijk)

2 (2.52)

where kθijk is the force constant and θ0ijk is the equilibrium triple bond angle. With Harmonic
3-body potential, the force on each atom may be calculated by the chain rule:

Fi =
∂Va(θijk)

∂ri
, Fk =

∂Va(θijk)

∂rk
, Fj = −Fi − Fk (2.53)

where θijk = arccos
rij .rkj

rijrkj
. The labels of i, j, and k are the sequence of atoms in the covalent

bond where atom j is in the middle and atoms i and k are on the sides.

For the vibrations of four body bonds which depend on the torsion angle (Θijkl), called the
dihedral potential, the harmonic potential reads as:

Vd(Θijkl) =
1

2
kΘijkl(Θijkl −Θ0

ijkl)
2 (2.54)

where kΘijkl is the force constant, Θijkl is the angle between the plane where atoms i, j and k

are located in and the plane for atoms j, k, and l, and Θ0
ijkl is the equilibrium angle between

those planes [186].

2.6 Boundary conditions

In most molecular dynamic simulations, periodic boundary conditions (PBC) are used to pre-
vent difficulties with boundary effects caused by the limited size and to make the system more
resemble an infinite one, at the expense of potential periodicity effects [10].

Because of the particles’ presence far away from the surfaces, periodic boundary conditions are
used to measure the ”bulk” qualities of the system. In most cases, a cubic simulation box is
used to house the particles. This cubic box is reproduced in all directions; if a particle exits the
core simulation box during a simulation run, one of its image particles enters the central box
from the opposite direction. The image particles in adjacent boxes travel in the same direction,
as seen in Fig.2.3 for a two-dimensional visualization [177].
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2.7. REDUCED UNITS

Figure 2.3: Periodic boundary conditions are represented in two dimensions. The paths of the
particles in the central simulation box are duplicated in all directions.

Because of its simplicity, a cubic or rectangular box is generally exclusively employed in simu-
lations with periodic boundaries. However, spherical boundary conditions have also been exam-
ined, where the three-dimensional surface of the sphere produces a non-Euclidean metric. The
application of periodic boundary conditions allows bulk characteristics of systems with a limited
number of particles to be simulated.

2.7 Reduced units

In MD simulations, it is common to describe quantities like temperature, density, and pressure
in reduced units. This implies that we pick a convenient unit of energy, length, and mass, and
then represent all other quantities in terms of these fundamental units [67]. It is common to
create a set of dimensionless reduced units for simple liquids made of point-like particles that
interact with the same pairwise potential of a generic form U(r) = ϵf(r/σ). Here, ϵ and σ are
constants and f is a smooth and differentiable function. A natural choice for the basic units
are the units of length (σ), energy (ϵ), and mass (M , the mass of atoms in the system) and all
other parameters can be calculated based on these basic units (see Tab.2.1).

By utilizing these reduced parameters which may be denoted by superscript ∗, the Lennard-Jones
potential in its reduced form would be:

U∗(r∗) = 4

[
(
1

r∗
)12 − (

1

r∗
)6
]

(2.55)

in which the reduced pair potential is U∗ := U/ϵ and the reduced distance is r∗ := r/σ.

The first reason for using reduced units is that many combinations of ρ, T , ϵ, and σ correspond
to the same state in reduced units. As an example, Argon at the density of 840[kg/m3] and
temperature of 60[K] is equivalent to Xenon at the density of 1617[kg/m3] and temperature of
112[K] in reduced units which both cases translate to ρ∗ = 0.5 and T ∗ = 0.5. This means that
in real SI units one may run two different simulations for these two cases but in reduced units,
one can run the same simulation with the corresponding reduced parameters and then convert
the results by suitable coefficients according to Tab.2.1 to the real units. The other reason is
that in many molecular simulations one deals with very small or very large numbers which may
generate overflow or underflow errors after multiplication during simulation. In reduced units,
all quantities of interest are in the order of 1 (say, between 10−3 and 103) which doesn’t raise

15



2.8. PHYSICAL PROPERTIES

Quantity Symbol Relation to SI

Length r∗ rσ−1

Mass m∗ mM−1

Time t∗ tσ−1
√
ϵ/M

Temperature T ∗ kBTϵ
−1

Energy E∗ Eϵ−1

Force F ∗ Fσϵ−1

Pressure P ∗ Pσ3ϵ−1

Velocity v∗ v
√
M/ϵ

Density ρ∗ Nσ3/V

Table 2.1: Reduced Lennard-Jones quantities

an error for such scenarios and the result later can be converted into the real units.

In the next section, some physical properties of the molecular systems which are used for the
validation of results within this thesis are described.

2.8 Physical properties

There are some physical properties of the fluid under study that have been considered in this
research to prove the grand canonical behaviour of the method used here (Adaptive Resolution
Simulation). This includes the radial distribution function and the chemical potential of sub-
stances that are explained in the following.

2.8.1 Radial Distribution Function

In statistical mechanics, the radial distribution function or pair correlation function (g(r)) de-
termines how density (ρ) varies as a function of distance from a reference particle. With this
definition, for a homogeneous and isotropic system, the local time-averaged density at a dis-
tance of r from a particle located at a certain point would be ρg(r). In another word, the radial
distribution function determines the probability of finding a particle in the radius of r around a
reference particle relative to that for an ideal gas.

For a system with N particles in volume V and at temperature T with inter-particle interactions
U(r1, ..., rN ), the probability density in space is given by [87]:

P (N)(r1, ..., rN ) =
e−βU

QN
(2.56)

By fixing the position of n < N particles in r1, ..., rn with no constraints on remaining N − n
particles, one may compute the probability of the reduced configuration by integrating Eq.2.56
over the remaining coordinates rn+1, ..., rN :

P (n)(r1, ..., rn) =
1

QN

∫
...

∫
e−βUdrn+1...drN (2.57)

By considering the case that any of n particles place at positions r1, ..., rn in any permutation,
the definition of n-particle density would be,

ρ(n)(r1, ..., rn) =
N !

(N − n)!
P (n)(r1, ..., rn) (2.58)
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This equation gives the one-particle density for n = 1 which for a homogeneous liquid is inde-
pendent of the position r1 and equal to the system’s density:

1

V

∫
ρ(1)(r1)dr1 = ρ(1) =

N

V
= ρ (2.59)

By introducing the correlation function g(n):

ρ(n)(r1, ..., rn) = ρng(n)(r1, ..., rn) (2.60)

Thus, from Eq.2.58 and Eq.2.60, it follows that:

g(n)(r1, ..., rn) =
V nN !

Nn(N − n)!

1

QN

∫
...

∫
e−βUdrn+1...drN (2.61)

where the second-order correlation function which is defined in the following form is the radial
distribution function.

g(2)(r1, r2) =
V 2N !

N2(N − 2)!

1

QN

∫
...

∫
e−βUdr3...drN (2.62)

2.8.2 Chemical Potential

In thermodynamics, the chemical potential of species in a chemical mixture is the energy that
is added or absorbed from the system due to the change of the particle number for the specific
species. Thus, the chemical potential of species in a mixture is defined as the rate of change of
the free energy of the system with respect to the change of particle number for given species. In
this sense, the fundamental equation of thermodynamics for the open system reads [87]:

dU = TdS − PdV +

n∑
i=1

µidNi (2.63)

where U , T , S, P , and V are the internal energy, temperature, entropy, pressure, and volume,
respectively, with dX being the infinitesimal change in variable X. Ni is the particle number of
species i. From Eq.2.63, the chemical potential is:

µi =

(
∂U

∂Ni

)
S,V,Nj ̸=i

(2.64)

In a more convenient formalism, by taking Legendre transformation of Eq.2.63 and definition of
Gibbs free energy G = U + PV − TS,

dG = −SdT − V dP +

n∑
i=1

µidNi (2.65)

which results in the following expression for the chemical potential:

µi =

(
∂G

∂Ni

)
T,P,Nj ̸=i

(2.66)

This relation is more convenient for chemical potential calculation rather than Eq.2.64 as keeping
the temperature and pressure constant is more feasible compared to the entropy and volume of
the system while adding new particles.

It is possible to derive further expressions for the chemical potential by taking further Legendre
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transformations from U and using enthalpy H = U+PV and Helmholtz free energy F = U−TS
that leads to the following relations for the chemical potential [87]:

µi =

(
∂H

∂Ni

)
S,P,Nj ̸=i

, µi =

(
∂F

∂Ni

)
T,V,Nj ̸=i

(2.67)

All the different forms of the chemical potential are equivalent and may be useful for different
physical situations where keeping any thermodynamic property constant is more convenient.

The total chemical potential of a given species can be divided into two parts; one of them is the
excess chemical potential (µex) and the other is the ideal chemical potential (µid) that represents
the chemical potential of an ideal gas under the same condition (i.e. pressure, temperature, and
composition) [67].

µi = µidi + µexi (2.68)

In molecular simulations, the chemical potential of the fluid can be calculated, for example, by
the Widom insertion method explained in the following.

Widom insertion method

In statistical thermodynamics, the Widom insertion method is used to calculate the material and
mixture properties. In general, there are two different approaches for determining the statistical
mechanical properties of a system; the first one is to calculate the overall partition function and
system’s free energy and the second approach is to use the Widom insertion method which yields
the chemical potential of the system instead of the system’s free energy. The Widom insertion
method can be translated as an application of Jarzynski equality [102, 103] as it measures the
excess free energy when changing the state of the system from N particles to N + 1 particles:

µex =
∆Fexcess

∆N
(2.69)

where ∆N = 1.

In the Widom insertion method, the insertion parameter Bi is defined in the following format:

Bi =
ρi
ai

=

〈
exp

(
− ψi

kBT

)〉
(2.70)

where ρi is the number density of species i, ai is its activity, ψ is the interaction energy of the
inserted particle with all other particles in the system, and ⟨...⟩ denotes the average over all
insertions. In this approach, the particles’ locations are fixed and then the new particle will be
inserted in different locations and the average will be calculated. Then, the insertion parameter
would be related to the chemical potential of the system by the following equation:

µi = −kBT × ln

(
Bi

ρiλ3

)
= kBT × ln(ρiλ

3)− kBT × ln

(〈
exp

(
− ψi

kBT

)〉)
= µid + µex

(2.71)

In the next section, the principles of the Adaptive Resolution Scheme (AdResS) are explained
which is used to couple a full atomistic molecular dynamics subdomain to a lower resolution
reservoir.
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2.9 Adaptive Resolution Simulation (AdResS)

Many problems in complex soft matter systems are intrinsically multiscale, meaning that micro-
scopic interactions are tightly connected to meso- and macroscopic features. Despite advances
in computing power and continuous attempts to improve the efficiency of molecular-dynamics
integration techniques, all-atom MD simulations are frequently unable to span the time and
length scales required for relaxation in a typical molecular system, such as a polymer solution
or melt [105,156]. Moreover, in many problems, there exists a small region of the domain which
carries the most interest to study the details. Thus, it brings the idea of considering part of
the domain with high-resolution (atomistic details) and the rest at a lower resolution (coarse-
grained) [101,135].

In this respective, Adaptive Resolution Simulation (AdResS) is a particle-based multiscale molec-
ular dynamics simulation technique that couples different regions with different resolutions while
preserving the physical and thermodynamic properties of the full atomistic simulation of refer-
ence in the high-resolution region [156]. In AdResS, part of the domain is considered to have a
higher resolution with a fully atomistic description of particles which corresponds to open sys-
tem with grand canonical properties embedded in a reservoir of particles [160]. This multiscale
approach has been refined over time starting from a reservoir of coarse-grained particles up to
replacing them with non-interacting particles in its latest version [49].

2.9.1 Background

In general, in Adaptive Resolution simulations particles may change resolution from a full-atom
representation to a coarse-grained region on-the-fly according to where they are located. There
are two kinds of AdResS approaches and one of them is based on the Hamiltonian of the system
(H-AdResS) in which all molecules need both atomistic description and a well-defined mapping
point [88, 155]. Here, we use the version where a weight function is defined for the hybrid
region between the all-atom region and the coarse-grained reservoir to adjust the inter-particle
interactions between particles in different regions according to the all-atom and coarse-grained
interactions [114,132,156,160].

In the previous version of AdResS where the all-atom region is connected to the coarse-grained
region through a small transition region, particles in different parts of the domain interact
with each other via a space-dependent interpolation formula for the force acting between two
molecules α and β,

Fαβ = w(xα)w(xβ)F
AT
αβ + (1− w(xα)w(xβ))F

CG
αβ (2.72)

where FAT
αβ and FCG

αβ are derived from the atomistic and coarse-grained potentials, respectively.
The interpolation weight function w(x) is defined as,

w(x) =


1 x < lAT

cos2
(

π
2l∆

(x− lAT )
)

lAT < x < l∆

0 > l∆

(2.73)

where lAT and l∆ are the size of atomistic and transition regions [116].

In the current version of AdResS, the coarse-grained region is replaced by a reservoir of non-
interacting ideal gas-like particles. The particles in the AT (atomistic region) and transition
regions interact with each other with atomistic potentials while particles in the reservoir region
(called tracer particles, TR) do not interact with each other nor with the atomistic particles [49].
To reproduce the thermodynamics and statistics of the full atomistic simulation of reference and
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compensate for the removed degrees of freedom due to the abrupt change of resolutions, there
should be some necessary tools which include a thermostat and an external force that is ex-
plained in the next part. Fig.2.4 shows the transition from old AdResS with coarse-grained
particles to the new version with tracer particles.

Figure 2.4: The evolution of Adaptive Resolution Set-up from the previous version with coarse-
grained particles (panel a) in the low-resolution region and weight function w(x) for interpolation
of interaction potentials to the current version with the abrupt change of resolution (panel c)
and non-interacting particles in the reservoir region [49].

2.9.2 Set-up and configuration

In AdResS, as mentioned above, the fully-atomistic region is located (usually) in the middle
of the simulation domain and is connected to the reservoir of non-interacting particles (tracer
region, TR) through a small hybrid region (∆ region), and is supposed to reproduce the thermo-
dynamics and statistics of the fully atomistic simulation of reference. In Fig.2.5, the upper panel
(a) shows the set-up of the simulation of reference and the lower panel (b) describes AdResS with
red particles having the full atomistic resolution and black points are the dummy particles in
the reservoir region. The atomistic and tracer regions are connected through a small region that
has some characteristics of atomistic particles (they can interact with each other and particles
in the atomistic region with particle-based potentials) and some of the reservoir particles (the
thermostat and external force are acting on them).

Changing the resolution of particles from a full-atomistic representation to the tracer region
with non-interacting particles and applying the abrupt change of resolutions will remove some
degrees of freedom from the system. Thus, it is necessary to introduce some changes to the new
system (AdResS) to make it resemble the original system of reference in both thermodynamics
and dynamics of the system in the region of interest (AT). These include a thermostat and an
external force applied in the reservoir region of AdResS (TR ∪ ∆) to preserve the thermody-
namics and structure of the reference system. The external force (called thermodynamic force)
is calculated self-consistently in an iterative manner during equilibrium runs and details of its
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Figure 2.5: simulation set-up for AdResS with non-interacting particles in the reservoir region.
Panel (a) shows the simulation set-up of the full atomistic simulation of reference and panel
(b) shows the set-up of AdResS. Red particles show the particles with atomistic resolution and
black point-like particles are the non-interacting particles of the reservoir region. They are
connected by a small transition region with grey particles that have some properties of the
atomistic particles and some of the tracer particles [74].

calculation method are explained in the next part. The last required tool is the capping of forces
at the border of TR and ∆ regions; this is a minor change in the system that does not affect the
statistics of the system and is required to escape producing meaningless large interaction forces
when dummy particles enter the ∆ region on top of each other or at very small interparticle
distances [73]. Further notes on the capping force are explained in Chapter 3.

2.9.3 Thermodynamic force

In the simulation domain with the explained decomposition in Fig.2.5, particles tend to move to
the regions with lower energy levels in the absence of the external force. Thus, such partitioning
will result in a non-uniform density profile in the equilibrium. This will result in an imbalance in
the pressure of the system due to the abrupt change of resolution in the constant temperature by
applying a thermostat in the reservoir region that is balanced in AdResS with the implementation
of an external force (thermodynamic force) [74]. On the other hand, as numerically shown in
this thesis, the thermodynamic force is a balancing tool for the chemical potential of the AdResS
system according to the reference set-up [73].

In Refs. [68, 195], it has been shown that the thermodynamic force is balancing the resulting
pressure difference due to the change of resolution. It has been shown in detail how such external
force is expected to compensate for the imbalance resulting from the change of resolutions. With
this idea, the following iterative formula for the calculation of the thermodynamic force with an
initial zero force was proposed:

F i+1
th (x) = F i

th(x)−
m

ρ20κT
∇ρi(x) (2.74)

where m is the particle’s mass, ρ0 is the target uniform density, and κT is the compressibility of

the fluid. The derivative of density (∇ρi) is a normal derivative that means ∂ρi

∂n = n · ∇ρi with
n being the axes along which the change of resolution is happening. This iterative equation will
find the required external force for adjusting the density of the system to the uniform density
of the reference system usually within 10-30 steps.
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2.9.4 Applications and validations

There are several applications studied by the Adaptive Resolution Scheme in recent years. It
has been used for Path Integral Molecular Dynamics for liquid water [3, 5], macromolecular
liquids [150], ionic liquids [46, 170], hydration of membranes [197], multiphase flow [127], etc.
and in all of them, the method showed a well-enough resemblance to the reference set-up with
coupling different regions at different resolutions.

To evaluate the function of AdResS and see how it reproduces the behaviour of the reference
set-up, two mandatory tests are the temperature of the system and the density profile over the
simulation domain. These two may assure that the adaptive resolution scheme is reproducing
the thermodynamics of the original system of reference. Two other benchmarks that are usually
calculated during AdResS simulations are the probability of finding particles (Gaussian distribu-
tion) and the radial distribution function. Their comparison to the reference set-up will validate
that AdResS is keeping the structure and statistics of the original reference full-atomistic simu-
lation.
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Chapter 3

Chemical Potential calculation while
changing the resolution in AdResS
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Abstract

The adaptive resolution simulation (AdResS) technique couples regions with different molecular
resolutions and allows the exchange of molecules between different regions in an adaptive fashion.
The latest development of the technique allows for abruptly coupling the atomistically resolved
region with a region of non-interacting point-like particles. The abrupt set-up was derived from
having in mind the idea of the atomistically resolved region as an open system embedded in a
large reservoir at a given macroscopic state. In this work, starting from the idea of open system,
we derive thermodynamic relations for AdResS which justify conceptually and numerically the
claim of AdResS as a technique for simulating open systems. In particular, we derive the relation
between the chemical potential of the AdResS set-up and that of its reference fully atomistic
simulation. This result implies that the grand potential of AdResS can be explicitly written and
thus, from a statistical mechanics point of view, the atomistically resolved region of AdResS can
be identified with a well-defined open system.

3.1 Introduction

The adaptive resolution simulation (AdResS) technique couples, in a concurrent fashion, regions
of space at different molecular resolutions [158, 160, 174]. Recent developments are pushing the
method towards a computational realization of an open system embedded in a large reservoir of
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particles and energy [6, 20, 45, 47, 48, 56, 113, 122]. The simulation set-up is reduced to the very
essential by abruptly coupling an atomistically resolved region to a reservoir of non-interacting
point particles [48]. The simplified algorithmic protocol, explained in detail in the next sec-
tion, has the advantage of high computational efficiency and allows us to write a total interac-
tion potential without making use of artificial, space-dependent, interpolations of atomistic and
coarse-grained forces or Hamiltonians [60, 158, 159]. The abrupt coupling between the different
regions may give the impression, at a first glance, of being highly artificial; in reality, physical
consistency can be achieved by imposing specific numerical conditions. The latter assures that
the AdResS simulation reproduces the results of the simulation of an equivalent subsystem in a
large fully atomistic system of reference [195,196].

In this perspective, the natural question arising is whether one can translate the numerical
constraints into explicit thermodynamic and statistical mechanics relations occurring at the
coupling region. This work demonstrates that arguments relying on physical consistency indeed
lead to explicit thermodynamic descriptions of the AdResS set-up that positively pass specific
numerical tests. The key result of the paper is the relation between the chemical potential of the
atomistically resolved subsystem and the chemical potential of the fully atomistic system of ref-
erence. Such a relation, in turn, allows one to define the grand potential of the atomistic region
of AdResS in terms of quantities that can be explicitly calculated from numerical simulations.
The grand potential expresses the essential thermodynamic and statistical mechanics features
of an open system. Thus the possibility of concretely defining the grand potential of AdResS
at the microscopic level provides a robust justification for the idea of AdResS as a physically
consistent numerical approach to open systems. The derivation of the thermodynamic relation is
developed under ideal conditions which do not normally occur in standard simulations; however,
numerical tests suggest that the obtained relations can be applied beyond the ideal conditions
in which they have been derived.

The results of this chapter enrich the thermodynamic and statistical mechanics foundations
of AdResS in its abrupt coupling approach and stimulate future deeper analysis of its several
theoretical and numerical implications. The abrupt coupling approach allows for efficient simula-
tions of complex systems such as, e.g., hydrated biological membranes [198]. While the standard
atomistic simulation would require a sizable computational effort, the AdResS simulation, due
to the drastically reduced number of degrees of freedom, runs at a reduced computational price.
It must be noticed that the initial calibration and validation of AdResS requires reference data
from fully atomistic simulations. However, for example in solvation studies, the largest portion
of the AT region represents bulk liquid and thus calibration and validation of the parameters of
AdResS can be done on smaller systems whose size is sufficient to represent only the bulk. The
computational price of such test systems, even at a fully atomistic level, is negligible (see e.g.
Refs. [4, 100,198]).

3.2 Basic principles of AdResS with a reservoir of non-interacting
particles

Fig.3.1 (a) illustrates the AdResS set-up; this latter consists of partitioning the simulation box
into three regions: the region of interest AT, with a fully atomistic resolution, the interface region
∆, with fully atomistic resolution but with additional coupling features to the large reservoir,
and TR, the large reservoir of non-interacting particles (tracers). Molecules of the AT region
interact with atomistic potentials among themselves and with molecules in ∆, and vice versa,
while there is no direct interaction with the tracer particles. Tracers and molecules in the ∆ and
TR regions are subject to an additional one-body force Fth(x) n⃗, named thermodynamic force,
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acting along the direction n⃗ in which the change of resolution takes place; it is a function of
the distance x from the atomistic region and n⃗ is the surface normal of the coupling boundary
(Fig.3.1 (c)). Second, a thermostat acts on the ∆ and TR regions that compensates for the heat
introduced by the change of resolution [56, 195]. In essence, these are the coupling condition
between the ∆ region and the reservoir TR.

Technically, also a force capping is imposed in the ∆ region since point-like particles arriving
from the TR region and entering the ∆ region may be unphysically close to one other. Due
to the abrupt switching of molecular degrees of freedom, close molecules can experience forces
between atoms which are artificially large. Admittedly, the force capping is an artificial means
by which unphysically large forces are automatically relaxed to the average force occurring in the
equivalent fully atomistic simulation. The capping, however, is equivalent to a global modifica-
tion of the highly repulsive part of the interaction potentials, which has marginal repercussions
on the physical properties of the fluid. The exact form of the force capping is given later in
this chapter, where we also report numerical tests showing that its effects can be neglected.
Recently, in Ref. [181], it has been proposed an alternative approach to circumvent the prob-
lem of unphysical large forces at the interface between ∆ and TR. It is based on an energy
minimization procedure for the insertion of particles from the TR region to the ∆ region, as
originally suggested in Ref. [113]. Compared to the procedure employed here, the procedure of
Ref. [181] is computationally more demanding however it can be useful for liquids composed of
large molecules with complex chemical architecture.

In summary, the total potential of the AdResS set-up reads:

UAd(xN ) = U(xN ) + Φ∆(xN ) + Ucap(xN ) (3.1)

assuming that at a given instance in time N particles are found in the AT ∪∆ region with posi-
tions xN = {r⃗1, . . . , r⃗N}. Here, U(xN ) represents the total potential from atomistic interactions
of particles in AT ∪∆ among themselves; Φ∆(xN ) :=

∑
r⃗j∈∆ ϕth(r⃗j) collects the contributions

due to the potential ϕth of the thermodynamic force, Fth(x) = −∇xϕth(r⃗) with ϕth = 0 at the
AT/∆ interface [48]. Finally, Ucap(xN ) arises from the force capping and is only present in the
∆ region.

The effect of F⃗th(r) consists in enforcing a homogeneous molecular density in the ∆ region equiv-
alent to the molecular density ρat in the equilibrium of the reference fully atomistic system. In

practice, it is calculated self-consistently in an iterative process, starting from F
(0)
th (x) = 0. The

update between successive steps k is F
(k+1)
th (x) = F

(k)
th (x)− c∇ρk(x), where the density profile

ρk(x) was calculated from an AdResS simulation using F
(k)
th (x) and c > 0 is a suitable coefficient

to control the speed of convergence. The iteration stops when the deviation of ρk(x) from a
constant profile is within a prescribed tolerance, details are given in the technical details. After
Fth(x) has been determined, it remains unchanged in the whole AdResS production run without
recalibration [68,195].
The development of the abrupt computational set-up with tracers became possible through the
mapping of the algorithm onto a theoretical model of open systems. Such a model fixes a series
of conditions that the AdResS simulation must fulfil to be considered valid. Such conditions are
sufficient to assure that the physics of the AT region is correct and, in the limit of large TR and
AT regions compared to ∆, one has a Grand Canonical-like ensemble for AT (GC-AdResS) [30].
The application of the thermodynamic force in ∆ is one of these conditions because it assures
that the particle density in ∆ is equal to the atomistic target density at equilibrium. Ideally
one would want to make sure that the interactions of particles near the boundary of the AT
region with their neighbours are statistically isotropic, i.e. independent of whether neighbours
have located within the AT or ∆ region. Matching the densities between the AT and ∆ region
is a necessary condition for achieving this.
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Figure 3.1: Simulation set up in the (a) AdResS system and (b) fully atomistic system. In
panel (c) it is shown the x-direction along which the change of resolution occurs and the vector
n, normal to the coupling boundaries, that defines the direction of the thermodynamic force.
In AdResS particles change resolution when crossing the border between the ∆ and TR region
(reservoir with tracer particles). In both systems, the red boxes represent the subsystem analyzed
in this work. It must be underlined that the AT region is the region of physical interest, and
the ∆ region is an AdResS-artifact through which the coupling to the non-interacting particle
reservoir becomes technically possible. Here we extend the analysis to the ∆ region so that
its coupling conditions can be rationalized in terms of thermodynamic quantities of the joint
AT ∪∆ region.

Going one step further, it is required that the probability distribution p(N) of the number of
particles in the AT region should be the same, within some accuracy, as p(N) of the equivalent
subsystem in a fully atomistic simulation. The fulfilment of such a condition assures one that,
on average, the exchange of particles between the AT region and the reservoir occurs properly.
For a Gaussian distribution, it is sufficient to compare the first two cumulants, which are related
to the density and the compressibility, where the latter provides a particularly sensitive test
of the boundary conditions [98]. In the language of statistical mechanics, the equivalence of
the n-th moments of p(N) between AdResS and the reference system guarantees that the n-th
derivatives of the grand potentials of the two systems with respect to the chemical potential
agree and vice versa. Additionally, microscopic structural consistency is assured by matching
atom-atom radial distribution functions in the AT region. Finally, one could also verify that the
interaction energy between molecules in AT and molecules in ∆ is negligible compared to the
interaction energy amongst the molecules in AT so that the physics of the system is determined
only by the interactions between the molecules in AT, that is the physical system of interest.

3.3 Relation between the chemical potential of AdResS and of
a fully atomistic system of reference

3.3.1 Principle of equivalence for the grand potential

In an open system, the relevant thermodynamic state potential is the grand potential Ω = −PV ,
where V and P denote the volume and the pressure of the system. It has the microscopic
expression

Ω = −kBT ln

( ∞∑
N=0

eβµNQN

)
, (3.2)
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if the system is equilibrated at the chemical potential µ and the temperature T ; as usual β =
1/kBT with kB Boltzmann’s constant. The partition function at a fixed number N of identical
particles reads

QN =
1

h3NN !

∫
R3N

∫
V N

e−βHN (xN ,pN )dxNdpN , (3.3)

where pN = {p⃗1, . . . , p⃗N} and xN = {r⃗1, . . . , r⃗N} are the momenta and positions of the N
particles, respectively. The Hamiltonian is the sum of kinetic and interaction potential energies:

HN (xN , pN ) =
N∑
i=1

p⃗2i
2m

+ U(xN ), (3.4)

andm is the particle mass. It must be noticed that here the potential U(xN ) contains interactions
only between particles in the system and neglects any potential interaction with the exterior
(see e.g. Ref. [97]).

For a subsystem S in a fully atomistic system of reference, whose domain is equivalent to the
S = AT ∪ ∆ region of the AdResS set-up, let us define the grand potential of the reference
system as

⟨Ωr⟩ = −kBT ln

( ∞∑
N=0

eβµrNQr
N

)
, (3.5)

where we denoted the chemical potential of the reference subsystem by µr and introduced the
effective N -particle partition function

Qr
N :=

〈
1

h3NN !

∫
R3N

∫
SN

e−βHr
N (xN ,pN |x′

M )dxNdpN

〉
δS

. (3.6)

Here, the extended Hamiltonian

Hr
N (xN , pN |x′M ) =

N∑
i=1

p⃗2i
2m

+ U(xN ) + U(xN , x
′
M ) (3.7)

expresses the fact that the N molecules of the subsystem do not interact only among themselves,
but also with M molecules located in a layer δS around the S region. The angular brackets in
Eq.3.6 denote an averaging operation over the positions x′M ∈ δS of these reservoir particles,
which, however, are correlated with other particles of the reservoir outside of δS. Mathemati-
cally, the probability density pδS(x

′
M ) of the positions in δS is obtained by the marginalization

of the phase space density of the universe (subsystem plus reservoir), see also Ref. [47]. Later on,
we will specify how one performs the marginalization w.r.t. the outer particles in a simulation
where M changes dynamically. If we assume that U(x) is a potential with a sufficiently short
interaction range, the volumes obey |δS|≪ |S|, and thus the integration over the M particles
represents a surface effect, we can, in good approximation, identify ⟨Ωr⟩ with the grand potential
of the S region (see also Ref. [97]).

Next, we consider the S = AT ∪ ∆ region of the AdResS set-up without the thermodynamic
force acting in the ∆ region, i.e., without the potential energy contribution ϕth(x). Denoting
by µ0 the chemical potential of this subsystem in absence of the thermodynamic force, and the
corresponding grand potential Ω0

Ad is defined as

Ω0
Ad = −kBT ln

( ∞∑
N=0

eβµ0NQAd,0
N

)
(3.8)

with

QAd,0
N =

1

h3NN !

∫
R3N

∫
SN

e−βHAd,0
N (xN ,pN )dxNdpN (3.9)
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and the Hamiltonian

HAd,0
N (xN , pN ) =

N∑
i=1

p⃗2i
2m

+ U(xN ) + Ucap(xN ) ; (3.10)

the latter follows from Eq.3.1. As argued above, the number of capping events is negligible and
we will neglect the term Ucap(xN ) in the following, so that HAd,0

N reduces to HN as in Eq.3.4.

The purpose of AdResS is to reproduce the physics of the reference fully atomistic simulation
in the AT region. If the AdResS set-up, with Hamiltonian HAd,0

N , was sufficient to this aim
one should have: ⟨Ωr⟩ = Ω0

Ad, but it is easy to numerically verify that this is never the case.
However, as described in the previous section, adding a one-particle potential in the ∆ region
of the AdResS set-up is sufficient to enforce the physical consistency between AdResS and its
reference fully atomistic system. In the following subsection, we will interpret the inclusion of
the potential of the thermodynamic force in AdResS through the idea of equivalence of the grand
potential between AdResS and its fully atomistic system of reference.

3.3.2 Perturbation of the potential energy in the ∆ region

Let us anticipate the thermodynamic limit so that the size of AT is arbitrarily large and |AT |≫
|∆|. Under such conditions, we add a small perturbation to the potential of the ∆ region in
AdResS. Let us assume that such a perturbation can be designed in such a way that we achieve
the wished relation of thermodynamic equivalence between the AdResS set-up and its reference
simulation:

⟨Ωr⟩ = ΩAd ; (3.11)

equality holds also for all derivatives of the two grand potentials w.r.t. the variables µ, V, T .

In the actual AdResS numerical simulation, the potential of the thermodynamic force ϕth(x)
acting in ∆ assures the approximate statistical equivalence between the AdResS simulation
and its fully atomistic simulation of reference within AT, at least for the one-particle density
and the pair (radial) distribution function. Thus, ϕth(x) is a reasonable approximation to the
perturbation needed. In the presence of a perturbation, one can assume that physical quantities
of interest in AT ∪∆ remain, in first approximation, as they were in absence of the perturbation
and that the effect of the perturbation can be explicitly derived and added to them. This
argument allows us to write in good approximation for the grand potential of the equilibrated
AdResS set-up:

ΩAd = −kBT ln

( ∞∑
N=0

eβ(µ0+∆µ)NQAd
N

)
(3.12)

with

QAd
N =

1

h3NN !

∫
R3N

∫
SN

e−βHAd
N (xN ,pN )dxNdpN , (3.13)

in which HAd
N (xN , pN ) = HAd,0

N (xN , pN ) + Φ∆(xN ). Here, we have denoted the chemical po-
tential of the perturbed system by µ0 +∆µ and assumed, according to the above definition of
perturbation, that the difference ∆µ = ∆µ[ϕth] originates from the perturbation of the potential
energy in QAd

N . In order to arrive at an explicit thermodynamic relation between µr, µ0 and ∆µ,
we will derive explicit expressions of Qr

N and QAd
N in the subsection below.
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3.3.3 Relation between µr, µ0 and ∆µ

Following the standard arguments in statistical mechanics [97], the sum overN in the expressions
Eq.3.5 and Eq.3.12 for ⟨Ωr⟩ and ΩAd represents a major obstacle to the derivation of a direct
relation between µr, µ0 and ∆µ. However, given the conditions of the thermodynamic limit for
S we can assume that p(N) is sharply peaked around N̄ , with N̄ being the average number
of particles in S. Under such assumption, the sum over N can be approximated by its most
relevant term, that is the term of the series corresponding to N̄ . It follows that the condition
⟨Ωr⟩ = ΩAd [Eq.3.11] implies:

−kBT ln
(
eβµrN̄Qr

N̄

)
= −kBT ln

(
eβ(µ0+∆µ)N̄QAd

N̄

)
, (3.14)

or equivalently,
βµrN̄ + lnQr

N̄ = βµ0N̄ + β∆µN̄ + lnQAd
N̄ , (3.15)

which becomes exact in the thermodynamic limit. The error of the approximation can be
estimated by considering N ± ∆N as upper and lower bounds on N in our calculations, with
the standard deviation ∆N =

√
⟨N2⟩ − ⟨N⟩2. One may ask whether the hypothesis of P (N)

sharply distributed around N is automatically fulfilled in AdResS simulations. In general, this
may not be the case when AT is not sufficiently large compared to ∆. In any case, P (N) can
be calculated in AdResS while the simulation runs without additional costs and thus one can
automatically check the degree of validity of the hypothesis in actual simulations. Moreover, as
suggested above, the accuracy of Eq.3.15 can be tested by considering the upper and lower bound
of N . The use of N +∆N and N −∆N in Eq.3.15 instead of N , will lead to a relation between
µr, µ0 and ∆µ that quantitatively differs from the one where N is used. Once a threshold for
the desired accuracy of the simulation is given, the difference above can be used as an additional
criterion of the validity of the original hypothesis, that is to decide whether or not P (N) is sharp
enough. It follows that in an AdResS simulation the fulfilment of the hypothesis that P (N) is
sharply distributed around N is under the control of the simulator at any time.

In the next step, we will rewrite the expressions for the N̄ -particle partition functions Qr
N̄

and

QAd
N̄

. Let us first consider the partition sum of the equilibrated AdResS setup, given in Eq.3.13:

QAd
N̄ =

1

h3N̄ N̄ !

∫
R3N̄

∫
SN̄

e−βHN̄ (xN̄ ,pN̄ ) × e−βΦ∆(xN̄ )dpN̄dxN̄ , (3.16)

which is nothing else than a quantity proportional to the canonical average of e−βΦ∆(xN̄ ) w.r.t.
the region S, i.e.,

QAd
N̄ = QN̄ ⟨e−βΦ∆(xN̄ )⟩ . (3.17)

The evaluation of Qr
N̄
, defined in Eq.3.6, implies the knowledge of the statistics pδS(x

′
M ;M) of

the values of M and the positions x′M in the shell δS. For the moment let us assume that it
is known and the average w.r.t. x′M can be carried out. For Qr

N̄
, this average is spelled out in

integral form as

Qr
N̄ =

∞∑
M=0

∫
δSM

1

h3N̄ N̄ !

∫
R3N̄

∫
SN̄

e−βHN̄ (xN̄ ,pN̄ )×e−βU(xN̄ ,x′
M )dxN̄dpN̄ pδS(x

′
M ;M) dx′M . (3.18)

This expression can also be interpreted as a canonical average of ⟨exp(−βU(xN̄ , x
′
M ))⟩δS over

the positions and momenta of the N̄ particles in S, after dividing by a suitable normalization
factor that coincides with the N̄ -particle partition function QN̄ given in Eq.3.3. We obtain

Qr
N̄ = QN̄

〈
⟨e−βU(xN ,x′

M )⟩δS
〉

(3.19)

with the double brackets referring, first, to the average over the statistics ofM and the positions
x′M ∈ δS and, second, to the canonical average over xN̄ ∈ S. In numerical simulations, the
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statistics over M are extracted from a sufficiently long simulation run and the corresponding
average over the time series takes properly into account the integration over x′M in Eq.3.18.

Collecting the results of this section and by substituting Eq.3.19 and Eq.3.17 in Eq.3.14, one
obtains

eβµrN̄ ⟨e−βU(xN̄ ,x′
M )⟩ = eβ(µ0+∆µ)N̄ ⟨e−βΦ∆(xN̄ )⟩ (3.20)

and, one step further, an explicit formula that links µr, µ0 and ∆µ:

µr − (µ0 +∆µ) = ω∆ − ωr . (3.21)

Here, the energies
ω∆ := (βN̄)−1 ln ⟨e−βΦ∆(xN̄ )⟩ (3.22)

and
ωr := (βN̄)−1 ln ⟨e−βU(xN̄ ,x′

M )⟩, (3.23)

are, respectively, the contribution of the potential of thermodynamic force and the pulled-out
interactions of particles in the open system with those in the reservoir.

Interestingly, µr, µ0, ω∆, and ωr can be calculated numerically within fully atomistic and AdResS
simulations. In particular, ω∆ and ωr contain the terms ⟨e−βΦ∆(xN̄ )⟩ and ⟨e−βU(xN̄ ,x′

M )⟩, which,
as for the sampling w.r.t. the x′M states discussed above, are calculated by sampling xN over a
sufficiently long trajectory and averaging over the time series. Since we have assumed to work
under the condition that p(N) is sharply distributed around N̄ , the dominant configurations in
the sampling along the trajectory are those with N̄ particles in the subsystem. This means that
we can identify with good approximation, ⟨e−βΦ∆(xN̄ )⟩ and ⟨e−βU(xN̄ ,x′

M )⟩ with ⟨e−βΦ∆(xN )⟩ and
⟨e−βU(xN ,x′

M )⟩, respectively, calculated from the simulation.

The possibility of calculating numerically the quantities above implies that indeed the grand
potential of the AT region of AdResS, ΩAd, within the assumptions made, can be explicitly
written. In turn, the explicit definition of the grand potential from a microscopic (first principle
of statistical mechanics) perspective legitimates the definition of AdResS as a method of open
systems that is well-founded on statistical mechanics.

3.4 Technical Details and Validation of AdResS

For validation of AdResS, a variety of LJ fluids with different state points along with a water
model at biological conditions have been studied. The LJ fluid particles are of mass m and
interact pairwise with the sharply truncated and shifted LJ potential U(r) = ULJ(r)− ULJ(rc)
for r < rc and U(r) = 0 otherwise; the cut-off distance was chosen as rc = 2.5σ and the original
LJ potential reads ULJ(r) = 4ϵ[(r/σ)−12 − (r/σ)−6]. The parameters ϵ and σ serve as intrinsic
units for energy and length, respectively; the unit of time is set to τ :=

√
mσ2/ϵ. For the case of

water, in addition to the mentioned pair interactions, electrostatic potentials are also included
with a cut-off radius of 1.2 nm.

The LJ fluids were kept at the (dimension-reduced) temperature T ∗ := kBT/ϵ = 1.5, which is
well above the liquid–vapour critical point, and we investigated four different number densities
ρ∗ := ρσ3 ≈ 0.20, 0.25, 0.30, and 0.37, corresponding to particle numbers N = 8k, 10k, 12k, and
15k, where k stands for the SI prefix for 103. In the case of water, 58 990 water molecules (i.e.
176 970 atoms) at a biological temperature of 323K have been considered for simulations.

In the corresponding AdResS set-ups, the same particle numbers were used for the total of
LJ and tracer particles. The LJ particles were confined to a cuboid simulation box of size
45σ×30σ×30σ (for the case of water: 33.09 nm×7.37 nm×7.37 nm), with periodic boundaries
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Figure 3.2: Thermodynamic force Fth(x) (left) and its potential ϕth(x) (right) used in the
AdResS set-ups for Lennard-Jones fluids at the same temperature T ∗ = 1.5 and at four reduced
densities. The thermodynamic force is zero in the AT region by construction and vanishes
rapidly inside the TR region.

imposed at all faces. For the AdResS set-up, the width of the transition region ∆ along the
x-axis was set to the cut-off radius, L∆ = rc, which provides sufficient space and time for the
proper equilibration of particles that entered from the ∆/TR border and changed their reso-
lution abruptly before they reach the AT region of interest. The width of the AT region was
chosen as LAT = 6σ for LJ cases and LAT = 10nm for water simulation, which is small enough
to reduce the computational cost significantly compared to a fully atomistic simulation and large
enough to be able to mimic and reproduce the thermodynamics and structure of the fluid under
study. The remaining part of the simulation box (LTR = 34σ for LJ cases and LTR = 20.69 nm
for water) is filled with non-interacting particles (tracers). For the fully atomistic simulations
serving as the reference, the same geometry of the simulation box was used (Fig.3.1a) and ob-
servables were computed only in a subvolume of width LAT along the x-axis, corresponding to
the AT region of the AdResS set-up.

All simulations were carried out with the GROMACS software [136] using the stochastic leap-
frog integrator with timestep 0.002τ , which acts as a Langevin-type thermostat with the time
constant set to 0.05τ . The production runs covered 103τ to calculate thermodynamic and statis-
tical properties within the AdResS simulation. The threshold for capping the force on a particle
in the ∆ region was set to Fcap = 500ϵ/σ and was applied separately for each Cartesian compo-
nent of the force. Excess chemical potentials were computed in standard MD simulations using
Widom’s method [199], in particular, 10 k test particles were inserted after each interval of 2τ .

In the case of the AdResS set-up and for each density, the thermodynamic force Fth(x) was calcu-
lated iteratively as described above with the stopping criterion chosen as max|ρ(x)−ρ∗|/ρ∗ ≤ 2%;
the maximum is taken across the whole simulation box. The thermodynamic force Fth(x) was
parameterized in terms of a cubic spline interpolation with knot distance 0.3σ. On average, 10–
15 iterations were needed for this scheme to converge, and each iteration involved a simulation
run over 200τ .

The resulting curves for Fth(x) are shown in Fig.3.2 along with the corresponding potentials
ϕth(x) obtained from the integration of the force. The main feature of the potentials is a mini-
mum in the ∆ region, close to the ∆/TR boundary (x = 5.5σ), with the depth increasing by a
factor of 2 as the density of the fluids is increased from ρ∗ = 0.20 to ρ∗ = 0.37. Inside the TR
region, the potential converges within a distance of ≈ 1σ from the ∆/TR boundary to a constant
ϕTR ≈ −0.45ϵ, i.e., below the value in the AT region. The value of ϕTR varies only mildly with
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Figure 3.3: Density profiles ρ(x) across the AdResS set-up along the direction of change of
resolution, which is chosen as x-axis. Lines show the equilibrium profiles generated at the initial
and final steps of the iterative calculation of the thermodynamic force Fth(x). The initial choice

F
(0)
th (x) = 0 leads to considerable variations in the density (blue), which are forced to a flat profile

(red) within a tolerance of 2% relative to the constant equilibrium profile ρ(x) = ρ∗ (black) by
application of the finally obtained Fth(x) (Fig.3.2). The panels show data for Lennard-Jones
fluids at the same temperature T ∗ = 1.5 and at four reduced densities as indicated. The
transition regions are marked by gray shadings.
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Figure 3.4: Radial distribution function g(r) obtained from the AT region of the AdResS set-up
(red symbols) and the corresponding subvolume of the fully atomistic reference (blue line). Data
for a Lennard-Jones fluid at temperature T ∗ = 1.5 and number density ρ∗ = 0.37, using 15 k
particles in total.

the density. Note that its sign is opposite to the case of liquid water at room conditions [48]. The
physical action of the potential well in ϕth(x) is that tracer particles are pulled into the denser
fluid in the ∆ region, whereas LJ particles are kept from escaping to the TR region. Effectively,
it yields a flat density profile at the equilibrium density ρ∗ of the corresponding LJ fluid, i.e.,
the AdResS set-up reproduces the density of a fully atomistic reference simulation within the
prescribed tolerance (Fig.3.3). In the absence of the thermodynamic force, Fth(x) = 0, the AT
and TR regions are unbalanced, generating an excess of particles on one side of the AdResS
interface and a depletion on the other. In the specific examples, the density in the center of the
AT region, denoted by ρ0, is increased by 20–30%, which is compensated by a diminution of the
amount of tracer particles.

As further checks that the AdResS set-up reproduces the structural and statistical character-
istics of the fully atomistic simulation, we compared the radial distribution function g(r) from
both approaches, which yield a perfect match (data for ρ∗ = 0.37 are shown in Fig.3.4). Second,
we tested the permeability of the AT/∆ boundary by inspecting the probability distribution
p(N) for finding N particles in the AT region and in the corresponding subvolume of the fully
atomistic simulation (Fig.3.5). Both distributions superpose closely and resemble a Gaussian;
the small shift of the peak positions is related to the allowed tolerance on ρ(x) in the com-
putation of the thermodynamic force. For the density ρ∗at = 0.37, we obtained mean values
⟨N⟩ = 2000 and 2024 for the reference and for AdResS, respectively. Similarly, the standard
deviations std(N) = 40.6 and 40.1, being a measure of the compressibility, differ by only 1.3%.
We conclude that the AT region of the AdResS set-up used here is a good representation of an
open subvolume of a fully atomistic simulation.

3.4.1 The capped energy is negligible

The force capping acting in the ∆ region takes care of the divergent interaction potentials, which
is technically needed due to the sudden introduction of new interactions upon tracer particles
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Figure 3.5: Probability distribution p(N) of finding N particles in the region of interest (AT),
which is an open system. Comparison of results from the AdResS set-up (red squares) and
the fully atomistic reference simulation (blue discs) for a Lennard-Jones fluid at temperature
T ∗ = 1.5 and number density ρ∗ = 0.37. Solid lines are fits to a Gaussian distribution. The
inset shows a close-up of the sharp peak seen in the main panel.

entering the atomistically resolved region. Given a certain configuration of molecules in the
AT ∪ ∆ region, the force capping would renormalize the interaction energy of two molecules,
located at the very interface between the ∆ region and the tracer region, which have a distance
that cannot occur in a fully atomistic simulation. However, this term is negligible compared
to the other contributions as evidenced numerically for the LJ fluid at the density ρ∗ = 0.37,
which exhibits the highest frequency of force capping incidences in this study (Fig.3.6). The
number of incidences of force cappings rarely exceeds a value of 20 in each MD integration step,
which is three orders of magnitude smaller than the total number of pair interactions in the ∆
region, estimated to 2 × 104 based on the particle density and the radial distribution function
(Fig.3.4). Furthermore, the capping is equivalent to a global modification of the highly repulsive
part of the interaction potentials, which has marginal repercussions on the physical properties
of the fluid; specifically for the LJ potential and the choice for Fcap = 500σ/ϵ used here, the
capping corresponds to a modification of the potential for distances shorter than rcap ≈ 0.82σ
or potential energies U(r) ≳ 28 ϵ.

3.5 Numerical experiments

Numerical experiments to test Eq.3.21 are performed by molecular dynamics simulations of
Lennard-Jones (LJ) fluids for a range of densities so that we gather information for different
thermodynamic state points. An additional simulation of liquid water has been carried on to
check the applicability of Eq.3.21 for a system with chemically structured molecules, where the
passage from the tracer region to the ∆ region implies the drastic reintroduction of molecular
(atomistic) degrees of freedom. Moreover, liquid water is one of the most relevant examples in
molecular simulation and AdResS has been shown to handle such systems in a very satisfactory
way (see e.g. Ref. [48]) thus it is an ideal test bed for Eq.3.21.

34



3.5. NUMERICAL EXPERIMENTS

Figure 3.6: Number of incidences of force capping per MD integration step, relative to the total
number of pair interactions in the transition region ∆ as a function of time, the latter number
was estimated to 2× 104 for the LJ fluid at the density ρ∗ = 0.37.

3.5.1 Numerical protocol for the calculation of ∆µ

The total chemical potential of a liquid can be separated into the kinetic and potential contri-
butions µ = µid + µex. In this relation, µid originates from the probability distribution of the
momenta only, ∝ exp(−β

∑N
i=1 p⃗

2
i /2m), thus it is equivalent to the chemical potential of an ideal

gas at the given (uniform) particle density ρ = N/V :

µid = kBT ln(ρΛ3) (3.24)

with the thermal wavelength Λ = h/
√
2πmkBT . The contribution µex is called excess chemical

potential and originates from the position-dependent part of the N -particle phase space density
∝ e−βU(xN ) (Ref. [66]). According to the above separation of the chemical potential, Eq.3.21 is
rearranged to:

∆µ = µexr − µex0 + γid − ω∆ + ωr (3.25)

with γid = µidr − µid0 = kBT log(ρr/ρ0), where ρ0 is the particle density in the AT region in the
initial iteration of the thermodynamic force calculation, that is when no corrections are added
to the potential yielding the unbalanced density (Fig.3.3).

All the ingredients needed to explicitly calculate ∆µ, i.e. the unknown perturbation in the
chemical potential generated by the thermodynamic force, are now available. First, µexr can be
calculated by, e.g., Widom’s test particle insertion [199] in the fully atomistic simulation of the
reference system. Second, µex0 instead is the chemical potential the system would have in the
AT region if AdResS runs without the thermodynamic force in the transition region ∆. It can
be determined from also Widom’s test particle insertion either in the AT region of the initial
AdResS set-up or in a standard MD simulation at the density ρ0, that is the density of the AT
region in the AdResS set-up without any correction measures. The latter occurs as the density
in the first iteration run for finding the thermodynamic force (see Fig.3.3), since we are assuming
that the AT region is infinitely large.

3.5.2 Numerical results

All terms contributing to Eq.3.25 can be determined from the fully atomistic simulation of ref-
erence (µexr and ωr), the AdResS simulation (γid and ω∆), and a mix of both simulations (µex0 )
in a straightforward manner as described. Here, after validating the case studies for the AdResS
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ρ∗ µexr µex0 γid ω∆ ωr ∆µ µexr acc. Eq.3.27

0.198 -1.255(2) -1.532(3) -0.385(3) 0.125(2) 0.222(3) -0.011(11) -1.244(11)
0.247 -1.487(3) -1.789(4) -0.411(3) 0.160(3) 0.256(3) -0.013(16) -1.474(13)
0.296 -1.686(4) -1.938(5) -0.384(3) 0.192(3) 0.306(3) -0.018(18) -1.668(14)
0.370 -1.912(5) -2.032(5) -0.268(3) 0.233(3) 0.365(3) -0.016(19) -1.896(14)

water -24.8(1) -21.9(1) -0.203(3) 0.210(4) 3.1(1) -0.2(3) -24.6(3)

Table 3.1: Breakdown of the chemical potential relation into AdResS-related contributions
[Eq.3.25] for the investigated Lennard-Jones fluids at temperature T ∗ = 1.5 and number density
as given in the first column. The values for the density ρ0 (entering µex0 and γid) and the free
energy contribution ω∆ related to the thermodynamic force were obtained from AdResS simu-
lations (columns 3 to 5), whereas the results for µex0 and ωr (columns 3 and 6) as well as for the
reference value for µexr (second column) stem from fully atomistic simulations. The values for
µexr in column 8 were calculated according to Eq.3.27. Chemical potentials and free energies are
given in units of ϵ for the LJ fluids and units of kJmol−1 for water. Numbers in parentheses
give the uncertainty in the last digit(s).

simulation, i.e. investigating their capability for preserving structural and statistical properties
of the fluids compared to the reference set-up, we have tested our derivations for four different
LJ fluids at different state points (different densities).

Simulation results for each contribution to the excess chemical potential relation stated in
Eq.3.25 are reported in Tab.3.1. ∆µ can be interpreted as the difference between the chem-
ical potential of the fluid within a fully atomistic simulation and the one computed from an
AdResS simulation. Interestingly, one would expect that ∆µ → 0 as |AT |→ ∞ because the
atomistic region would behave as a closed, infinite fully atomistic system with µ0 → µr, ω∆ → 0
and ωr → 0. The numerical results of the current simulations are for finite systems with sizes
typical of routine AdResS simulations and they show that ∆µ ≈ 0 even when ω∆ and ωr are
not negligible. This is an interesting result because it allows us to state that the numerical
experiments over different densities suggest an effective formula:

µr − µ0 = ω∆ − ωr , (3.26)

or,

µexr − µex0 = −γid + ω∆ − ωr . (3.27)

The relative deviation of µexr calculated from Eq.3.27 w.r.t. the reference value from fully atom-
istic simulations, is near or below 1% in all cases. In particular, the two values coincide within
their specified statistical uncertainties (Fig.3.7). Yet, we note that the reference values sys-
tematically lie slightly below the AdResS values, which has a possible source in the neglected
contribution due to the capping of unduly large interparticle forces.

We also tested Eq.3.25 for liquid water as a system routinely simulated with AdResS for bio-
logical systems such as membranes [198]. This is a far more complex liquid compared to the
Lennard-Jones systems and the simulation set-up is far from mimicking the thermodynamic
limit, yet we find that the equation still holds. In this case, the dominant correction is ωr, while
∆µ is comparable with γid and ω∆ and these terms contribute with less than 1% to the sum
in Eq.3.27. The possibility to reconstruct the excess chemical potential µexr with high accuracy
from an AdResS simulation provides a first-principles confirmation of the physical consistency
of AdResS as an open system.
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Figure 3.7: Excess chemical potential of LJ fluids at temperature T ∗ = 1.5 as function of
the number density ρ. Values obtained from AdResS simulations (red circles) via Eq.3.27 are
compared to reference data from Widom’s test particle insertion in standard MD simulations
(black squares). The quantity µex0 (blue triangles) refers to the AT region of the AdResS set-
up with the thermodynamic force switched off, which results in the modified density ρ0 (see
Fig.3.3). The data points correspond to columns 1, 2, 3, and 8 of Tab.3.1.

3.6 Conclusions

We have analyzed the coupling region of the AdResS set-up from the microscopic point of view.
We have shown the possibility of explicitly writing the grand potential of the atomistically re-
solved region in terms of quantities that can be determined from simulations. In particular,
we have found the relation Eq.3.21 between the chemical potential of AdResS and the chemi-
cal potential of its reference fully atomistic simulation. The derivation is done under the ideal
condition of the thermodynamic limit for the atomistically resolved region, with the coupling
conditions considered as small surface effects. The obtained thermodynamic relation was then
tested in several numerical experiments, they show that its actual range of validity extends to
finite systems with sizes typical of standard AdResS simulations. Accepting that ∆µ = 0 holds
also for a finite (yet not too small) AT ∪ ∆ region implies that the equilibrated AdResS (i.e.,
with Fth switched on) and the subsystem S of the fully atomistic reference simulation are open
systems at different chemical potentials, µ0 and µr, that otherwise exhibit the same physical
properties.

The numerical confirmation of the validity of the thermodynamic relations in AdResS provides
a statistical mechanics validation of the method as a reasonable numerical approximation of an
open system embedded in a reservoir of particles and energy. In conclusion, we have shown that
although the abrupt coupling may suggest that a high degree of seemingly artificial conditions
are required for the technique to work properly, in effect the numerical conditions are consistent
with the statistical mechanics’ principles of an open system.
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Abstract

In the previous chapter [73], we have identified a precise relation between the chemical potential
of a fully atomistic simulation and the simulation of an open system in the adaptive resolution
method (AdResS). The starting point was the equivalence derived from the statistical partition
functions between the grand potentials, Ω, of the open system and the equivalent subregion in
the fully atomistic simulation of reference. In this chapter, instead, we treat the identity for the
grand potential based on the thermodynamic relation Ω = −pV and investigate the behaviour
of the pressure in the coupling region of the adaptive resolution method (AdResS). We confirm
the physical consistency of the method for determining the chemical potential described by the
previous chapter and strengthen it further by identifying a clear numerical relation between the
potential that couples the open system to the reservoir on the one hand and the local pressure of
the reference fully atomistic system on the other hand. Such a relation is of crucial importance in
the perspective of coupling the AdResS method for open system to the continuum hydrodynamic
regime.
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4.1. INTRODUCTION

4.1 Introduction

In the previous work [73], we have investigated the microscopic origin of several thermodynamic
quantities at the coupling boundary of a system of Lennard-Jones (LJ) particles with a reser-
voir of non-interacting tracers. The adaptive resolution technique (AdResS) [30, 49, 174] was
employed, as a technical set-up, for running the numerical simulations. The work aimed to show
that the AdResS scheme translates, accurately and efficiently, the statistical mechanics princi-
ples of open systems into a convenient numerical simulation tool. A pictorial representation of
the AdResS set-up is reported in Fig.4.1 and the relevant details of the method will be reported
later on in a specific section. For the current discussion, it is sufficient to consider that the
technique allows for the exchange of particles between the atomistically resolved region (AT)
and the reservoir region (TR) where particles are not interacting. The exchange occurs through
an interface region (∆) within which a prescribed external potential (potential of the thermo-
dynamic force) and a thermostat enforce the equilibration of the atomistic region to the same
thermodynamic state as that of the fully atomistic simulation of reference. The study consisted
in comparing the thermodynamic properties of a subsystem of a fully atomistic simulation with
those of the equivalent atomistically resolved region in the AdResS set-up, and it concludes
the physical consistency of the AdResS scheme with the statistical mechanics model of an open
system.

The starting assumption was that the subregion of the fully atomistic simulation(equivalent
to the AT region) and the AT region in AdResS are both open regions whose particles follow
the Grand Canonical distribution. Since AdResS aims to reproduce the same statistical and
thermodynamic properties of the target fully atomistic simulation in the AT region, the equiv-
alence of the particle statistical distributions implies some direct relation between the chemical
potentials of the two simulations. Indeed, the study led to the conclusion that the coupling
strategy, through the external potential, balances the difference in chemical potential between
the fully atomistic and an AdResS simulation without the thermodynamic force. This result
justifies, under the Grand Canonical assumption, the role of AdResS as a technical tool to sim-
ulate open systems in a physically consistent manner. Although it has been numerically verified
that AdResS follows the Grand Canonical distribution (Grand Canonical AdResS) [6,174,195],
there may be alternative approaches which, without explicitly requiring the Grand Canonical
hypothesis, can complement that of Ref.73 and thus further strengthen the role of AdResS as a
tool which is consistent with the physical principles of open systems.

In this context, this chapter aims to explore an approach which is complementary to those al-
ready considered and involves a thermodynamic quantity, the pressure, without requesting the
Grand Canonical hypothesis. The pressure is, with temperature and density, a key thermody-
namic quantity in molecular simulation. We show in detail that the coupling strategy of AdResS,
through the introduction of an external potential, correctly balances the difference in pressure
in the adaptive set-up w.r.t, the fully atomistic value of reference.

4.2 The AdResS Method: Basics

In the AdResS set-up, the simulation box is divided into three regions: the AT region at atom-
istic resolution (region of physical interest), the coupling region ∆, where particles have an
atomistic resolution, but with additional/artificial coupling features to the large reservoir, and
TR, the reservoir of non-interacting point-particles known as tracers (see Fig.4.1). Particles can
freely move from one region to the other and automatically change their molecular resolution
according to the resolution that characterizes the region in which they are instantaneously lo-
cated.
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Figure 4.1: Comparison of the AdResS and reference set-ups. Panel (a) shows the reference
full atomistic set-up with high resolution through the whole domain. Panel (b) represents the
AdResS set-up with the atomistic region AT, the interface region ∆, and the TR reservoir region;
here, the ith particle interacts with the jth particle through a pair potential Uij = U(q⃗j − q⃗i).
The one-body thermodynamic force, Fth(q⃗i), acts on all particles in the ∆ ∪ TR region and
enforces the desired thermodynamic equilibrium in the region of interest. Panel (c) indicates
the direction n⃗ perpendicular to the coupling surface at the ∆/TR interface along which acts
the thermodynamic force.

In terms of interactions, molecules of the AT region have standard atomistic two-body potentials
among themselves and with molecules in ∆, and vice versa, but there is no direct interaction
with the tracers in TR. Tracers and particles in ∆ experience an additional one-body force,
called thermodynamic force, along the direction n⃗ perpendicular to the coupling surface at the
∆/TR interface, F⃗th(q⃗) = Fth(q⃗)n⃗ for positions q⃗. This force, together with the action of a
thermostat in these regions, implements an effective coupling to the rest of the universe outside
the AT region. The total interaction potential reads: Utot = UAT

tot +
∑

q⃗j∈∆∪TR

ϕth(q⃗j) with the

potential ϕth(q⃗) such that F⃗th(q⃗) = −∇ϕth(q⃗) and ϕth(q⃗) = 0 in the AT region, q⃗ ∈ AT . For
the discussion here, it suffices to know that the thermodynamic force is calculated such that the
particle density in the atomistic region is equal to a prescribed value of reference. It has been
shown [68, 73, 152, 195] that the constraint on the density profile, through the thermodynamic
force in ∆∪TR, induces the thermodynamic equilibrium of the atomistic region w.r.t. conditions
of reference of a fully atomistic simulation.

4.3 Pressure calculation in an open system

In the previous chapter, the starting point was the microscopic definition of the AT ∪ ∆ re-
gion in AdResS as an open system with Grand Potential Ω, embedded in the TR region as
a reservoir [73]. This Grand Potential is defined in microscopic terms under the hypoth-
esis that AT ∪ ∆ is characterized by a grand canonical partition function for the particles:

Ω = −kBT ln

( ∞∑
N=0

βµNQN

)
, where µ, T , and QN are the chemical potential at equilibrium, the

temperature, and the canonical partition function (at a given particle number N), respectively,
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and β = 1/kBT with kB being the Boltzmann’s constant. Since we compare a fully atomistic
set-up with the AdResS set-up and they are partitioned in space in the same way, in essence,
the quantity to check is the pressure. The virial equation (4.1) defines the pressure as the sum
of its particles’ kinetic and interparticle force contributions in a homogeneous system with no
external forces [85,86,167]. For a system of volume V , this relation can be expressed as [10,81]

p =
1

3V

(∑
i

mivi · vi +
∑
i

ri · f i

)
, (4.1)

where mi, ri, and vi are each particle’s mass, position, and velocity respectively, and f i is
the total interparticle force acting on each particle. While Eq.4.1 can be applied to the fully
atomistic system, the calculation of the pressure in AdResS is not straightforward. The reason
lies in the abrupt change of resolution with sharp boundary effects and the action of an external
force field (thermodynamic force).

There are several methods for deriving Eq.4.1, they all use the idea of isotropy and/or homo-
geneity of the system in their derivations and directly consider the scalar pressure, instead of
the stress tensor. The stress tensor should instead be used for inhomogeneous and anisotropic
systems [187]. In general, there are two methods for deriving the pressure: (i) through the
thermodynamic relation p = −∂F/∂V |T= kBT (

∂
∂V logQN (V, T ))T , with F being the Helmholtz

free energy and QN being the canonical partition function or its equivalent [36]; (ii) a direct
mechanical calculation by summing up the kinetic (momentum carried by particles) and po-
tential (interparticle force f ij acting between pairs of particles) contributions to the pressure
(see Fig.4.2). However, while the use of the thermodynamic relation is possible only in the
limit of thermodynamic equilibrium for homogeneous systems, the second method can instead
be applied in AdResS, using particle trajectories, to calculate the stresses. In inhomogeneous
and anisotropic systems, the stress tensor is position and direction-dependent. The most ap-
propriate formal treatment, in this case, consists of writing the inhomogeneity in terms of the
stress tensor [89] at the position, r, in space, P (r), which can be split into kinetic and potential
contributions [187]:

P (r) = PK(r) + P U (r) (4.2)

with components

P =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 (4.3)

where the σii and τij are the normal and shear components of the tensor respectively.

The stress tensor can be defined by the interparticle force acting across a moving test surface
along with the simulation domain (see Fig.4.2). The kinetic contribution accounts for the parti-
cles’ momentum while they cross the test surface and as it depends on each particle’s location,
it is a single-particle property and can be localized in space. The potential term corresponds to
the interaction forces due to the interaction of particles on opposite sides of the surface. This
part is not local since it depends on the location of both particles [187] (see also Fig.4.2).

Irving and Kirkwood [99] introduced a new approach for the calculation of the pressure and
stress tensor by starting from a statistical mechanical derivation of the equations of hydrody-
namics and making a particular selection for the particles that contribute to the inter-particle
force. Accordingly, only pairs of particles which satisfy the condition that the line connecting
their centers of mass passes through the test surface contribute to the local force. With this
definition, they obtained a localized form for the potential contribution of the pressure. For
a system with planar symmetry and no-flow condition (like in the AdResS set-up in Refer-
ences [49,73]), all non-diagonal elements of the stress tensor (Eq.4.3) must be zero on average as

41



4.4. NUMERICAL RESULTS

Figure 4.2: Pressure calculation in a volume element in the simulation domain of a molecular
system according to the idea of moving test planes. The red surface is located in the middle
of the volume element and the stress tensor elements can be calculated by adding the pressure
resulting from the interaction force between those particles on the opposite sides of the plane to
the kinetic contribution of all particles within the volume element.

there is no shear stress in equilibrium due to the lack of velocity gradient and motion between
hypothetical liquid layers [25]. Moreover, the change of resolution is happening along, say, the
x-axis, so the normal component of the stress tensor will be PN (r) = σxx(r) and the tangential
components are identical due to the symmetry PT (r) = σyy(r) = σzz(r). Finally, the scalar
pressure is defined as p = (σxx + σyy + σzz)/3 = (PN + 2PT )/3 [25,183]. In this context, Irving
and Kirkwood proposed the following expressions for the normal and transverse components of
the stress tensor [99,163,194]:

PN (x) = ρ(x)kBT − 1

2A
⟨
∑
i ̸=j

|xij |
rij

U ′(rij)Θ(
x− xi
xij

)Θ(
xj − x

xij
)⟩, (4.4)

PT (x) = ρ(x)kBT − 1

4A
⟨
∑
i ̸=j

y2ij + z2ij
rij

U ′(rij)

|xij |
Θ(
x− xi
xij

)Θ(
xj − x

xij
)⟩ (4.5)

where Θ is the Heaviside step function. The first term on the right-hand side of Eq.4.4 and Eq.4.5
is the kinetic contribution which can be calculated by taking into account the local temperature
in the small volume element around the test plane and is equivalent to the kinetic contribution
in the virial equation (Eq.4.1), i.e. 1

3V ⟨
∑

imiv
2
i ⟩. The other terms in Eq.4.4 and Eq.4.5 involve

the interaction of pairs of particles and express the fact that when two particles i and j are
located on the same side of the surface, the potential contribution of the pressure will be zero
and when they are on the opposite sides, the corresponding interparticle force will be considered
in the related stress tensor component. The average ⟨...⟩ is the time average that means after
reaching equilibrium, the sliding surface moves into the simulations domain at different times
and an average value for the normal and transverse components of the stress tensor is calculated
at different locations into the simulation domain.

We will use Eq.4.4 and Eq.4.5 to determine the pressure in AdResS and compare the results
with those obtained in a fully atomistic simulation by the same relations and also using the
virial relation for the homogeneous system (Eq.4.1). The comparison shows the consistency of
AdResS as a tool to simulate open systems.

4.4 Numerical Results

In this section, we report the technical details and the numerical results of the simulations. In
the following, the AdResS set-up and its technical details are presented, and then the pressure
in the domain is calculated based on the discussed methodology. Finally, a relation between
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the pressure function and the thermodynamic force needed to balance that pressure difference
is shown.

4.4.1 Technical details of the simulation

We use the same technical set-up of Ref. [73] explained in the previous chapter. Below, we
briefly summarize the key aspects and invite the interested reader to consult our previous work
for specific details. We have considered four Lennard-Jones liquid systems each at a different
thermodynamic state point, namely: number densities ρ∗ := ρσ3 ≈ 0.20, 0.25, 0.30, and 0.37,
corresponding to particle numbers N = 8k, 10k, 12k, and 15k at the reduced temperature of
T ∗ := kBT/ϵ = 1.5 which is well above the liquid-vapour critical point.

A fully atomistic simulation of reference for all test cases has been performed, followed by an
adaptive resolution simulation for each state point. In the equilibration run, the corresponding
thermodynamic force was determined by the iterative formula [68]:

F k+1
th (x) = F k

th(x)− c(
m

κTρ20
)∇ρk(x), (4.6)

with m being the particle mass, κT the thermal compressibility, ρ0 the target density, and c
a prefactor for controlling the convergence rate. According to Ref. [68], the above-mentioned
external force is derived in such a way that compensates the pressure difference generated drift
force resulting from the addition/change of resolution compared to the reference fully atomistic
set-up, i.e. F⃗th(x) =

m
ρ0
∇p(x) with p(x) being the pressure of the system as a function of posi-

tion. In addition, the required external potential relates to the calculated thermodynamic force
by F⃗th(x) = −∇ϕth(x); thus, the added external potential to the system (ϕth(x)) is expected to
compensate the needed energy to keep the pressure of the system unchanged while progressing
toward a multi-resolution domain. This property has been investigated later (see Fig.4.8).

The density profile for each case is shown in Fig.4.3. The AdResS set-up for each case was
then validated in the production run with the comparison to the corresponding fully atomistic
case of the calculated radial distribution function, g(r), and the probability of finding N parti-
cles p(N) in the region of interest (AT) (see Fig.4.4 and Fig.4.5). The criteria of validation of
AdResS used above have been shown to ensure the numerical consistency of AdResS as a tool
to properly simulate basic structural and statistical properties of the AT region (i.e. the region
of interest) [49, 58, 111, 197]. Once the numerical set-up of AdResS has been validated, one can
proceed with the calculation of the pressure using the formulas discussed in the previous section.
The corresponding results are reported in the next section.

4.4.2 Numerical calculations for the pressure

At first, as a traditional way to calculate the pressure in molecular systems, we have computed
the pressure in the fully atomistic simulation of reference, pref., considering it a homogeneous
system and thus using the virial relation (Eq.4.1). The results are shown in Tab.4.1. Next, we
have applied the test planes approach introduced above to the fully atomistic system as well.
We considered a test plane moving into the simulation domain of the system and compute both
potential and kinetic contributions of the normal and tangential components of the stress tensor
through a spatial and temporal average (P at

N and P at
T in Tab.4.1). They have been calculated
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Figure 4.3: Density profiles ρ(x) along the direction of change of resolution for four different
cases at reduced densities indicated in the figures and reduced temperature of T ∗ = 1.5. The blue
and red curves indicate the density profile in the AdResS set-up before and after the application
of thermodynamic force respectively. The proper thermodynamic force is found through an

iterative procedure (Eq.4.6) by an initial choice of F
(0)
th (x) = 0 (corresponding to the blue line)

and continued till reaching a satisfactory deviation of 2% (corresponding to the red line) from
the target constant density (indicated by the black line). The transition regions are marked by
grey shadings.

Figure 4.4: Radial distribution function (g(r)) for fully atomistic simulation of reference (red
line) and AdResS simulation (blue markers). These data correspond to the LJ fluid at the
reduced density of ρ∗ = 0.198 and reduced temperature of T ∗ = 1.5. The same level of agreement
was found for the other thermodynamic state points treated and for this reason they are not
shown.
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Figure 4.5: Probability of finding N particles in the high-resolution region (AT region) for fully
atomistic simulation of reference (red) and AdResS (blue) at the reduced density of ρ∗ = 0.198
and reduced temperature of T ∗ = 1.5. For each case, a Gaussian distribution is fitted to the
calculated data and the close-up of the data around the average particle number in AT region is
shown in the inset. The same level of agreement was found for the other thermodynamic state
points treated and for this reason they are not shown.

by using trajectory data of particles which are recorded every 10τ during an MD run for the
duration of 104τ with each time step being equal to 0.002τ . It is noteworthy to mention that we
have considered periodic boundary conditions for calculating the interparticle distances in all
equations. In addition, only particles within a certain distance from the test planes (=rcut−off )
have been considered for calculations to implement the effect of cut-off radius, i.e. 2.5σ. Once we
have determined the abovementioned quantities for the reference fully atomistic system, we em-
ployed the same approach for the AdResS simulation and determined P ad

N and P ad
T (in Tab.4.1).

Table 4.1: Results of pressure calculation based on the plane approach presented in this work.
The second column (pref ) is the pressure of the fully atomistic simulation of reference, based
on virial relation (Eq.4.1) as a traditional method for calculating pressure in molecular systems.
The rest are the scalar pressure (pat and pad) and stress tensor components (P at

N , P at
T , P ad

N ,
and P ad

T ) in AdResS and fully atomistic simulations which are calculated by Irving-Kirkwood
relations (Eq.4.4 and Eq.4.5).

ρ∗ pref P at
N P ad

N P at
T P ad

T pat pad

0.198 0.181±0.007 0.183 ±0.007 0.184 ±0.006 0.181 ±0.012 0.183 ±0.015 0.182 ±0.010 0.183 ±0.012

0.247 0.202±0.010 0.208 ±0.006 0.207 ±0.007 0.203 ±0.014 0.205 ±0.013 0.205 ±0.011 0.206 ±0.011

0.296 0.220±0.013 0.218 ±0.008 0.221 ±0.007 0.224 ±0.015 0.218 ±0.012 0.222 ±0.013 0.219 ±0.010

0.370 0.254±0.015 0.251 ±0.010 0.255 ±0.008 0.252 ±0.014 0.256 ±0.014 0.252 ±0.013 0.253 ±0.012

As can be seen from Tab.4.1, the method of planes is calculating the pressure satisfactorily.
Moreover, the agreement between the values of the fully atomistic simulation and the AdResS
simulation in Fig.4.6 confirms, from a straightforward thermodynamic point of view, the equal-
ity of the corresponding grand potentials. Thus, the AT region of AdResS is thermodynamically
compatible with the equivalent subregion in a fully atomistic simulation.
However, the values calculated of the pressure in Fig.4.6 correspond to the average pressure and
the condition of equality of the grand potentials represents only a necessary condition of com-
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Figure 4.6: The value of scalar pressure in full-atomistic and AdResS simulations at four different
thermodynamic state points. These values are calculated based on the virial method for reference
set-up (black line) and Irving-Kirkwood relations for reference (red line)) and AdResS (blue line)
simulations.

patibility. A more powerful criterion would be a space-dependent check of consistency between
the AdResS set-up and the desired thermodynamic equilibrium. This calculation is reported in
the section below.

4.4.3 Relation between the potential of thermodynamic force and pressure

One of the key roles of the thermodynamic force is to calibrate the pressure in the region of
interest to produce the same grand potential as that of the corresponding fully atomistic simula-
tion of reference. Since the thermodynamic force is applied to the system only in the ∆ region,
one may see its effect on the pressure as a function of the position along the axis of change of
resolution (x). It is possible to calculate the stress tensor components as a function of x in both
full-atomistic and AdResS set-ups by using the relations of Irving-Kirkwood (Eq.4.4 and Eq.4.5)
for normal and transverse components which both include kinetic and potential contributions
of the pressure. The corresponding functions are shown in Fig.4.7.

As we see in Fig.4.7, the pressure in the AT region and in the equivalent subregion of the fully
atomistic simulation are pointwise compatible, within the usual numerical fluctuations. Inter-
estingly, despite the close agreement in the AT region, in the ∆ region the difference is rather
drastic. To see the effect of thermodynamic force and change of resolution on the resulting
pressure difference, we plotted the energy corresponding to the pressure difference (by normal-
izing the pressure with the local density), which can be interpreted as the required energy to
keep the pressure of the system unchanged while adding new resolution to the system, on top
of the potential of thermodynamic force, ϕth(q⃗), that is calculated by integrating the required
thermodynamic force for each case (see Fig4.8).

A denser liquid with a larger deviation in density profile (see Fig.4.3) and consequently a larger
difference in pressure profile (see Fig.4.7) requires a stronger external potential to reproduce the
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Figure 4.7: The pressure profile for all cases for AdResS and fully atomistic simulation of refer-
ence. The black line represents the scalar pressure in the full atomistic simulation of reference
whose calculation is based on the virial equation. The red and blue lines represent the pressure in
the fully atomistic and the adaptive resolution simulations, respectively. This latter calculation
is based on Irving-Kirkwood relations (Eq.4.4 and Eq.4.5). The grey areas show the coupling
region ∆ and the AT region is located in the middle of the box

same behaviour as the reference set-up and adjust the pressure in the high-resolution region to
get the same grand potential. Interestingly, in all cases the energy matches, within its numerical
fluctuation (shadowed area), with the curve of the potential of the thermodynamic force. This
result is very relevant because it allows the direct pointwise identification of the potential of
the thermodynamic force with the energy related to the pressure and thus it assures that the
balancing process will always lead to the correct pointwise pressure in the AT region. In turn,
such a finding fully complements the results of the previous chapter: the AT region reproduces
the grand potential of the equivalent subregion of the reference simulation either through a mi-
croscopic statistical analysis involving directly its partition function or from a straightforward
thermodynamic point of view through the calculation of the pressure and its pointwise compari-
son with the reference system.

It must be reported that previous work has explored the connection of the pressure with the
balancing potential in similar simulation set-ups [61, 153, 154]. An artificial global Hamiltonian
was designed and a corresponding semi-empirical statistical ensemble was defined; the ensemble
used does not have a well-defined physical meaning, and thus, it does not allow a direct deriva-
tion of thermodynamic relations (see detailed discussion in Refs. [30, 44]). The thermodynamic
relations proposed in Refs. [61, 153, 154] are rather intuitive and do not offer a clear physical
interpretation. In this work, we have gone beyond the artificial global Hamiltonian and defined
a physically rigorous Hamiltonian of the open system. The corresponding statistical derivation
of its physical quantities is, as consequence, rigorously done in the Grand Canonical ensemble
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Figure 4.8: Comparison of the required energy to compensate for the pressure difference resulting
from the change of resolution (i.e. normalised by the local density) indicated by the blue line and
the potential of the thermodynamic force integrated from the calculated thermodynamic force
specified by the red line. The shadowed region represents the amount of numerical fluctuation
due to the explicit calculation. Instead, the potential of thermodynamic force does not carry
numerical fluctuations since once it is determined it is used as a fixed function in the production
runs.

for the high-resolution region. Our derivation is then carefully (point-wise) tested with several
numerical tests. Thus, the results shown here, together with those of Ref. [73] represent an
evolution that contains the approach of Refs. [61, 153, 154] and frames the AdResS techniques
within the more general theory of open systems (see also discussion in Ref. [161]).

4.5 Conclusions

The AdResS method has evolved from a numerical algorithm for coupling different resolutions
with the main aim of saving computational resources to a more general framework for prop-
erly treating open systems embedded in a large environment at well-defined thermodynamic
conditions. The passage from a convenient, but empirical, numerical tool [156, 160] to a the-
oretically well-defined model of open system involves a rigorous mathematical treatment [47]
and a computational simplification that allows high transferability of the algorithm from one
simulation software to another [49,115]. In between, the theoretical principles and their efficient
numerical implementation need to be carefully tested and show consistency w.r.t. to statistical
and thermodynamic properties of primary relevance in simulation. The previous work [73] and
the current work have the task of showing in detail the physical consistency of the model via
its numerical implementation. In this work, we have investigated the behaviour of the stress
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tensor and its link to the coupling force (potential) which is one of the main characteristics
of the AdResS model. The results show full physical consistency with the physical principle
of a proper open system. Furthermore, the knowledge of the link between local pressure and
the potential of the thermodynamic force in the ∆ region opens access to further conceptual
and numerical scenarios. For example, the results of the current study are crucial for designing
coupling conditions of the AdResS to hydrodynamics and fluctuating hydrodynamics regulated
by field equations (continuum). In this respect, the current paper contributes in a meaningful
manner to the development of AdResS as a method of molecular dynamics for open systems.
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Chapter 5

Fluctuating Hydrodynamics and
coupling the multiscale solver to
continuum hydrodynamics

This chapter is accepted to be published in Physical Review Letters and a preprint version is
available in Ref. [75].

Abstract

Coupling Adaptive Resolution Simulation (AdResS) with a continuum simulator, which could
be applicable to a variety of problems in micro/nano flows, is the next methodological step for
simulating open systems. Here, we have implemented a fluctuating hydrodynamics solver to
simulate the Landau-Lifshitz Navier-Stokes (LLNS) equations by using a third-order Runge-
Kutta numerical discretization method and validated it for different scenarios. Later, a robust
coupling algorithm for coupling the current version of AdResS to the developed continuum solver
is designed and applied to Lennard-Jones fluids for different test scenarios.

5.1 Introduction

By increasing the interest and number of publications in the field of micro and nano flows, a need
has arisen for studying the flow behaviour at micro and nano scales by taking their molecular
and atomic level interactions into account [43, 95, 144]. However, Navier-Stokes equations (and
other purely PDE approximations) are not able to describe the flow in some problems with small
length and/or time scales including cases with large Knudsen number flows and description of
regions close to complex geometries or boundary conditions [16,35,52,83,176,190].

In statistical mechanics, fluctuations are random deviations from the average state that a sys-
tem has at equilibrium. All fluctuations increase as the temperature increases and they become
smaller at low temperatures. A system at a non-zero temperature does not stay in its equilib-
rium macroscopic state, but randomly samples all possible states with probabilities given by the
Boltzmann distribution. Thermodynamic variables, such as pressure, temperature, or density
likewise undergo fluctuation [120]. These fluctuations in some problems with large gradients or
special boundaries may affect the stationary response of the system. In such a case, a deter-
ministic continuum-based solver can not capture the fluctuations, thus, one needs to employ a
combination of particle-based solver and fluctuating hydrodynamic (FHD) solver depending on
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the situation and considering the balance between the precision of the result and computational
costs [51].

On the other hand, one can use particle-based simulators (e.g. Molecular Dynamics, Direct
Simulation Monte Carlo, and Dissipative Particle Dynamic) to directly capture the effect of
fluctuations but this could be computationally expensive as it needs a very large number of par-
ticles in some problems [9,14,62]. In many particle-based simulations, most of the computational
costs are for those particles far away from the region of interest; while the PDE-based solvers like
the Navier-Stokes simulator can simulate the flow at these regions with much lower computa-
tional effort. To tackle the aforementioned possible problems, one can employ the Navier-Stokes
solver at regions in which such PDE solver is adequate and use the particle-based solvers in
(usually) small regions of interest in which the continuum solver fails to describe because of
an extreme gradient [192] or closeness to singularities [142] or rarefied regions [83], and finally,
couple them through a small buffer region. This treatment for changing resolution through a
simulation domain has been explained schematically in Fig.5.1 in which each subdomain pro-
vides/gets necessary information from the other one through a transition region.

Figure 5.1: A two-dimensional domain including a polymer chain (red circles) in which a small
region around the polymer (shown by the red line) is filled with particles (e.g. DSMC particles
which have been shown with green circles) and far away regions have been simulated using a
hydrodynamic solver. There exists a transition region (the small region outside the red box which
has been filled with green particles) to resolve a consistent and stable change of resolutions [51].

In the latest version of Adaptive Resolution Simulation (AdResS), a fully atomistic subdomain
is coupled to a reservoir of non-interacting particles through a small buffer region [49]. This
configuration of domains reduces the computational costs by doing the all-atom calculation
in the relatively small region and treating the rest of the domain as a semi-continuum ideal
gas-like fluid [50]. Accordingly, going beyond the current version of AdResS by coupling it to
a continuum-based solver can provide more capabilities and benefits for the multiscale solver.
This will provide a possibility to simulate some part of the simulation domain with complex sit-
uations with a fully atomistic resolution while doing the far-away regions by a continuum-based
solver with the possibility of capturing the fluctuations.

5.2 Background

Fluid mechanics problems may consist of several scales in time and space and their applications
range from stellar dust dynamics in astrophysics and cloud formation in atmospheric science
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to high-speed jet flows in aircraft engines and micro and nanoflows [107]. Computational Fluid
Dynamics (CFD) provide a variety of computational methods for solving macroscopic flows. For
example, for relatively larger time and space scales the fluid property can be approximated by
macroscopic Lagrangian parcels of fluids with Smooth Particle Hydrodynamics (SPH) [78, 128]
and Lattice Boltzmann Method (LBM) [23, 28, 76] or represented on Eulerian grid by using Fi-
nite Difference (FD), Finite Volume (FV), and Finite Element (FE) methods [126,151,185,189].
However, the continuum PDE-based solvers can not handle situations at microscopic scales [22].
Direct Simulation Monte Carlo (DSMC) [149] or Molecular Dynamics (MD) [166] particle-based
solvers can simulate the flow of rarefied gases or dense fluids at the microscopic scale. However,
the simulation costs for particle-based solvers are much higher than those for continuum solvers
and they are only suitable for microscopic systems [180].

The fluid’s state is not constant at the molecular scale and it, even in an equilibrium state,
is always changing [52]. Fluctuating Hydrodynamics (FHD) has been an interesting topic in
statistical mechanics since the study of light scattering prediction of Rayleigh and Einstein’s
theory of Brownian motion [148]. Currently, there is a growing interest in studying the fluctu-
ations in fluid mechanics due to the increasing amount of research in nanoscale flows in micro
and bio-engineering [7, 12, 93, 108, 146]. Microscopic fluctuations deviate a fluid from its mean
state and this property may have a considerable effect on the system’s response [16]. As an
example of the importance of fluctuations in molecular biology, the molecular motor protein
consumes ATP, with a power of 10−16 Watts while operating in the background with a power of
10−8 Watts [12]. Some examples that fluctuations play a significant role are Brownian molecu-
lar motors [12, 133, 146, 201], Kolmogorov flows [17, 18, 130], reaction fronts [138], and droplets
breakup [59,106,139].

Particle-based numerical simulations inherently include fluctuations as they have irregular dy-
namics and this can be seen in Molecular Dynamics or Direct Simulation Monte Carlo modellings.
However, in the most common format of computational fluid dynamics, partial differential equa-
tions are solved and there are no fluctuations in its deterministic format. To include fluctua-
tions in fluid behaviour, Landau and Lifshitz introduced an extended form of the compressible
Navier-Stokes equation by adding some white-noise stochastic flux terms to the deterministic
compressible flow equations [120]. The Landau-Lifshitz Navier-Stokes (LLNS) equations were
originally developed for systems at equilibrium, but later, their validity for non-equilibrium sys-
tems has been assessed and verified by molecular simulations [69,129,131].

There are several numerical methods for solving LLNS equations. Garcia et al. [71] developed
a numerical approach for solving heat equations and one-dimensional LLNS equations. Ladd et
al. [117] included stress fluctuations in isothermal Lattice-Boltzmann solver based on a strong
theoretical model [1,54]. Moseler and Lanman [139] for the problem of the breakup of nano-jets
added the stochastic stress tensor to LLNS and validated it by Molecular Dynamics results.
Sharma and Patankar [173] designed a coupling between fluctuating incompressible solver and
suspended Brownian particles. Coveney et al. [35,40,79] designed a hybrid scheme for coupling
isothermal LLNS solver to Molecular Dynamics simulations. Atzberger et al. [13] developed an
immersed boundary method for the fluctuating incompressible Navier-Stokes equations. Voul-
garakis and Chu [191] developed a staggered scheme for the isothermal LLNS equations.

Bell et al. [16] developed a central discretization in space and a third-order Runge-Kutta tem-
poral scheme (RK3) for numerically solving the fluctuating hydrodynamics equations. In that
work, the evaluation of the numerics for the local variance and spatial correlation structure of
equilibrium and non-equilibrium problems have been done. Moreover, Bell et al. [16] proved
that the RK3 scheme is an effective discretization approach compared to other schemes for the
compressible Navier-Stokes equations.

In the work reported in this thesis, after the preparation of the deterministic Navier-Stokes
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solver for compressible flows, a stochastic flux term is added to the equations to include the fluc-
tuations in the deterministic solver. Moreover, for discretizing the partial differential equations,
the abovementioned RK3 algorithm is employed.

5.3 Fluctuating Hydrodynamics (FHD)

In statistical mechanics, fluctuations are the random deviations of a system from its average
state and these fluctuations become larger at higher temperatures and smaller for temperatures
close to absolute zero. The system does not stay at the microscopic equilibrium state but ran-
domly samples all possible states with a Boltzmann distribution probability [8]. Microscopic
fluctuations are constantly causing deviations of a fluid from its mean state and these deviations
can affect the final response of the system, especially in micro and nano-scale flows. The study of
fluctuations in nano-scale fluids is particularly interesting when the fluid is experiencing extreme
conditions or close to a hydrodynamic instability [118,121].

5.3.1 Navier-Stokes equation for compressible flows

The Navier-Stokes partial differential equations are the governing equations of a viscous fluid
dynamic and mathematically express the conservation laws for mass, momentum, and energy for
a Newtonian fluid. Compared to the hyperbolic Euler equation for inviscid flows, Navier-Stokes
equations take the viscous forces into account and is a parabolic equation with better analytical
properties and less mathematical structure (not completely integrable) [27,65].

To derive the Navier-Stokes equations, one has to consider a small volume element of the fluid
and write the mass, momentum, and energy balance for the volume element [65]. For the
mass balance, this means the total mass coming into or going out of the volume and also the
change of the density in the volume should be considered. For the momentum balance, the total
force applied to the volume element due to the pressure and viscous forces should be derived
and related to the flow velocity by Newton’s second law. Finally, the heat produced by the
viscous effect and the conductive heat should be taken into consideration for the energy balance
equation. By doing so, the following set of equations for the compressible flow are derived (the
gravity force is neglected),

∂ρ

∂t
+∇(ρu) = 0 (5.1)

ρ(
∂u

∂t
+ u · ∇u) = −∇p+∇[µ(∇u+ (∇u)⊤)] +∇[λ(∇.u)I] (5.2)

ρ
Dh

Dt
=
Dp

Dt
+∇(k∇T ) + Φ (5.3)

in the above equations, ρ is the density, u is the velocity vector, µ and λ are respectively the
shear and volume viscosities, p is the pressure, k is the heat conductivity coefficient, T is the
temperature, and h = u+pv is the specific enthalpy with u being the specific energy and v being
the volume. The value of λ which produces a viscous effect associated with volume change is
very difficult to calculate and the term involving λ is often negligible; however, when it is not
neglected, the most common approximation is to set λ = −2

3µ [15]. The D
Dt operator is the total

derivative with respect to time and is defined as:

D

Dt

def
=

∂

∂t
+ u · ∇
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Finally, Φ in the energy balance equation (Eq.5.3) is a function that represents the energy
dissipation due to the viscous effects and is calculated as,

Φ = µ

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2
)
+µ

((
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2
)
+λ(∇u)2

Here, u, v, and w are the velocity components in x, y, and z directions.

Solving Navier-Stokes equations (Eq.5.1-5.3) together with the equation of state will determine
the flow behaviour in the system for density, velocity, pressure, and temperature fields.

5.3.2 Fluctuating hydrodynamics and LLNS equations

Following Ref. [16], the Landau-Lifshitz Navier-Stokes equations are an extended form of the
Navier-Stokes equation for deterministic hydrodynamics modelling with introducing a stochastic
flux term [119]:

Ut = −∇F+∇D+∇S (5.4)

where U is the vector of conserved quantities (mass, momentum and energy density),

U =

ρ
J
E

 (5.5)

where J = ρu is the momentum density and E is the energy density.The advective (F) and
diffusive (D) fluxes are given by,

F =

 ρu
ρu · u

(E + P )u

 , D =

 0
τ

τ · u+ k∇T

 (5.6)

with u, P, and T being the fluid velocity, pressure, and temperature, respectively, and τ =
η(∇u + ∇u⊤ − 2

3I∇u) is the stress tensor in which η and k are the coefficients of viscosity
and thermal conductivity, respectively. Except for the mass flux, the other fluxes may have
some deviations from their mean values because of spontaneous thermal fluctuations and these
fluctuations are introduced by the stochastic flux term, S, in LLNS equations. These noise terms
are white in space and time and are formulated using fluctuation-dissipation relations to yield
the equilibrium covariances of the fluctuations [16].

S =

 0
S

Q+ u · S

 (5.7)

where the stochastic stress tensor (S) and heat flux (Q) have the mean value of zero and following
covariances,

⟨Sij(r, t)Skl(r
′, t′)⟩ = 2kBηT (δ

K
ikδ

K
jl + δKil δ

K
jk −

2

3
δKij δ

K
kl )δ(r− r′)δ(t− t′) (5.8)

⟨Qi(r, t)Qj(r
′, t′)⟩ = 2kBkT

2δKij δ(r− r′)δ(t− t′) (5.9)

and
⟨Sij(r, t)Qk(r

′, t′)⟩ = 0 (5.10)

where kB is the Boltzmann constant and δKij is the Kronecker delta,

δKij =

{
0, i ̸= j

1, i = j
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Here, the full three-dimensional description of Eq.5.4 has been simplified to a 1D equations set
as it could be enough for coupling with AdResS. A one-dimensional coupling set-up is simple
enough to allow for simulations that assess the general validity of the basic principles on which
the technique is based and at the same time it is already sufficient for applications to complex
molecular systems such as hydrated biological membranes in a thermal and/or density field or
water-ionic liquid mixtures in which a thermal field can drive the phase separation, to cite just a
few [145,171,172,197]. There, one can use a two or three-dimensional particle-based environment
to couple it to a one-dimensional continuum solver. However, it’s quite straightforward to extend
the equations and the code from a one-dimensional to a two or three-dimensional solver in future.
By this simplification, Eq.5.4 can be written as below,

∂

∂t

ρ
J
E

 = − ∂

∂x

 ρu
ρu2 + P
(E + P )u

+
∂

∂x

 0
4
3η∂xu

4
3ηu∂xu+ k∂xT

+
∂

∂x

 0
s

q + us

 (5.11)

where

⟨s(x, t)s(x′, t′)⟩ = 1

A2

∫
dy

∫
dy′
∫
dz

∫
dz′⟨Sxx(r, t)Sxx(r

′, t′)⟩

=
8kBηT

3A
δ(x− x′)δ(t− t′)

⟨q(x, t)q(x′, t′)⟩ = 1

A2

∫
dy

∫
dy′
∫
dz

∫
dz′⟨Qx(r, t)Qx(r

′, t′)⟩

=
2kBkT

2

A
δ(x− x′)δ(t− t′)

in which A is the surface area of the system in yz-plane.

5.3.3 Numerical discretization

There are several discretization schemes for the LLNS equation, but here we restrict ourselves to
finite volume schemes in which all variables are collocated; they are employed as a basis for the
hybrid coupling method to a particle subdomain [16, 51]. There are several methods based on
CFD schemes that are commonly used for the Navier-Stokes equations and could be extended
to LLNS equations like MacCormack [16,71] and Piecewise Parabolic Method [16,31,134]. Here,
those discretization methods are briefly introduced; however, we will focus on the variance-
preserving third-order Runge-Kutta scheme as it shows to have more accuracy compared to the
other mentioned schemes [16]. The method is based on a third-order Runge-Kutta temporal
integrator as an ODE integration algorithm to advance the solution combined with a centred
discretization of hyperbolic, diffusive and stochastic fluxes to ensure that the algorithm satisfies
discrete fluctuation-dissipation balance [52]. Here, the motivation is not only a higher order of
accuracy but also its robustness as it reduces the order of stochastic differential equations; also, a
simple forward Euler scheme may be unstable as there is no dissipation term in the conservation
of momentum equation [16].

MacCormack Scheme

The MacCormack discretization scheme is a variant of the two-step Lax-Wendroff method for
discretizing LLNS equations [71] and is described in the following format with a predictor and
corrector step,

U∗
j = Un

j +
∆t

∆x

[
−(Fn

j − Fn
j−1) + (Dn

j+1/2 −Dn
j−1/2) + (Sn

j+1/2 − Sn
j−1/2)

]
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U∗∗
j = U∗

j +
∆t

∆x

[
−(F∗

j − F∗
j−1) + (D∗

j+1/2 −D∗
j−1/2) + (S∗

j+1/2 − S∗
j−1/2)

]
Un+1

j =
1

2
(Un

j +U∗∗
j ) (5.12)

in which the values at j + 1/2 are a simple finite difference approximation of the cell centre
values.

The approximation of stochastic stress tensor (sj+1/2) and heat flux (qj+1/2) at the edge of the
cells are (which is the same for all discretization methods presented later):

qnj+1/2 =

√
kB
∆tVc

(kj+1T 2
j+1 + kjT 2

j )R(µ, σ2), (5.13)

snj+1/2 =

√
4kB
3∆tVc

(ηj+1Tj+1 + ηjTj)R(µ, σ2) (5.14)

with Vc being the volume of each continuum cell and R(µ, σ2) are independent Gaussian dis-
tributed random numbers with zero mean and unit variance.

Bell et al. [16] showed that with the abovementioned stochastic fluxes, the flux’s variance re-
duces to half of its original magnitude in the MacCormack algorithm; thus, they suggested using
Snew = S

√
2 instead in all steps in equations 5.12.

Piecewise Parabolic method

The piecewise parabolic method is a higher-order Godunov scheme that showed satisfactory
results for solving LLNS [134]. This scheme consists of a predictor and corrector steps and
replacement of S with S

√
2 similar to the MacCormack method to preserve the variance [16].

U∗
j = Un

j − ∆t

∆x
Fn
j +

∆t

∆x
(Dn

j + Sn
new,j)

Un+1
j = Un

j − ∆t

∆x
Fn
j +

1

2
(
∆t

∆x
)(Dn

j + Sn
new,j +D∗

j + S∗
new,j) (5.15)

Variance preserving third-order Runge-Kutta method

Bell and collaborators [16] reviewed different discretization methods explained here and de-
veloped the new RK3 method to preserve the variance and fluctuations better compared to
other methods and showed the improvement in results by using this method. The third-order
Runge-Kutta scheme can be written in the following three-stage form,

U
n+1/3
j = Un

j + (
∆t

∆x
)
(
Fn
j+1/2 −Fn

j−1/2

)
U

n+2/3
j =

3

4
Un

j +
1

4
U

n+1/3
j +

1

4
(
∆t

∆x
)
(
Fn+1/3
j+1/2 −Fn+1/3

j−1/2

)
Un+1

j =
1

3
Un

j +
2

3
U

n+2/3
j +

2

3
(
∆t

∆x
)
(
Fn+2/3
j+1/2 −Fn+2/3

j−1/2

)
(5.16)

where F = −F+D+ S. By combining all three stages,

Un+1
j = Un

j + (
∆t

∆x
)

[
1

6
(Fn

j+1/2 −Fn
j−1/2) +

1

6
(Fn+1/3

j+1/2 −Fn+1/3
j−1/2 ) +

2

3
(Fn+2/3

j+1/2 −Fn+2/3
j−1/2 )

]
(5.17)
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The stochastic components of the flux are independent, identically distributed Gaussian random
variables with mean zero and unit variance. Thus, the flux variance in Eq.5.17 at j + 1/2 is:

⟨δ(1
6
(S0

j+1/2) +
1

6
(S

1/3
j+1/2) +

2

3
(S2

j+1/2/3))
2⟩

=
1

6

2

⟨(δS0
j+1/2)

2⟩+ 1

6

2

⟨(δS1/3
j+1/2)

2⟩+ 2

3

2

⟨(δS2/3
j+1/2)

2⟩ = σ2

2

According to the above calculation, the variance of the flux is reduced to half of its original
magnitude by using this integrator. In order to preserve the variance, one can replace Sj+1/2

by
√
2Sj+1/2 and consequently changes the definition of F to F = −F+D+

√
2S.

The above-mentioned procedure and correction do not affect the continuity equation as the
stochastic flux does not contribute to the mass balance equation. Bell and collaborators [16]
have corrected this effect using a special interpolation scheme by augmenting the variance to
compensate for the density reduction due to the temporal averaging. For that purpose, they have
used the following expression for J and other conserved quantities to interpolate the cell-edged
values from cell-centred values and compute face fluxes.

Jj+1/2 = α1(Jj + Jj+1)− α2(Jj−1 + Jj+2) (5.18)

where

α1 = (
√
7 + 1)/4 and α2 = (

√
7− 1)/4

5.4 Numerical results: FHD

In this section, after explaining the technical details of the simulations, we present the results
for the application of the described discretization method (Eq.5.16) for solving the fluctuating
hydrodynamic equations for a one-dimensional domain. For this purpose, firstly a deterministic
Navier-Stokes equation with separated diffusive and advective terms will be solved and later the
stochastic fluxes will be added.

5.4.1 Technical details and stability criteria

We have used Argon gas as a prototype of a dilute compressible fluid at the temperature of
300[K] with the following thermodynamic properties,

particle mass (m) 6.6335209× 10−26 [kg]

density(ρ) 1.603 [kg/m3]

viscosity (η) 2.23× 10−5 [kg/m.s]

heat conductivity (k) 0.017746 [W/m.K]

For all simulations, the viscosity and thermal conductivity of Argon are functions of temperature
with the form of η = η0

√
T and k = k0

√
T . For the dilute gas, the pressure is a function of density

and temperature by P = ρRT and the energy density can be calculated by E = cvρT + 1
2ρu

2.
For the monatomic gas of Argon, R = kB/m and cv = R/(γ− 1) in which m is the mass of each
gas particle and γ = 5/3.

In a numeric simulation of compressible Navier-Stokes equations, the hyperbolic and diffusive
stability criteria determine the maximum time step and its relation to the space discretization
size,

(|u|+cs)
∆t

∆x
≤ 1 and max

(
4

3

η

ρ
,
k

ρcv

)
∆t

∆x2
≤ 1

2
(5.19)
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in which cs =
√
γP/ρ =

√
γRT is the speed of sound while over-line parameters are the values

in the equilibrium state. Moreover, for the stability of the advection term, the discretization
scheme is suitable for a very small cell’s Reynolds numbers (Rec << 2) [16]; this means that to
have a very small Reynolds number, Rec = ρu∆x/µ, we need to choose a very small cell size.
Accordingly, a very small size for the space discretization is selected with ∆x = 10[nm] which
restricted us to choose ∆t = 1[ps] according to the diffusive and advective stability inequalities
in Eq.5.19. These time and space discretizations scales are also helpful for the final goal of
coupling the fluctuating hydrodynamics solver to the Adaptive Resolution Simulation set-up.

In all simulations, a periodic boundary condition is imposed; however, any other boundary condi-
tion could be easily introduced in the simulation system. With the periodic boundary condition,
at each integration step from the three-stage RK3 model (see Eq. 5.16) during each continuum
time step, one needs to calculate the left/right boundary values by replacing the right/left side’s
values.

5.4.2 Deterministic Navier-Stokes

The deterministic solver for Navier-Stokes equations with the RK3 discretization scheme has
been tested under different initial conditions and the results are reported in these paragraphs.
These simulations have been performed with pure diffusion, pure advection, and the complete
Navier-Stokes equations with diffusion and advection for all cases. The results for an acoustic
wave with sinus-like initial properties propagation are reported in the next paragraphs.

Here, we initially set the temperature as a sinus-like function around 300[K] with an amplitude
of 10[K] (see Fig.5.2) and consequently set the initial density to have a constant initial pressure
over the simulation domain as P = ρRT for the ideal gas of Argon. Moreover, just in the case of
pure diffusion simulation, we initially set the velocity as a sinus-like function around 10[cm/s]
with an amplitude of 5[cm/s] (see Fig.5.2) to see the effect of hydrodynamic diffusion besides
the heat conduction.

Figure 5.2: initial conditions for generating an acoustic wave with sinus-like density, temperature,
and velocity in such a way that the pressure remains constant along the simulation domain with
a length of 2[µm] and ∆x = 10[nm] and ∆t = 1[ps].

Diffusion

Here, we have turned off the advection contribution to see how the initial distribution in tem-
perature and velocity diffuses through the simulation domain. In Fig.5.3, the profiles of density,
temperature, and velocity have been shown and one can see the diffusion effect over time.
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Figure 5.3: The diffusion of initial periodic distribution (see Fig.5.2) in density (first row),
temperature (second row), and velocity (third row) profiles in the initial (left column), middle
(middle column) and end (right column) stages of simulation time for pure diffusion equation.
These results show that the initial perturbation in the state of the fluid is diffusing into the
domain while staying the same for the density profile according to Eq.5.11.

According to Fig.5.3, the initial perturbation in temperature and velocity profiles is diffusing
into the whole domain and the density profile doesn’t change over time as the diffusion equation
does not have any contribution to the continuity equation according to Eq.5.11. As can be seen,
the temperature is diffusing faster than velocity after a while. This is because the conduction
effect for this flow is stronger than the viscous effect; however, both of them would completely
diffuse after a long time.

Advection

One can observe the effect of advection by turning off the diffusive fluxes in Eq.5.11 which leads
to the Euler equation for inviscid flows. In an advection equation, any initial distribution will
advect/move along the simulation domain. In Fig.5.4, the advection of an initial periodic dis-
tribution in temperature as well as density profiles is shown.

Advection and diffusion

Here, both diffusive and hyperbolic fluxes have been combined to form the deterministic Navier-
Stokes equations, and those fluxes presented in previous subsections are acting on the fluid flow
simultaneously. In the following, the results for the progress of an initial periodic distribution
in temperature profile (as well as density profile) have been shown. It is necessary to mention
that as the diffusive fluxes are very smaller than advective terms, it takes a too long time to see
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Figure 5.4: Advection of an initial sinusoidal perturbation in density (first row) and temperature
(second row) profiles over time. These results show that the initial perturbation in the state of
the fluid is advecting into the domain according to Eq.5.11.

both advection and diffusion effects in the simulation domain; so, we artificially enlarged the
diffusive fluxes (by increasing the viscosity and heat conduction coefficients by a factor of 5000)
to capture its effect in a shorter (real) time.

5.4.3 Fluctuating Navier-Stokes

After preparing the deterministic Navier-Stokes solver for compressible flow and presenting the
corresponding results for various initial conditions, the stochastic flux terms will be added to
the deterministic partial differential equations (i.e. S in Eq.5.4). With fluctuating Navier-Stokes
solver, one expects to get similar results for the previously presented initial conditions albeit
with fluctuations; however, even the steady-state results may be different for some problems by
including those fluctuations (see the piston problem in Ref. [51]).

In the following, the results of the fluctuating hydrodynamics solver for two problems with si-
nusoidal and sharp jump initial perturbations are presented for the density and temperature
profiles.

5.5 Coupling AdResS to FHD

Modelling of many micro and nano-flow systems is computationally very expensive to be simu-
lated by a particle-based solver (e.g. Molecular Dynamics, Dissipative Particle Dynamics, and
Direct Simulation Monte-Carlo) but at the same time also continuum-based solvers (PDE-based
solvers) are not able to provide enough information and details in the region of interest. An
alternative idea is to study the complex region with particle-based solvers and couple it with a
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Figure 5.5: propagation of density (first row) and temperature (second row) profiles in a case that
advection and diffusion fluxes act simultaneously with the deterministic Navier-Stokes solver on
the fluid flow with a constant flow velocity and initial periodic temperature with constant initial
pressure. These results show that the initial perturbation in the state of the fluid is advecting
and diffusing into the domain according to Eq.5.11.

continuum-based solver which takes care of the rest of the simulation domain far from the re-
gion of microscopic details. This will save considerable computational resources while providing
adequate information in the region of interest [42].

5.5.1 Background

In recent decades, various attempts to couple a Molecular Dynamics simulator to continuum hy-
drodynamics have been done and are reported in the literature [84,147]. In many approaches, a
continuum-particle overlap region exists that acts as a separation boundary between the contin-
uum and particle subdomains with different resolutions. For the overlap region, state variables
and flux coupling scheme are introduced to take care of the conservation of bulk mass, mo-
mentum and energy [37, 51, 63, 141,147,193]. An overlap region is needed between the MD and
continuum parts of the domain to avoid the sharp oscillations in density and pressure between
different resolutions of the same nature as that was needed for the AdResS scheme [157].

For coupling and transferring data between particle and continuum subdomains, one may use
a flux-state scheme as it preserves the conservation of variables and could be straightforwardly
employed in the simulation. In this scheme, the continuum subdomain provides a state-based
boundary condition for the particle subdomain through the insertion of particles into the reser-
voir region at the boundary of the particle subdomain at each particle time step. During each
continuum time step, a certain number of particle time steps are taken and the total flux car-
ried by those particles that cross the interface between particle and continuum subdomains is
recorded and would be applied to the continuum subdomain as a boundary condition [51]. Thus,
the continuum solver is oblivious to what happens in the particle subdomain; instead, it feels
the influence of those conditions through boundary conditions [51,70,202].

In state-flux coupling scheme, the continuum solver provides the conserved variables (U in
Eq.5.4) in the continuum reservoir macrocells (cells which are considered for discretizing con-
tinuum equations) near the particle-continuum interface to the particle subdomain; thus, the
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Figure 5.6: Density profile results for the fluctuating hydrodynamics solver with initial sinusoidal
perturbation in the density and temperature profiles in constant pressure. The order of plots
over time is written at the corner of each frame and the very initial profile without including
thermal fluctuations is not presented.

continuum state is imposed as a boundary condition to the particle region. On the other hand,
the particle solver provides the flux through the interface to the continuum subdomain; thus,
the particle flux is imposed as a boundary condition to the continuum region. It is noteworthy
to mention that the information between particle and continuum subdomains is exchanged ev-
ery certain number of particle (micro) time steps, at the beginning/end of each coupling time
steps [51].

This state-flux coupling method is used by Donev et al. [51] to couple a continuum subdomain
to a particle subdomain with the Isotropic Direct Simulation Monte Carlo (I-DSMC) method
which is a dense fluid generalization of the DSMC algorithm for rarefied gas flows [9] with a
structureless nature. However, in the Adaptive Resolution Simulation (AdResS), the aim is to
couple a continuum-based solver (fluctuating hydrodynamic solver) with a Molecular Dynamics
solver instead of DSMC particles. There are papers in the literature in which an MD solver is
employed in the particle subdomain and a flux-flux scheme has been used instead of a state-
flux scheme [41, 43, 80, 137, 200] as it is challenging to insert particles into particle reservoir in
MD simulations which are needed for the state-flux scheme. In summary, I) for the continuum
subdomain, one can solve the fluctuating hydrodynamic equations by considering a flux result-
ing from particle side simulation as a boundary condition at the interface. II) for the particle
subdomain, one can do the particle-based simulation by considering a state resulting from the
continuum side as a boundary condition at the interface.

For calculating the aforementioned flux, one needs to sum up the entire energy, momentum, and
interaction energy between particles in the particle subdomain (inside the region bordered with
the red line in Fig.5.1) and those in the reservoir (green particles outside the region bordered
with the red line in Fig.5.1). The State is calculated based on the result of the continuum solver
in macrocells in the reservoir region. Then, based on the result of the continuum solver, a certain
number of particles (based on the target density) with specific velocity distribution (based on
the resulted temperature) would be inserted into the reservoir region [51].

Such coupling approaches with the hybrid scheme have been applied to the coupling of a particle-
based solver to a finite element method with deterministic [26,39,42,55,63,64,112,125,143,147]
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Figure 5.7: Temperature profile results for the fluctuating hydrodynamics solver with initial
sinusoidal perturbation in the density and temperature profiles in constant pressure. The order
of plots over time is written at the corner of each frame and the very initial profile without
including thermal fluctuations is not shown.

or fluctuating Navier-Stokes equations [33,41] and quantum mechanics model [32,91] mostly for
studying simple liquids such as Lennard-Jones fluid [38] or water [34].

Hettithanthrige et al. [200] discussed various approaches in a hybrid coupling scheme for coupling
a continuum domain to an atomistic subdomain with Direct Simulation Monte-Carlo scheme.
Delgado-Buscalioni et al. studied the hybrid scheme with a flux-flux interface coupling for
MD-continuum set-up with unsteady flows at constant temperature tested by shear and acous-
tic waves [33, 41, 42]. Donev et al. [51] continued a previously developed continuum-particle
coupling method [202] for coupling a fluctuating hydrodynamic solver [16] to Isotropic Direct
Simulation Monte-Carlo (I-DSMC) particle-based solver by using the aforementioned flux-state
hybrid coupling scheme. Later, Delgado-Buscalioni et al. presented a triple-scale simulation
of molecular liquids by coupling AdResS to the deterministic continuum solver which covers
a length scale from molecular dynamics to coarse-grained and beyond to continuum hydrody-
namic. This coupling scheme was developed for a certain temperature and by insertion and
deletion of particles in the reservoir region of AdResS which acts as a hybrid region for coupling
to implement the boundary conditions [43]. In recent years, Korotkin and Karabasov developed
a particle-continuum coupling for hybrid simulations of liquids based on a two-phase flow anal-
ogy with coupling AdResS to a fluctuating hydrodynamic solver by assuming the absence of
macroscopic temperature gradients [96].

In this work, a new version of the flux-state hybrid coupling scheme presented before is developed
to make the particle and continuum-based solvers interact without the artificial insertion/dele-
tion of particles for conservation benefits. The developed coupling algorithm is presented in the
next part and later the necessary technical details for the simulation set-up are explained, and
finally, the results of the coupling system for a variety of test scenarios are presented.
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Figure 5.8: Density profile results for the fluctuating hydrodynamics solver with an initial sharp
jump in the density and temperature profiles in constant pressure. The order of plots over time
is written at the corner of each frame and the very initial profile without including thermal
fluctuations is not presented.

5.5.2 Methodology and algorithm

In the state-flux hybrid coupling scheme utilized by Donev et al. [51], the output of the contin-
uum solver at the neighbour cells of the particle subdomain acts as a state for the boundary
condition of the particle subdomain. This means some particles with specific positions and
velocities will be inserted into the reservoir region of the AdResS to reproduce the density,
momentum, and energy of the corresponding continuum cells. On the other hand, the total
mass, momentum, and energy of particles crossing from the particle-continuum interface will be
calculated during particle simulation and imposed as a boundary condition to the continuum
solver at the interface.

To couple the Adaptive Resolution simulation to the fluctuating hydrodynamic solver, we have
defined the interface at the border between the AT and ∆ regions of the AdResS set-up, indi-
cated by a red line in Fig.5.10. Here, to avoid the artificial insertion/deletion of particles in the
reservoir region of AdResS (TR region in Fig.5.10), we employed a new scheme with the use of a
dictionary of thermodynamic forces which acts as a tool to transfer the continuum information
into the particle subdomain. In AdResS, the thermodynamic force is calculated iteratively and
acts as an external force to preserve the properties of the fully atomistic simulation of reference.
In this new approach, a list of thermodynamic forces for different densities and temperatures
is prepared as a two-variable function that can predict the required thermodynamic force by
interpolation as a function of the length in the direction of the change of resolution. Thus,
the idea is to implement the resulted state from the continuum solver at the neighbour cells of
the particle subdomain (shaded cells in Fig.5.10) by the corresponding thermodynamic force for
that state to the particle-based solver (AdResS). Moreover, it is required to set the reservoir
temperature according to the calculated temperature of the neighbour cells in continuum simu-
lation during each coupling time step. On the other hand, the calculation of the fluxes to pass
to the continuum solver as a boundary condition is similar to the references, which means the
total mass, momentum, and energy of particles crossing the particle-continuum interface will be
imposed as a boundary condition to the continuum solver at the interface.
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Figure 5.9: Temperature profile results for the fluctuating hydrodynamics solver with an initial
sharp jump in the density and temperature profiles in constant pressure. The order of plots over
time is written at the corner of each frame and the very initial profile without including thermal
fluctuations is not shown.

Figure 5.10: The schematic figure of the coupling AdResS to the fluctuating hydrodynamics
solver. The particle subdomain is located in the middle of the domain and the interface of the
continuum and particle subdomains is indicated by the red line at the left and right borders
of the AT and ∆ regions of AdResS. The red and green arrows indicate the direction of infor-
mation transfer according to the newly developed state-flux coupling algorithm and the shaded
continuum cells represent the neighbour cells of the particle subdomain at the left and right
sides which overlap with the reservoir region of AdResS to ensure the smooth coupling of the
solvers.

The coupling simulation starts with an initial array of density, velocity, and temperature for the
whole domain as it was a pure continuum domain. Then, based on the density and tempera-
ture of the neighbour macrocells, a new thermodynamic force for the left and right sides of the
AdResS simulation will be calculated. In the next step, AdResS simulation will be performed by
setting the left and right reservoirs’ temperature according to the temperature of the continuum
neighbour cells. Then, the quantities of interest (density, velocity, and temperature) in the re-
gion of interest (AT region of AdResS domain) together with the mass, momentum, and energy
fluxes at the interface are calculated during AdResS simulation. Finally, with the new values
at the middle of the continuum domain, the fluctuating hydrodynamic solver will advance for
a certain number of continuum time steps which are considered as a single coupling time step.
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The new values for the density, velocity, and temperature (and also pressure and other depen-
dent parameters) will allow us to re-calculate the required thermodynamic force and advance
the particle-based solver and repeat the coupling procedure as long as the results converge. This
coupling algorithm is illustrated in Fig.5.11.

continuum domain
initialization: ρ,u, and T

calculating
thermodynamic state
close to AT region

creating the corresponding
thermodynamic set-up for

AdResS

performing AdResS
simulation

calculating the interface
values according to the

AdResS results

imposing the result of the
AdResS simulation in the

continuum domain

advancing the
continuum solver

deriving the
corresponding Fth
from the dictionary

Figure 5.11: The coupling algorithm for coupling AdResS to fluctuating hydrodynamic.

5.6 Numerical results: coupling AdResS to FHD

The coupling of AdResS to the previously presented fluctuation hydrodynamic solver has been
done for the configuration illustrated in Fig.5.12 and by the algorithm explained in the previous
section and pictorially illustrated in Fig.5.10 and Fig.5.11. In the following, the technical details
of the simulation with the necessary information on fluid properties will be explained. Next,
results for various test scenarios will be presented.

Figure 5.12: Atomistic subdomain (red particles) embedded in a continuum hydrodynamic do-
main (blue region) through an interface region (indicated with orange and black points corre-
sponding to ∆ and TR regions of AdResS) which overlaps with the blue region. Each solver
(namely continuum and molecular dynamics) provides an interface boundary for the other one.
This information is exchanged among the regions during the simulation.
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5.6.1 Technical details

To couple the molecular resolution to the continuum hydrodynamics, we have considered Argon
liquid as a single atomic simple fluid with the relative simplicity of the spherical two-body pair
potential and the amenability to the basic theory. The simulation domain is decomposed as
illustrated in Fig.5.12 into particle and continuum subdomains and their interface is consid-
ered to be at the border of the AT and ∆ regions of AdResS. The size of the AdResS box is
75σ × 15σ × 15σ in which the length of AT region is 25σ and the tracer and ∆ regions’ size
are 21σ and 4σ, respectively. The mass of each Argon particle is 6.6335209 × 10−26kg, the σ
value for Argon is 0.34[nm] and the ϵ value is 120kB with kB being the Boltzmann constant.
For calculating the density profile as a function of length by Fourier transformation, the box is
divided into 750 slices along the axis of change of resolution. In all simulations, the MD time
step is 0.002 in reduced units which is equivalent to almost 4.3[fs] (t = t∗

√
mσ2/ϵ) and each

AdResS simulation consists of 2.5×106 steps which 30% of them are considered for equilibration
and the rest for data production.

The AT region of AdResS is designed to be equivalent to several continuum cells and in all
reported results it includes 10 continuum cells which means that the space discretization size
(dx) for the continuum domain would be AT/10 = 2.5σ = 0.85[nm] while the whole domain size
is 10AT = 250σ = 85[nm]. The stability conditions presented in Eq.5.19 restrict us to choosing
a very small time step for the continuum solver which in our case is 0.1[ps].

Fluid state

In the preparation of the fluctuating hydrodynamic solver for the compressible flow, the fluid
under study was considered a dilute gas with ideal gas properties and the equation of state
P = ρRT (and consequently straightforward relations for thermodynamic properties) which is
used within numerics for solving Navier-Stokes equations. Fig.5.13 shows the phase diagram for
the Lennard-Jones fluid in the reduced unit in the ρ− T diagram. Choosing a dilute gas means
having a relatively low temperature while being at very low densities. However, it is not possible
to do the AdResS simulations for such low-density fluids as a key point in AdResS is to calculate
the density profile and approximate the required thermodynamic force based on the deviation
of the resulting density from the target one. This is because in dilute gases the particles are less
than the required number of particles for filling the domain and producing a uniform density
profile without unphysical fluctuations.

On the other hand, being in the supercritical region ensures us to be in the safe region without
phase change and coexistence region of liquid and gas but it requires finding a suitable equa-
tion of state (and other thermodynamic properties) for the fluctuating hydrodynamic numerical
solver. A supercritical fluid is any substance at a higher temperature and pressure than its
critical point in which a distinction between gas and liquid phase does not exist anymore and
has both gas and liquid-like properties. It is gas-like as it is a compressible fluid that can fill its
container and is liquid-like as it has comparable density and solvating power.

Finally, we have considered a supercritical state far from the critical point at the reduced tem-
perature of 2.5 and reduced density of 0.572 which corresponds to a reduced pressure of 2.37.
These reduced values for the selected state correspond to the following SI units for Argon:
ρ = 964.82[kg/m3], T = 300[K], and P = 100[MPa]. This density means having 9647 Argon
particles in the AdResS simulation domain for the specified box size of 75σ × 15σ × 15σ.
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Figure 5.13: Phase diagram of Lennard-Jones substances in ρ− T diagram [87].

Equation of state and thermodynamic properties

The equation of state for the Lennard-Jones fluid can be determined by doing several MD
simulations and finding a correlation between pressure as a function of density and temperature.
There are several methods for deriving the equation of state of Lennard-Jones which in general
can be categorized into two groups: those with a theoretical basis (semi-theoretical) and those
with a purely empirical basis, each of them applies to some ranges of densities and temperatures
[104]. The Modified Benedict-Webb-Rubin equation of state used in this work is the one used by
Nicolas et al. [140] and explained in detail in Ref. [104] and contains 32 linear and one non-linear
parameter. It starts from writing the Helmholtz free energy, separating its residual and ideal
parts, and deriving its pressure relation. It results in the following relation for the pressure in
reduced units:

P ∗ = ρ∗T ∗ +

8∑
i=1

aiρ
∗(i+1) + F

6∑
i=1

Biρ
∗(2i+1) (5.20)

where the coefficients ai and bi are functions of temperature only and are represented in Tab.5.1
which contain 32 linear parameters in the Modified Benedict-Webb-Rubin equation of state
(presented in Tab.5.2). In Eq.5.20, F = exp(−λρ∗2) and λ is a nonlinear adjustable parameter
and is reported to be equal to 3.

Thus, by using the Eq.5.20 it is possible to calculate the reduced pressure at each density and
temperature around the state that the simulation is being performed and convert it to the SI
unit by P = P ∗ϵ/σ3.

The thermodynamic properties of the fluid depend on the temperature and density of the fluid.
This includes the heat capacity (cv), viscosity (µ), and thermal conductivity (k) of the fluid that
for Argon can be found at different state points in the source data at the National Institute of
Standards and Technology (NIST) [124]. In this work, we have found and stored the values of
heat capacity, viscosity, and thermal conductivity of Argon at 3 different temperatures and 11
different densities around the selected state (ρ = 964.82[kg/m3] and T = 300[K]) within a range
of ±%15 and interpolated those values for any other situations.
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i ai bi
1 x1T

∗ + x2
√
T ∗ + x3 + x4/T

∗ + x5/T
∗2 x20/T

∗2 + x21/T
∗3

2 x6T
∗ + x7 + x8/T

∗ + x9/T
∗2 x22/T

∗2 + x23/T
∗4

3 x10T
∗ + x11 + x12/T

∗ x24/T
∗2 + x25/T

∗3

4 x13 x26/T
∗2 + x27/T

∗4

5 x14/T
∗ + x15/T

∗2 x28/T
∗2 + x29/T

∗3

6 x16/T
∗ x30/T

∗2 + x31/T
∗3 + x32/T

∗4

7 x17/T
∗ + x18/T

∗2

8 x19/T
∗2

Table 5.1: The ai and bi temperature-dependent coefficients for the pressure equation of Lennard-
Jones fluid.

i xi i xi i xi i xi
1 0.86309 9 2798.29177 17 63.98608 25 −113.16076
2 2.97622 10 −0.04839 18 16.03994 26 −8867.77154
3 −8.40223 11 0.99633 19 68.05917 27 −39.86983
4 0.10541 12 −36.98000 20 −2791.29358 28 −4689.27030
5 −0.85646 13 20.84012 21 −6.245128 29 259.35353
6 1.58276 14 83.05402 22 −8116.83610 30 −2694.52359
7 0.76394 15 −957.47997 23 14.88736 31 −721.84876
8 1.75317 16 −147.77462 24 −10593.46755 32 172.18021

Table 5.2: The parameters for the Modified Benedict-Webb-Rubin equation of state regressed
in Ref. [104].

Non-equilibrium problem in AdResS

While coupling the fluctuating hydrodynamic solver to the AdResS subdomain, it is possible
to have different densities and temperatures at the left and right sides of the particle subdo-
main in the neighbour cells in Fig.5.10 which turns the simulation into a non-equilibrium-like
problem within the AdResS domain. Recently, Ebrahimi Viand et al. [57] performed AdResS
simulations for a non-equilibrium problem with different temperatures and densities at the left
and right reservoirs. They studied the analogy of AdResS and Bergmann-Lebowitz model of
open systems [21, 123] and performed the AdResS simulation for the non-equilibrium problem
by applying the thermodynamic forces for AdResS simulation of the equilibrium problems cor-
responding to each reservoir.

In their analogy, when the AdResS system is in contact with two different reservoirs with differ-
ent thermodynamic conditions, according to the Bergmann-Lebowitz model, once the system is
in contact with both reservoirs at the same time, the combined effect translates to the combined
thermodynamic forces for each side. In our case, this means that for running a non-equilibrium
problem with different thermodynamics (density and temperature) at the left and right sides of
the AdResS simulation, one can calculate two different thermodynamic forces, one for the left
and one for the right sides of the domain at equilibrium conditions corresponding to each reser-
voir’s thermodynamic condition. Next, add each of those resulting thermodynamic forces one
to the left and one to the right sides simultaneously, while setting the thermostat of the left and
right sides according to the temperature of the reservoirs. This will result in the non-equilibrium
scenario in the AdResS set-up with two different thermodynamic state points on the left and
right sides.
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5.6.2 Thermodynamic force dictionary

By applying the idea of non-equilibrium simulation with AdResS [57], it is possible to imple-
ment a non-equilibrium problem in AdResS by using pre-calculated thermodynamic forces of
the equilibrium situations with different reservoirs. This brings the idea of preparing a list of
thermodynamic forces for a range of densities and temperatures around the state that we are
interested in and using the list for obtaining the proper thermodynamic force for any other
situation by interpolation.

As this work intends to develop a coupling set-up for problems with varying densities and tem-
peratures, the AdResS simulator should be prepared for those conditions. This means that it
is required to prepare a list of thermodynamic forces called the ”dictionary of thermodynamic
forces” for different thermodynamic equilibrium situations around the state of the fluid under
study. Thus, with the selected state of Argon at the density of 964.82[kg/m3] and temperature
of 300[K], here a set of AdResS simulations for three different temperatures in the range of
±%15 and eleven different densities in the range of ±%15 around the target state have been
done and the thermodynamic forces for the corresponding equilibrium cases are calculated. The
potential of thermodynamic force for the abovementioned list of densities and temperatures have
been calculated and presented in Fig.5.14.

According to Fig.5.14, a system with higher density which means a higher number of particles
needs a larger amount of energy to be equilibrated and reproduce the results of the full atomistic
simulation of reference. On the other hand, it needs more equilibration energy (energy provided
by thermodynamic force) at higher temperatures to generate the flat density at equilibrium. In
other words, as shown in the previous chapter [74], the role of thermodynamic force is to flatten
the pressure profile by its definition and with higher temperatures, one expects to have higher
pressure differences in the AdResS domain before applying a thermodynamic force which needs
to be compensated with higher external potential.

5.6.3 AdResS validation

In the procedure of coupling AdResS to fluctuating hydrodynamics simulator, it is essential to
ensure that the multi-resolution particle-based solver is properly modelling the fluid under study
in different situations. This means that the adaptive resolution scheme is supposed to reproduce
the results of the fully atomistic system with the same parameters in and out of equilibrium
within an acceptable range of error.

Equilibrium

In the case of the thermal and hydrodynamic equilibrium where there is no pressure and tem-
perature difference between different subregions of the particle subdomain, one expects to get
the same equilibrium results for the AdResS and full atomistic simulation of reference. Apart
from the flat density and temperature profiles for both simulations (that means a flat pressure as
well) which has been shown in all previous studies [73,74], one expects to get the same physical
behaviour. The quantities that describe the physical state of the system are the particles’ proba-
bility distribution in the region of interest (p(N)) and the radial distribution function (g(r)). As
an instance for the current study, the comparison of particles’ number probability distribution,
radial distribution function, and density profile at equilibrium for the Argon fluid is shown in
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Figure 5.14: The potential of thermodynamic force for 3 different temperatures of 255[K](a),
345[K](b), and 300[K](c) in 11 different densities that have been calculated by iterative manner
for AdResS simulations at equilibrium. The range of densities and temperatures covers ±%15
around the target state (ρ∗ = 0.57 and T ∗ = 2.5). The black solid line shows the potential of
thermodynamic force for the target density at each temperature. The coloured solid and dashed
lines represent the cases with a density higher and lower than the target state, respectively. In
each set, densities increase in the order of colours such as blue, green, yellow, orange, and red.
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Figure 5.15: Comparison of the probability distribution of particles (a) in the region of interest
(AT), radial distribution function (b), and density profile (c) for the AdResS and full atomistic
simulation of reference in the equilibrium state of supercritical Argon at ρ∗ = 0.57 and T ∗ = 2.5.

Fig.5.15 at the state described in technical details (ρ = 964.82[kg/m3] and T = 300[K]) in a
box with the dimensions of 75σ× 15σ× 15σ where the AT region with the size of 25σ is located
in the middle of the box.

Non-equilibrium

In the non-equilibrium case, where the left and right sides of the region of interest (AT) are
at different thermodynamic state points, AdResS should follow the thermodynamic behaviour
of the reference full atomistic simulation. This equivalence has been shown in [57] where the
Bergmann-Lebowitz model [21, 123] implies that applying different thermodynamic forces cor-
responding to the respective equilibrium states will yield the desired non-equilibrium results.
In coupling the fluctuating hydrodynamics solver with the adaptive resolution simulator, the
non-equilibrium case with different thermodynamic states resulting from the continuum solver
at the left and right reservoirs is the most likely scenario happening over the simulation time
that leads to a non-equilibrium problem is AdResS.

Here, the most drastic scenario for the temperature gradient in this study is considered where
the cold reservoir is at the temperature of Tcold = 255[K](T ∗

cold = 2.125) and the hot reservoir
is at the temperature of Thot = 345[K](T ∗

hot = 2.875). Then, the density of the left and right
sides’ reservoirs may be calculated in the left and right reservoirs by running a full atomistic
simulation with specified temperatures at the corresponding regions which means the densities
that yield to P (ρcold, Tcold) = P (ρhot, Thot). However, here, to consider uncertainties due to the
use of the empirical equation of state (Eq.5.20), the corresponding densities at the cold and hot
reservoirs are calculated by using Eq.5.20 in such a way that the pressure remains constant that
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(a) Density profile (b) Temperature profile

Figure 5.16: The profile of density (a) and temperature (b) for the non-equilibrium problem for
AdResS and full atomistic simulation of reference where the left and right sides’ reservoirs are at
different temperatures with ρleft = 1073.2[kg/m3], Tleft = 255[K], ρright = 884.5[kg/m3], and
Tright = 345[K] in such a way that Pleft = Pright according to the equation of state of Lennard-
Jones fluid Eq.5.20. The white region in the middle represents the AT region of interest which
is connected to the cold (blue) and hot (red) reservoirs through a transition region specified by
the dashed line. The proper thermodynamic force for the left and right sides in the AdResS
set-up is calculated by interpolation of those in the pre-calculated dictionary of thermodynamic
force shown in Fig.5.14.

are: ρhot = 884.5[kg/m3](ρ∗ = 0.52) and ρcold = 1073.2[kg/m3](ρ∗ = 0.64).

The simulation protocol reads that the thermodynamic force is calculated separately for the
two abovementioned thermodynamic state points at equilibrium and then the left and right
sides’ reservoirs are set to the mentioned thermodynamic states. Next, the corresponding ther-
modynamic force related to each state is applied to the reservoir regions. The results of the
temperature and density gradient for the described non-equilibrium case are shown in Fig.5.16.

5.6.4 Numerical tests

In previous sections, the fluctuating hydrodynamics code and the adaptive resolution simulation
in and out of equilibrium were assessed. In this section, a set of test scenarios are designed
to evaluate the application of coupling adaptive resolution simulation to fluctuating hydrody-
namics. These include a flat, step function-like, and sinusoidal initial conditions and finally a
quasi-1D geometry with varying cross-section.

Initial flat conditios

Initial constant properties (density, velocity, temperature, and pressure) are applied as an ini-
tial condition to the AdResS-FHD coupling system. As there are no advective and diffusive
forces in the domain with the NS solver(see Eq.5.11), it is expected that with the deterministic
Navier-Stokes solver, nothing should change during continuum simulation, but after coupling
it to AdResS some fluctuations will arise in the system because of the inevitable deviations
of AdResS from the exact target state (less than 2 per cent). However, with the fluctuating
hydrodynamics coupling to AdResS, it is expected to have fluctuations in the fluid behaviour
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Figure 5.17: The profile of density (a), temperature (b), velocity (c), and pressure (d) for
coupling AdResS to FHD with initial flat properties. The red-shaded subregion shows the AT
region of AdResS which is connected to the reservoir of non-interacting particles with blue-
shaded colour (TR) through a grey transition region (∆) where the vertical solid line between
AT and ∆ region represents the interface of MD and continuum subdomains. In all figures, the
black solid and dashed lines show the result of the FHD and MD solvers, respectively, and the
red solid line represents the result of coupling FHD to AdResS.

that results in a fluctuating domain around the target state of the fluid. In Fig.5.17, the profile
of thermodynamic and hydrodynamic properties of the system at some arbitrary time is shown
for fully atomistic, fluctuating hydrodynamics, and AdResS-FHD coupling systems. The initial
state with zero velocity is set to the described state ρ = 964.82[kg/m3] and T = 300[K] which
corresponds to the pressure of 100[MPa] according to Eq.5.20.

Initial step function

An initial step function for the density and temperature where the discontinuity occurs in the
middle of the simulation domain may assess the AdResS-FHD coupling system and see whether
the particle-based solver can tolerate such a drastic situation while interacting with the contin-
uum solver. In this case, initial discontinuous temperature and density are applied to the system
in such a way that the initial pressure of the fluid remains constant all over the simulation do-
main. This means that the continuum cells in the left and right sides of the domain will have
initial different values that obey the relation P (ρleft, Tleft) = P (ρright, Tright) according to the
equation of state. This will lead to an extreme initial situation for AdResS where the left and
right sides’ reservoirs (TR regions) are at different thermodynamic states as those presented in
Fig.5.16.

For this purpose, the initial density and temperature of the left side are set to ρleft = 1010[kg/m3]
and Tleft = 279.3[K] and for the right side they are ρright = 919.6[kg/m3] and Tright = 322.3[K]
while the initial pressure is P = 100[MPa]. One expects that such initial perturbation should
resolve in the domain and get flat properties after reaching equilibrium which needs a smooth
change of properties over time from a discontinuous situation to a flat condition while the pres-
sure remains constant. The evolution of the density and temperature profiles over the simulation
time until reaching the equilibrium is shown in Fig.5.18 for the whole domain including AdResS
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Figure 5.18: The profile of density (a, c, e, and g) and temperature (b, d, f, and h) of fluid
with initial step function for density and temperature (ρleft = 1010[kg/m3], Tleft = 279.3[K],
ρright = 919.6[kg/m3], and Tright = 322.3[K]) with constant pressure (P = 100[MPa]) overtime
at t = 0.05[ns](a and b), t = 0.25[ns](c and d), t = 1.2[ns](e and f), and t = 3.5[ns](g and
h). The coloured regions in the middle of the box is showing the AdResS domain where the
atomistic region (red area) is in contact with the TR region (blue area) through a small transition
region (gray area). The black solid and dashed lines show the result of reference FHD and MD
simulations, respectively, and the red line represents the results of coupling AdResS to FHD.

and continuum subdomains.

As previously mentioned in the algorithm section, the thermodynamic properties of the fluid
in the particle subdomain during continuum simulation will be replaced with the quantities in
AT region of AdResS. Thus, as illustrated in Fig.5.18 the AdResS density and temperature will
change over time with the changing boundary conditions at the left and right neighbour cells of
the continuum solver. The details of the density and temperature in AdResS simulation for the
corresponding snapshots represented in Fig.5.18 are shown in Fig.5.19.

Acoustic wave

In this case, similar to the previous case, an acoustic wave with periodic initial conditions for
density and temperature is applied to the system, but with a non-constant pressure profile ac-
cording to the equation of state. Here, as the initial pressure function obeys a periodic behaviour,
the flow will have some oscillations until reaching the equilibrium state (flat properties). This
example shows how smoothly such oscillations will be handled with the developed coupling code
while regenerating the results of the pure continuum and/or fully atomistic.

Here, the initial density oscillates around ρ = 964.82[kg/m3] with an amplitude of ∼ 30[kg/m3]
and frequency of 4π/l where l is the simulation domain length. On the other hand, the tem-
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Figure 5.19: The profile of density (a) and temperature (b) in the AdResS domain and the full
atomistic simulation over time, for the initial step function for the density and temperature. The
red and blue regions represent the hot and cold reservoirs, respectively. The data correspond to
the points in time of Fig.5.18.

perature initial function is set similarly with an oscillation amplitude of ∼ 40[K]. One expects
that these initial perturbations should resolve in the whole simulation domain over time and the
system should equilibrate at ρ = 964.82[kg/m3] and T = 300[K] after some oscillations. The
results of this case are presented in Fig.5.20 over time. The profile of density and temperature
of AdResS simulation for the time steps recorded in Fig.5.20 is shown in Fig.5.21.

Quasi-1D varying cross-section geometry

In this part, to assess the capability of the AdResS-continuum coupling code for non-constant
cross-sections of the tube, a new geometry with varying cross-sections is designed. Such ge-
ometry with changing cross-section will generate a changing density profile and consequently
pressure domain along the length of the box. The cross-section of the new geometry linearly
increases in the continuum domain on the left and symmetrically decreases on the right side
while having a constant value at the middle part corresponding to the AT region of the AdResS
domain.

Applying such conditions to the continuum solver needs some corrections in the conservation
equation set and Navier-Stokes equation discretization as the cell’s cross-section area is not con-
stant but is a function of the length x. This requires the addition of a factor of A(x) to all terms
in Eq.5.11 which leads to the same factor in all terms in the discretization algorithm of Eq.5.16.
Moreover, this change will add a source term to the momentum equation of the Navier-Stokes
equation set as below.
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 = − ∂

∂x

 ρuA
(ρu2 + P )A
(E + P )uA

+
∂

∂x

 0
4
3ηA∂xu

4
3ηuA∂xu+ kA∂xT

+
∂

∂x

 0
sA

(q + us)A

+P
∂

∂x
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0

 (5.21)

The cross-section area in the middle is similar to previous cases Amiddle = (15σ)2 and its value
at the left and right borders of the domain is Aleft = Aright = (12.25σ)2. The result of the
AdResS-continuum simulation is shown for density, temperature, and velocity in Fig.5.22 over
time. The new solver with coupling AdResS to fluctuating hydrodynamics code is calculating
the evolution of the system correctly until reaching equilibrium.
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Figure 5.20: The profile of density (a, c, e, and g) and temperature (b, d, f, and h) of fluid with
initial sinusoidal function for density and temperature overtime at t = 0.0[ns] (a and b), t =
0.25[ns] (c and d), t = 0.45[ns] (e and f), and t = 1.5[ns] (g and h). The initial density function
is ρ(x) = 964.82(1 + 0.03sin(4πx/l)) and the temperature is T (x) = 300(1 − 0.13sin(4πx/l)).
The solid black line, dashed black line, and red line represent the results of FHD, MD, and
coupling of AdResS to FHD, respectively.

Figure 5.21: The profiles of density (a) and temperature (b) in the AdResS domain over time
for the initial periodic density and temperature during coupling AdResS to FHD. The snapshots
correspond to the times in Fig.5.20 and the order is illustrated in the labels. The regions with
red and blue colours represent the initially hot and cold reservoirs, respectively.
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Figure 5.22: The evolution of density (a, d, and g), temperature (b, e, and h), and flow velocity
(c, f, and i) for the case with varying cross-section where it increases and decreases linearly in
the left and right continuum subdomains, respectively, while being constant in the middle at
t = 0.01[ns] (a, b, and c), t = 0.1[ns] (d, e, and f), and t = 10[ns] (g, h, and i). The coupling
simulation is started with an arbitrary initial condition which is set to an initial uniform density
and sinusoidal temperature with an oscillation amplitude of 15[K] around the target state.

5.7 Conclusion

Adaptive Resolution Scheme (AdResS) is re-generating the same thermodynamic behaviour of
the reference full-atomistic system with a smooth change of resolution from a small enough
fully atomistic subdomain to a reservoir of non-interacting particles by using a thermostat ap-
plied to the reservoir region and implementing an external force (thermodynamic force). As the
non-equilibrium situation is the most probable case while doing AdResS simulation coupled to a
continuum solver, the possibility of simulating non-equilibrium scenarios with the use of AdResS
by employing the Bergmann-Lebowitz model is studied and proved. On the other hand, adding
a stochastic flux term to the compressible Navier-Stokes equations makes it able to capture
fluctuations that have crucial importance in complex systems with atomic resolutions.

To further develop the idea of coupling different regions with different resolutions, in this work,
the AdResS domain is coupled to the fluctuating hydrodynamic solver with the use of a pre-
calculated list of thermodynamic forces for information exchange purposes. The results for dif-
ferent test scenarios show satisfactory correspondence for the thermodynamic properties within
an acceptable range of error.

To make the AdResS-FHD coupling solver more general, it is possible to extend the dictionary
of thermodynamic force for a wider range of thermodynamic state points. For the moment, the
AdResS domain is a three-dimensional region while exchanging information with the continuum
domain in one direction as the continuum solver is one-dimensional. It is possible to extend the
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continuum solver for multi-dimension domains to make it possible to study more generic flow
situations.

79



Chapter 6

Summary and outlook

In this thesis, we have studied Adaptive Resolution Simulation (AdResS) as a tool for modelling
open systems with a multiscale approach. The fundamental statistical mechanics of the AdResS
technique is considered to derive a mathematical and physical framework to analyse the open
system and relate the macroscopic behaviour of the system to its microscopic details. These
fundamental characteristics include the chemical potential of the system and its pressure and
their relation to the reference system. Later, by using the findings and foundations developed in
this work, the AdResS domain is coupled to a developed continuum solver to control the envi-
ronment and reservoir conditions within a macroscale resolution during a continuum simulation.
In the following, the work for each section is summarized and the connection between them is
explained.

AdResS is a multi-resolution method for performing molecular modelling on different scales to
reduce the computational costs required for fully atomistic simulations. In this method, part of
the simulation domain is considered with atomistic resolution and the rest is filled with point-
like reservoir particles which is connected to the atomistic region through a small hybrid region.
To recreate the behaviour of the reference full atomistic simulation and compensate for the
removed degrees of freedom, it is required to implement some additional tools in the AdResS
system. These tools include a thermostat and an external force called thermodynamic force
applied to the reservoir region to mimic the thermodynamics and structure of the reference
system. The thermodynamic force is calculated self-consistently in an iterative manner during
equilibrium runs. As the particles in the reservoir region do not interact with each other, they
may experience unphysical forces while entering the open system with the atomistic resolution;
thus, it is required to normalize those unphysical forces during simulation. However, this correc-
tion does not change the thermodynamics of the system at the statistical mechanics level and
this fact is shown in this work.

As the first step after the preparation of the AdResS set-up, the chemical potential of AdResS
and its reference simulation are related to each other through a rigorous mathematical approach.
This is done by starting from the equivalence of the grand potential of open system in AdResS
and reference set-ups and expanding the mathematical relations by the physical consistency. The
developed equation for the chemical potential relates the change of the chemical potential of the
system while changing the resolutions to the applied corrections for AdResS simulations. Thus,
the difference between the chemical potential of the AdResS set-up and its reference simulation
is due to the loss of interactions with the reservoir region and also the implementation of the
thermodynamic force in the reservoir region of AdResS. The developed relation for the chemical
potential is numerically assessed for the Lennard-Jones (LJ) fluid at four different thermody-
namic state points and also water as a complex liquid and showed satisfactory results. This
research, in addition to providing a straightforward approach for the calculation of chemical
potential in AdResS, further supports the idea of open system treatment for AdResS from the
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first principles.

Later, a complementary research for the previous step for the calculation of pressure in the
AdResS domain is done. The derivation of the chemical potential in the AdResS set-up started
with the idea of equivalence for the grand potential of the open systems in the AdResS and
its reference simulations. However, to explore the grand potential in detail, it is required to
calculate the pressure in the AdResS domain as an inhomogeneous system. The pressure in
molecular simulations with homogeneous nature and the absence of external force fields can
be calculated by the virial relation. Here, we have utilized a new approach for the calculation
of pressure by separating the kinetic and interaction contributions of the pressure that can be
extended to the inhomogeneous systems. In this approach, a sliding plane is considered in the
simulation domain and the kinetic contribution of the particles crossing the plane is added to the
interaction contribution of particles on the opposite sides of the plane to calculate the normal
and transverse components of the stress tensor. The mathematical and physical derivations of
this research are numerically analysed for the four LJ fluids with different thermodynamic state
points explored in the previous stage for the chemical potential. The results of this research
support the idea of grand potential’s equivalence between AdResS and the reference simulation.
Moreover, the point-by-point calculation for the pressure in the hybrid region corresponds to
the potential energy provided to the system by the thermodynamic force. This latter shows that
the thermodynamic force is a tool to compensate for the pressure difference resulting from the
abrupt change of resolutions and thus equivalence of the grand potentials for the AdResS and
its reference set-ups.

Apart from the AdResS methodology, the continuum simulation for incorporating microscale
fluctuations in the continuum solver is designed. Microscale fluctuations are always deviating a
system from staying in a constant state even at equilibrium. In this sense, Landau and Lifshitz
introduced a stochastic flux term in the Navier-Stokes equations for the simulation of compress-
ible flow. Here, a new Fluctuating Hydrodynamics (FHD) code is developed to simulate the
Landau-Lifshitz Navier-Stokes equations to incorporate the fluctuations into the deterministic
continuum slover. For the discretization of the equations, a third-order Runge Kutta method is
used for time integration with a central finite difference method for space discretization. The
results of this new solver are presented for different initial conditions for a one-dimensional
continuum domain and showed satisfactory correspondence to the expected behaviour from con-
tinuum simulations.

To further develop the idea of the multiscale simulator and have a reasonable approximation of
the flow behaviour in the reservoir region outside the atomistic subdomain, the AdResS simu-
lation is coupled to the fluctuating hydrodynamics solver. This will make the AdResS method
able to capture the flow behaviour in the reservoir region far from the atomistic resolution while
including the atomic level fluctuations in the continuum reservoir. For this purpose, a novel cou-
pling algorithm is developed based on the non-equilibrium analogy of the AdResS model and the
pressure balancing results. In this approach, the continuum reservoir will provide information
as a state boundary condition at the interface to the particle subdomain and the particle-based
solver will provide information on the flux of mass, momentum, and energy of particles passing
through the interface. Accordingly, a set of pre-calculated thermodynamic forces is prepared
for several states around the target state of the fluid under study (dictionary of thermodynamic
forces). Based on the resulting state of the continuum solver at the interface, a proper thermo-
dynamic force for the AdResS simulation is obtained by interpolation from the dictionary of the
thermodynamic force. Finally, the AdResS simulator is coupled to the fluctuating hydrodynam-
ics solver based on the developed algorithm that uses the dictionary of thermodynamic forces
on the fly. The new coupling solver is later tested for several scenarios with different initial
conditions and a quasi-one-dimensional domain. The results show satisfactory correspondence
compared to those concluded from pure continuum and fully atomistic simulations.
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The new set-up with coupling AdResS to fluctuating hydrodynamics provides a tool for con-
trolling the thermodynamics of the atomistic subdomain with the macroscopic quantities in the
continuum reservoir while having an acceptable level of accuracy in the reservoir region. Thus,
it makes the solver able to simulate some challenging applications e.g. biological membranes
and proteins by putting the membrane or protein inside the atomistic subdomain with higher
resolution and filling the reservoir continuum region with the solvent and water. It is also helpful
to extend the continuum solver to a three-dimensional solver and make it able to simulate more
realistic problems with complex geometries. This will enable the coupling system to simulate
two or three-dimensional problems, e.g. Couette flow problem, in fluid mechanics.

In addition to the abovementioned application ideas for future endeavours, it would be bene-
ficial for future studies to develop a predictor module to calculate the thermodynamic forces
for different states of LJ liquids. As previously mentioned, LJ fluids are useful for theoretical
studies as simple fluids with essential basic characteristics. However, as presented in this work,
the thermodynamic force of the fluid depends on its density and temperature. Thus, performing
various AdResS simulations for a wide range of thermodynamic state points of LJ fluid will
establish a large data set for thermodynamic force as a function of density and temperature.
Later, these data could be used to develop a predictor function for interpolating the required
thermodynamic force for any thermodynamic state point in between. Such function would com-
pensate considerable computational resources for future AdResS studies on fundamental topics
with LJ fluids.
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Appendix A

HALMD package

In this section, some tools for the implementation of AdResS in the HALMD package are ex-
plained and later the simulation code for running the AdResS simulation is presented.

A.1 AdResS simulation tools

A.1.1 Canonical scheme for thermodynamic force

Here, we have introduced a new approach for calculating thermodynamic force with an iterative
formula based on the canonical ensemble assumption. This scheme has been used in all AdResS
simulations with the HALMD package, i.e. coupling AdResS to fluctuating hydrodynamics
solver.

The density distribution in the presence of an external potential for a canonical ensemble with
constant N , V , and T is,

ρ = z × exp(−βϕ) (A.1)

in which β is thermodynamic beta defined as 1
kBT , ϕ is the intended external potential, and z is

the canonical partition function that is defined as below,

z =
1

h3

∫
e−βH(q,p)d3qd3p (A.2)

that h is the Planck constant and H(q, p) is the Hamiltonian of the system as a function of
position (q) and momentum (p).

According to Eq.A.1, the proper external potential (ϕt) that results the target density profile
(ρt) in a certain direction, e.g. x, should obey the following format,

ρt = zt × exp(−βϕt) (A.3)

Computing the density profile resulting from an external potential is straightforward; however,
doing the calculation vice versa and computing the needed external potential to produce a wished
density profile in a certain direction over the simulation box is more challenging. An idea is
to develop and use an iterative formula and apply an initial external potential to the system
and compute the density profile based on that external potential and then correct the external
potential according to the deviation of the resulting density from the target one. Let’s suppose
that the density profile at nth iteration after applying nth external potential (ϕn) is ρn; then,
according to Eq.A.1,

ρn = zn × exp(−βϕn) (A.4)
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Consequently, the external potentials based on Eq.A.3 and Eq.A.4 can be written as below,

ϕt(x) = −kBT × ln

(
ρn(x)

zn

)
and ϕn(x) = −kBT × ln

(
ρn(x)

zn

)
(A.5)

The iterative formulation can be considered as,

ϕn+1(x) = ϕn(x) + g(x) (A.6)

The final goal is to find an expression for g(x). At the end of aforementioned iterative procedure,
ϕn+1 should converge to the target external potential ϕt that means ϕn+1(x) ≈ ϕt(x). Thus,
ϕt(x) = ϕn(x) + g(x) and,

g(x) = ϕt(x)− ϕn(x) = −kBT
[
ln

(
ρt
zt

)
− ln

(
ρn
zn

)]
(A.7)

According to Eq.A.2, the canonical partition function depends on the Hamiltonian of the system
which is the sum of interaction potentials and kinetic and this value should be the same for the
system of study before and after applying external force. Therefore, zt and zn in Eq.A.7 are
equal and one can rewrite the Eq .A.6 as below,

ϕn+1(x) = ϕn(x) + kBT × ln

(
ρn
ρt

)
(A.8)

Eq.A.8 presents an iterative formulation for computing needed external potential to reach a
certain target density (ρt). The corresponding external force would be:

F (x) = −∇ϕ(x) ⇒ Fn+1(x) = Fn(x)− kBT

(
∇ρn(x)
ρn(x)

− ∇ρt(x)
ρt(x)

)
(A.9)

The iterative formula in Eq.A.9 and Eq.A.8 can be implemented in AdResS simulation for the
calculation of the thermodynamic force.

A.1.2 External force implementation

To use the benefit of the formulation discussed in Eq.A.8 and Eq.A.9 in an MD simulation, a
tool/module must be developed that works besides other tools in the MD package to apply the
intended external potential to the simulation box. For this purpose, an external force module in
the HALMD package has been developed which takes the provided external force and potential
along with the corresponding binning as an array and then interpolates a continuous function
for the provided coefficients and applies it to the system.

The intended module was developed for a three-dimensional simulation box that is capable
to apply an external force field in all three directions; however, concerning the physics of the
AdResS, a one-dimensional external force module will satisfy the need as the aim is to reach
a target density profile in one direction. This module takes the coefficients array with values
of external force and potential at certain nodes as a one-dimensional array based on a certain
order of elements.

The external force module uses a cubic Hermite spline for interpolation between external poten-
tial values which is a spline where each piece is a third-degree polynomial specified in Hermite
form: i.e, by its values (potentials) and first derivatives (minus force) at the endpoints of the
corresponding domain interval. Cubic Hermite splines are typically used for interpolation of
numeric data specified at given argument values x1, x2, ..., xn, to obtain a smooth continuous
function. The data should consist of the desired function value and derivative at each xk. The
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Hermite formula is applied to each interval (xk, xk+1), separately. The resulting spline will be
continuous and will have a continuous first derivative. On the arbitrary interval of (xk, xk+1),
given a starting point pk at x = xk and an ending point pk+1 at x = xk+1 with starting tangent
mk at x = xk and ending tangent mk+1 at x = xk+1, one can find the unknown parameters
of the target third-degree polynomial of ϕ(x) = ax3 + bx2 + cx+ d by implementing boundary
conditions for the corresponding interval. The following function for interpolation between two
points xk and xk+1 is derived,

ϕ(t) = h00(t)pk + h10(t)(xk+1 − xk)mk + h01(t)pk+1 + h11(t)(xk+1 − xk)mk+1 (A.10)

in which t = x−xk
xk+1−xk

, h00 = 2t3− 3t2+1, h10 = t3− 2t2+ t, h01 = −2t3+3t2, and h11 = t3− t2.

Using the latter equation, one can compute the interpolated value for external potential (and
consequently external force) by providing desired coefficients at the specific nodes.

The following function will calculate the desired potential coefficients for performing AdResS
simulation on the HALMD package.

Listing A.1: External potential for thermodynamic force calculator

def compute_coefficients(nodes, T_dictionary, T_left, T_right, N, N_left, N_right,

dx_p, AT, Delta, TR, step, potential_dict_directory):

potential_dict =

np.genfromtxt(potential_dict_directory).reshape((len(T_dictionary), len(N),

int(np.prod(nodes[:])*8)))[:, :,0:int(nodes[0])*8:8]

p_th_new = np.zeros(int(nodes[0]))

for i in range(int(nodes[0]/2)):

p_th_new[i] = interp2d(T_dictionary, N, potential_dict[:, :, i].transpose(),

kind=’linear’, copy=True, bounds_error=False, fill_value=None)(T_left,

N_left)

p_th_new[-1-i] = interp2d(T_dictionary, N, potential_dict[:, :,

-i-1].transpose(), kind=’linear’, copy=True, bounds_error=False,

fill_value=None)(T_right, N_right)

f_th_new = np.gradient(p_th_new, dx_p)

temp = 0.5 * (f_th_new[0] + f_th_new[-1])

f_th_new[0] = f_th_new[-1] = temp

p_th_new[int((TR+Delta)/dx_p):int((TR+Delta+AT)/dx_p)+1] = 0

f_th_new[int((TR+Delta)/dx_p):int((TR+Delta+AT)/dx_p)+1] = 0

coefficients = np.zeros((int(nodes[0]), 1, 8))

coefficients[:, 0, 0] = p_th_new

coefficients[:, 0, 1] = -f_th_new

coefficients = coefficients.flatten()

coefficients_ = coefficients

for i in range(int(np.prod(nodes[1:])) - 1):

coefficients_ = np.vstack((coefficients_, coefficients))

coefficients = coefficients_.flatten()

return coefficients, p_th_new
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A.1.3 Number density calculation

According to the discussion in the two previous sections, the coefficients of the external poten-
tial/force function could be computed by calculating density at each step and comparing it with
the target one as described in Eq.A.8 and Eq.A.9. However, computing a continuous density
function in a discrete particle-based environment is always challenging as one would encounter
ups and downs and even zero values along the simulation domain due to its discrete nature which
couldn’t be acceptable. To avoid this behaviour, a common strategy is to provide density modes
by computing complex Fourier modes of the particle density field in MD simulation according
to Eq.A.11 and then doing the calculations on density modes and returning them to real space
by taking a Fourier back transformation.

ρ(
−→
k ) =

N∑
n=1

exp(i
−→
k .−→rn) (A.11)

This scheme has been used in AdResS simulations in the HALMD package for the calculation of
the density profile. The following Python script calculates the number density from the density
modes recorded during MD simulations.

Listing A.2: number density calculator from density modes

def compute_density_profile(wavevector_list, density_modes_list, box_edges, width,

user_axis):

one_norm = np.linalg.norm(wavevector_list, axis=1, ord=1)

wavevector_axis_component = wavevector_list[:, user_axis]

idx, = np.where(one_norm == np.abs(wavevector_axis_component))

wavevector_list_of_interest = wavevector_axis_component[idx]

density_modes_list_of_interest = density_modes_list[idx]

# generating and applying 1D-Gaussian filter

gaussian = np.exp(-0.5 * width**2 * pow(wavevector_list_of_interest, 2))

density_modes_smoothed = density_modes_list_of_interest * gaussian

# In general (arbitrary dimensions) the density modes are a scalar field on the

space of the wavevectors k. The wavevectors forming a cubic grid around 0

(with halmd.observables.utility.wavevector(...,dense=true)) carry the

information of the position in the k-space of each density mode. This

information can be used to restructure the list of density modes to a density

mode matrix. Hereby transforming the wavevectors by some factor to the set of

smallest integers w, produces the index to locate the density modes in a

matrix.

w = np.array(np.round(wavevector_list_of_interest * box_edges[user_axis] / (2 *

np.pi)), dtype=int)

# initialising and filling the 1D-density_modes_matrix

assert np.min(w) == -np.max(w), "Density-modes need to be on a symmetric grid

around 0, i.e. k_max = -k_min"

length = 2*np.max(w)+1

density_modes_matrix = np.zeros(length, dtype=complex)

density_modes_matrix[w] = density_modes_smoothed

# Fourier back-transform

density_unnormalized = np.fft.fftshift(np.fft.ifft(density_modes_matrix)).real

tmp_err_edtr = 0.5*(density_unnormalized[0]+density_unnormalized[-1])

density_unnormalized[-1] = tmp_err_edtr
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density_unnormalized[0] = tmp_err_edtr

# normalisation

# even though a one dimensional fft was done, the density_mode_values on the

desired coordinate-axis represent the density averaged over the other

coordinate axes. Therefore after the inverse Fourier transform, they

correspond to an integral of the density field in the other coordinate axes by

one number, but still refer to the full-dimensional box.

volume = np.prod(box_edges)

density = density_unnormalized * len(density_unnormalized) / volume

# Generate the corresponding positions in real space, from the wavevectors

position = box_edges[user_axis] / np.double(length) * np.linspace(np.min(w),

np.max(w), length)

return position, density

A.2 AdResS simulation code

Performing AdResS simulation in the HALMD package consists of two steps including a Python
code and a Lua script. The Python code will do the calculation of thermodynamic force and
the iterative procedure until reaching the flat condition. On the other hand, the Lua script will
run the MD simulation on the HALMD package by calling the related modules. The necessary
functions for the iterative procedure are presented in previous sections and the Lua script is
presented in the following.

Listing A.3: Lua script for running MD/AdResS simulation on HALMD

-- grab modules

local log = halmd.io.log

local mdsim = halmd.mdsim

local numeric = halmd.numeric

local observables = halmd.observables

local writers = halmd.io.writers

local readers = halmd.io.readers

local utility = halmd.observables.utility

local random = halmd.random

function main(args)

--parameters

local timestep = args.time_step

local temperature_left = args.temperature_left

local temperature_right = args.temperature_right

local steps = math.ceil(args.time / timestep)

local equibliration_steps = args.eq_to_pr * steps

local nknots = {args.nknots, 2, 2}

local DL_size = args.Delta_size

local AT_size = args.AT_size

local TR_size = args.TR_size

local n_slice = args.n_slice

--open H5MD file for reading

local file_read = readers.h5md({path = args.input})

local reader, sample = observables.phase_space.reader({file = file_read, location

= {"particles", "all"}, fields = {"position", "velocity", "species", "mass"}})

-- read phase space sample at last step in file
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reader:read_at_step(-1)

-- determine system parameters from phase space sample

local nparticles = assert(sample.nparticle)

local nspecies = assert(sample.nspecies)

local dimension = assert(sample.dimension)

-- read edge vectors of simulation domain from file

local edges = mdsim.box.reader({file = file_read, location = {"particles", "all"}})

-- create simulation domain with periodic boundary conditions

local box = mdsim.box({edges = edges})

--setup

local particle = mdsim.particle({dimension = dimension, particles = nparticles,

species = nspecies})

--all_group

local all_group = mdsim.particle_groups.all({particle = particle, label = "all"})

-- create group from cuboid region for TR in AT and vice versa

local DL_AT_box = mdsim.geometries.cuboid({lowest_corner = {-edges[1][1]/2 +

TR_size, -edges[2][2]/2, -edges[3][3]/2}, length = {AT_size + 2*DL_size,

edges[2][2] , edges[3][3]}})

local invader_TR = mdsim.particle_groups.region_species({species = 1, particle =

particle, selection = "included", geometry = DL_AT_box, box = box, label =

"invader_TR"})

local invader_AT = mdsim.particle_groups.region_species({species = 0, particle =

particle, selection = "excluded", geometry = DL_AT_box, box = box, label =

"invader_AT"})

local TR_group = mdsim.particle_groups.region({particle = particle, selection =

"excluded", geometry = DL_AT_box, box = box, label = "TR"})

local AT_box = mdsim.geometries.cuboid({lowest_corner = {-edges[1][1]/2 + TR_size

+ DL_size, -edges[2][2]/2, -edges[3][3]/2}, length = {AT_size, edges[2][2] ,

edges[3][3]}})

local AT_group = mdsim.particle_groups.region({particle = particle, selection =

"included", geometry = AT_box, box = box, label = "AT"})

local Non_AT_group = mdsim.particle_groups.region({particle = particle, selection

= "excluded", geometry = AT_box, box = box, label = "Non_AT"})

local l_Non_AT_box = mdsim.geometries.cuboid({lowest_corner =

{-edges[1][1]/2-0.001, -edges[2][2]/2, -edges[3][3]/2}, length = {TR_size +

DL_size + 0.001, edges[2][2] , edges[3][3]}})

local l_Non_AT_group = mdsim.particle_groups.region({particle = particle,

selection = "included", geometry = l_Non_AT_box, box = box, label =

"l_Non_AT"})

local r_Non_AT_box = mdsim.geometries.cuboid({lowest_corner = {-edges[1][1]/2 +

TR_size + DL_size + AT_size, -edges[2][2]/2, -edges[3][3]/2}, length =

{DL_size + TR_size + 0.001, edges[2][2] , edges[3][3]}})

local r_Non_AT_group = mdsim.particle_groups.region({particle = particle,

selection = "included", geometry = r_Non_AT_box, box = box, label =

"r_Non_AT"})

local slice_box = {}

local slice_group = {}

for i = 1,n_slice,1

do

slice_box[i] = mdsim.geometries.cuboid({lowest_corner = {-edges[1][1]/2 +

88



A.2. ADRESS SIMULATION CODE

TR_size + DL_size + (i-1) * AT_size/n_slice, -edges[2][2]/2,

-edges[3][3]/2}, length = {AT_size/n_slice, edges[2][2] , edges[3][3]}})

slice_group[i] = mdsim.particle_groups.region({particle = particle, selection =

"included", geometry = slice_box[i], box = box, label =

"slice"..tostring(i)})

end

local capping = mdsim.forces.cape_force({group = Non_AT_group , threshold = 500})

local TR_change = mdsim.change_property({group = invader_TR , new_value= 0})

local AT_change = mdsim.change_property({group = invader_AT , new_value= 1})

-- truncated Lennard-Jones potential

local potential = mdsim.potentials.pair.lennard_jones({species = 2,

epsilon = {

{1, 0} -- onAT_fromAT, onAT_fromTR

, {0, 0} -- onTR_fromAT, onTR_fromTR

}

, sigma = {

{1, 1} -- onAT_fromAT, onAT_fromTR

, {1, 1} -- onTR_fromAT, onTR_fromTR

}

})

-- smoothing at potential cutoff

potential = potential:truncate({"smooth_r4",

cutoff = {

{2.5, 2.5}

, {2.5, 2.5}

}

, h = 0.005

})

-- compute forces

local force = mdsim.forces.pair({box = box, particle = particle, potential =

potential})

--external force/potential coefficients

local interpolation = mdsim.forces.interpolation.cubic_hermite({box = box, nknots

= nknots, precision = "single"})

local virial_interpolation = mdsim.forces.interpolation.linear({box = box, nknots

= nknots, precision = "single"})

local tabulated_forces = mdsim.forces.tabulated_external({particle = particle, box

= box, interpolation = interpolation, virial_interpolation =

virial_interpolation})

tabulated_forces:read_coefficients({file = file_read, location = {"parameters",

"halmd"}})

log.info(("Closing H5MD file %s"):format(file_read.path))

file_read:close()

--integrator

local l_Non_AT_integrator = mdsim.integrators.verlet_nvt_andersen({group =

l_Non_AT_group, box = box, timestep = timestep, temperature = temperature_left,

rate = 15})

local r_Non_AT_integrator = mdsim.integrators.verlet_nvt_andersen({group =

r_Non_AT_group, box = box, timestep = timestep, temperature =

temperature_right, rate = 15})

--local Non_AT_integrator = mdsim.integrators.verlet_nvt_andersen({group =
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Non_AT_group, box = box, timestep = timestep, temperature = temperature, rate

= 15})

local AT_integrator = mdsim.integrators.verlet({group = AT_group, box = box,

timestep = timestep})

-- sample phase space

local phase_space = observables.phase_space({box = box, group = all_group}) --

FIXME

-- set particle positions, velocities, species

phase_space:set(sample)

-- H5MD file writer

local file_write = writers.h5md({path = args.output, mode = "truncate", overwrite

= true}) -- FIXME

--equilibration run

-- sample current state

observables.sampler:sample()

-- run half of the simulation

observables.sampler:run(equibliration_steps)

--writer

-- write trajectory of particle groups to H5MD file

--local interval = 500000 or steps

phase_space:writer({file = file_write, fields = {"position", "velocity",

"species", "mass"}, every = 1000}) -- FIXME

--sample macroscopic state variables for all particles.

if args.sampling.state_vars > 0 then

observables.thermodynamics({box = box, group = all_group})

:writer({file = file_write, every = args.sampling.state_vars})

for i = 1,n_slice,1

do

observables.thermodynamics({box = box, group = slice_group[i]})

:writer({file = file_write, fields = {

"potential_energy", "pressure", "temperature" -- fluctuating quantities

, "internal_energy", "center_of_mass_velocity" , "heat_flux" -- conserved

quantities

}, every = args.sampling.state_vars})

end

observables.thermodynamics({box = box, group = l_Non_AT_group})

:writer({file = file_write, fields = {

"potential_energy", "pressure", "temperature" -- fluctuating quantities

, "internal_energy", "center_of_mass_velocity" , "heat_flux" -- conserved

quantities

}, every = args.sampling.state_vars})

observables.thermodynamics({box = box, group = r_Non_AT_group})

:writer({file = file_write, fields = {

"potential_energy", "pressure", "temperature" -- fluctuating quantities

, "internal_energy", "center_of_mass_velocity" , "heat_flux" -- conserved

quantities

}, every = args.sampling.state_vars})

end
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--write density modes to H5MD file

local kmax = (nknots[1] + 1) / 2 * (2 * math.pi / box.length[1])

local wavevector = observables.utility.wavevector({box = box, wavenumber = {kmax},

filter = {1, 0, 0}, dense = true})

local density_mode = observables.density_mode({group = all_group, wavevector =

wavevector})

density_mode:writer({file = file_write, every = 100})

--average run

-- run rest of the simulation

observables.sampler:run(steps - equibliration_steps)

-- log profiler results

halmd.utility.profiler:profile()

end

-- Define command line parser.

function define_args(parser)

parser:add_argument("output,o", {type = "string", action =

parser.action.substitute_date_time,

default = "result_out_%Y%m%d_%H%M%S", help = "prefix of output files"})

parser:add_argument("overwrite", {type = "boolean", default = false, help =

"overwrite output file"})

parser:add_argument("input", {type = "string", required = true, action =

function(args, key, value)

readers.h5md.check(value)

args[key] = value

end, help = "H5MD input file"})

parser:add_argument("time", {type = "number", default = 100, help = "integration

time"})

parser:add_argument("time_step", {type = "number", default = 0.002, help =

"integration time step"})

parser:add_argument("eq_to_pr", {type = "number", default = 0.3, help = "ratio of

equilibrium to production run"})

parser:add_argument("temperature_left", {type = "number", default = 1.5, help =

"temperature of heat bath at the left side"})

parser:add_argument("temperature_right", {type = "number", default = 1.5, help =

"temperature of heat bath at the right side"})

parser:add_argument("AT_size", {type = "number", default = 20, help = "size of the

atomistic region"})

parser:add_argument("Delta_size", {type = "number", default = 2.5, help = "size of

the transition region"})

parser:add_argument("TR_size", {type = "number", default = 15, help = "size of the

reservoir (tracer) region"})

parser:add_argument("nknots", {type = "number", help = "number of knots"})

parser:add_argument("n_slice", {type = "number", default=10, help = "number of

slices for recording temperature"})

parser:add_argument("smoothing", {type = "number", default = 0.005, help = "cutoff

smoothing parameter"})

parser:add_argument("cutoff", {type = "float32", default = math.pow(2, 1 / 6),

help = "potential cutoff radius"})

parser:add_argument("force_threshold", {type = "float32", default = 50, help =

"force_threshold"})

local sampling = parser:add_argument_group("sampling", {help = "sampling intervals
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(0: disabled)"})

sampling:add_argument("trajectory", {type = "integer", help = "for trajectory"})

sampling:add_argument("state-vars", {type = "integer", default = 1000, help = "for

state variables"})

sampling:add_argument("structure", {type = "integer", default = 1000, help = "for

density modes, static structure factor"})

sampling:add_argument("correlation", {type = "integer", default = 100, help = "for

correlation functions"})

sampling:add_argument("average", {type = "integer", help = "output averages of

given number of samples"})

local wavevector = parser:add_argument_group("wavevector", {help = "wavevector

shells in reciprocal space"})

observables.utility.wavevector.add_options(wavevector, {tolerance = 0.01,

max_count = 7})

observables.utility.semilog_grid.add_options(wavevector, {maximum = 15, decimation

= 0})

end
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Appendix B

GROMACS package

For running AdResS on the GROMACS package, it is required to implement some changes in
the parameter, topology, and configuration files. These include introducing AdResS parameters
in the ”.mdp” file and defining imaginary particles for each molecule in the ”.conf” and ”.top”
files. In addition, to implement the iterative procedure for running AdResS and calculating
thermodynamic force, the following scripts have been used.

Listing B.1: script for starting iterative procedure of AdResS

i=$1

j=$2

case $3 in

[0]*)

rm F_th_* tabletf* SOL.dens.s* dens_mix_* \#* SOL.dens_s*.xvg

./Sym_manual_tf_calc_hlrn.sh 0 dens.SOL.out SOL.dens.out s0 2

;;

[1]*)

rm F_th_* tabletf* SOL.dens.s* dens_mix_* \#* SOL.dens_s*.xvg

gmx grompp -f adress.mdp -c adress.gro -p adress.top -n index.ndx

./Sym_manual_tf_calc_hlrn.sh 0 dens.SOL.out SOL.dens.out s0 2

for z in ‘seq $i $j‘; do

./Sym_manual_tf_calc_hlrn.sh 3 dens.SOL.out SOL.dens.out s$z 2

done

;;

[2]*)

for z in ‘seq $i $j‘; do

./Sym_manual_tf_calc_hlrn.sh 3 dens.SOL.out SOL.dens.out s$z 2

done

;;

esac

This script run the following script taking into account whether a simulation is a continua-
tion of the previous simulation or is a new simulation.

Listing B.2: script for performing the AdResS simulation in an iterative manner until reaching
equilibrium

#!/bin/bash

j=$1
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l=$2

k=$3

m=$4

n=$5

rmin=7.5 # where the delta region begins with respect to the center of the box

(where we would like Fth to begin)

rmax=60 # where the Fth will end with respect to center of box

rbox=120 # length of box in x direction

rref=60 # reference point (center of box) as measure in the positive x direction

lc=401 # number of bins for density calculation

rstep=$(echo $rbox/$lc | bc -l) # dx for density calc and Fth

r_cut=$(echo $rmin| bc -l)

rm_c=$(echo $rmax | bc -l)

echo $r_cut, $rm_c

prep_sys=$j

case $prep_sys in

[0]*)

if [ ! -f F_th_step0 ]; then

seq -f%g 0.0 $rstep $rbox | sed ’s/,/./’ | awk ’{print $1, "0.0", "0.0"}’>

F_th_step0

fi

cp F_th_step0 tabletf_WCG.xvg

echo "Beginning preliminary md simulation without thermodynamic force..."

sleep 2

gmx mdrun -v

;;

[1]*)

if [ -f tabletf_CAT.xvg ]; then

awk ’BEGIN{OFS="\t"}(NR>9){print $1, $2, $3}’ tabletf_CAT.xvg > F_th_step0

fi

;;

[2]*)

if [ -f tabletf_ANN.xvg ]; then

awk ’BEGIN{OFS="\t"}(NR>9){print $1, $2, $3}’ tabletf_ANN.xvg > F_th_step0

fi

;;

[3]*)

if [ -f tabletf_WCG.xvg ]; then

awk ’BEGIN{OFS="\t"}(NR>9){print $1, $2, $3}’ tabletf_WCG.xvg > F_th_step0

fi

;;

esac

rn1=$(echo $rn+$rstep | bc -l)

echo $rn $rn1

dens_sys=$n

case $dens_sys in

[0]*)

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --trj
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../7000_mmin/traj_comp.xtc --top ../7000_mmin/topol.tpr --out test.dens.comp

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --trj

../7000_mmin/traj_comp.xtc --top ../7000_mmin/topol.tpr --molname Cl --out

Cl.dens.comp

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --trj

../7000_mmin/traj_comp.xtc --top ../7000_mmin/topol.tpr --molname MIL --out

MIL.dens.comp

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --trj traj_comp.xtc --top

topol.tpr --out test.dens.out

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --cg "MIL.cg.xml;cl.cg.xml"

--trj traj_comp.xtc --top topol.tpr --molname Cl --out Cl.dens.out

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --cg "MIL.cg.xml;cl.cg.xml"

--trj traj_comp.xtc --top topol.tpr --molname MIL --out MIL.dens.out

;;

[1]*)

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --trj traj_comp.xtc --top

topol.tpr --out test.dens.out

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --cg "MIL.cg.xml;cl.cg.xml"

--trj traj_comp.xtc --top topol.tpr --molname Cl --out Cl.dens.out

csg_density --axis r --rmax 9.6 --ref [5.5,5.5,5.5] --cg "MIL.cg.xml;cl.cg.xml"

--trj traj_comp.xtc --top topol.tpr --molname MIL --out MIL.dens.out

;;

[2]*)

echo "Calculating density..."

sleep 2

echo "2" > t_c; gmx density -d X -dens number -sl $lc -f traj_comp.xtc -o

SOL.dens.xvg < t_c

echo "Printing SOL.dens.out..."

sleep 2

awk ’BEGIN{OFS="\t"}(NR>24){print $1, $2}’ SOL.dens.xvg > $k

;;

esac

# delete last line of density tables

# this avoids problems when calculating Fth

# to the end of the box

sed -i ’$d’ SOL.dens.out

# folding and symmetrizing density for smoothing:

awk ’{d=$1-’$rref’; print ((d>0)?d:-d), $2}’ $k > calc_dens_t

# duplicate the center line (0) so that there is again an even number

# of lines in the density table

sed -i ’s/0 .*/&\n&/’ calc_dens_t

rm x1 x2 xaa xab ref_dens calc_dens

# split the symmetrized density and average

split -l $(( ($lc-1)/2 )) calc_dens_t

awk ’{printf "%10f %10f\n", $1, $2}’ xaa | sort -g > x1

awk ’{printf "%10f %10f\n", $1, $2}’ xab | sort -g > x2

paste x1 x2 | awk ’{print $1,($2+$4)/2.0}’ > calc_dens

# print averaged dens profile in region of Fth calculation only
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awk ’{if(($1>=(’$r_cut’)) && ($1<=(’$rm_c’))) print $1,$2}’ calc_dens > dens_mix_hy

# interpolate between Fth region points

# and further take the derivative of this interpolated curve.

# this gives us our contribution to the Fth for this iteration

echo "Beginning interpolation..."

sleep 2

./smooth_dens.sh

cp dens_smooth d_s

cp pot_smooth p_s

echo "#","manually gen. Thermodyn. Force approx." > $m.xvg

echo "#","Parameter:">> $m.xvg

echo "#","start hy-region:", $rmin >> $m.xvg

echo "#","end of hy-region:",$rmax >> $m.xvg

echo "#","start tf: from xsplit" >> $m.xvg

echo "#","start hy-region:", $rmin >> $m.xvg

echo "#","end of hy-region:",$rmax >> $m.xvg

echo "#" >> $m.xvg

echo "#" >> $m.xvg

fmax=$(head -n 1 d_s | awk ’{print $2}’)

fmin=$(tail -n 1 d_s | awk ’{print $2}’)

pmax=$(head -n 1 p_s | awk ’{print $2}’)

pmin=$(tail -n 1 p_s | awk ’{print $2}’)

r_hy_1_temp=$(head -n 1 d_s | awk ’{print $1-’$rstep’}’)

r_hy_2=$(tail -n 1 d_s | awk ’{print $1+’$rstep’}’)

r_hy_1=$(echo $r_hy_1_temp+$rstep | bc -l)

rbox_new=$(echo $rbox+$rstep | bc -l)

seq -f%g 0.0 $rstep $r_hy_1 | sed ’s/,/./’ | awk ’{print $1, 0.0}’ > d0

awk ’{print $1, $2}’ d_s > d1

seq -f%g $r_hy_2 $rstep $rbox_new | sed ’s/,/./’ | awk ’{print $1, 0.0}’ > d2

seq -f%g 0.0 $rstep $r_hy_1 | sed ’s/,/./’ | awk ’{print $1, ’$pmax’}’ > p0

awk ’{print $1, $2}’ p_s > p1

seq -f%g $r_hy_2 $rstep $rbox_new | sed ’s/,/./’ | awk ’{print $1, ’$pmin’}’ > p2

cat d0 d1 d2 > d_m

cat p0 p1 p2 > p_m

paste p_m d_m | awk ’{print $1,$2,$4}’ > dens_mix

paste F_th_step0 dens_mix | awk ’BEGIN{OFS="\t"}{printf("%e %e

%e\n",$1,($2+$5),($3-$6)) }’ >> $m.xvg

cp $m.xvg tabletf_WCG_$m.xvg

cp $m.xvg tabletf_WCG.xvg

gmx mdrun -v

echo "Printing SOL.dens_s?.xvg..."

sleep 2

echo "2" > t_c; gmx density -d X -dens number -f traj_comp.xtc -o SOL.dens_$m.xvg <

t_c

awk ’{ print $1, $2/2 }’ SOL.dens_$m.xvg > temp

mv temp SOL.dens_$m.xvg

# CLEAN UP

rm p? d? x? x?? \#*

rm SOL.dpot.*

rm p_m d_m

rm d_s d_s_t
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rm t_c

rm s?.xvg s??.xvg

rm ref_dens

rm ref_dens_t calc_dens*

rm s.d.o

rm p_s

rm ref_t

rm calc_t

rm dens.ref

The following script calculates the thermodynamic force while performing the iterative pro-
cedure in AdResS simulation.

Listing B.3: script for calculating thermodynamic force

#!/usr/bin/env python

import sys

from NumPy import *

from scipy.signal import savgol_filter

from scipy import integrate

from scipy import interpolate

import matplotlib.pyplot as plt

f = file(’dens_mix_hy’, ’r’)

tgt = loadtxt(f, usecols=(0,1))

r = tgt[:,0]

dr = tgt[:,1]

dtr = tgt[:,1]

T = 180

kbT = 0.00831451*T

prefac = 1

tck = interpolate.splrep(r, dr, s=0)

dr_s = interpolate.splev(r, tck, der=0)

dr_d = interpolate.splev(r, tck, der=1)

dr_p = dr_s*kbT*prefac

force_r = dr_d*kbT*prefac

SPL = column_stack((r, dr_s))

savetxt(’dens_spline’, SPL)

DAT = column_stack((r, force_r))

savetxt(’dens_smooth’, DAT)

POT = column_stack((r, dr_p))

savetxt(’pot_smooth’, POT)

plt.plot(r, dr)

plt.plot(r, dr_s)

plt.plot(r,dr_p)

plt.plot(r,force_r)
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Appendix C

Fluctuating Hydrodynamics (FHD)
code

The code of fluctuating hydrodynamics solver is designed in 3 integration steps as described
in the RK3 model in the main text. In the following, the code for the first integration step is
presented. The two other steps are similar to the following case but with different coefficients
as explained in the main text.

Listing C.1: first integration step

def first_integral(rho, u, T, nx, boundary_type, fluctuations, kB, m, dt, Vc, dx,

advection, diffusion, energy_equation):

# arrays at first intermediate step

rho_i = np.zeros_like(rho); u_i = np.zeros_like(u); T_i = np.zeros_like(T)

#calculating edge values + applying boundary conditions to them

rho_e, u_e, T_e, P_e, v_e, k_e, s_e, q_e = edge(rho, u, T, nx, boundary_type,

fluctuations, kB, m, dt, Vc)

for j in range(1, nx-1):

rho_i[j] = rho[j] + (dt/dx) * (-advection * (rho_e[j+1]*u_e[j+1] -

rho_e[j]*u_e[j]) )

u_i[j] = (rho[j]*u[j] + (dt/dx) * (-advection * ((rho_e[j+1]*u_e[j+1]**2 +

P_e[j+1]) - (rho_e[j]*u_e[j]**2 + P_e[j])) + diffusion *

4.0/3.0*((v_e[j+1]*(u[j+1]-u[j])/dx) - (v_e[j]*(u[j]-u[j-1])/dx)) +

(s_e[j+1]-s_e[j])) ) / rho_i[j]

T_i[j] = (functions.E(rho[j], u[j], T[j]) + (dt/dx) * (-advection *

((functions.E(rho_e[j+1], u_e[j+1], T_e[j+1])+P_e[j+1])*u_e[j+1] -

(functions.E(rho_e[j], u_e[j], T_e[j])+P_e[j])*u_e[j]) + diffusion *

((4.0/3.0*v_e[j+1]*u_e[j+1]*(u[j+1]-u[j])/dx+k_e[j+1]*(T[j+1]-T[j])/dx) -

(4.0/3.0*v_e[j]*u_e[j]*(u[j]-u[j-1])/dx+k_e[j]*(T[j]-T[j-1])/dx)) +

((q_e[j+1]+u_e[j+1]*s_e[j+1]) - (q_e[j]+u_e[j]*s_e[j])) ) -

1.0/2.0*rho_i[j]*u_i[j]**2)/(functions.cv_calculator(rho_i[j],

T[j])*rho_i[j])

#BOUNDARY CONDITION

rho_i[0], rho_i[nx-1], u_i[0], u_i[nx-1], T_i[0], T_i[nx-1] =

first_integral_boundary(boundary_type, rho, u, T, rho_e, u_e, T_e, P_e, v_e,

k_e, s_e, q_e, nx, dt, dx, advection, diffusion)

return rho_i, u_i, T_i
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In this script, some interpolation functions are called to calculate the fluid’s thermal proper-
ties at each step. In addition, at the beginning of each step, it is required to compute the edge
values to integrate the fluxes for each continuum cell. The following function calculates the edge
values based on the central values of the continuum cells.

Listing C.2: edge value calculator

def edge(rho, u, T, nx, boundary_type, fluctuations, kB, m, dt, Vc):

# interpolation coefficients

alpha = [(math.sqrt(7.0) + 1.0) / 4.0, (math.sqrt(7.0) - 1.0) / 4.0]

mu = 0 # Gaussian distributed random values’ mean

sigma = 1 # Gaussian distributed random values’ variance

if fluctuations==’on’:

fluctuation_coefficient=1.0

elif fluctuations==’off’:

fluctuation_coefficient=0

# arrays at edge of cells

rho_e = np.zeros(nx + 1); u_e = np.zeros(nx + 1); T_e = np.zeros(nx + 1)

P_e = np.zeros(nx + 1); v_e = np.zeros(nx + 1); k_e = np.zeros(nx + 1); s_e =

np.zeros(nx + 1); q_e = np.zeros(nx + 1)

#interplotation to find conservative quantities at j+1/2 and j-1/2 from

cell-centred values

for j in range(2, nx-1):

rho_e[j] = alpha[0] * (rho[j-1] + rho[j]) - alpha[1] * (rho[j-2] + rho[j+1])

u_e[j] = (alpha[0] * (rho[j-1]*u[j-1] + rho[j]*u[j]) - alpha[1] *

(rho[j-2]*u[j-2] + rho[j+1]*u[j+1])) / rho_e[j]

T_e[j] = ((alpha[0] * (functions.E(rho[j-1], u[j-1], T[j-1]) +

functions.E(rho[j], u[j], T[j])) - alpha[1] * (functions.E(rho[j-2],

u[j-2], T[j-2]) + functions.E(rho[j+1], u[j+1], T[j+1]))) -

1.0/2.0*rho_e[j]*u_e[j]**2) / (functions.cv_calculator(rho_e[j],

T[j])*rho_e[j])

#BOUNDARY CONDITION on edge values

rho_e[0], rho_e[1], rho_e[nx], rho_e[nx-1], u_e[0], u_e[1], u_e[nx], u_e[nx-1],

T_e[0], T_e[1], T_e[nx], T_e[nx-1], s_e[0], s_e[1], s_e[nx], s_e[nx-1],

q_e[0], q_e[1], q_e[nx], q_e[nx-1] = edge_boundary(boundary_type,

fluctuation_coefficient, alpha, rho, u, T, nx, kB, dt, Vc, mu, sigma)

#computing flow properties

for j in range(nx+1):

P_e[j] = functions.P_calculator(rho_e[j],T_e[j])

v_e[j] = functions.v_calculator(rho_e[j], T_e[j])

k_e[j] = functions.k_calculator(rho_e[j], T_e[j])

#stochastic terms

for j in range(2, nx-1):

s_e[j] = fluctuation_coefficient *

(1+math.sqrt(3)/3)*math.sqrt(kB/(dt*Vc)*(functions.v_calculator(rho[j-1],

T[j-1])*T[j-1] + functions.v_calculator(rho[j], T[j])*T[j])) * gauss(mu,

sigma) #stochastic stress tensor

q_e[j] = fluctuation_coefficient *

math.sqrt(kB/(dt*Vc)*(functions.k_calculator(rho[j-1], T[j-1])*T[j-1]**2 +

functions.k_calculator(rho[j], T[j])*T[j]**2)) * gauss(mu, sigma) #

stochastic heat flux
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return rho_e, u_e, T_e, P_e, v_e, k_e, s_e, q_e

It is also necessary to apply appropriate boundary conditions, which in our case is a periodic
boundary condition, to the system. As an example, the boundary condition function for the
first integral is presented in the following. The logic for the boundary condition of the two other
integration steps and also the edge values is the same.

Listing C.3: periodic boundary condition for the first integration step

def first_integral_boundary(boundary_type, rho, u, T, rho_e, u_e, T_e, P_e, v_e, k_e,

s_e, q_e, nx, dt, dx, advection, diffusion):

#periodic boundary condition

if (boundary_type==1):

rho_i_0 = rho[0] + (dt/dx) * (-advection * (rho_e[1]*u_e[1] - rho_e[0]*u_e[0]))

rho_i_nx_1 = rho[nx-1] + (dt/dx) * (-advection * (rho_e[nx]*u_e[nx] -

rho_e[nx-1]*u_e[nx-1]) )

u_i_0 = (rho[0]*u[0] + (dt/dx) * (-advection * ((rho_e[1]*u_e[1]**2 + P_e[1])

- (rho_e[0]*u_e[0]**2 + P_e[0])) + diffusion * 4.0/3.0 * ((v_e[1] * (u[1]

- u[0])/dx) - (v_e[0] * (u[0] - u[nx-1])/dx)) + (s_e[1]-s_e[0])) ) /

rho_i_0

u_i_nx_1 = (rho[nx-1]*u[nx-1] + (dt/dx) * (-advection * ((rho_e[nx]*u_e[nx]**2

+ P_e[nx]) - (rho_e[nx-1]*u_e[nx-1]**2 + P_e[nx-1])) + diffusion * 4.0/3.0

* ((v_e[nx] * (u[0] - u[nx-1])/dx) - (v_e[nx-1] * (u[nx-1] - u[nx-2])/dx))

+ (s_e[nx] - s_e[nx-1])) ) / rho_i_nx_1

T_i_0 = (functions.E(rho[0], u[0], T[0]) + (dt/dx) * ( -advection *

((functions.E(rho_e[1], u_e[1], T_e[1]) + P_e[1]) * u_e[1] -

(functions.E(rho_e[0], u_e[0], T_e[0]) + P_e[0]) * u_e[0]) + diffusion *

((4.0/3.0 * v_e[1] * u_e[1] * (u[1] - u[0])/dx + k_e[1] * (T[1] -

T[0])/dx) - (4.0/3.0 * v_e[0] * u_e[0] * (u[0] - u[nx-1])/dx + k_e[0] *

(T[0] - T[nx-1])/dx)) + ((q_e[1] + u_e[1] * s_e[1]) - (q_e[0] + u_e[0] *

s_e[0])) ) - 1.0/2.0*rho_i_0 * u_i_0**2) /

(functions.cv_calculator(rho_i_0, T[0])*rho_i_0)

T_i_nx_1 = (functions.E(rho[nx-1], u[nx-1], T[nx-1]) + (dt/dx) * ( -advection

* ((functions.E(rho_e[nx], u_e[nx], T_e[nx]) + P_e[nx]) * u_e[nx] -

(functions.E(rho_e[nx-1], u_e[nx-1], T_e[nx-1]) + P_e[nx-1]) * u_e[nx-1])

+ diffusion * ((4.0/3.0 * v_e[nx] * u_e[nx] * (u[0] - u[nx-1])/dx +

k_e[nx] * (T[0] - T[nx-1])/dx) - (4.0/3.0 * v_e[nx-1] * u_e[nx-1] *

(u[nx-1] - u[nx-2])/dx + k_e[nx-1] * (T[nx-1] - T[nx-2])/dx)) + ((q_e[nx]

+ u_e[nx] * s_e[nx]) - (q_e[nx-1] + u_e[nx-1] * s_e[nx-1])) ) -

1.0/2.0*rho_i_nx_1*u_i_nx_1**2) / (functions.cv_calculator(rho_i_nx_1,

T[nx-1])*rho_i_nx_1)

return rho_i_0, rho_i_nx_1, u_i_0, u_i_nx_1, T_i_0, T_i_nx_1

100



Appendix D

Zusammenfassung

Die Adaptive Resolution Simulation (AdResS) ist eine Mehrfachauflösungsmethode mit Eigen-
schaften eines offenen Systems zur Modellierung von Systemen auf atomistischer Ebene. Bei
AdResS steht ein hochauflösendes offenes System in Kontakt mit einem Reservoir von Teilchen
und Energie, und das System bildet die Thermodynamik und Physik des vollständigen atom-
istischen Bezugssystems nach. In dieser Arbeit werden die grundlegenden Eigenschaften der
AdResS-Methode untersucht, um ein besseres Verständnis der statistischen Mechanik in einem
offenen System zu ermöglichen.

Zu den wichtigsten Ergebnissen gehört die Äquivalenz zwischen dem theoretisch ermittelten
Großkanonischen Potential und dem numerisch berechneten Druck. Darüber hinaus führte diese
Analyse zu einer einfachen Berechnung des chemischen Potenzials der untersuchten Flüssigkeit
für ein breites Spektrum thermodynamischer Bedingungen. Es wurde gezeigt, dass der Druck-
unterschied, der sich aus der abrupten Änderung der Auflösung ergibt, durch die Energie kom-
pensiert wird, die von der äußeren Kraft (thermodynamische Kraft) in AdResS bereitgestellt
wird.

Als Nächstes wird ein fluktuierender hydrodynamischer (FHD) Solver entwickelt, um die
kleinräumigen Fluktuationen in den Kontinuumssimulationen zu erfassen, indem ein stochastis-
cher Flussterm zur Navier-Stokes-Gleichung der kompressiblen Strömung hinzugefügt wird. An-
schließend wird dieser Kontinuumslöser mit dem zuvor entwickelten AdResS-Simulator durch
eine kleine Schnittstellenregion gekoppelt, indem ein neuartiger Kopplungsalgorithmus entsprech-
end der Nicht-Gleichgewichts AdResS-Simulation eingesetzt wird. Zu diesem Ziel wird ein
Satz von vorberechneten thermodynamischen Kräften vorbereitet und die Informationen auf
der Kontinuumsseite werden durch Interpolation geeigneter thermodynamischer Kräfte auf das
Partikel-Subdomain transferieren. Das AdResS-FHD-Kopplungssystem wurde für verschiedene
Fälle mit unterschiedlichen Bedingungen entwickelt und getestet und zeigte zufriedenstellende
Übereinstimmung mit den Ergebnissen der Referenzkontinuums- und vollständig atomistischen
Simulationen.
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dynamics of open systems: construction of a mean-field particle reservoir. Adv.Th.Sim.,
2:1900014, 2019.

104



BIBLIOGRAPHY

[49] L. Delle Site, C. Krekeler, J. Whittaker, A. Agarwal, R. Klein, and F. Höfling. Molecular
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