
Results

Our final ALU is capable of correctly computing AND, OR, NOT, and ADD operations for 2 bits and

an additional carry bit for the addition operation. The architecture of our circuit is designed with

minimal parallel computation and is mostly serial. This is done to conserve qubits (quantum

bits), which are a more limiting factor than circuit depth when it comes to resources on an

actual quantum computer. The depth of our circuit is 30, indicating that at least 30 serial

gate operations must be done back-to-back for any single qubit.

Operational Structure
The circuit is organized to compute outputs for all four operations and ignore the ones that aren't

implied by the 2-bit opcode. 3 qubits are used for data input, 2 are used for the opcode, and 4 are

used for the output for a total of a 9 qubit ALU.

Fig.1 The full quantum Arithmetic Logic Unit, image created with IBM's Qiskit Virtualization module part of the Qiskit

Python package. Qubits 1-3 are the data input, 4 & 5 are the opcode bits, and 6-9 are for recording the output.

Fig. 2 Histogram showing probabilities for operations. Qubits are read right to left (i.e. the last 3 bits are the input)

Known Complications
Quantum computing is an emerging field which therefore means that quantum technology is also

still in its infancy. Quantum computers produce "noise" which negatively influences the accuracy of

the output. In addition to noise, the number of qubits needed is a limiting factor. Due to our circuit

needing more than 7 qubits, we were only able to run this on a quantum simulator, and not on an

actual quantum computer. This produces an output without noise. There are techniques to mitigate

noise, but this will need to be covered in further research as it is outside the scope of our project.

UR-294 A Quantum Arithmetic-Logic Unit (ALU)

Technology
For development on this project, we setup local

environments using Anaconda to maintain

consistency within our codebase. On our local

machines we also used JupyterLab to help create

and test our code. The circuits were developed with

Python 3.10 and IBM's Qiskit, their quantum

computing package. We also utilized their Quantum

Lab API to run the circuits.

References
Quantum Computing based Implementation of

Full Adder

https://ieeexplore.ieee.org/document/9298394

Qiskit Textbook

https://qiskit.org/textbook/

More extended references can be found at on our

project website at https://ksu-quantum-

capstone.github.io/CS4850-DL1/refs/

Website

Abstract

We show that a quantum version of a

classical Arithmetic Logic Unit (ALU) can be

implemented on a quantum circuit. It would perform the

same functions as a classical ALU, with the possibility

of adding quantum functions in conjunction. To create

the quantum ALU, we utilized IBM’s Qiskit Python

package and JupyterLab. We believe that a quantum

ALU has the potential to be faster than its classical

counterpart and the ability to calculate quantum

specific operations. The simple classical functions

translated to a quantum circuit show a promising future

for the development of a full quantum ALU with

unique quantum operations.

Author(s): Ethan Butler, David Carroll, Bryson Phillip, Ben Ulrich

Advisors(s): Dr. Dan Lo, Lecturer Sharon Perry

Our project website was developed 

with Jekyll and GitHub Pages. More 

information about ourselves and 

the project can be found here: 

https://ksu-quantum-
capstone.github.io/CS4850-DL1/

Version Control
To manage version control we used Git, with its

corresponding JupyterLab extension, and

remotely hosted our code on GitHub. Every time a

commit was made a Git hook was run which

formatted our code using the Python formatter

Black. Each member was responsible for their own

branch, only pushing to a staging branch when a

task was completed. We would then code review

and push our updated final product to our main

branch.

Background
Our work was inspired by Quantum Computing 

based Implementation of Full Adder by Sohel et al. 

They showcased a full adder implemented with 

IBM’s Quantum Composer.

Future Research
Quantum computing has a significant amount of

progress that can be made. There are multiple

things that can expand upon our initial work. Some

examples are adding more classically analogous

operations. This would make it more comparable to

a standard classical ALU. In addition, implementing

quantum operations specifically inside the ALU

would be a novel approach that could possibly

improve the efficiency to complete quantum

computations.

Acknowledgments
Dr. Dan Lo – Acted as the project owner, research

advisor, and gave instrumental guidance for

completing our work.

Lecturer Sharon Perry – Acted as the project

advisor and provided external resources for

learning about quantum computing.

https://ieeexplore.ieee.org/document/9298394
https://qiskit.org/textbook/
https://ksu-quantum-capstone.github.io/CS4850-DL1/refs
https://ksu-quantum-capstone.github.io/CS4850-DL1/

