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ABSTRACT In wireless communication, signal demodulation under non-ideal conditions is one of the
important research topic. In this paper, a novel non-coherent binary phase shift keying demodulator based on
deep neural network, namely DeepDeMod, is proposed. The proposed scheme makes use of neural network
to decode the symbols from the received sampled signal. The proposed scheme is developed to demodulate
signal under fading channel with additive white Gaussian noise along with hardware imperfections, such
as phase and frequency offset. The time varying nature of hardware imperfections and channel poses a
additional challenge in signal demodulation. In order to address this issue, additionally we propose transfer
learning based DeepDeMod scheme. Pilot symbols along with data is transmitted in a packet which is used
to learn the time varying parameters from the pilot reception followed by data demodulation. Results show
that compared with the conventional demodulators and other machine learning based demodulators, our
proposed DeepDeMod provides significantly better performance in term of bit error rate. We also implement
the proposed DeepDeMod on software defined radio and present the experimental results.

INDEX TERMS Binary phase shift keying (BPSK), deep neural network (DNN), demodulation, software-
defined radio (SDR), transfer learning, universal software radio peripheral (USRP).

I. INTRODUCTION

Phase shift keying (PSK) is one of the digital modulation
techniques where the carrier phase changes according to the
message signal. Binary phase shift keying (BPSK) is the basic
PSK scheme that uses two-phase states to transmit digital
information. As PSK schemes are more resilient to noise
and provide better bit error rate (BER) performance among
other modulation schemes, it has found immense applications
in satellite/deep-space communication, navigation, mobile
communications, underwater communications [1], biomed-
ical implant transceivers [2], [3], and so forth. Since BPSK
is the primary modulation scheme, employing it for the pro-
posed work lays the framework for expanding it to other dig-
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ital modulation schemes such as ASK, FSK, QPSK, QAM,
and MSK, among others.

The conventional BPSK receiver uses the coherent detec-
tion technique, where the knowledge of the carrier frequency
and phase must be known to the receiver. Hence, the demodu-
lation performance of the BPSK receiver depends on various
modules, such as filters, phase-locked loop (PLL), prod-
uct modulator, analog-to-digital converter (ADC), oscillators,
phase/frequency detectors, etc., which introduces significant
delay in detection, and its implementation is complex [3],
[4]. With factors like vibrations, acceleration, temperature
fluctuations, aging, instability in discrete components, etc.,
the performance of these modules varies, which causes degra-
dation in the receiver’s overall performance [5], [6].

In this paper, we propose a deep neural network (DNN)
based BPSK demodulator, termed as DeepDeMod, which
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learns a mapping between bit transmitted and received BPSK
modulated signals and detects bit transmitted. A DNN is a
neural network with multiple (more than two) layers between
the input and output layers. It uses mathematical modeling
such as statistical (linear/non-linear regression, discriminant
analysis, etc.) and predictive modeling (classification model,
clustering model, random forest, etc.) to process data and
develop a relation between input and output.

The proposed work selects the type of neural network from
many options, such as DNN, convolutional neural network
(CNN), recurrent neural network (RNN), k-nearest neigh-
bors (KNN), and deep belief network (DBN), among others.
We select the DNN based machine learning framework due
to its ability to satisfactorily classify and predict the data
using supervised learning. On the other hand, CNN is apt
for image-based problems, RNN is apt for the time-series-
based problem, and so on. Also, the complexity of DNN
over other neural networks is low [7], [8]. Further, based on
prior works [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], the performance of other machine learning
(ML) based schemes do not guarantee significant accuracy
improvement. While employing DNN, we start with a basic
1-hidden layer model, then keep increasing to get the desired
performance. We observed that for our problem, five-layer
DNN provides the best accuracy versus complexity in terms
of training and testing accuracy.

Compared to the conventional BPSK demodulator, the
DeepDeMod is more resilient to parameter fluctuations, and
its demodulation function is achieved through learning a big
dataset. Hence, it gives more flexibility and self-adaptability.
Once DNN is trained, it is able to produce a fast and reliable
output even when the received signal is noisy i.e., it has better
anti-noise capability. This is because the DNN learns the
features in the received signal under various imperfections
during the training process.

Since the real-time execution environment constantly
changes, the results begin to deteriorate if we do not update
the trained neural network according to the environment.
To address this problem, we propose an adaptive demodula-
tion algorithm (DeepDeMod-TL) based on transfer learning.
DeepDeMod-TL tracks the variations in the received signal
and updates the weights in the DNN model to maintain the
optimal performance of DeepDeMod.

A. RELATED WORKS

In recent years, many researchers have focused on applying
neural networks (NN) in wireless communications, such as
signal modulation recognition, optimization, demodulation,
etc. [21], [22]. For instance, [23], [24], [25] proposed a
deep learning-based model for modulation recognition. The
authors in [26], [27], and [28] proposed a machine learning
method to optimize performance of wireless communica-
tion system. Nakayama and Imai [9] proposed an amplitude
shift keying demodulator based on a neural network to com-
bine the wideband noise rejection, pulse waveform shap-
ing, and decoding into a single neural network. Multi-layer
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perceptron (MLP) based demodulator was proposed in [10]
and [11]. Moreover, He et al. [10] used multiple MLPs to
construct a demodulator named MaxMLP classifier, which
automatically detected different modulated signals (BPSK,
QPSK, and GMSK) without using complex signal processing
algorithms. Onder et al. [11] proposed a NN-based receiver
to decode multiple phase-shift keying (MPSK) signal using
a three-layer MLP structure. Fan and Wu [12] proposed
a deep belief network based demodulator for BPSK and
QPSK. They evaluated the demodulator’s behavior under a
band-limited Rayleigh fading channel. Furthermore, Wang
et al. [13] proposed a flexible end-to-end wireless commu-
nications prototype using a deep belief network - support
vector machine demodulator and adaptive boosting based
demodulator, which could detect eight different modulation
schemes, namely, BPSK, 4-QAM, 8-QAM, 16-QAM, 32-
QAM, 64-QAM, 128-QAM, and 256-QAM.

Convolutional neural network (CNN) based demodulator
was proposed in [14], [15], and [16]. Mohammad et.al. [14]
demodulated binary frequency shift keying via implement-
ing a deep convolutional neural network. Zhang et al. [15]
proposed a 1-D CNN-based non-coherent BPSK demodu-
lator, which detected the signal’s phase shift and extracted
bit information from the phase message. Their simulation
results showed accurate detection of phase shifts in a BPSK
modulated signal. As an extension, Liu et al. [16] showed
the hardware implementation of 1D-CNN demodulator for
BPSK using FPGA. Leonard et al. [17] demonstrated an
approach to replace a radio receiver’s physical layer functions
with NN. They detected BPSK, QPSK, and 8-PSK modu-
lated signals under various channel conditions along with
frequency and timing correction. Chen et al. [18] proposed
a CNN-based architecture for demodulating the modulated
signals by integrating CNN into the communication system.
Zheng et.al. [19] proposed a new receiver model called Deep-
Receiver. They used a 1-D convolution network architecture
with multiple binary classifiers to obtain data during detec-
tion. Zhang et.al. [20] proposed an intelligent deep neural
network (DNN)-based demodulator with an LSTM unit to
detect the received signals.

This paper presents a unified signal demodulation frame-
work using machine learning (ML). Specifically, we pro-
pose a novel preprocessing followed by a DNN model
to detect bits in the BPSK signal (termed DeepDeMod).
We also propose a novel way to update DNN weights
on the fly (termed DeepDeMod-TL). We implement the
DeepDeMod and DeepDeMod-TL in the radio system using
software-defined radio (SDR). This work is a novel contribu-
tion to this field, and it differs from the existing works in the
following aspects:

« A band pass filter (BPF) is used in the current proposal
to select the cosine component of the message signal
in order to generate the rich features needed for the
proposed DNN to learn/detect from the received signal.
On the other hand, the performance of existing works
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FIGURE 1. Conventional BPSK modulation and demodulation.

is limited because they use the matching filter’s output
which is based on a DC message bits.

« Training data in our model considers all possible signal
variations, and its performance is resilient to the training
data set. In contrast, the other works proposed in the lit-
erature have their performance depending on the trained
data set. For example, [15] uses training with a signal
strength of -2 dB for optimal results.

o The proposed DeepDeMod method for signal demodu-
lation adapts itself to the changes in the signal param-
eters and therefore provides high detection accuracy
over time. The existing works have not discussed
such time-dependent variations in frequency, phase, and
channel parameters over time.

o The proposed method can be easily implemented on
the existing conventional system, and the performance
of DeepDeMod and DeepDeMod-TL show significant
improvement in BER.

From the results, we show that our proposed DeepDeMod
and DeepDeMod-TL achieve BER of the order of 10~* at a
signal strength of —14 dB and —18 dB, respectively. On the
other hand, conventional coherent demodulation achieves this
BER at 8 dB of signal strength.

The remaining part of this paper is organized as follows.
Conventional BPSK detection and its problems are described
in Section II. Section III and IV present the proposed
DeepDeMod and DeepDeMod-TL, respectively. Simulation
results are provided in Section V. Hardware implementation
and results are shown in Section VI. The paper is concluded
in Section VIL.

Il. CONVENTIONAL BPSK DETECTION

In BPSK, binary bits are transmitted by changing the phase
of the carrier signal. Binary bit ‘0’ is represented with a raw
carrier signal, while bit ‘1’ is represented by carrier phase
shifted by m radians. Therefore, within a bit duration 7}
seconds, the BPSK modulated signal with two different phase
states of the carrier signal are represented as,

o cos(2mf.t)
X =
cosufet+m) 0<t<T, for a,="‘1

0<tr<T, for a,=‘0

ey

where f. is the carrier frequency (Hz), ¢ is the instantaneous
time in seconds, T} is the bit period in seconds, a, is binary
message signal such that a, € {0, 1} for the n bit in the
message signal.

Fig. 1 represents a conventional BPSK modulator and
demodulator. As seen from Fig. 1, the BPSK modulator oper-
ates on binary message signal a, and produces a signal x(¢) as
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given in (1). The above equation (1) can also be represented
in terms of non-return-to-zero (NRZ) signal (angz(t)) as
angz (t)cos(2nf,t), where ayrz(t) € {1, —1} with respect
to a,. This signal is transmitted through a wireless fading
channel with additive white Gaussian noise (AWGN).

At the receiver, the received signal is multiplied by a
reference carrier signal and passed through a low pass filter
(LPF). This output is integrated over a bit period (7}) using an
integrator. A threshold detector decides on the transmitted bit
by comparing the integrated signal against a threshold value.
This threshold value is 0 in case of bits being equiprobable.

The perfect knowledge of frequency and phase at the
receiver is required for coherent demodulation. However, in a
practical setting, it is impossible to achieve perfect synchro-
nization of carrier frequency and phase [29], [30]. An analysis
of the effect of phase and frequency offset is shown below. Let
the transmitted signal x(¢) is given as

x(t) = angrz (1) cos(2mfct) ()
This signal is received as r(¢) and is given as
r(t) = h()anrz (t) cos2rft) + n(t) 3)

where h(t) is the channel fading coefficient and n(t) is
AWGN. For demodulation, r(¢) is first passed through a
product modulator, where carrier has time varying frequency
(Af(¢)) and phase (6(t)) offset. The output of the product
modulator is given as

rp(t) = h(t)angz(t) cos(2mfct)
x cos2rr(fe + Af () +6() +1'(1)  (4)

where n'(¢) is processed AWGN by product modulator. Next
the signal passes through a LPF. The output of LPF is given
as

anrz(t)
2

where #'(¢) and n”(¢) are processed fading coefficient and
AWGN by LPF, respectively.

From (5), the LPF output contains time-varying frequency
and phase offset component instead of only the message
signal. These offsets cause bit misdetection in case of
non-coherent detection of BPSK signal. Generally, a phase
lock loop (PLL) is used for carrier synchronization, which
is not very robust to the variation in carrier frequency,
and phase [31]. As PLL uses a voltage-controlled oscilla-
tor (VCO), variations in temperature, supply voltage, and
manufacturing processes affects the stability and operating
performance. In the following, we propose a DNN-based
demodulation scheme that does not require carrier frequency
and phase synchronization at the receiver yet performs better
than the coherent detector.

ri(t) = H(HcosRuAf (Ot +0@) +n"()  (5)

Ill. PROPOSED DeepDeMod

Conventional BPSK coherent demodulators require carrier
synchronization, leading to demodulation error when phase
and frequency offsets exist at the receiver. In this section,
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Detection

we present a novel DNN based demodulator (DeepDeMod)
which directly loads the received modulated sampled signal
into the neural network without carrier synchronization. The
neural network accomplishes bit detection by matching the
features in the input signal.

It is convenient to subdivide the receiver into two parts,
signal digitization and detection. The function of the signal
digitizer is to convert the received analog waveform r(¢) into
a discrete signal vector. The function of the detector is to
decide which of the possible signal waveform was transmitted
based on the observed signal vector. A block diagram of
the proposed DeepDeMod demodulator is shown in Fig. 2.
In Fig. 2, Af(¢) and 6(¢) are frequency and phase offset,
respectively in the local oscillator as observed in a realistic
receiver.

A. SIGNAL DIGITIZATION

The signal digitization part takes received signal (r(t)) as
input and passes it through the product modulator and then
to the band pass filter (BPF). Instead of using a LPF as
in the conventional demodulation, here we use BPF with
center frequency 2f, and bandwidth (BW) equal to the BW
of BPSK signal i.e., 2/Tj. The output of BPF is in the form
of ‘angrz(t) x cos(4mf.t)’. On the other hand, the output
of a LPF in the conventional demodulator is constant i.e.,
angz(t). Output of both the filters also include channel and
noise effects. Since, the output of LPF is a constant message
signal with noise and other effects, the DNN is unable to learn
and map message signal at low signal strength (i.e., SNR),
as noise is dominant over constant signal. However, the output
of BPF has both message and carrier signal component, which
helps the DNN to distinguish the message signal in the form
of carrier phase from noise at low signal strength. It also helps
to learn the distribution of other effects while training. Hence,
BPF component provides features to the proposed DNN to
learn and predict with high accuracy. The sample rate must
be taken into consideration while sampling signals. Here a
sampler or ADC is used with sampling rate K /7 to convert
continuous time signal into a discrete form for detection by
the DNN. This sampling rate is selected to get exactly K
samples over one bit period.

B. SIGNAL DETECTION

DNN is used as a detector, which maps K samples per bit
of received data into one bit. The reshaping block is used
to shape the sampled signal to suitably map to the input of
the DNN. Prior to detection, the DNN is trained with the
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FIGURE 3. Architecture of the proposed DNN detector.

known signals to get the optimal weights for the DNN. This
pre-trained DNN is used to detect the bits transmitted in
the received signal. Further, as discussed later in section IV,
this pre-trained DNN is fine tuned using transfer learning to
improve the detection performance.

1) ARCHITECTURE OF THE PROPOSED DNN DETECTOR

The proposed DNN detector is composed of an input layer,
four hidden layers and an output layer. The DNN detector
takes sampled signal input for a bit duration and detects the
bit transmitted. The total number of samples in one bit period
is K. This implies that the proposed DNN has K inputs. Major
part of learning in DNN is carried out by the hidden layers
which is sandwiched between the input and the output layer.
Four hidden layers are used in this proposed DNN in such a
way that the first hidden layer contains 40 neurons, second
contains 20 neurons, third contains 7 neurons and fourth
contains 5 neurons. The function of the hidden layer is to
assign weights to the inputs and direct them via an activation
function as the output. In summary, the hidden layers conduct
non-linear transformations on the network’s inputs. Hidden
layers are layers of mathematical functions, each of which
is designed to produce an output particular to the desired
outcome. Hidden layers allow a neural network’s function
to be broken down into particular data transformations. Each
hidden layer function is tuned to generate a specific output.
The output layer contains a single neuron. The proposed DNN
detector is shown in Fig. 3. The process of moving data
through the neural network is known as forward propagation,
and this is described as follow.

1) Multiply the input value x; by the corresponding
weights w; for each input, then add up all the multiplied
values. Weights represent the strength of the connec-
tions between neurons and determine how much input
will affect a neuron’s output. Hence, the summation
is equal to the dot product of the input vector and
corresponding weights for the first neuron of the first
hidden layer.

K
u= Zx,-.w,- (6)
i=1

VOLUME 10, 2022



A. Ahmad et al.: DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio

IEEE Access

2) Bias b is added to the sum of multiplied values. Bias,
also known as offset, moves the entire activation func-
tion to the left or right to create the required output
values.

K
2= xiwit+b 7

3) Pass the value of z to a non-linear activation function.
The input to the next layer neurons is given as

K
a=f()_ xiwi+b) ®)

i=1
where, f(.) is the activation function.
In general, the DNN operation can be expressed as

a —f(Za whe + b)) )

where, w}k denotes the weight for the connection from the k'
neuron in the (I — 1) layer to the j” neuron in the I" layer.

There are many possible activation functions for use in a
DNN. From multiple simulations, our observation is that the
Rectified Linear Unit (ReLU) activation function at all hidden
layers give the best result. ReLu activation function is simple
to implement and it is less susceptible to vanishing gradients
that prevent deep models from being trained. Backpropaga-
tion, also referred to as backward error propagation, is the
method for computing the gradient of the loss function with
respect to the weights. As the output is binary, the binary
crossentropy function is used as loss function in the DNN
detector as shown in (10).

Ny

1
Loss = ==} Jvi-log i+ (1= i) -log (1 =3y) (10)
i=1

where ; is the i scalar value in the model output, y; is the
corresponding label value, and N, is the number of scalar val-
ues in the model output (i.e., total number of bits considered).

The binary crossentropy is used for binary classification
task. Based on the binary output, the output layer uses the
sigmoid activation function. Adam optimizer is used to min-
imize the loss function and update the weights. The DNN is
trained for 100 epochs, after which the training loss saturates.
We implement the proposed DNN model over Tensorflow
platform [32]. It is an open-source software to implement
machine learning algorithm utilizing various tools, libraries,
and community resources.

2) TRAINING DATA

To have an efficient DNN detector, we first need to train it
with an appropriate training data set. Supervised learning is
employed where the input and output data sets are gener-
ated via computer simulations and fed to the DNN. Random
message bits are generated, which is modulated and passed
through the wireless fading channel. At the receiver, the
signal is multiplied by the reference carrier signal, passed
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through a BPF, and then sampled by the ADC with a sampling
rate K /T}. These samples with known bit boundaries are used
for training the proposed DNN, where we have assumed that
boundaries of bits are known.

The samples can be expressed as ry(n) (n =
1,2,3,---,N), where N is the total number of samples,
which is an integer multiple of K, such as N = KN, where
Np, is the total number of bits considered. The bits transmitted
are arranged in an array (Labelpyy) for providing labels to
the training data (Trainpyy) as specified below. The input
sampled signal to the DNN for the m"" bit is given as:

rs((m — DK + 1)
rs((m — DK + 2)

IDNN,, = rs((m — l)K + 3) (11)

rs(mK) Kx1
where subscript DNN,, represents m'" bit samples.

For the training data-set of DNN, the received signal expe-
riences multiple effects like noise, fading, hardware imper-
fections (phase and frequency offset at the local oscillator),
etc. We consider a large number of bits (2.5 x 10° bits)
experiencing those effects or combination of those effects
under various channel condition and noise (i.e., SNR). Based
on our model as shown in Fig. 2, output of ADC samples are
in the form of a row vector. From known bit boundaries each
set of oversampled received data is adjusted as shown in (11)
and combined together to form a 2-D array as input of the
DNN named as Trainpyy shown in (12). Label set for training
is named as Labelpyy shown in (13). It contains bits 1’s and
0’s with respect to Trainpyy. This Trainpyy and Labelpyy
is used as primary data set while applying transfer learning
to the DNN. The 2-D train array and its corresponding label
are given as:

(1) rg(K+1) -+ rgN—K+1)
rs(2) ro(K+2) - r(N—K+2)
Trainpyy = . . . : (12)
ro(K) ry(2K) N Jggn,
Labelpyy = [al az -+ an, ]1><N1, (13)

To generate the dataset for simulation, first we generate the
samples as shown in (11) without any noise. Then, we add
noise corresponding to various SNRs to the signal and gen-
erate the samples. Finally we add all the impairments under
various SNR, i.e., phase, and frequency offset and channel
fading. Thus, we concatenate all the data generated and create
a large data set to train the proposed DNN.

Generation of the training dataset for the hardware imple-
mentation is a challenge. For this, first, we collect data via
simulation for a wide range of SNRs and then we collect
the realistic data set using SDR under different environments.
Finally, we merge all the data and create a composite data set
to train the proposed DNN. Based on such data-set the DNN
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FIGURE 4. Output of different stages in DeepDeMod.

TABLE 1. DNN model and training parameters.

Parameter name Parameter Value

Input size K (=10)
Number of hidden layer 4
Number 9f neurons in 40,20.7. 5
each hidden layer

Activation function

in hidden layer Rectified Linear Unit (ReLu)

Learning rate () 0.01
Loss function Binary cross-entropy
Optimizer Adam
Output size 1
Activation function . .
] Sigmoid
in output layer
Batch size 250
Epochs 100

is able to learn the correct mapping between the input and the
desired output.

The DNN model and it’s training parameters are listed in
Table 1. The DNN model is trained using the data set as
specified above. Steps followed for model training is describe
in Algorithm. 1. Once the training is complete, the trained
weights and bias are obtained such that they are able to predict
binary bits under various circumstances.

3) MODEL WORKING

To understand the complete working of the proposed Deep-
DeMod detector shown in Fig. 2, we present a pictorial
representation of the output of every block in Fig. 4.
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output time

Algorithm 1 Training Process of Proposed DNN

Require: rpnn,, for m™ bit input samples. [FpNN;, F'DNN;,»
I'DNN;» - - .,rDNNNb] represent the set of received signal
samples for training as shown in (12). The respective
labels for backpropagation are shown in (13).

Ensure: DNN trained network

1: Initialize the proposed DNN with random weights and
bias.

Select the hyper-parameters as shown in Table. 1.

Load the Training and Label data set.

: while Number of epochs are completed do

for each training vector rpyy,, do
Forward propagation, using Equation (9).
Compute loss, using Equation (10).

Backward propagation.
Update parameters using optimizer (Adam).
end for

: end while

R A A A o

—_ -
—_ o

Let a BPSK signal x(¢) (as shown in Fig. 4 (a)) is transmit-
ted through a noisy fading channel. The signal received at the
receiver is shown in Fig. 4 (b). The received signal is passed
through a product multiplier and a BPF as shown in Fig. 4
(c). This signal is still analog in nature. For processing by the
DNN model, we sample this signal by passing it through an
ADC with sampling rate K/7} as shown in Fig. 4 (d). This
sampled data is reshaped into the DNN input vector as shown
in Fig. 4 (e), which is sent to the DNN for detection. The DNN
detector outputs the binary bit as shown in Fig. 4 (f).
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FIGURE 5. DeepDeMod with and without transfer learning.

In this work, we transmit signal in the form of packets
where basic packet information is known to the receiver. Also
we have assume that boundaries of bits in the packet is known
to the receiver.

IV. ONLINE DeepDeMod USING TRANSFER LEARNING

In practical scenario, the transmitter, receiver and channel
parameters keep changing. This gives rise to a need to re-train
our DNN model with updated parameters for better perfor-
mance. If the DNN model is not updated, the results will
degrade. In order to overcome such a situation, we propose
transfer learning (TL) based DeepDeMod (DeepDeMod-TL)
in this section.

A. TRANSFER LEARNING

As an essential branch of machine learning, transfer learning
aims to use the similarity between data, tasks, or models
to transfer the knowledge learned from the original data set
(model) to the new data set (model). Simply, it defines as an
approach in deep learning where knowledge is transferred
from one model to another. Fig. 5 presents our proposed
DeepDeMod with and without transfer learning method.
In normal DeepDeMod mode, the learning happens only
once. These trained parameters are used to detect the received
signals without considering any changes in the received sig-
nal over time. On the other hand, transfer learning enabled
DeepDeMod (DeepDeMod-TL) considers the changes in the
received signal and updates the DNN weights accordingly so
that the detection performance is better.

Transfer learning is classified into four types: sample-
based learning, feature-based learning, model-based learning,
and relationship-based learning [33], [34]. Also the transfer
learning approach is mainly divided into two classes based
on the similarity of domains, regardless of the availability
of labelled and unlabelled data: Homogeneous transfer learn-
ing and heterogeneous transfer learning [33]. Homogeneous
transfer learning [35] approaches are developed and proposed
for handling the situations where the domains are of the same
feature space. Heterogeneous transfer learning [35] refers
to the knowledge transfer process in the situations where
the domains have different feature spaces. The DNN with
feature-based transfer learning is used in this work in which
the weight matrix is shared from the pre-trained model and is
re-trained to achieve fine-tuning. Feature-based approach is
flexible in adopting different classification strategies accord-
ing to the cases, which motivate us to focus on deriving
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a feature-based transfer learning approach for updating the
signal detector DNN model in real time. It help us to train
the DNN with small amount of available data (i.e., pilot) and
saves the training time of DNN. Also, feature-based approach
is applicable to both homogeneous and heterogeneous prob-
lems, selecting feature-based approach help us in upgrading
the DeepDeMod model, such as using different modulation
scheme (such as QPSK, QAM, ASK, FSK etc) or different
task (such as modulation recognition, encoding/decoding,
system parameter optimization etc ). A similar method can
be applied to other modulation schemes as well.

B. WORKING

In a conventional packet radio, pilot symbols are transmitted
for the receiver to estimate the channel parameters. In transfer
learning we use the same set of pilot symbols to re-train our
DeepDeMod detector for better accuracy. A packet consists
of two parts, namely pilot bits and actual data. At the receiver,
the transmitted pilot bits corresponding to the received pilot
signal is known. This is used to fine tune the weights in our
DNN model. DNN is pre-trained with the primary data set.
When a new packet arrives, the pilot signal is first used to
retrain our DNN for achieving fine tuning. Thereafter, the
detection of actual data bits take place.

DNN re-training may take some time which introduces
delay in detection. To overcome this, we do not re-train the
DNN model with every input of packet. From the pilot signal,
we can estimate the BER using the pre-trained DNN. If the
BER is within allowable threshold (1), we use the same
model for data bit detection. If the BER > A, we re-train
the model using the pilot signal to improve its performance.
A flow graph is shown in Fig. 6, which explains the transfer
learning based updation of DNN. The steps in the flow graph
is described below.

o Step 1: A BPSK modulated packet is received at the
receiver.

o Step 2: The received signal is passed through the product
modulator and the BPF.

o Step 3: The signal is analog at this point. It is sampled
and quantized (using ADC) to get K number of samples
per bit period.

o Step 4: In this step, received signal corresponding to
the pilot symbols are extracted. Pilot, length of pilot
(number of pilot bits), length of data is known at the
receiver.

o Step 5: In this step, sampled signal is reshaped for input
to DNN.

o Step 6: The signal is provided as input to the DNN for
detection. Initially, DNN is loaded with primary weights
[W,]. DNN uses this set of weights [W),] to check BER
of this packet using pilot.

-- If BER < allowable threshold (1), DNN continues
the detection of rest of the data with same weights
[W,].
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TABLE 2. List of parameters and values for simulation.

Parameter Name Parameter Value
Modulation Mode BPSK
Carrier frequency 915 MHz
Time period 0.75 ps
Number of samples 10

per bit period

Sampling frequency 13.33 MHz
SNR range 10 dB to -40 dB

-- If BER > A, the DNN uses primary weight [W,] as
starting point to re-train itself using pilot data. Once
the DNN is re-trained it has a new set of weights
[Wrr], which is learned based on the current signal
condition. Thereafter, this is used for signal detec-
tion. Detection continues with model weights [Wry |
until the BER becomes greater than A (in which case
the model is retrained using the primary weights
[W,] as described earlier). This is to avoid biasing,
over-fitting, correlation and corruption during suc-
cessive trainings.

V. SIMULATION RESULTS

In this section, a series of simulations have been carried out
to verify the BER performance of the proposed DeepDeMod
and DeepDeMod-TL. Matlab is used to generate data for
training and testing purpose where carrier frequency (f.) of
the BPSK modulated signal is set to 915 MHz, number of
samples per bit period (K) ranges from 10-50, and SNR
(y) ranges between 10 dB to -40 dB. Table 2 list the the
parameters and their value used for the simulation.

The training set for the proposed DeepDeMod is gener-
ated via simulation, where various channel conditions, noise,
and transmitter/receiver imperfection such as phase and fre-
quency offset are considered. The number of binary symbols
for each case is considered to be 10,000. Data under different
cases are combined together randomly to form a primary data
set. Primary data set has overall 2.5 x 10° binary symbols to
train the DeepDeMod. Further, the network trained by the pri-
mary data set is used as the starting point for DeepDeMod-TL
to fine tune the model. For testing purpose, 10,000 binary
symbols are considered. Packet transmissions are considered
wherein a packet has 1200 binary symbols which includes
200 pilot symbols and rest is data payload.

Below we present the BER performance of DeepDeMod
and DeepDeMod-TL under various scenarios, which are
given as follows:

o Scenario 1 (AWGN channel): Channel considered is
AWGN. Perfect synchronization between the transmitter
and the receiver oscillators is considered.

o Scenario 2 (Fading channel): The modulated signal is
passed through a multipath fading channel with fading
modelled as Rayleigh distribution. Perfect synchroniza-
tion between the transmitter and the receiver oscillators
is considered.
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o Scenario 3 (Hardware Imperfection): The modulated
signal is passed through a fading channel. There exists
phase and frequency offset between the transmitter and
the receiver depicting the case of hardware imperfec-
tions.

For the above scenarios 1-3 the BER versus SNR curve of
DeepDeMod and DeepDeMod-TL is presented for K equal to
10 and 50. These results are compared with the performance
of the conventional coherent demodulator such as optimum
detector and other machine learning based demodulators.
ML based demodulators include one-dimensional convolu-
tional neural network (1-D CNN) [15], artificial neural net-
work (ANN) based demodulator named as neural network
demodulator (NND) [11], and multiple layper perceptron
(MLP) based classifier named as MaxMLP [10]. All these
ML based demodulator take oversampled received signal as
input to process and detect the respective binary bits. 1-D
CNN [15] demodulates the BPSK modulated received signal
by detecting the phase shift in the signal. It takes M (= 8)
number of samples over one bit period and processes the
received sampled data through 1D-CNN to detect the bits.
NND [11] demodulates the BPSK modulated received signal
using ANN. It take Ny (= 16) number of received signal
samples over one bit period to demodulate. A feed-forward
ANN is trained for multiple possible inputs of M-PSK modu-
lated symbols. Thereafter, by using this ANN, the transmitted
bits is detected by finding the maxima of the ANN outputs.
MaxMLP [10] is comprised of multiple identical MLPs and
each MLP acts as a binary classifier. The MLP is a feed
forward ANN that maps a set of input data onto a set of
appropriate output. It consists of multiple layers of nodes in a
directed graph, with each layer fully connected to the next
one. It takes multiple samples (= 20) over a bit period to
demodulate the signal.

Apart from BER performance of the proposed method,
we also show the performance of DeepDeMod for different
values of K in Section V-D. A discussion on model complex-
ity is presented in Section V-E.

A. DEMODULATION PERFORMANCE UNDER AWGN
CHANNEL

Fig. 7 shows the BER performance of the proposed DeepDe-
Mod, DeepDeMod-TL, conventional coherent demodulator
and ML based demodulators such as, 1-D CNN [15],
NND [11], and MaxMLP [10] under AWGN channel. It is
observed from Fig. 7 that the proposed DeepDeMod and
DeepDeMod-TL achieves better performance compared to
the other methods. This is because, the proposed DeepDe-
Mod performs demodulation by learning and mapping the
over-sampled signal. During the training process, the DNN
learns the signal pattern embedded in noise and develops
anti-noise capability towards detecting message bits under
low SNR. In simple words, the DNN learns the effect of
noise on message signal and successfully maps the relation
of such distorted signal to the desired output. Therefore, the
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FIGURE 6. Flow graph of DNN updation using transfer learning.

performance of the proposed method outperforms the other
methods. We also observe from Fig. 7 that the BER of 1-D
CNN is lower than the conventional coherent demodulator
when the SNR is greater than 4 dB. This is because as 1-D
CNN detects the phase shift of the signal for demodulation,
at higher SNR the phase shift can be easily recognised but
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at low SNR sudden peaks due to noise could be considered
as phase change which explains the behaviour of BER curve
of the 1D-CNN. The performance of NND and MaxMLP is
nearly same as the performance of the conventional coherent
demodulator. Here, the training process and data used by
NND and MaxMLP are based on the output of matched
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TABLE 3. BER comparison of neural network demodulators and
conventional coherent demodulator under AWGN.

SNR| BER
DeepDeMod DeepDeMod-TL Conventional

(dB) K = 10) (K = 10) method 1-D CNN NND MaxMLP|
-17 0.0036 0.00011 0.4208 0.4907 0.4208 0.4208
-18 | 0.0077 0.00019 0.4293 0.4907 0.4293 0.4293
-20 [  0.0273 0.00939 0.4437 0.4907 0.4437 0.4437
22| 0.0624 0.02000 0.4552 0.4907 0.4552 0.4552
-25| 0.1384 0.07059 0.4208 0.4907 0.4683 0.4683

~O-DeepDeMod K = 10
x - % -DeepDeMod K = 50
107 \ Q —+—DeepDeMod-TL K = 10 [
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FIGURE 8. BER performance under Rayleigh fading channel.

Bit Error Rate

filter receiver which makes its performance biased toward
such a receiver. Also, the BER of DeepDeMod-TL is lower
than the DeepDeMod. This is because the DeepDeMod is
trained with the primary dataset which has a variety of sample
points drawn from different parameters. Thus its learning is
more general. On the other hand, DeepDeMod-TL refines the
previously trained DeepDeMod model with the current pilot
transmissions. Thus its performance is better.

The comparison of the proposed DeepDeMod,
DeepDeMod-TL, conventional coherent demodulator, and
other neural network demodulator [10], [11], [15] is shown in
Table 3. The BER performance of the proposed demodulator
provides better BER performance even in low SNR condi-
tions.

B. DEMODULATION PERFORMANCE UNDER FADING
CHANNEL

In this section, the BER performance of the proposed Deep-
DeMod, DeepDeMod-TL along with conventional coherent
demodulator, 1-D CNN [15], NND [11], and MaxMLP [10]
under Rayleigh fading channel is studied and results are
shown in Fig. 8. It can be clearly observed from Fig. 8 that
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the DeepDeMod and DeepDeMod-TL perform better than
the other demodulators under Rayleigh fading channel as
well. In the conventional coherent demodulator, the channel
estimation is a crucial part in the demodulation and it is
estimated using pilot symbols via algorithms like minimum
mean square error (MMSE), least squares (LS), maximum
likelihood estimation (MLE), etc. In practical systems, chan-
nel estimation is not perfect which affects the performance of
the conventional coherent demodulator. On the other hand,
the DeepDeMod and DeepDeMod-TL network is trained
using a wide range of dataset with varied fading and noise
patterns, which helps the network comprehend the nature of
received signals and improve performance. In other words,
the network learns the impact of variation in signal amplitude
and phase on the received signal caused by a noisy fading
channel and updates its parameter accordingly. Hence, the
performance of the proposed DeepDeMod is better than the
existing methods. In a similar way other ML-based demodu-
lators demodulate the signal without any channel estimation
and there performance is close to the conventional coherent
demodulator. This is because, the ML-based demodulators
seems to learn the distribution of faded signal but their predic-
tion is biased towards matched filter receiver. DeepDeMod-
TL, in turn, updates itself with the most recent channel state,
which is why its BER performance is superior to the Deep-
DeMod and other methods.

C. DEMODULATION PERFORMANCE UNDER HARDWARE
IMPERFECTIONS

Synchronization is critical in digital signal demodulation,
and its failure may have catastrophic effects on the system’s
performance. During demodulation, it is generally assumed
that a perfect phase reference is available at the receiver.
Two pairs of ideal identical oscillators at the transmitter and
receiver sides could ensure such synchronization. However,
the signal emitted by a pair of oscillators with the same
nominal frequency start drifting soon from each other due
to various factors, such as, temperature variation, device
non-linearity, aging, power supply ripples, etc [36]. Such
effect can cause phase offset (9(¢)) and frequency offset
(Af(2)) at the local oscillator at the receiver. In this section,
different parameters are considered together to analyse the
performance of the proposed method. We consider a Rayleigh
fading channel under AWGN noise with Tikhonov distributed
phase offset [31], and Uniformly distributed frequency offset
(I—20, 20] ppm).

BER performance under hardware imperfections is com-
puted and the results are shown in Fig. 9. The BER curve of
a DeepDeMod, DeepDeMod-TL, conventional non-coherent
demodulator, 1-D CNN [15], NND [11], and MaxMLP [10]
is shown. There are time varying shifts in the phase of the
received signal due to hardware imperfections. In conven-
tional non-coherent demodulator, these time-varying shifts
increase the probability of misdetection. However, in our
proposed DeepDeMod and DeepDeMod-TL, the DNN has
already learnt these time-varying shifts through the primary
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dataset and therefore it can easily demodulate the received
signal. In 1-D CNN, the BER is lower than the conventional
non-coherent demodulator when SNR of the signal is higher
than 7 dB, afterwards the 1-D CNN’s performance degrades
due to its inability to detect the correct phase shift. The BER
performance of NND and MaxMLP decreases due to the
ambiguity between two closely set of received input samples.
Further, DeepDeMod-TL fine tunes the model parameters to
effectively detect the signal based on the current frequency
and phase offsets.

D. EFFECT OF NUMBER OF OVER-SAMPLES (K)

Number of samples per bit period (K) is an important factor
for the DNN demodulator. For each bit, input to the DNN
has ‘K’ number of samples which are used to detect the bit
and hence its detection accuracy. Fig. 10 shows, the graph
of BER versus K for different SNR values for our proposed
DeepDeMod demodulation.

The result shows that the demodulation BER initially
decreases with an increase in the number of samples then,
it saturates. Beyond this BER again decreases. In general, the
BER decreases with an increase in K. The reason for such
a behaviour is that more number of samples provide DNN
more opportunity to understand the underlying mapping of
input to output, and, in turn, a better performing model. The
performance saturates due to the fact that the increased num-
ber of samples do not provide any additional feature in the
data. Increasing the number of samples results in improved
performance albeit with increase in complexity and memory
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requirements. Therefore, the selection of ‘K’ is a critical
trade-off between performance and complexity.

E. MODEL COMPLEXITY

The proposed algorithm in this work is based on the deep
neural network. The complexity of a deep neural network can
be divided into time complexity and space complexity. The
time complexity includes the number of layers in the network,
training time, testing time, etc. The overall time complexity
is the sum of the time complexity of all layers. The space
complexity includes the total number of parameters and the
characteristic (such as activation function, loss function, etc.
) of each layer.

Table 4 shows the proposed DeepDeMod DNN layout
and its complexity. Our proposed DNN comprises of four
hidden layers and one output layer. The number of neurons for
each layer and their activation function are listed in Table 4.
The time complexity determines the training time and the
prediction time of the model. If the complexity is too high,
the training and prediction of the model will cost a lot of
time, and fast prediction cannot be achieved. In terms of
Big-O notation, the time complexity of back-propagation is
O -m- W - o i) [37], where n is the number of training
samples, m is the number of input samples (m = K), p is the
number of hidden layers each containing # number of neurons
- for simplicity, o is the number of output neurons, and i is the
number of iterations.

The space complexity determines the number of param-
eters in the network model. The more parameters in the
network, the more data required for training, which will easily
lead to model overfitting. The spatial complexity of a fully
connected model is closely related to the size of the input
data. The larger the size of the input data, the larger the
size of the model and hence its complexity. In our proposed
DeepDeMod, the total number of trainable parameters (or
weights) for K = 10 are 1,453 and for K = 50 are 3,053,
which shows that with a increase in the number of input
samples (K), complexity also increases.

The computational complexity in terms of operations is
also shown in Table 4, which includes the number of mul-
tiplication, addition, and floating point operations (FLOPs).
For BPSK, the computational complexity of DeepDeMod is
K2, while for 1-D CNN [15], NND [11], MaxMLP [10] is
(K + 1)%, 2(K + 1)? and 2N (K + 1)?, respectively. FLOPs
means the total number of floating point operations required
for a single forward pass. It can be used to measure the
complexity of the model. The higher the FLOPs, slower the
model. FLOPs depends on input, output size of layers, filter
size, kernel size, etc. based on neural network. In the proposed
DeepDeMod the total number of FLOPs are 2833 FLOPs per
iteration for K equal to 10, while 1-D CNN [15] has approx.
31.5172 x 10° FLOPs, NND [11] has 39 FLOPs, since it use
single layer single neuron structure, also MaxMLP [10] has
3500 FLOPs. In the proposed DeepDeMod model, training
time is 2963.01015 sec and prediction time for each bit is
3.521x 107 secs for K equal to 10. Also for DeepDeMod-TL
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TABLE 4. Layout of the DeepDeMod for signal detection for K = 10.

Layer Output dimension # parameters # multiplication operation # addition operation FLOPs
Input K =10 NA NA NA NA
1t Hidden layer - Dense + ReLu 40 440 400 41 840
274 Hidden layer - Dense + ReLu 20 820 800 21 1620
374 Hidden layer - Dense + ReLu 7 147 140 8 287
4t Hidden layer - Dense + ReLu 5 40 35 6 75
Output - Dense + sigmoid 1 6 5 2 11
Trainable parameters - 1,453 Total FLOPs - 2833 FLOPs
Training time DeepDeMod : 2963.01015 sec Prediction time DeepDeMod: 35.21 usec
Training time DeepDeMod-TL : 0.9 sec Prediction time DeepDeMod-TL: 35.21 psec
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FIGURE 12. Block diagram of receiver as implemented in the SDR. The receiver implements the proposed DeepDeMod and DeepDeMod-TL methods.

model, training time is 0.9 sec per pilot and prediction time
for each bit is 3.521 x 107 secs for K equal to 10. Based on
overall comparison of complexity and performance, DeepDe-
Mod is seen to be superior to other ML based models. Also
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DeepDeMod presents a better trade off between complexity
and performance.

A complexity comparison of Conventional and DeepDe-
Mod methods is shown in the Table 5. The complexity
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TABLE 5. Complexity comparison of conventional and DeepDeMod
method.

Modules based Conventional DeepDeMod
complexity method Method
X LPF (matched/

Filter corregation filter) BPF
Integrator Yes (based on filter use) | Not required
Sampler Yes, 1-sample Yes, K- samples
Threshold device/detector Yes No
Synchronization device (PLL) Yes No
Channel estimator Yes No
Reshaping block No Yes

trade-off of the conventional coherent demodulator and pro-
posed DeepDeMod is based on sampling the received signal
to process by the decision module. The conventional method
uses one sample per bit period, whereas DeepDeMod uses K
samples per bit period. As shown in Section V-D the BER
decreases with increase in number of samples per bit period,
thus increasing the complexity of the proposed DNN. Hence,
proper selection of K is a trade-off between performance
and complexity. The conventional coherent BPSK receiver is
based on the phase-lock loop and VCO to recover the carrier
signal [38]. Such a module increases the cost, power con-
sumption, and processing time of the receiver and is complex
to implement [3], [38]. In order to maximize the performance,
the conventional receiver utilizes a channel estimator to track
the channel state to correctly demodulate the binary data [39],
[40]. Such modules add up the computational complexity
of the conventional receiver. However, in the DeepDeMod,
the data bit-stream has been extracted without needing a
PLL, and channel estimator. Thus, the proposed DeepDeMod
provides better performance and simplified receiver design
however at the expense of higher memory requirements.

Vi. HARDWARE IMPLEMENTATION AND EXPERIMENTAL
RESULTS

For the hardware implementation of the proposed method,
we use software defined radio (SDR), which is a generic radio
communication system with most of the physical layer (PHY)
functionality written in software [41]. In our prototype,
a packet-based radio communication system is implemented.
It consists of two USRPs namely B210 (as a transmitter) and
B205 mini-i (as a receiver). Each of these are connected to
their respective host processing device running a baseband
processing algorithm using Matlab/Simulink software. This
system is designed and verified using Simulink’s Communi-
cation System Toolbox and Signal Processing Toolbox.

A. DeepDeMod HARDWARE IMPLEMENTATION

In this implementation, packet transmission is carried out
wherein a packet contains three parts namely, the preamble,
the pilot and the payload/data. We assume the preamble, the
pilot, length of the preamble, length of the pilot and length of
the data is known to the receiver. Selection of the preamble for
the packet is subtle. Simulink/SDR is unable to process the
randomly generated preamble. If we use the randomly gen-
erated preamble, the receiver is unable to detect the packet.
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Further, the bit-boundaries are unknown. We use barker code
to generate the preamble for the packet. Whereas, pilot is
randomly selected in this implementation. Fig. 11 presents
the block diagram of the transmitter part implemented in
SDR while Fig. 12 shows the receiver block diagram as
implemented in software.

Payload message is converted into binary signal (data)
using 7-bit ASCII code and is transmitted. The packet is
formed by concatenating preamble, pilot and data. This
packet is modulated using BPSK scheme and passed through
raised cosine transmit filter to up-sample the signal. The
signal is transmitted over the air using USRP B210.
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FIGURE 14. Block diagram of the conventional coherent demodulator implementation on SDR.

12
SNR (dB)
FIGURE 15. Experimental BER for DeepDeMod, DeepDeMod-TL (K = 5)
and conventional coherent demodulator.

The signal is received by USRP B205 mini-i. We over-
sample the received signal by sampling it K-times in a bit
period. Once the sampled signal is received, it is passed
through a raised cosine filter and an automatic gain controller
(AGQ). In this work, we assume that the bit-boundaries of the
signal are known at the receiver. To have this knowledge at
the receiver, we use symbol/carrier synchroniser block along
with preamble detector. The original data and bit-boundaries
are inputted to the frame detector in order to align the
data along the correct bit-boundaries in the signal stream.
Next, the reshaping block reshapes the signal stream into the
desired shape and is processed by the pretrained DNN model.
In DeepDeMod, DNN uses the pre-trained weights [W,] to
predict binary output. On the other-hand, DeepDeMod-TL
first calculates the BER using pre-trained weights [W),] and
known pilot. If the BER is less than the desired threshold (4),
the DNN continues to predict with the same weights [W),].
However, if the BER is greater than the desired threshold
re-training of the DNN model with W), as initial weights and
pilot as training data is carried out using transfer learning. The
updated weights Wy, are then used for bit prediction. Finally,
the predicted binary data stream can be converted back to the
desired message.

Setting correct parameters on the SDR is critical and
sometimes challenging. Even though the DNN is able to
adapt, its performance does depend on choosing the right
SDR parameters. Table 6 details the design parameters of the
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TABLE 6. Prototype description for implementing DeepDeMod.

Experiment setup | Type and parameter
Transmitter USRP B210
Receiver USRP B205 mini - i
Carrier frequency 915 MHz
Antenna type Log periodic
Antenna Gain 5 dBi
Amplifier CNO0522

DeepDeMod prototype. Log periodic directional antenna is
used to transmit the high frequency signals. At the transmitter,
an amplifier is connected for long range communication.
Fig. 13 shows the set-up of our experiment at different loca-
tions viz., inside the lab, in corridor inside the building,
and outside (open area). We operate at 915 MHz carrier
frequency. At receiver the signal is demodulated using the
conventional coherent method and the proposed DeepDe-
Mod, and DeepDeMod-TL method.

B. CONVENTIONAL COHERENT DEMODULATION
IMPLEMENTATION ON HARDWARE

In this sub-section, a brief description on the implemen-
tation of the conventional coherent demodulator on USRP
is discussed. A block diagram of its implementation on
software is shown in Fig. 14. Here, the received signal is
passed through a raised cosine filter and an AGC. Then
the signal is passed through the symbol synchroniser which
corrects the symbol timing clock between a single-carrier
transmitter and receiver. Then the time corrected signal is
passed through the carrier synchronizer block which com-
pensates for the carrier frequency and phase offset. Then
the signal passes through the preamble detector to detect the
start/end position of the preamble in the packet. The data
payload is separated from the packet and forwarded to the
phase offset estimator block to correct the phase offset in
the received signal. Finally, the BPSK demodulator block is
used to map the received signal to its binary form using hard
decision.
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C. EXPERIMENTAL RESULTS

The demodulation performance of our proposed DeepDeMod
prototype at different locations as shown in Fig. 13 is pre-
sented in Fig. 15. Fig. 15 shows the BER performance of the
proposed DeepDeMod and DeepDeMod-TL, along with the
performance of the conventional coherent demodulator in the
same environment.

It is observed from Fig. 15 that the proposed Deep-
DeMod and DeepDeMod-TL achieves better performance
compared to the conventional coherent method. The trained
DeepDeMod matches the features in the input signal
which may include channel effect, hardware imperfections
(phase/frequency offsets), etc., and compensates for these
effects. Hence, the performance of the proposed method
outperforms the conventional coherent demodulator. The
DeepDeMod-TL performance shows a significant reduc-
tion in BER with respect to the DeepDeMod upto SNR =
3 dB. The low SNR (i.e.,, 2 & 1 dB) performance of
DeepDeMod-TL is close to DeepDeMod performance. The
reason for this behaviour is that a lesser number of features
(i.e., K = 5) are used for training and fine-tuning, because
of which the model is unable to learn the signal’s anomaly
distribution/information in sufficient amount. However, the
performance by proposed method is enhanced significantly
as compared to the conventional coherent demodulator.

VIl. CONCLUSION

This paper proposes a DNN-based BPSK detector composed
of preprocessing the received signal (using bandpass filter),
a reshaping block, and a 5-layer DNN. The DNN detects
the transmitted bits by learning the received signal. Results
indicate that the proposed DeepDeMod and DeepDeMod-TL
can accurately detect BPSK signals, even if carrier frequency
and phase offsets exist. Employing the modulated signals
with additive white Gaussian noise and Rayleigh fading, the
DNN can detect the signal accurately. We also observed the
performance enhancement with increasing number of sam-
ples per bit, albeit at a higher computational complexity.
The proposed method can be applied to various applications
such as industrial IoT, military communication, etc., where
stringent BER is required under adverse channel and envi-
ronmental condition.

In this work, we have assumed that the bit boundaries and
preamble is detected prior to passing the signal through the
DeepDeMod. Our future task would be to develop a complete
deep learning based receiver which is able to perform all
receiver functionalities.
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