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Abstract

This research addresses two key problems in the cyber insurance industry – reporting delays

and under-reporting of cyber incidents. Both problems are important to understand the

true picture of cyber incident rates. While reporting delays addresses the problem of delays

in reporting due to delays in timely detection, under-reporting addresses the problem of

cyber incidents frequently under-reported due to brand damage, reputation risk and eventual

financial impacts.

The problem of reporting delays in cyber incidents is resolved by generating the distribution

of reporting delays and fitting modeled parametric distributions on the given domain. The

reporting delay distribution was found to be non-stationary and bimodal. While non-

stationarity was handled by generating the monthly reporting delay distribution over the

rolling two-year moving window, the bimodal aspect required an optimization algorithm to

compute the parameters. The modeled parametric distribution is further extended to infinite

domain to obtain the complete overview of the incidents occurred but not yet reported.

The complete modeled parametric distribution provides the correction factors showing an

increasing trend in recent months rather than a decline as observed from reported incidents.

The correction of reporting delays is computed for the US market. This research was

published as “Correcting for Reporting Delays in Cyber Incidents” in JSM Proceedings [119].

The study is further extended to highlight how reporting delays vary from industry to

industry. Four different industries of US companies were compared within US market:

Finance and Insurance, Educational Services, Health Care and Social Assistance, and Public

Administration. The comparative study showed the corrections for reporting delays in the

overall US market and by industry, with specific emphasis on the four distinct industries.
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This research was published as “Modeling reporting delays in cyber incidents: an industry-

level comparison” in International Journal of Information Security [120].

The problem of under-reporting in cyber incidents is addressed in context of population

characteristics. The proposed solution computes the large variations in under-reporting as

a function of the three variables - revenue, incident type, and industry. Three different

incident types–hacking, social engineering, and ransomware– and five industries– Retail

Trade, Manufacturing, Finance and Insurance, Professional Scientific Technical Services,

and Wholesale Trade– were studied. The research highlighted that there is a need to

address under-reporting by incident types and by industry. The research was published as

“Modeling Under-Reporting in Cyber Incidents” in special edition Data Science in Insurance

of Risks [121]1 .

1Changes made in the paper in response to feedback from the reviewers
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Chapter 1

Introduction

Cyber incidents have become a global risk with no geographic boundaries [136]. Although

these events have grown, evolved, and challenged businesses/industries/nations over the last

few decades, cyber incidents existed since the development of personal computers [102]. In

2013, the G-20 countries have described cyber incidents as “a global economy concern” [2]. In

2015, the US President Obama administration identified cyber security as one of the critical

economic challenges and threat to national security [97][105]. In July, 2021, US President

Biden specified that cyber incidents could result in a “real shooting war”, emphasizing the

gravity of such incidents [17]. US risk managers and corporate insurers recognize cyber

risk as one of the top business risks [36]. Cyber attackers are becoming increasingly more

sophisticated and employ state-of-the-art techniques [9]. The fact that cyber incidents are

evolving is impacting every nation across the globe [2].

While some cyber incidents are detected as soon as they occur, most events are often not

discovered until weeks, months, or even years after the event actually occurred, resulting

in biased data - defined as a subset of data that is influenced by the incidents detection

time [9][68]. For example, Marriott International, Inc. experienced a major cyber incident

in 2014 that was not discovered and reported until 2018 [126]. Sometimes cyber incidents

are discovered and reported by third parties [5]. For example, the Target Corporation

learned about the breach three weeks later when notified by an external third party [5]. The

1



disclosure of cyber incidents depends on reporting requirements across locations, industries,

and inspecting regulatory agencies [9]. Smaller cyber incidents may never be reported at all,

or have extreme delays, as only public companies and organizations with losses of personally

identifiable information may be obligated to report. Sometimes reporting can take five to

ten years, due to the organization failing to realize that a cyber incident happened, failing to

immediately determine the extent of accessed or stolen data, or deciding not to publicize the

incident for fear of reputation risk and consequent financial impacts. As a result of knowing

and not disclosing in a timely manner, reporting delays are often observed in historical

cyber event databases. Due to the increase in businesses working remotely, Coleman et al.

commented that there is an increase in the number of actual incidents despite a decline

in reported cyber incidents in the recent few years [9]. They further described that cyber

incidents would remain undetected due to advanced and sophisticated threat techniques [9].

As a result of delayed attack detection (unintentional) or hiding attack information on the

part of businesses (intentional), it is difficult to get an accurate understanding of the scope

and pervasiveness of the reporting problem.

Alternatively, many organizations choose not to disclose any such information if they are not

required to by law or industry regulation. They may opt not to report cyber incidents for

fear of damage to their reputation or negative impact to their business [24][37][46][117][125].

This highlights the other well-established problem referred to as under-reporting of cyber

incident [95]. Under-reporting occurs when the number of incidents reported is less than

the number of incidents that occur [20]. In the cyber context, it can be defined as the

incidents which are neither reported nor recorded into the databases. Despite regulatory

requirements, organizations choose not to report, providing proof that under-reporting is

still a significant problem [72][128]. In 2019, ISACA2 reported that three out of four survey

respondents believed that cyber incidents are deliberately concealed irrespective of reporting

requirements [72]. Since attackers can be located anywhere around the globe, they are

difficult to catch. With such a pessimistic outlook, organizations find reporting incidents

as a waste of time and effort [125]. According to a U.S. Federal Bureau of Investigation

(FBI) report, the recovery rate of stolen assets is high, but it becomes challenging to recover

2Information Systems Audit and Control Association
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money in the absence of prompt action [39]. Due to required time investment, challenges in

reporting, the lack of confidence that attackers will be caught, and the potential negative

impact on the organizations reputation and financial status, many organizations opt not to

report [125].

Cyber risk modeling firms rely upon reported cyber incident data to build their models, which

are in turn relied upon by cyber insurers for underwriting, portfolio management, and risk

transfer. To build robust loss estimation models, the most recent and updated information

is required with as little bias3 as possible. Correcting reporting delays and under-reporting

in these databases are therefore key requirements to having trustworthy cyber insurance

models. With the necessary corrections of reporting delays and under-reporting, one can

more accurately identify trends in the targeting of industries or in attacker tactics.

Trends in cyber incidents have increasingly become a topic of formal research consideration.

One area of research has focused on using statistical distributions for estimation. Coleman et

al. investigated the distributions in terms of how many days it takes to detect cyber incidents

and further how many days it takes to report them [9]. This study states descriptive statistics

and highlighted the reporting delays or under-reporting problems in cyber incidents but did

not address it. However, they expressed concern about how attackers are applying cutting

edge techniques and remain unexposed.

The current research proposes to develop a novel approach to debias the reported cyber

incidents by addressing reporting delays and under-reporting problems, respectively. To

resolve reporting delays, the debiased delay distributions are modeled, and parameters of

modeled distributions are applied to correct the bias in the reported cyber incidents. The

corrections will reflect the increase in cyber incidents in recent periods rather than the

diminishing trend shown by the reported incidents.

This research is divided into five chapters. Chapter 1 initially explains the problem of

reporting delays and under-reporting in cyber incidents and is further divided into five

sections - Sec. 1.1 provides the overview of the related concerned literature for the two

problems: reporting delays and under-reporting, Sec. 1.2 presents the gaps and open

3Subset of data influenced by the incidents detection time
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questions in the literature, Sec. 1.3 describes the proprietary data collected from multiple

sources used in the succeeding research and Sec. 1.4 presents our contribution to the

literature, closing the gaps, and resolving the questions. Chapter 2 presents the completed

article, “Correcting for Reporting Delays in Cyber Incident”, and discusses the innovative

approach, generated from present research, to debias reporting delays in US cyber incidents.

Chapter 3 applies the approach developed in Chapter 2 and discusses the dynamics of four

key industries with the US market as whole. Chapter 4 discusses the approach developed

to correct the under-reporting in US cyber incidents. Chapter 5 summarizes the previously

presented research in cyber incidents to debias for reporting delays and under-reporting, and

presents future research.

4



1.1 Literature Review

1.1.1 Reporting Delays

Reporting delays is a well-known problem in insurance and epidemiology models [85]. Most of

the existing literature on reporting delays is from the medical domain. In 1986, Brookmeyer

and Gail suggested the problem be addressed by excluding recent data from the analysis [22].

Reporting delays were studied as a statistical problem for the first time by Harris in 1987 [55].

Brookmeyer and Damiano, as well as Harris, stated the reporting delays problem as an

incomplete multinomial distribution [21][55]. Harris attributed under-reporting to reporting

delays [56]. The failure to report an incident immediately is statistically referred to as a “right

truncation problem” [23]. Mathematicians and actuaries define it as a “run-off” or “reporting

triangle problem” [65][90]. Actuaries categorize reporting delays as an incurred but not

reported (IBNR) or an occurred but not reported (OBNR) problem4. However, actuaries

focused on correcting losses associated with claims rather than the claim counts [7][85]. The

focus of this research is to correct for the reporting delays in the absence of covariates i.e.

considering incident and reporting dates only.

Late 1980s

Acquired Immunodeficiency Syndrome (AIDS) cases remained undetected for period of time

and reported even later. One possible reason could be that patients were reluctant to report

their case in light of societal/cultural norms. In the context of AIDS cases, it takes months

or years to report after the diagnosis [85]. Brookmeyer and Damiano, and Heisterkamp

along with various researchers in three separate studies, addressed the reporting delays in

the number of AIDS cases, assuming the number of cases to be infected following a Poisson

distribution [21][61][62][63]. In extension of Harris’ work, Brookmeyer and Damiano applied

a Poisson regression model to correct the reporting delays in the number of AIDS patients.

The adjusted number of cases occurred at time, t, until delay, δ, computed as shown in

4In the following sections, it is referred as “not reported” to be consistent with industry language

5



Eq.1.1 and Eq.1.2 respectively.

H ′
∆(t, δ) ∼ Pois(eαt+βδ) (1.1)

where αt and βδ are Maximum Likelihood Estimates

H ′
∆(t, δ) =

H∆(t, δ)

1−
∑t

i=1 pi
(1.2)

where pi is the Poisson regression estimates

H∆(t, δ) is the reported incidents at time, t, until delay, δ

However, Heisterkamp et al. mentioned that the expected number of cases is the matter of

concern rather than the reported proportions as a percentage of the total reported cases;

the authors posit that the focus of the research should be on the counts rather than on the

proportions. Hence, they considered proportions as a distraction and classified them as a

“nuisance”. They applied Maximum Likelihood Estimation (MLE) equations Eq.1.3 and

Eq.1.4 to obtain the adjusted number of incidents at the time, t, h′
∆(t) [61][62][63].

h′
∆(t) =

Σδ
d=0h∆(t, d)

Σδ
d=0Adjusted p(d)

(1.3)

p′(δ) =
Σt

j=1h∆(j, δ)

Σj=1tAdjusted h∆(t)
(1.4)

Heisterkamp et al. looked at the problem from another perspective: how many incidents

occurred but not yet reported? [61]. They modeled a number of not-reported incidents as

independent Poisson distributions conditioned on the Adjusted h∆(t), referred to as h′
∆(t).

Asymptotically, they found both reported and not-reported incidents were multivariate

normally distributed. To capture trends, they suggested the expected number of incidents

as exponential and integrated logistic models [61][62][63]. Despite capturing trends, these

models failed to correct reporting delays beyond the maximum delay, δmax, in the dataset.

They stated two key reasons. First, the corrections depend heavily on the choice of an

appropriate model (i.e. exponential or integrated logistic model). Second, exponential

models lack the ability to handle delays when number of incidents doubles. The proposed
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novel approach addresses this problem by fitting the modeled distribution on the domain

[0, δmax]and then using the fitted modeled parameters to find the correction factors on domain

[0,∞].

Morgan and Curran applied Brookmeyer and Damiano’s approach to investigate AIDS cases

in the U.S. but found trends in the reported incident distribution over the described period

of time. Under the trend stationarity56 assumption for the incidents distribution, Morgan

and Curran computed the number of incidents detected within a given month out of reported

incidents i.e., the number of incidents with delay,h∆(δ = 0), and then applied the Box-Cox

transformation to fit the quadratic polynomial with weighted regression [21][100]. Downs et

al. assumed the pattern of reporting over constant time and adjusted the counts at time t

with the sum of proportions and number of incidents at t but reported with δ, for all delays,

as shown in Eq.1.5 and Eq.1.6 [30][31].

p(δ) =
h∆(t, δ)

h∆(t)
(1.5)

h′
∆(t) =

h∆(t)

Σδmax
d=0 p(d)

(1.6)

where d refers to delays from 0 to δmax

Downs et al. introduced trends as exponential models to the adjusted counts, as shown in

Eq.1.7and Eq.1.8 [30][31].

Linear Model : ln(h′
∆(t)) = β0 + β1t+ ϵt (1.7)

Quadratic Model : ln(h′
∆(t)) = β0 + β1t+ β2t

2 + ϵt (1.8)

5Trend Stationarity is a time dependent stochastic process and becomes stationary with function of time
is removed Source: Online Glossary of Research Economics

6The process is considered stationary in absence of covariance Source: Online Glossary of Research
Economics
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The very assumptions of constant pattern over time and stationarity in trends are concerns

due to non-stationarity detected in debiased delay distributions. The proposed novel

approach addresses this problem by generating the debiased delay distribution7 over a

monthly, two-year rolling period.

As in the United States, AIDS was considered a social stigma in the United Kingdom in

1980s. Healy and Tillet investigated AIDS data in the United Kingdom. They fitted an

exponential curve and a log-linear model with Poisson errors to monthly reported incidents

to correct reporting delays, as shown in Eq.1.9 and Eq.1.10 [59]. Again, having a fixed

model as a function of time is not an appropriate way to address reporting delays due to

non-stationarity in the data.

Exponential F it : log(h∆(t) + 1) = 0.08841 + 0.06265t (1.9)

Log − linear F it : log(h∆(t)) = −0.04495 + 0.6399t (1.10)

Brookmeyer and Damiano studied AIDS data until January, 1988 in the US and suggested

another approach based on back calculations8. They used the back-calculated infected

estimates to compute short-term projections. They focused on number of infected and

reported incidents and defined these incidents as having a multinomial distribution with an

unknown sample and computed probabilities as shown in Eq.1.11 [21].

pδ =

∫ δ

t=0

I(s)(Fδ−s − Fδ′−s)ds (1.11)

where δ′ is previous delta values

I(s) is likelihood upto delay δ

7Debiased Delay Distribution is the novel approach to generate distribution from empirical data
addressing the bias towards the shorter delays.

8Back calculation is the method to compute previous values based on current value.
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I(s) is computed from unknown parameter θ. MLE, estimates of multinomial distribution,

are obtained by maximizing θ , and adjusted H∆(t, δ) can be computed as shown in

Eq.1.12 [21].

H ′
∆(t, δ) =

H∆(t, δ)∑δ
i=1 pδ

(1.12)

Working on OBNR incidents is an interesting approach but does not cater longer delays.

The approach works under the assumption of complete data, not an apt assumption; it is

challenging to find a dataset which could be considered representative of the data being

investigated and is complete.

1990 and after

Rosenberg studied AIDS data until September, 1988 in the US. He applied Brookmeyer and

Damiano’s statistical model with an assumption of stationary reporting delay distribution

to study AIDS’ incidents where a stationary distribution implies the same distribution over

a period of time9 [106]. The Poisson model was fitted to compute counts, as shown in

Eq.1.13 [21][114]. Considering the nature of the cyber incidents (the delay distribution

of cyber incidents is found to be non-stationary), the underlying stationarity assumption

is problematic; the proposed approach mitigates this issue, as mentioned in the earlier

subsection 1.1.1.

logE(h∆(t, δ)) = µ+ αt + βδ (1.13)

where α1 = β1 = 0

α parameter varies with time, t

β parameter varies with delay, δ

9Ft(x) = Ft+∆t(x) ∀t, t+∆t
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Probabilities for the model defined as shown in Eq.1.14:

pδ =
expβδ∑δ
d=0 exp

βd

(1.14)

Rosenberg computed probabilities with non-iterative approach, as shown inn Eq.1.15 .

pδ =

∑tmax

t=0 h∆(t, δ)∑tmax

t=0 h∆(t)
(1.15)

The adjusted counts are be computed as shown in Eq.1.16:

h′
∆(t) =

h∆(t)

1−
∑δmax

d>δ pd
(1.16)

Cheng analyzed two approaches on AIDS studies, suggested by Brookmeyer and Damiano

as well as Rosenberg. Cheng proposed using the Lagrange multiplier, λ, to compute

probabilities in Eq.1.11 and Eq.1.15 [21][26][114]. Here again, Cheng assumes stationarity. In

contrast to using the Lagrange multiplier, λ, the current study proposes fitting the bimodal

empirical distribution and extracting probabilities over the extended domain, [0,∞).

Brookmeyer and Liao investigated AIDS incidents in the US and suggested the Bayesian

linear model based on time-dependent, reverse-time incidents to correct delays [23][45]. They

highlighted the crucial and relevant limitation that the delay, δ, cannot be considered beyond

the age of the dataset and hence, only the conditional distribution on delay less than or equal

to age of the dataset can be estimated. They proposed two methods. First, they considered

the number of incidents that occurred at time t but reported with delay, δ, to be Poisson

distributed with mean, as shown in Eq.1.17 [23].

E(h∆(t, δ)) = e(at,bδ) (1.17)

where α-parameter varies with time, t

β-parameter varies with delay, δ
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αt and βδ are parameters obtained from log-linear models or Poisson regression.

Second, they defined the reporting delay distribution as the product of conditional

probabilities, as shown in Eq.1.20.

f∆ =

age∏
i=0

(1− pi) (1.18)

p(t,δ) =
h∆(t, δ)

h∆(t)
(1.19)

where h∆(t, δ)refers to the incidents reported at time, t, with delay, δ

h∆(t) refers wot the incidents reported at time, t

F∆ =

age∏
δ=0

(
1− h∆(t, δ)

h∆(t)

)
(1.20)

Unlike AIDS where the cases were reported with delay considering the social norms, the

delays in multiple sclerosis(MS) incidents is due to the nature of the problem itself. The

MS incidents cannot be diagnosed until a second attack which could happen after months

or years, or sustained progression in symptoms over six months. Along similar lines of

Brookmeyer and Liao, Esbjerg et al. investigated delays in MS incidents. They defined

models based on conditional and marginal probabilities to correct delays in reporting MS

incidents. However, they computed the conditional probability and marginal distributions,

as shown in Eq.1.21 and Eq.1.22 [35].

Conditional Probability: f∆(δ|a) =
f∆(δ)

F (a)
(1.21)

F∆(δ|a) =
F∆(δ)

F (a)
(1.22)

The marginal distribution function defined using the conditional probability results, as shown

in Eq.1.23 [74].

Marginal Probability: F∆(δ|age) =
age∏

d=δ+1

(
1− f∆(d|age)

F∆(d|age)

)
(1.23)
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These models also deal with the reporting delays being addressed until age, a. The proposed

algorithm addresses this concern by fitting the modeled distribution on debiased delay

distribution over domain [0, δmax] and then using parameters of a modeled distribution

on extended domain [0,∞) to compute corrections. Gebhardt et al. found that linear

and quadratic polynomials could capture the non-stationary trend in reporting delays but

resulted in over-fitting because of few data events available on recent counts [44].

Harris discussed the basic model under the assumption that the number of incidents occurred

at time t but reported with delay δ, h∆(t, δ) as a random variable with an independent

Poisson distribution. Consequently, the monthly counts depend on a discrete time Poisson

process, whereas the count distribution with the given number of incidents at time t results

in a multinomial distribution [56].

Brookmeyer and Gail, Harris, and Kalbfleisch and Lawless studied AIDS data in the context

of distributional challenges. They expressed concern about finding trends based on the

delay distribution over time with the non-parametric approach where parametric models are

time dependent; for each time step, there exists a different parametric model [22][56][74][96].

The proposed algorithm in the current study applies a similar approach when the modeled

distributional parameters are computed from the debiased delay distribution.

Lawless investigated AIDS data reported to surveillance agencies and estimated the reporting

delays based on the latest available event delay probabilities under a stationary assumption,

and he considered the number of events occurred at time t but reported with delay δ, h∆(t, δ),

which depends on the number of known recent time periods. He referred to this assumption

as “risky” where delays δ are longer over time. He suggested multinomial models with

random effects based on the probability vector over a period of time extracted from Poisson

distribution (under the assumption that number of occurred events is independent of time),

Dirichlet (to represent randomness in reporting delay probabilities where no systematic trend

observed with respect to time) and Gamma( introduces random effects independent of time)

distributions to represent the variation in reporting delays [85]. As discussed earlier, the

stationarity assumption is not practical.
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Bastos et al. studied disease surveillance data and discussed two common frameworks for

the reporting delays [15]. A Bayesian or Hierarchical approach [65] where the h∆(t, δ) is

conditional on h∆(t) where h∆(t)follows a Poisson or Negative Binomial distribution. As a

result, h∆(t, δ) is a multinomial distribution with a vector of probabilities for the given

time steps. The second approach is the chain-ladder approach [90][111] where h∆(t, δ)

does not follow any distribution and has a linear relation with constant overall mean and

random effects to capture when the mean varying with time and with delay δ are normally

distributed. This approach can be expanded to address the requirements of parametric

and non-parametric forms [14][34]. The conditional multinomial approach motivated the

chain-ladder approach [116]. Bastos et al. extended the chain ladder approach to correct

the delays to introduce spatio-temporal (locations) within the counts and the co-variate

effects [15]. However, Hohle used the negative binomial distribution to tackle count data

and handled the delay distribution as a dirichlet distribution in conjugate prior posterior

form; when the process is homogeneous, i.e., irrespective of the time steps between t = 0

and t = t, the probability evolves the same way [65]. Chitwood et al. analyzed coronavirus

disease (COVID-19) virus data and proposed the Bayesian Nowcasting approach where they

adjusted counts using the negative-binomial distribution [27].

The extant literature summarized above demonstrates the use of multiple distributional

approaches to capture the delayed reporting of incidents. Taken together in cyber

incidents context, no one distributional assumption adequately captures diverse phenomena.

The current study considers two alternative distributions to capture the two distinctive

characteristics of the time dimension of reporting incidents. Specifically, this research uses

an exponential distribution to address shorter delays and the normal distribution to address

longer delays.

White et al. suggested delayed counts adjustment at time step t by dividing the actual

count with the sum of delayed reported event probabilities beyond t [134]. Weinberger et

al. suggested the adjustment to COVID deaths by dividing the actual counts for the given

day t by the proportion of complete records during that week [132]. While these approaches

addressed the reporting delays in COVID incidents, the require an assumption of parallel
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complete data. Such adjustments would be meaningless if the data is complete. On the

other hand, these approaches are inapplicable on incomplete data.

Noufaily et al. proposed the log-likelihood function that considers left and right truncation

to model reporting delays to detect the outbreak of infectious diseases. They computed the

delays as the difference between the event date (specimen collection date for testing) and

three fixed reporting time steps (time at which the report was sent to the database), τ1,

τ2, and τ3. The log likelihood function would vary depending on where the event time lies

between the fixed reporting time steps. They suggested that the likelihood contributions,

Lc varies based on where the event date falls with respect to τ1, τ2, and τ3, as shown in

Eq.1.24 [104].

Lc =


f∆(δ)

1−F∆(δτ1 )
when Event Date ≤ τ1

f∆(δ) when τ1 < Event Date ≤ τ2

f∆(δ)
F∆(δτ3 )

when τ2 < Event Date ≤ τ3

(1.24)

where δt = t− Event Date

Accordingly, the log-likelihood function can be defined as shown in Eq.1.25

l =

ni∑
i=1

log
{ f∆(δi)

1− F∆(δτ1)
I(Event Date ≤ τ1)+

f∆(δi)I(τ1 < Event Date ≤ τ2)+

f∆(δi)

F (δτ3)
I(τ2 < Event Date ≤ τ3)

}
(1.25)

where ni = Number of Incidents

I(•) = Binary indicator function

Noufaily et al. parameterize based on a hazard function10 with survival function computed

as e−
∫∆
0 λ(j)dj. They suggested the statistical approach, which monitors the counts in current

10In survival analysis, the distribution is modeled with hazard function, λ(d) = f(d)
S(d) where S(d) is survival

function
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and certain past periods, where the number of past periods is selected based on the median

reporting delay [103]. The approach is sensitive to the choice of time steps τ1, τ2, and τ3.

Wang studied transfusion-associated AIDS cases reported until December 1989. He discussed

the non-parametric and semi-parametric methods on survival data, because data is complete

and no further reporting delays would be expected. He investigated right truncated data

where the data has a known start and the end date of the event where one is aware

of the start date and is not expecting any event occurring in the given context beyond

the end date. For the parametric approach, he assumed h∆(t,δ, c), h∆(t, c) and h∆(c) as

Poisson distributed [28]. For a non-parametric approach, he derived the likelihood function

based on the complete observed data11. However, for the semi-parametric approach, he

combined both approaches: non-parametric and parametric. He applied the MLE derived

from the non-parametric approach but assumed its parameters to be Poisson distributed.

The non-parametric and semi-parametric approaches are not appropriate when the data is

incomplete [130]. The proposed algorithm derives the complete picture of the incidents from

the incomplete data.

Midthune et al. studied cancer data from 1975 until 1997. Considering that research on

cancer is still underway, cancer patients are commonly not diagnosed until later stage. Since

the disease is frequently not detected in a timely manner, the reporting is delayed. The

authors discussed events with delayed reporting as well as events being added to the dataset

more than once as the reported data comes from multiple resources. The replication of the

same record is a common problem when data collected from various resources. The data

used in this research is also collected from multiple data providers. To avoid this problem,

a matching algorithm based on firmographic12 data (Table 1.4) and incident date within a

week are applied to dedupe the multiple records for the same incident. They suggested a

model which corrects the reporting delays and removal of events from the reported events

at a delayed period, and claimed the number of events reported for the given category

at delay, δ, to be marginal Poisson distributed and imposed the delays with the normally

11The records are complete despite reporting delays and no more events expected for the given set of
data [84]

12Firmographic data: Geographic Data, Number of Employees, Industry and Revenue
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distributed random effects linearly into a truncated log-log model. The random effects shrink

over-dispersion rather than eliminating it. The models assume stability- constant mean and

constant variance over time in the reporting. The models do not work on data with trends

or non-stationarity [96]. Again considering the nature of the cyber incidents, the stability

assumption would not work.The current approach deals with trends and non-stationarity in

the cyber incidents.

Harris corrected the number of COVID-19 cases using the expectation-maximization(EM)

algorithm. He split the data into two parts. The first part assumed to be complete, but the

second part needed to be corrected. He assumed the counts with delays follow a Poisson

distribution. The corrected count depends on a likelihood parameter computed with an

iterative procedure. The parameter is finally normalized to obtain the appropriate discount

factor. The corrected count is computed by dividing the marginal count by the normalized

discount factor [57]. As explained in section 1.1.1, a single distribution assumption is not

appropriate to address both shorter and longer delays.

As observed, the majority of the literature addressed reporting delays in the medical space.

In 2021, Coleman et al. discussed the time frame to discover cyber incidents and time frame

to disclose them from 2016 until 2020 [9]. However, they did not address the need for a

correction measure.

There are additional studies with different perspectives which are not directly related with

our research but worth a brief mention. Some researchers investigated cyber claims data to

correct reporting delays in claims with capital reserving perspective [11][73][137][138]. It is

important to understand that reporting delays in claims is different from the problem being

investigated in this research. Since organizations tend to claim against the insurance, cyber

incidents are reported as and when detected. As a result, the reporting delays in claims are

expected to have shorter delay periods, perhaps in few days or 1-2 weeks, unless they are

not able to detect in timely manner. Unlike the current research problem, these incidents

are reported to insurance companies to file for claim against insured assets and need not to

be concerned about reputational risk or other factors.
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Table 1.1: Reporting Delays: Literature Summary

Techniques Evaluated Key Findings Citations

Conditional Probabilities

� Pros: Captures trend

� Cons: Model over-fitted

[23][35][43][74]

Statistical Model under as-

sumption of Poisson distributed

counts

� Pros: Easy to implement

� Cons: Does not capture trends

[23][56][61][62]

[63]

Exponential and Log-linear

Model with Poison Errors � Pros: Captures trend

� Cons: Stationarity Assumptions

[59]

Exponential and Logistic Mod-

els � Pros: Captures trend

� Cons: Fails to correct beyond the

maximum delay in the data

[30][31][61][62]

[63][100]

Back-Calculation

� Pros: Easy to implement

� Cons: Highly sensitive to parameters

chosen

[21]
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Techniques Evaluated Key Findings Citations

Poisson Model with stationary

reporting delays � Pros: Easy to implement

� Cons: Distributional Assumption and

stationary reporting delays

[26][114]

Semi-parametric with counts

Poison Distributed-MLE Ap-

proach

� Pros: Easy to implement

� Cons: Requires parallel complete data

to train

[130]

Non-parametric-MLE approach

� Pros: No distributional assumptions

� Cons: Requires parallel complete data

to train

[130]

Truncated Model

� Pros: Random effects shrinks

� Cons: Requires stable reporting de-

lays

[75][96][130]

Multinomial Model with Dirich-

let/Poisson/Gamma distributed

random effects

� Pros: Captures trend in timely fashion

� Cons: Does not work where delays are

longer and distributional assumptions

[85]
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Techniques Evaluated Key Findings Citations

Proportions

� Pros: Simplest approach

� Cons: Requires parallel complete data

to train

[132][134]

Bayesian/Hierarchical approach

with counts Poisson/Negative-

Binomial Distribution

� Pros: Easy to implement

� Cons: Distributional assumptions

[15][27][65]

Log-likelihood with Truncation

Model � Pros: Data driven approach

� Cons: Sensitive to choice of three

reporting time-steps

[103][104]

Chain-ladder approach

� Pros: Easy to implement

� Cons: Sensitive to outliers

[15]

Expectation-Maximization Ap-

proach � Pros: Easy to implement

� Cons: Requires complete data to train

and Distributional assumptions

[57]
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1.1.2 Under-reporting

Since 1982 the concept and statistical implications of incident, under-reporting has been a

point of concern and mainly studied in the medical domain [64][122]. In the cyber domain,

it is a well-known problem due to various reasons, such as reputation risk, financial impact,

belief that attackers will never be caught, and incident reporting as waste of time and

effort [24][37][46][95][117][125].

In 1986, Brookmeyer suggested to exclude the under-reported data from the analysis [22].

However, Wood et al. mentioned that ignoring under-reporting leads to biased statistical

models [135]. Elvik and Mysen suggested that under-reporting leads to an incomplete dataset

and the resulting analysis/models will be biased towards the reported data only [33]. Hence,

the approach cannot be applied to other data or situation and loses generalizability.

Fletcher et al. investigated under-reporting of Acute Gastroenteritis(AcG) cases in Jamaica.

AcG is a known diarrheal disease resulting in morbidity and mortality [42][77]. In Jamaica,

there is ignorance about the consequences of AcG. As a result, people do not opt for

appropriate medical treatment, the true incidence level recorded by National Surveillance

(NSU) is under-reported. Fletcher et al. corrected the under-reporting in AcG with a

proportions approach, which can be applied in the cyber domai,n but with cyber claims data.

They investigated syndromic and lab-confirmed under-reporting in AcG in Jamaica. The

national estimates of under-reporting for syndromic under-reported AcG were computed by

adjusting the number of AcG cases reported to NSU by the data collected from surveys [42].

The syndromic under-reporting multiplier was computed by Fletcher et al. as the inverse of

the proportion of patients who opted for medical care, as shown in Eq.1.26 [42].

Syndromic Multiplier =
1

pMC

(1.26)

where pMC is the proportion of patients opted for medical care
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The national estimates of under-reporting for lab-confirmed cases are computed with various

proportions in an orderly manner. However, the approach remains the same; rather than

one proportion, there is a product of multiple proportions, as shown in Eq.1.27 [42].

Lab confirmed Multiplier =
1

pLC
· 1

pPos

· 1

pTested

· 1

pSpec
· 1

pSpecReq

· 1

pCare

(1.27)

where pLC is the proportion of lab-confirmed cases reported to NSU

pPos is the proportion oflpositive samples out of total samples

pSpec is the proportion of specimens submitted

pSpecReq is the proportion of cases requested for specimen submission

pCare is the proportion of l ill persons who went for care

Hazell and Shakir collected the level of under-reporting of adverse drug reactions (ADRs)

from 37 studies. They gathered studies that applied the proportion approach from

various countries and used descriptive statistics to estimate the overall under-reporting

level. They divided the research into three categories. The first category considered the

proportion of known/suspected/expected cases identified during monitoring but were not

reported [4][12][25][29][40][41][47][60][66][83][87][89][91][94][99][101][107][123]. The second

category considered the proportion of known/expected cases identified through data sources

and also reported [8][13][18][19][32][69][71][76][82][98][108][109][118]. The third category

considered the proportion of cases identified during clinical trials and reference studies but

never reported [16][38][67][70][110][127]. These cases were computed within the same time

period and same location. All three applied the proportion approach but from different

perspectives [58].

Schuitemaker et al. also applied the same proportion method to calculate the under-reporting

multiplier to correct maternal deaths during pregnancy/childbirth in the Netherlands [122].

Maternal deaths due to early pregnancy and indirect deaths are often under-reported and

require corrections. Abay, Alsop and Langley, Amoros et al, Elvik and Mysen, and Wood
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et al. investigated under-reporting in crash frequency, such as road accidents. They

compared the reported crash data against the hospital data and applied the same proportion

approach [1][3][6][33][135]. Crash data is often under-reported and gets corrected from

hospital data.

Hirvonen et al. investigated the under-reporting levels and trends in energy based on

dietary reference. Women and overweight adults often report less than their actual food

consumption (lesser micro-nutrients intake). Since energy level is directly proportional to

food consumption, under-reporting results in energy level distortion. They applied a logistic

regression approach considering under-reporting a binary dependent variable and dietary

factors as independent predictor variables, as shown in Eq.1.28 [64]. They showed that

under-reporting should be taken into consideration when doing further advanced studies

especially for women and overweight adults.

l = log

(
pUR

1− pUR

)
= β0 + β1Gender + β2Age+ β3Area+ β4BMI + β5Study Y ear (1.28)

where pUR is the probability of under-reporting

Lissener et al. investigated overweight women for overeating but under-reporting their food

consumption and applied a simple regression approach with various body composition factors

as independent predictors, as shown in Eq.1.29 Eq.1.30, Eq.1.31 and Eq.1.32 [88].
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Energy =β0 + β1MDWC + β2W (1.29)

Energy =β0 + β1MDWC + β2W + β3FM (1.30)

Energy =β0 + β1MDWC + β2LM + β3FM (1.31)

Energy =β0 + β1MDWC + β2LM (1.32)

where MDWC = Mean Daily Weight Change

W = Weight

FM = Fat Mass

LM = Lean Mass

Lissener et al. computed the under-reporting with the standard error of mean(SEM)13, as

shown in Eq.1.33 [88].

UR = MDWC ± σ√
n

(1.33)

Krantz et al. proposed new methods with harmonic analysis and wavelets to compute

the level of under-reporting before the COVID-19 first peak. They opted for a proportion

approach but mapped these proportions to time intervals. They suggested level of under-

reporting at time t, pUR(t), to be computed as shown in Eq.1.34 [78][79].

pUR(t) =
n∑

i=0

ai
ai + bi

(1.34)

where ai and bi are the number of reported and not reported cases distributed in n time

intervals, 0 ≤ i ≤ n, until time t.

It is not possible to know the number of not reported cases at any point of time. They

proposed the construction of wavelet using support of ai to find this number, but the research

is ongoing. Such methodology might not be relevant in the current research considering that

13SEM is computed as σ√
n
where n is sample size
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the pattern is expected to start at zero, oscillate with given amplitude, and then again reduce

to zero.

Table 1.2: Under-reporting: Literature Summary

Techniques Evaluated Key Findings Citations

Proportions

� Pros: Easy to implement

� Cons: Data might not be easy to find

[1][3][4][6][8]

[12][13][18][19]

[25][29][32][33]

[40][41][47][60]

[66][69][71][76]

[82][83][87][89]

[91][94][98][99]

[101][107][108]

[109][118][123]

[135]

Logistic Regression

� Pros: Easy to implement

� Cons: Depends on accuracy of other

independent variables

[64]

Median ± SEM with Linear

Regression � Pros: Easy to implement

� Cons: Difficult to obtain such level of

data

[88]
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Techniques Evaluated Key Findings Citations

Median of Interquartile range

� Pros: Simple computation

� Cons: Difficult to find the research

with estimates

[58]

Harmonic Analysis & Wavelets

� Pros: Develops complete data from

partial data

� Cons: Complex mathematical models

and computationally intensive

[78][79]

1.2 Open Research Question

1.2.1 Reporting Delays

Brookmeyer mentioned that the existing research addresses the issue of reporting delays

where delays, δ, at most equates to age, a [23]. The analysis with such incomplete data

would result in a biased analysis as it does not expect any events beyond the longest in

the dataset. The models with such incomplete data could result in wrong decisions. The

research so far either employs a back-calculation proportion or a proportion-based approach

with linear/quadratic trends or a parametric approach based on distributional assumptions or

a non-parametric approach based on complete datasets to derive the MLE parameters where

more events are not expected to be reported in the future [130]. Under the assumption of

complete data, it might be too late to take appropriate action based on the analysis.

The direct estimation of an empirical delay distribution from the raw data results in four

problems:
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Problem 1: The nature of reporting delays means that direct estimates from empirical data

will be biased toward shorter delays, since recent events could only appear in the data set in

the first place if the reporting delay is small. The data is considered to be complete in terms

of shorter delays as the information is already provided, whereas data with longer delays is

incomplete and requires estimation.

Problem 2: The reporting delay distribution may not be stationary, making it difficult to

estimate delays beyond age.

Problem 3: The direct estimate from empirical data does not address any event beyond the

age of the dataset, assuming zero probability of any delay longer than the age in the data

set. Since the age of the raw data is finite, it is not possible to observe beyond the longest

delay in the data set. Although defined on the domain [0, δmax], the delay distribution, f∆, is

regarded as complete, which does not bank on any event to be reported beyond the longest

delay in the dataset.

Problem 4: Longer reporting delays are based on a few data points. As one moves further

in time, the proportion of reporting delays decreases; fewer and fewer events with longer

reporting delays are expected to be reported over time. In this research, all four problems are

addressed through novel proposed “Debiased Delay distribution” and “Modeled distribution”

fitted with an optimization approach.

1.2.2 Under-reporting

In 1986, Brookmeyer suggested to ignore the under-reported data from the analysis.

However, Abay, Alsop and Langley, Amoros et al, Kumara and Chin, and Wood et al.

studied road traffic accidents and emphasized that ignoring under-reported data would result

in biased estimates [1][3][6][81][135]. Elvik and Mysen also studied road accidents reporting

in 13 countries and stated under-reporting as a data incomplete problem [33]. Addressing the

data bias/incomplete problem, the reported data is corrected with the proportion approach.

These proportions are computed from a smaller data set considered to be complete. More

than 85% of the existing literature applied a proportions approach to find the level of under-

reporting and considered only one dimensional domain.
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One-dimensional correction cannot justify multiple directions. Corrections based on revenue

might be appropriate overall but not when considering the corrections for the given incident

type or given industry or vice-versa.

Problem: The direct proportion approach is applicable only with one underlying feature

but might be inappropriate when multiple features are involved. As observed in reporting

delays, variation in reporting delays differs from industry to industry; under-reporting level

based on revenue might be applicable overall but is not appropriate at the incident type level

or at the industry level for specific corrections.

1.3 Data

For reporting delays, historical incidents and firmographic data used. The historical incidents

are matched with firmographic data set for the cases where name of the company cannot be

matched directly based on string.

For under-reporting, two proprietary data sets, claim-exposure data and historical incident-

IED data are used. Historical incident-IED data is aggregated data set constructed by

combining historical incident data set with a proprietary firmographic data. The claim-

exposure data is a collection of US cyber insurance claims and policies data obtained

from multiple insurers. The historical incident-IED data set is an aggregated data set

constructed by combining historical incident data sets with a proprietary firmographic data

set of companies.

1.3.1 Historical Incidents Data

The proprietary data set used in the current research is a collection of more than 140,000

historical incidents over several decades. The aggregated data includes curated datasets from

various proprietary data sources. The data set was constructed from multiple source data

sets of historical incidents (collection of publicly reported incidents), with de-duping done

by fuzzy matching to a firmographic data set (see section 1.3.2 for more details), as shown

in Fig. 1.1.
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Figure 1.1: De-Duping Process

This study is done on the incidents collected from the past decade (2010-2019). The source

cyber incident datasets (Table 1.3) provide information in terms of “what”, “when” and

“who” of an incident. Concretely, the data sets included a description of the incident (what),

the name of the company to which the cyber incident occurred (who) (N.B.: “Aggregation

incidents”14 separately list each company known to be impacted), the date when the incident

occurred (when), and when it was reported (when).

Table 1.3: Source Cyber Incident Dataset

Type Variable Information

What Description Description of the Incident
Incident Type Type of incident (extracted from Description if unavailable)

When Incident Date Date when incident occurred
Reporting Date Date when incident reported

Who Organization Name of the Organization which is attacked

14Aggregation Incidents: When single incident impacts many organizations simultaneously

28



Frequently, the name of the company varies from one data set to another; the data sets

could not be matched with string matching directly. An alternate approach of matching the

incident data sets with the firmographic data set was applied.

Limitations: Some events do not have an occurrence date listed; such events were excluded

from this analysis. There are also large spikes in event counts listed as having occurred on

January 1st (as observed in Fig. 1.2a), referred as “default date”. The default date was

assumed to be a default value when only the year of the event was known. These events

were therefore re-distributed proportionally throughout the year as shown in Fig. 1.2b but

excluded while developing the approach. Table 1.5 shows the number of incidents on the

default date re-distributed over the year of incident.

1.3.2 Firmographic Data

Table 1.4 shows the firmographic data set which include approximately 50 million businesses

in the US. The firmographic data set included information on geographic location, employee

count, industry, and revenue.

Table 1.4: Firmographic Dataset

Variable Information

Geographic Location Location where organization is based
Employee Count Number of employees in the organization
Revenue Revenue from the organization
Industry Name of the industry organization belongs to

The consolidation was done via a previously developed matching algorithm that examined

company name, industry classification (e.g., via NAICS15 codes), address information, and

any other fields common to both the cyber incident data set and the firmographic data set.

Incidents in distinct cyber incident data sets were identified as identical when they satisfied

two criterion in terms of firmographic and time of listing:

1. They were matched to the same company in the firmographic data set; and

15North American Industry Classification System
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2. They were listed as having occurred within 1 week of each other.

Table 1.5: Default Date Counts

Default Date Counts

Jan-10 830
Jan-11 1028
Jan-12 935
Jan-13 1168
Jan-14 965
Jan-15 1063
Jan-16 1076
Jan-17 793
Jan-18 287

1.3.3 Claim-exposure Data

More than 30,000 policies and their respective claims information from multiple insurers

were analyzed. The proprietary data is the collection of policies underwritten by insurers

and claim information if there exist claims against those policies. The dataset includes policy

ID , start and end dates of policy, claim ID, claim date, claim amount, incident description,

incident type (manually extracted from the incident description), employee count, geographic

location, industry, and revenue.

Table 1.6: Claim Policy Database

Type Variable Information

Policy ID Policy identification number
Start Date Start date of the policy
End Date End date of the policy

Claim ID Claim identification number
Date Date of the claim filed
Amount Amount paid against claim
Incident Description Details of the incident
Incident Type Extracted from incident description

Organization Employee Count Number of Employees
Geographic Location Location where insured organization is based
Revenue Revenue of insured organization
Industry Industry of insured organization
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(a) With Default Date (N=60380) (b) Adjusted for Default Date

Figure 1.2: Cyber Event Counts until December 2018
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Limitations: Some claims do not have policy numbers listed; such claims were excluded

from this analysis. The incident type information is extracted manually from the incident

description and is not an exhaustive list of incidents. There are certain claims that begin

as hacking or social engineering but eventually lead to ransom demand - such incidents are

classified as “ransomware”. The revenue information was frequently missing and this was

completed by either matching to the firmographic data set or, when employee counts were

available, estimating revenue based on employee counts and industry classification.

1.4 Contributions

All four problems stated in the context of reporting delays in section 1.2.1 are addressed in

the current research. Problems of under-reporting are currently under consideration.

1.4.1 Reporting Delays

The proposed solution “Debiased Delayed Distribution” algorithm addresses the reporting

delays, the first problem of empirical distribution from raw data being biased towards the

shorter delays. To be precise, delay and age histograms, h∆ and hA, are generated from the

raw data.

� Delay Histogram, h∆, depicts the frequency distribution of a given delay over the time

defined with range of bins.

� Age Histogram, hA, depicts the frequency distribution of a given age over the time

defined with range of bins.

The debiased delay distribution is then generated based on the ratio of the number of

events with the given delay to the best estimate of the true number of events where age,

a, is greater than or equal to delay, δ. Generating a debiased delay distribution with such

an approach resolved the first open research question of delay distribution being biased to

shorter delays.
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The second problem of non-stationarity is addressed by generating the monthly debiased

delay distribution over a two-year rolling window.

The third and fourth problems are addressed by fitting the modeled distribution on the

debiased delay distribution with the optimization function. To be precise, the virtue of

the fact that the modeled distribution is defined as a mixture distribution (combination

of exponential and normal distributions) addresses the third problem of estimating delays

beyond the longest delay in the data, δ > δmax. Although the debiased distribution is defined

on domain [0, δmax], the modeled distribution resulting from the mixture distribution has the

domain defined [0,∞) allowing the delays beyond age. The fourth problem of dependency

of longer delays on few data points is resolved by assigning weights to the certain terms of

the optimization function: giving lesser priority to the delays further in time as marginally

fewer number of events are anticipated with longer reporting delays.

1.4.2 Under-reporting

The existing research addresses the under-reporting problem from one aspect and does not

consider population characteristics which involve multi-dimensional aspects. The proposed

approach addresses the cyber domain attributes in terms of revenue, incident type and

industry. Initially, the proposed method models under-reporting correction factor as a

function of revenue. To address multi-dimension aspect, the approach proposes to find

the scalar multiplier for the revenue given incident type and revenue given industry. These

scalar multipliers are then multiplied to revenue correction factors to find the appropriate

corrections for revenue given incident type, and revenue given industry. Similarly, the

approach can be extended to three or more dimensions.

In addition, the results will make it easier for those in academia to create cyber risk models

from data sets of publicly known cyber incidents, without requiring access to claims data.
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Chapter 2

Correcting for Reporting Delays in

Cyber Incident

2.1 Abstract

With an ever evolving cyber domain, delays in reporting incidents are a well-known problem

in the cyber insurance industry. Addressing this problem is a requisite to obtaining the

true picture of cyber incident rates and to model it appropriately. The proposed algorithm

addresses this problem by creating a model of the distribution of reporting delays and using

the model to correct reported incident counts to account for the expected proportion of

incidents that have occurred but have not yet been reported. In particular, this correction

shows an increase in the number of cyber events in recent months rather than the decline

suggested by reported counts. The cyber models, with corrected counts for reporting delay,

provides cyber modelers with better estimate of the true rate of incidents allowing them to

understand the current cyber risk landscape.

2.2 Introduction

With new attack vectors emerging regularly, the cyber security domain is evolving rapidly.

Hence, even the most up-to-date data cannot be considered complete. Cyber incidents take
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a long time to become known and even longer to appear in online databases if known at

all [131]. While some cyber events are known immediately after they occur, most events

are often reported many months or years after the event actually occurred, resulting in

biased data. As an example, Marriott’s major cyber incident occurred in 2014 but was

only reported in 2018 [126]. Major cyber events become headlines in leading newspapers

when reported publicly rather than at the time of occurrence. Smaller cyber events may

never be reported at all, or have extreme delays, as only public companies and those with

personally identifiable information may be obligated to report. Sometimes reporting can

take 5-10 years, for various intentional or unintentional reasons - failing to realize that a

cyber incident happened, failing to immediately determine the extent of accessed or stolen

data, or deciding not to publicize the incident for fear of reputation risk and consequent

financial impacts. As a result, reporting delays are often observed in historical cyber event

databases. These databases show a decrease in cyber incidents. In contrast to this, Coleman

et al. raised the concern that cyber incidents would remain undetected due to advanced

threat techniques [9].

Cyber risk modeling firms rely upon historical data to build their models, which are in turn

relied upon by cyber insurers for underwriting, portfolio management, and risk transfer.

To build robust loss estimation models for today’s evolving cyber world with state-of-the-

art techniques, the most recent and updated information is required, with as little bias as

possible. Correcting reporting delays in these databases is therefore a key requirement to

have trustworthy cyber insurance models. With the necessary corrections, one can then

properly examine temporal trends in the targeting of industries or in attacker tactics.

Harris, research from medical domain, described reporting delays as a statistical problem

for the first time [55]. Heisterkamp et al. and Brookmeyer and Damiano made

distributional assumptions and built linear/quadratic models whereas Cheng and Ford,

and Rosenberg suggested Poisson models [21][26][61] [62][63][114]. These model approaches

are easy to implement but assume stationary reporting delays and do not capture

trends. Downs et al., Morgan and Curan, Healy and Tillett, and Heisterkamp et al.

fitted exponential, integrated logistic and log-linear models to capture trends [30][31][59]
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[61][62][63][100]. Brookmeyer and Liao, Esbjerg et al., Gail and Brookmeyer, and Kalbfleisch

and Lawless applied conditional probabilities to capture trends but this resulted in

overfitting [23][35][43][74]. Lawless proposed a multinomial model with distributed random

effects based on Dirichlet/Poisson/Gamma distributions to capture trends in a timely fashion

but failed to handle longer delays [85].

Wang suggested maximum likelihood estimation (MLE) based on non-parametric and

semi-parametric approaches but with complete16 data [130]. Harris suggested correcting

COVID cases with an expectation-maximization (EM) algorithm and trained the model

with complete data to correct test data [57]. Weinberger et al. and White et al. proposed a

simpler method based on proportions but also required complete data to train [132][134].

Keiding and Moeschberger, Midthune et al., and Wang applied truncated models to avoid

random effects but require stable reporting delays [75][96][130]. Again, this approach requires

stationarity not in the delays but also in overall average in delays as well. Given the non-

stationary behavior in reporting delays, the stationarity assumption is not appropriate.

Bastos et al., Chitwood et al. and Hohle and An Der Heiden suggested a Bayesian and

hierarchical approach with Poisson and Negative Binomial distributions. This approach

is easy to implement but makes single distributional assumptions [15][27][65]. The single

distribution is not suffice to capture the reporting delays distribution as if behaves differently

for short-term and long-term.

Noufaily et al. suggested a log-likelihood approach with a truncation model that is data

driven but sensitive to the choice of three fixed reporting time steps at which the reports are

sent to the database [103][104].

Bastos et al. suggested a chain-ladder approach with spatio-temporal (locations) in counts

and co-variate effects, but this approach is sensitive to outliers [15].

Avanzi et al., Jewell, Zhao et al, and Zhao and Zhou investigated cyber claims data to

account for reporting delays from a capital reserving perspective [11][73][137][138]. This

16Complete data - No further events are expected to be reported with delays.
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problem is different from the one being investigated, since reporting delays in claims are due

only to detection delays.

As Brookmeyer and Liao stated, none of these approaches deal with delays longer than any

data previously reported and does not allow delays beyond the maximum delay in the data.

As a result, estimation of reported counts becomes challenging[23].

Most of the literature on reporting delays is found in the medical space whereas there is

no literature found in cyber space (to the best of our knowledge). This might be due to

unavailability of appropriate data or the cost associated to obtain the same. However,

Coleman et al. does examine both the distribution of the number of days to discover cyber

incidents and the number of days to disclose them [9].

The rest of this chapter is organized in five sections - Sec. 2.3 defines theoretical concepts used

in the proposed approach, Sec. 2.4 describes the proposed approach, Sec. 2.5 discusses the

problems faced during implementation, Sec. 2.6 discusses the interpretation of parameters,

corrections for reporting delays and their validation, and Sec. 2.7 discusses the conclusion.

2.3 Theoretical Concepts

2.3.1 Mixture Distribution

Hampel credited Tukey for suggesting a mixture of distributions - a weighted linear

combination of two distributions [129]. The mixture distribution is applied to address a

bimodal distribution where two distributions are linearly combined based on the proportion

of their explainability to describe the overall distribution [48]. In other words, overall

distribution is described with two distributions where the contribution of each distribution

gradually varies over time i.e. the distribution playing significant role initially plays minimal

role later and vice versa. Mathematically, a mixture distribution can be defined as shown in

Eq.2.1.

F (x) = wF1(x) + (1− w)F2(x) (2.1)
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where F1 and F2 are two linearly combined functions with weights w and (1− w).

The mixture distributions are applicable where different segments of the data are modeled

separately to capture different characteristics. Mathematically, it is easier to model two

individual components and provide better explainability than the overall distribution.

2.4 Proposed Approach

The proposed approach consists of estimating the reporting delay distribution, f∆, from the

empirical data. The algorithm builds on two concepts developed from incident and reporting

dates: Delay and Age.

� Delay, δ, refers to the difference between incident date and reported date, as shown in

Fig. 2.1a.

� Age, a, refers to the difference between incident date and most recent reporting date

irrespective of when the given event is reported, as shown in Fig. 2.1b.

(a) Delay

(b) Age

Figure 2.1: Concepts: Delay and Age

Using a debiased delay distribution, a corrected count of events with age, a, computed by

dividing the raw counts by F∆(a), where F∆(a) defines the proportion of events that are

reported within delay, δ, of less than age, a or, equivalently, the proportion of events that

are reported as of today (last reporting date/most recent reporting date). The debiased

delay distribution, f∆, is generated from the empirical raw data.
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Figure 2.2: Existing Solutions Vs Proposed Solution

2.4.1 Generating the Debiased Empirical Delay Distribution

Inspired from Brookmeyer and Liao, the proposed algorithm works on the limitation that

delay, δ, cannot be considered beyond age and hence only conditional distribution on delay

less than or equal to age, δ ≤ age, can be estimated [23].

The algorithm corrects the incident counts with the cumulative distribution function, F∆,

estimated from empirical data. The algorithm applies a top-down approach to estimate

the distribution “from the outside in”, accounting for the estimated proportion of events

that have occurred but not yet reported as the distribution being computed. Let Amax :=

maxi∈I Ai be the maximal age of any event in the data set. Also, let hA(a) be the number

of incidents of age a and let h∆(δ) be the number of incidents with delay δ. Formally, these

can be represented as shown in Eq.2.2 and Eq.2.3.

hA(a) = |{i ∈ I : Ai = a}| (2.2)

h∆(δ) = |{i ∈ I : ∆i = δ}| (2.3)

Then the delay distribution can be estimated as shown in Eq.2.4.

f∆(δ) =
h∆(δ)∑Amax

a=δ
hA(a)/F∆(a)

(2.4)
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Intuitively, the distribution is generated based on the ratio of the number of events with the

given delay period, h∆(δ), to the best estimate of the true number of events whose age is

old enough to be seen in the incident data set i.e. either the same delay period or more,∑Amax

a=δ
hA(a)/F∆(a).

The debiased delay distribution can be implemented as shown in Algorithm 1 or pictorially

Flowchart 2.3. The distribution is considered complete over [0, δmax].

Algorithm 1 Algorithm for computing the debiased empirical delay distribution

Input: The histograms, hA and h∆, computed as in Eqs. (2.2) and (2.3), respectively.

Output: The distribution f∆.

1: function ComputeDelayDistribution(hA, h∆)

2: Amax ← maxi∈I Ai

3: F∆(Amax)← 1

4: δmax ← maxi∈I δi

5: for δ ← Amax to δ = 0 do

6: den← 0

7: for a← δ to δmax do

8: den← den+ hA(a)/F∆(a) ▷ Computes denominator

9: end for

10: f∆(δ)← h∆(δ)/den ▷ Computes PDF

11: F∆(δ − 1)← F∆(δ)− f∆(δ) ▷ Updates CDF

12: δmax ← δ

13: end for

14: return f∆

15: end function
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Initialize: Amax = maxi∈I Ai

F∆(Amax) = 1

Assign ∆max = maxi∈I ∆i

δ ∈ [Amax, 0] (↓ order)

Assign den = 0

a = δ : a ∈ [δ, δmax] (↑ order)

Is a < δmax?

den = den + hA(a)
F∆(a)

Next a

f∆(δ) = h∆(δ)/den

F∆(δ − 1) = F∆(δ) − f∆(δ)

Update δmax = δ

Next δ

Yes

No

Figure 2.3: Delay Distribution

2.4.2 Why Debiased Delay Distribution

As discussed in Section 1.2.1, the direct estimation of delay distribution led to certain

problems.
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Biased to shorter delays

The first problem highlighted bias to shorter delays, whereas the third problem emphasized

on existing methods considering reporting delays, δ, until the age of the oldest incident, a,

in the data. Hence, this restricts the ability to estimate beyond age, a. Mathematically, the

problem of data being biased to shorter delays can be expressed as

δ ≤ a for given age, a (2.5)

Both the problems can be resolved if the delay distribution is stationary. The distribution

with stationarity allows the estimation of delays, δ, beyond the age, a. The proposed

approach in Algorithm 1 corrects this problem.

While Algorithm 1 provides a solution to the bias in shorter delays, it does not resolve the

assumption of stationarity - which may or may not be present.

Non-stationarity

From the discussion regarding the distributional stationarity, it is clear that stationarity in

reporting delays is a key requirement to estimate the delays, δ, beyond the age, a, with a

debiased delay distribution.

To test stationarity, the debiased delay distribution, using Algorithm 1, was generated

on two-year windows at different points of time. The given window collects events that

occurred within the given two-year period irrespective of when they are reported. The

first two-year window collected the events that occurred within the period Jan.,’10 to

Dec.,’12 (inclusive) and the second collected events within the period from Jan.,’14 to

Dec.,’16(inclusive). Both two-year windows collected events reported until Dec.’18. The

two debiased delay distribution plots, shown in Fig. 2.4, highlighted two problems: The

debiased delay distribution indicated the presence of a bimodal nature due to the existence

of two local modes in its structure- the bimodal nature also confirmed in Mandiant recently

in technical report (2022) [93]. The debiased delay distribution is found to be non-stationary,

which needs to be addressed; this is in line with problem 2 from Section 1.2.1.
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(a) Probability Distribution

(b) Cumulative Distribution

Figure 2.4: PDF and CDF of Delay Distribution generated for Dec.,’12 and Dec.,’16
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To explain the bimodal structure of debiased delay distribution, the modeled distribution

is described with two distributions. From Fig. 2.4a, the two distributions are selected

informatively based on the probability distribution of the debiased delay distribution:

exponential distribution and normal distribution. The exponential distribution is selected

for shorter delays, considering the initial PDF structure of the debiased delay distribution in

Fig. 2.4a. On the other hand, the normal distribution is selected for longer delays, considering

the later structure of distribution in Fig. 2.4a.

In order to deal with non-stationarity, debiased delay distributions are estimated monthly

over a two-year rolling window. The parameters of modeled parametric distribution is

estimated by fitting cumulative distribution. The empirical debiased delay distribution is

estimated with raw data with Algorithm 1 on each monthly two-year rolling window. For

each two-year window, a parametric modeled distribution is estimated using the optimization

algorithm where the parameters are computed such that it provides a good fit for the debiased

delay distribution, generated with Algorithm 1. It is important to note here that the modeled

delay distribution is restricted to the domain as of the debiased delay distribution, i.e.

[0, δmax], where δmax is the maximum delay in the given window.

2.4.3 Generating the Modeled Delay Distribution

As mentioned in the previous section, the modeled delay distribution is determined by

matching the debiased delay distribution with the modeled delay distribution on the

specified domain [0, δmax]. Considering the PDF and CDF plots, Fig. 2.4 indicates that

a single distribution will not suffice; rather, a bimodal distribution is required. Multiple

distributions were fitted on the debiased distribution.Finally, the mixture of two distributions

selected based on Kullback-Leibler divergence test17: Exponential and Normal distributions.

Mathematically, the selected bimodal distribution can be expressed in terms of mixed

17A statistical distance to measure how one probability distribution differs from the other [80][92].
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distribution, as shown in Eq. 2.6.

Fθ(δ) = αFExp(δ, Scale) + (1− α)FN(δ, µ, σ) (2.6)

where FExp = Exponential CDF with parameter, Scale = 1/λ

FN = Normal CDF with parameters, µ and σ

Notice here parameter λ is the Exponential distribution parameter and refers to the constant

average rate at which the events occur. The parameter λ is different from the lagrange

multiplier mentioned earlier in Section 1.1.1 in context of AIDS study by Cheng [26].

Perfect Scenario: Under the perfect scenario, α-parameter is expected to be 1 where all

cyber incidents are detected immediately but take time to get reported. As a result, Eq. 2.6

reduces to the exponential component and second part associated with normal distribution

reduces to zero.

Since debiased delay distribution is defined on domain [0, δmax] and Normal distribution is

defined on the infinite domain (∞,∞), the mixed modeled CDF needs to be adjusted to be

on the positive domain [0,∞). The CDF in Eq. 2.6 defined on [0,∞) can be expressed as

shown in Eq. 2.7.

Fθ(δ) =
α(FExp(δ, Scale)) + (1− α)

Truncated Normal Distribution until δ︷ ︸︸ ︷
(FN(δ, µ, σ)− FN(0, µ, σ)

α + (1− α) (1− FN(0, µ, σ)︸ ︷︷ ︸
Truncated Normal Distribution over [0,∞)

0 ≤ δ ≤ ∞ (2.7)
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Furthermore, the corrected empirical delay distribution, denoted as F
′

θ , defined on domain

[0, δmax], in terms of Eq. 2.6 can be expressed as shown in Eq. 2.8.

F ′
θ(δ) =

α(FExp(δ, Scale)) + (1− α)

Truncated Normal Distribution until δ︷ ︸︸ ︷
(FN(δ, µ, σ)− FN(0, µ, σ)

α(FExp(δmax, Scale)) + (1− α) (FN(δmax, µ, σ)− FN(0, µ, σ)︸ ︷︷ ︸
Truncated Normal Distribution over [0, δmax]

0 ≤ δ ≤ δmax

(2.8)

The bimodal nature of the reporting delay distribution is a combination of two distributions

where the exponential distribution estimates the events discovered almost immediately, and

the normal distribution estimates events with longer delays due to both discovery time and

public disclosure time. The parameter, α, can therefore be interpreted as the proportion

of events that can be discovered right away by the organization but are yet to be reported.

Since the modeled delay distribution defined on domain [0, δmax], the normal distribution

is truncated from both sides (it is defined on the infinite domain (−∞,∞), whereas the

exponential distribution is truncated from only one side (it is defined over the positive

domain [0,∞)).

2.4.4 Defining the Optimization Function

There are specifically two challenges in defining an optimization function in this space.

� Multiple combinations of parameters exist that give approximately the same distribu-

tion when restricted to the domain [0, δmax] but vary considerably when the differing

weight of total distribution is considered in the unrestricted positive domain.

� Due to the shrinkage of data in recent two-year windows, the optimization algorithm

provides increasingly unstable estimated parameters.

The optimization function used is shown in Eq. 2.9. The first term18 ∥ log10 F ′
θ − log10 F∆∥2

reduces the CDF difference between debaised empirical delay distribution and modeled

distribution over the domain of the window [0, δmax]. The purpose of applying log10 weights

18F ′
θ defined in domain [0, δmax] computed as shown in Eq. 2.8
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is to give priority to the initial months while fitting the distribution. The rationale behind

log10, is to obtain CDF values close from the point of the ratio between the two distributions

(modeled and corrected empirical) and not in terms of absolute difference: log10 CDF

difference between 0.03 and 0.06 is substantially larger than a difference between 0.93 and

0.96 even though the absolute difference is equal.

As the first factor states, there exists multiple combinations of parameters providing a good

fit for the empirical debiased delay distribution but results in an overall bad fit on the domain

[0,∞). This problem is not of much concern when most of the distribution is defined and

captures delays beyond the second peak from a debiased delay distribution. However, it

becomes a significant concern when parameters for recent two-year windows are computed.

In order to avoid this, it is vital to capture modeled delay distribution beyond max in the

optimization function. The second term ∥ log10 Sθ − log10 Sθ′∥2 is introduced to ensure that

the consecutive modeled distribution parameters are consistent with each other beyond the

maximum delay, δmax. In order to deal with unstable parameters as we approach recent

months, another set of weights is assigned to the first two terms (Eq. 2.9), CDF matching

until and beyond max, to give priority to the CDF matching to the segment of the delay

distribution where the major part of the delay distribution is defined.

The third and fourth terms are penalizing terms - F 2
N(0, µ, σ) term penalizes for negative

delays introduced by normal distribution, whereas S2
θ (10Y ) term penalizes the delays beyond

10 years. Since the domain of normal distribution is defined over (−∞,+∞), it incorporates

negative delays which would not be possible so third penalizing term was included in the

optimization. The delays beyond 10 years are not expected so fourth terms was added to

the optimization function.
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Mathematically, the optimization is defined, as shown in Eq. 2.9.

θOpt = argmin
θ=(α,Scale,µ,σ)

δmax

δFix

∥ log10 F ′
θ − log10 F∆∥2︸ ︷︷ ︸

δ ∈ [0, δmax]

+

(
1− δmax

δFix

)
∥ log10 Sθ′ − log10 Sθ∥2︸ ︷︷ ︸

δ ∈ (δmax, δFix]

+ F 2
N(0, µ, σ)︸ ︷︷ ︸

δ < 0

+ S2
θ (10Y )︸ ︷︷ ︸

δ > 10Y ears

where δFix is the maximum value of δ in the dataset.

(2.9)

F ′
θ can be computed using mixed distributions as shown in Eq. 2.8. The CDF beyond δmax,

Sθ, defined as defined as complement of Fθ, defined in Eq. 2.7 over the domain [0,∞) and

can be expressed as shown in Eq. 2.10.

Sθ = 1− Fθ (2.10)

In Eq. 2.9, the second term reduces to zero in the absence of previous parameters at an

initial two-year window, as shown in Eq. 2.11.

∥ log10 Sθ′ − log10 Sθ∥2 = 0 (2.11)

θ′ refers to optimal parameters at previous step.

Optimizer

Considering the complexity of the optimization function in Eq. 2.9, it is not feasible

to compute the derivative. Hence, a derivative-free algorithm is required to solve the

optimization problem. The covariance matrix adaptation evolution strategy (CMA-ES) is

applied to compute the modeled distribution parameters. It is a derivative-free optimization

algorithm, and such algorithms are typically used when derivatives are difficult or costly

to compute [49][50][51]. Compared to other optimization methods, CMA-ES makes fewer

assumptions about the underlying objective function [52][53][54][112]. A number of real
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world problems are successfully resolved with this algorithm19. The approach requires neither

derivatives’ nor the functions’ values but ranks the potential candidate solutions to learn the

sample distribution. It is particularly applicable for ill-conditioned functions20.

Since the optimization problem involves estimation of modeled delay distribution parameters,

a small change in parameters has the potential to impact the solution considerably. CMA-ES

is an evolutionary algorithm with evolutionary computations which works on two concepts

- Maximum Likelihood (ML) and Evolution Paths (EP).

� ML finds the candidate solutions with high probability and looks for the incremental

step to further maximize the likelihood.

� EP has dual benefitwhile the covariance matrix allows for a quick variance escalation in

the desired direction, the step size control may prevent convergence until the optimal

solution is found [10][49][50].

The Python package cma is used to implement the CMA-ES algorithm [51].

2.4.5 Compute Correction Factors

The proposed algorithm, Algorithm 2, estimates a series of parametric reporting delay

distributions generated from data. The modeled delay distribution is computed based on

parameters generated on a corrected delay distribution from the optimization Eq. 2.9. The

distributional parameters are extracted from monthly rolling delayed distributions generated

over two-year windows. Although the entire distribution is fitted, only one point from the

distribution is used to obtain the correction factor for age computed for a given month w.r.t.

the most recent reporting date in the data.

19CMA Applications webpage lists various real world problems published until 2009
20The function where small change in the inputs can bring large change in solutions.
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Algorithm 2 Algorithm to compute the correction factor for given month

Input: Delay Distribution for the given two-year window(f∆), Start date of the window (d),

Start & end dates of entire dataset (DS, DE) and previous parameters (θ).

Output: Correction Factor (CF)

1: function ComputeCorrectionFactor(h∆, d, DS, DE)

2: δFix = δ(DS, DE) ▷ Days between DS and DE

3: δmax = δ(d,DE) ▷ Days between d and DE

4: θOpt ← Optimize(F∆, θFix, θmax, θ
′) ▷ CMA-ES Optimization, Eq. 2.9

5: age = δmax

6: CF =
FθOpt

(age)

FθOpt

▷ Truncated CDF on [0,∞)

7: return CF

8: end function

Fig. 2.5 shows the correction factors for year 2017(Fig. 2.5a) and 2018 (Fig. 2.5b) for US

market.

The debiased counts are computed with the CDF of the modeled distribution defined over

a positive domain [0,∞). The modeled CDF defines the proportion of the events, which are

reported until the age gap. The corrected counts for a month, m, are computed as shown in

Eq. 2.12.

Corrected Count for month, ‘m’ =
Reported Counts for month, ‘m’

Fθ(a)
(2.12)

where a is age of the given month, ‘m’.

2.5 Implementation Problems

2.5.1 Optimization Function

The first attempt to optimize the function, showed in Eq.2.9, was based on ∥F ′
θ − F∆∥2,

however a significant portion of the parametric distribution is shifted to the left due to
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(a) For data collected until 2017 (b) For data collected until 2018

Figure 2.5: Correction Factors for US
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the impact of the normal distribution defined over (∞,∞). As the mean parameter of the

normal distribution moves to zero and the standard deviation increases, the distribution

gets shifted below zero. However, the distribution below zero is ignored, and the truncation

simply redistributes any part of the normal distribution that has a negative reporting delay

to the rest of the distribution. To minimize the impact, the solution is to add a penalty

term for the portion of the distribution that is below zero. One could easily set the negative

values as zero but it is not appropriate as it would impact the CDF value in the optimization

function, resulting in unexpectedly higher values at zero. The second attempt included the

inclusion of term F 2
N(0, µ, σ). So, the squared CDF term for the untruncated distribution

evaluated until zero was included. The purpose behind inclusion of F 2
N(0, µ, σ)) term is that

the normal distribution has an infinite support, and to make an approximation small for

delays below zero δ < 0. On the contrary, if the approximation is not small, then that would

indicate the model itself is wrong. In the current scenario, the optimizer provides radically

different parameters that give approximately the same values, so the model is correct, but

the appropriate set of constraints are not placed in the optimization problem.

The inclusion of (Sθ′ − Sθ)
2 term, beyond δmax, helps in two ways. First, it minimizes the

distribution defined beyond δmax where Sθ = 1−Fθ and θ′ is the previous month’s optimized

parameters. Second, it ensures that the estimated Sθ′ beyond δmax based on the previous

month is in line with the current month estimated Sθ beyond δmax. Despite all corrections,

the distribution fit, based on the shape of optimization function (Eq. 2.9), was lower than

expected for the most recent months. Another attempt was made with log10; this would

allow the algorithm to place more emphasis on a good fit for the first months weights for

first term, ∥F ′
θ − F∆∥2. This gave an acceptable fit but resulted in very high correction

factors.

The purpose of having log10 weights was to compare CDF values from a ratio perspective

rather than the absolute differences between the two distributions (parametric and empirical)

- log10 differences. The absolute difference between 0.03 and 0.06 is the same as between 0.93

and 0.96, whereas the absolute log10 difference between 0.03 and 0.06 is higher as compared
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to the absolute log10 difference between 0.93 and 0.96. The aim here is to give priority to

fitting CDF for shorter reporting delays as compared to longer ones.

All the above measures provided a good fit for the initial months where the CDF is defined

for most of the period, but not otherwise resulting provided unacceptably higher corrections

for recent period where CDF is defined for smaller period of time. Finally, another set of

weights were assigned to the CDF matching until and beyond δmax to give priority to the

CDF matching to the segment of the delay distribution where the major part of the delay

distribution is defined.

2.5.2 CMA-ES Optimizer: Initial set of values

The choice of initial parameters becomes challenging because optimization algorithms

frequently converge to different solutions when started from different initial conditions of

local minima. Sometimes the direction the optimization algorithm moves the solution to

is poor for some initial conditions but good for others. As a result, trying multiple initial

conditions is a common approach with optimization algorithms.

In the current study, multiple sets of initial parameters were selected and tested with all

converging to a similar solution. Finally, the simpler set of initial values was chosen.

2.6 Results

The objective of the experiment is to correct the cyber incidents for the reporting delays.

Monthly cyber incidents are collected from 2010 onward until certain year (2017 and 2018)

and corrected beyond the age of given data period. The proposed algorithm, Algorithm 1,

was used to compute corrected delay distribution. The corrected count of events with given

age, a, are computed by dividing the raw counts by the proportion of events that are reported

within delay, δ, of less than age, a, F∆(a). The approach is validated by correcting 2017

event counts for a year ahead against 2018 counts and 2018 year ahead counts against 2019

counts.
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The year ahead corrections for month, m, can be computed by modifying Eq. 2.12, as shown

in Eq. 2.13.

Year Ahead Correction(m) = Counts(m)× Fθ(age+ 360)

Fθ(age)
(2.13)

2.6.1 US level Corrections

Fig. 2.6 shows two examples of plots comparing PDFs of the fitted parametric modeled

distribution, its truncation to the domain [0, δmax], and the debiased empirical delay

distribution. Fig. 2.6a shows this comparison for the two year window starting from July

2012 until June 2016 and Fig. 2.6b shows this comparison for the most recent window starting

from January, 2017 until December 2018.

2.6.2 Parameters and Interpretation

Fig. 2.7 shows the parameter plots of the delay distribution generated for each monthly two

year rolling window.

The alpha plot (Fig. 2.7a) suggests that the organizations discover 8-18% of cyber events

right away (8% ≤ α ≤ 18%).

The scale plot (Fig. 2.7b) suggests that the short delays modeled by the exponential

distribution had a mean of less than 60 days delay until early 2016 but increased rapidly to

around 140 days in early 2018.

The normal distribution mean, µ, (Fig. 2.7c) and standard deviation, σ, (Fig. 2.7d) parameter

plots suggest that the longer delays modeled by the normal distribution remained consistent

over time. The period of longer delays remain consistent varying within a10% range. At

90% confidence level, the longer delays are expected to range between 1.4 to 9.4 years

approximately. Since the parameters µ and σ are computed monthly for 2-year rolling

period, the confidence bounds at the given confidence level, c, are computed with truncated

normal distribution, as shown in Eq. 2.14 and Eq. 2.15.
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(a) From July 2012 to June, 2014 (b) From January, 2017 to December, 2018

Figure 2.6: Comparing PDFs of Debiased Delay Distribution with Parametric Modeled
Distribution
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Lower Limit(t) = F−1
N

(
F0 + (1− F0)

1− c

2

)
= F−1

N

(
1− (1− F0)

1 + c

2

)
(2.14)

Upper Limit(t) = F−1
N

(
F0 + (1− F0)

1 + c

2

)
= F−1

N

(
1− (1− F0)

1− c

2

)
(2.15)

where F0 = FN(δ = 0) = N(0, µt, σt)

c is the confidence interval

FN is the normal distribution function

(a) Alpha Parameter (b) Scale Parameter

(c) Mean Parameter (d) Sigma Parameter

Figure 2.7: Plots of Modeled Distribution Parameters based on Empirical Debiased Delay
Distribution

Fig. 2.8 shows lower and upper bounds for the longer delays over the period of time.
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Figure 2.8: Lower and upper bounds for longer delays in US

2.6.3 Corrections and Validation

Fig. 2.9 shows the corrected incident counts based on the proposed methodology. Figs. 2.9a

and 2.9b show the corrected counts for the events reported by Dec. 2017 and by Dec. 2018,

respectively. Although the corrections follow similar trends in both, the correction factors

vary substantially.

To validate the proposed algorithm, the counts reported until December 2018 were corrected

for a year ahead and compared against the counts reported as of December 2019. Notice 1

Year = 360Days, computed based on 30 days per month in a year, the 30/360 convention is

chosen to allow uniform discretization among bins of delays and age.

The year ahead correction factor is computed as shown in Eq. 2.16.

Year ahead Fθ(a, a+ 1 Y ear) =
Fθ(a)

Fθ(a+ 1 Y ear)
(2.16)

where a is the age of the event counts being corrected.

Whereas the 2017 year ahead corrections (Fig. 2.9a) initially show close agreement with

the 2018 counts, more recent year ahead corrections underestimate the 2018 counts. On
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the other hand, the 2018 year ahead corrections (Fig. 2.9b) generally overestimate the 2019

counts, except for the most recent months, which show close agreement. As stated earlier

in subsection 2.4.4, the debiased empirical delay distribution has fewer data points for more

recent two year windows so weights of (δmax/δFix) and (1−δmax/δFix) are used in the optimization

function to dynamically adjust the weight given to the CDF before and after δmax respectively.

By removing these weights, better estimates for recent months might be obtained but would

come at the cost of more parameter instability and worse validation plots (overfitting). In

either Fig. 2.9a or Fig. 2.9b, the corrected counts (dashed line) show a trend of increasing

incident counts since 2016, which is contrary to the diminishing trend seen in the raw counts.

The trend in corrected count is therefore much more in line with reports from insurers and

other organizations that release reports on cyber risk.

2.7 Conclusion

This work examined the long known problem of reporting delays in historical cyber events

databases and proposed an algorithm to correct these delays. Interestingly, the true

distribution of reporting delays appears to be bi-modal, which we have interpreted as a

mixture of two distributions: one for incidents that are discovered immediately, modeled

by an exponential distribution, and one for incidents that are not immediately discovered,

modeled by a normal distribution. With this form of reporting delay distribution, we

obtained non-stationary modeled delay distributions via optimization. These modeled delay

distributions were used to estimate the total number of cyber incidents that will eventually

be reported from the current counts. The approach was validated by estimating year ahead

corrections.

To understand the current cyber threat landscape and to create robust cyber risk models, one

needs accurate historical data. While it is not possible to get the exact count of cyber events,

the proposed algorithm aims to correct for reporting delays approximately. The reported

cyber incident counts in recent times show a decreasing trend simply because incidents have

not been reported yet, even though they have actually already occurred. However, in reality,

the rate of cyber incidents is increasing, and that is what the algorithm reveals.
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(a) 2017 corrections Vs 2018 cumulative counts (b) 2018 corrections Vs 2019 cumulative counts

Until 201X - Counts reported as of 201X adjusted for the default date of January 1, proportionally
201X Corrected - “Counts until 201X” corrected based on Eq. 2.12
201X Corrected Year Ahead - “Counts until 201X” corrected based on Eq. 2.16

Figure 2.9: Validation Plots
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Chapter 3

Modeling reporting delays in cyber

incidents: an industry level

comparison

3.1 Abstract

Reporting delays in cyber incidents are a common problem. Incidents often take time to

be detected and even more time to be reported. Due to reporting delays, the proportion of

recent incidents to have been reported is smaller than for older incidents, resulting in the

false impression of a diminishing frequency of cyber incident counts in recent years when

examining databases of (publicly) reported cyber incidents. Obtaining an accurate view

of the true trend therefore requires correcting for reporting delays. Complicating matters

is the fact that the distribution of reporting delays differs from industry to industry. This

paper investigates four distinct US industries, as defined by the NAICS classification system:

Finance and Insurance, Educational Services, Health Care and Social Assistance, and Public

Administration. This paper presents a method of modeling and correcting for cyber incidents

reporting delays overall and by industry, with specific emphasis on the four distinct industries
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listed above. Finally, this work compares the derived reporting delay models, which show

differences in reporting delays from one industry to another.

3.2 Introduction

Cyber incidents are a global concern irrespective of region, industry, incident type or

public/private sector categorization [2]. It frequently takes months or years to detect cyber

incidents and further time before they are reported [9]. These reporting delays make any

analysis of trends in incident rates from publicly reported data sets a challenge. A recent

study contended that it is even more challenging to detect incidents now with attackers

using advanced state-of-the-art techniques [9]. Because of reporting delays, the proportion

of incidents that are publicly known is smaller for recent incidents than older ones, causing the

appearance of a diminishing trend in incident rates when incidents are in reality increasing.

Cyber insurance models are built in part from this incomplete data and, hence, their

credibility requires correcting cyber incident counts for the problem of reporting delays. The

disclosure of cyber incidents depends on disclosure requirements that can vary by location,

industry and inspecting regulatory agency [9]. In addition, various organizations prefer not

to disclose cyber incidents, fearing reputational damage which could eventually result in

lost business. For these and other reasons, cyber incidents frequently have reporting delays.

Furthermore, the distribution of these delays differs from one industry to another [115].

Hence, it would be erroneous to apply the same correction factors to all industries when

estimating true incident rates.

Most of the research in reporting delays has been in the medical domain. Brookmeyer and

Liao(1990) mentioned that the existing methods only consider delays less than or equal to

the maximum age of incidents in the data [23]. That is, they take the oldest incidents to be

fully reported. Harris(1987) categorized reporting delays as a statistical problem [55]. Some

researchers assumed incidents to be Poisson distributed and some fitted statistical models

but failed to capture trends [21][26][61][62][63][114]. Others suggested exponential, integrated

logistic and log-linear models to capture trends [30][31][59][61][62][63][100]. Brookmeyer and

Liao, Gail and Brookmeyer, Kalbfleisch and Lawless and Esbjerg et al. applied conditional
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probabilities but this resulted in over-fitting [23][35][43][74]. White et al. and Weinberger

et al. suggested proportions and Wang proposed a semi-parametric approach with maximum

likelihood estimation (MLE), but both approaches require complete21 data [130][132][134].

Sangari and Dallal introduced an approach based on debiasing the empirical delay

distribution (Fig.2.3) and fitting a modeled distribution to it [119]. There are two main

advantages to the approach: it considers delays beyond the maximum delay observed in the

data set, δmax; and it captures trends which are yet to be seen in the reported counts.

This paper applies the debiased delay distribution approach independently to four industries

and investigates differences in the resulting models of reporting delays [119]. Section 3.3

describes the data. Section 3.5 presents the parameters and implied correction factors of the

reporting delay models for each industry and for the US as a whole. Section 3.6 concludes

the comparative study.

The following terminology will be used throughout this paper:

i: An incident

I: The set of all incidents

delay, δi: Time period between incident and reporting dates

age, Ai: Time period between incident date and last incident reporting date in the data

f∆: Probability density function (PDF) of the delay distribution

F∆: Cumulative distribution function (CDF) of the delay distribution

3.3 Data

The proprietary data set used consists of a collection of more than 140,000 publicly reported

historical incidents over a period of decades. The incidents in this data set were gathered

via numerous collection methods, including scraping of technology and news websites,

securities exchange commission (SEC) filings, and other sources. An aggregated data set

was constructed by combining historical incident data sets with a proprietary data set of

21No additional incidents are expected to be reported
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companies that includes, among other things, their name, location, industry, and revenue.

This study is done on the incidents collected in the decade from 2010-2019. The cyber

incident data is comprised of incident information providing: an incident description, the

name of the affected organization, the organization’s industry code as defined by the NAICS

classification system, and the occurrence and reporting dates. In the absence of an exact

incident date, incident dates are listed as January 1 of the incident year. Records with such

a default date were excluded before analyzing the data.

Analysis of these data was completed first on all incidents overall, and then by each of

the four specific industry classifications: Finance and Insurance (FnI), Educational Services

(ES), Health Care and Social Assistance (HnS), and Public Administration (PA). Fig.3.1

shows incident counts for each industry.

Total number of US cyber incidents = 72,835

Figure 3.1: Number of Cyber incidents across industries between 2010-2019
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3.4 Why Industry Level Comparison

Rosinska et al. suggested that the trends vary between categories [115]. They recommended

that the overall distribution fit might not be applicable to individual sectors/industries/-

places, so each and every category needs to be modeled individually. The regulatory

requirements across the location and industry often impacts the reporting of cyber

incidents [9]. In addition, reputational damage and losing business are also contributing

factors that various organizations opt not to report incidents. Such reasons result in frequent

reporting delays. Moreover, the reporting delays vary across various industries [115]. Hence,

applying same correction factors to all industries to estimate true incident rates would not

be fair.

The frequency distribution of cyber events within four major industries of the US market

collected until 2019 is shown in Fig. 3.2. These frequency distributions shows the counts

adjusted for the default date22 as mentioned in section 1.3.

3.5 Results

3.5.1 Industry Parameters

In this section, we present plots showing the evolution of the best fit modeled distribution

parameters α, Scale, µ, and σ over time, for the four industries of interest and the US as a

whole.

The alpha parameter plot (Fig. 3.3), representing the immediate detection rate, shows that

the overall US market detects 15-50% of cyber incidents right away. This immediate detection

rate increased overall and all four modeled industries have higher values for this parameter

than the US market as a whole in recent years. (N.B.: The US parameters are based on all

industries, not merely the four separately modeled ones shown here.) For the US market,

the increasing trend starts by the end of 2016 or the beginning of 2017. This jump coincides

with a substantial increase in the frequency of ransomware incidents. However, three of the

22When the occurrence date is not known, the incident date is set to the default date on January 1 of the
given incident year; such incidents are proportionally distributed among all 12 months
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(a) Finance and Insurance (N = 18337) (b) Educational Services (N = 3784)

Figure 3.2: Adjusted Counts for four major industries collected until 2019
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(c) Health Care and Social Assistance (N = 7935) (d) Public Administration (N = 4186)

Figure 3.2: Adjusted Counts for four major industries collected until 2019

66



four industries show an increase starting years earlier. While this parameter increased by

a factor of 12 for the FnI industry, this should not be considered a real effect–such a jump

is observed in the other three optimal parameters too and is explained after the discussion

of the optimal scale parameter plot. However, other industries showed a more moderate

increase, by a factor of 1.6 to 2.5. Multiple interpretations are possible both for the overall

increasing trend and for the differences among industries. As for the large difference between

FnI and the other three industries prior to 2016, this may indicate that greater care was

taken by hackers of financial institutions to avoid timely detection of their intrusion, so as

to allow more time in which to make fraudulent purchases.

Figure 3.3: Plot of optimal Alpha parameter over time

The exponential scale parameter plot (Fig. 3.4), representing shorter delays, suggests that

the time for US companies to report cyber incidents that were immediately detected was

quite short until 2016–less than two months–but increased rapidly to 10 months by early

2018. Once again, the rapid increase seems to coincide with the substantial increase in the

frequency of ransomware incidents that occurred starting around 2016 [86]. This explanation

is plausible, since reporting requirements have traditionally been focused on incidents of data

67



compromise. However, the increase starts much earlier in HnS industry, and only a weak

increase is seen for PA and ES industries.

Figure 3.4: Plot of optimal Scale parameter over time

As for the FnI industry, the optimization algorithm struggled to fit parameters beyond Q1

2016 appropriately. Indeed, a sudden change in parameters is observed for the FnI industry

in all four parameter plots for the July 2016 two-year window23. Figures 3.5 and 3.6 present

the debiased empirical delay distributions for the two-year windows before and after the

sudden parameter change. Contrary to the mild changes between the two plots (Fig. 3.5

and 3.6), there is an unanticipated shift noticed in the parameters. This suggests that the

optimization function is switching from one local minimum to another, resulting in radically

different parameters. This impacted the scale parameter immensely, which is observed in

Table 3.1 and Fig. 3.4. The other three parameters also shift to compensate, though less

dramatically than the scale parameter, as can be seen in Table 3.1.

Despite a substantial change in parameters, there is only a very subtle change in the objective

function (Eq. 2.9) values observed, as shown in Table 3.2. Table 3.2 confirms that the set

23This corresponds to incidents that occurred from August 2014 through July 2016
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Table 3.1: Optimal Parameters

Parameters Jul.’14-Jun.’16 Aug.’14-Jul.’16

Alpha(α) 0.07 0.27
Scale 86.64 600.00
Mean(µ) 1452.05 1617.75
Sigma(σ) 798.56 742.18

Table 3.2: Optimization function values

Debiased Delay Distribution

Parameter used θ = [α, Scale, µ, σ] ↓ Jul.’14-Jun.’16 Aug.’14-Jul.’16

Jul.’14-Jun.’16 θ = [0.07, 86.64, 1452.05, 798.56] 1.0771 1.0768
Aug.’14-Jul.’16 θ = [0.27, 600, 1617.75, 742.18] 1.0642 1.0640

of optimal parameters is actually a good fit for the Aug.,’14-Jul.,’16 window. However, the

optimization algorithm failed to find the best possible parameters for the Jul.,’14-Jun.,’16

window.

Essentially, the mixture of an exponential and a normal distribution ceases to fit the data

for the FnI industry for the two-year windows ending in the range of months from July

2016 until approximately June 2018. Afterwards, the parameters gradually drift back to the

range of values seen for the US as a whole and the other three industries. It should be noted,

however, that there is no substantial change in the computed correction factor itself between

June and July 2016 (Fig. 3.10).

The normal distribution mean (Fig. 3.7) and standard deviation (Fig. 3.8) plots, representing

longer delays, indicate that the distribution of reporting delays for incidents not immediately

detected is fairly consistent over the period of time considered, both for the four industries

examined and the US market as a whole. 90% of the longer reporting delays ranged between

one to eight years for the ES, PA and HnS industries and between one to nine years for the

FnI industry and the US market.
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Figure 3.5: PDF comparison for period July, 2014 to June, 2016

Figure 3.6: PDF comparison for period August, 2014 to July, 2016
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Figure 3.7: Plot of optimal Mean parameter over time

Figure 3.8: Plot of optimal Sigma parameter over time
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3.5.2 Reported Counts Proportion

Fig. 3.9 shows the modeled proportion of incidents, Fθ, that have been reported as of the end

of 2019, as a function of incident occurrence date. As expected, the proportion of incidents

is close to one in the beginning, indicating that not many more older incidents are expected

to be reported in the future. For ease of interpretation, horizontal lines are included to

mark the estimated point in time where fewer than 1/2, 1/3, and 1/5 of incidents have been

reported. This shows a marked difference between the FnI industry and the US as a whole

on the one hand, and the ES, PA and HnS industries on the other: even as far back as

early 2016, only half of incidents in the FnI industry and for the US as a whole have been

reported by the end of 2019, whereas the corresponding point in time is late 2018 for the

ES, PA and HnS industries. The modeled reporting proportions hit 33.3% in early 2019 for

the FnI industry and the US as a whole, but only in the third quarter of 2019 for the ES,

PA and HnS industries. From Eq. (2.12), we see that the correction factors are simply the

reciprocal of Fθ(a). Hence, the correction factor is expected to be highest as we approach

more recent months. The correction factors are shown in Fig. 3.10 and demonstrate the

expected pattern: higher correction factors for industries with longer reporting delays.

3.5.3 Validation

The corrections are validated by calculating year24 ahead corrections for the incidents

reported by a given year against the incidents reported by the next year. Fig. 2.9a and

Fig. 2.9b show the corrected counts of incidents for the US market reported by Dec.’17 and

by Dec.,’18, respectively. Despite the same directional movements, the correction factors are

considerably different.

Whereas the US 2017 year ahead corrections appear consistent with the by 2018 reported

counts initially, the corrections underestimated 2018 counts in recent months (Fig. 2.9a).

On the other hand, the 2018 year ahead counts are found to be consistent with the by 2019

reported counts in recent months but are an overestimate otherwise (Fig. 2.9b).

241 Y ear = 360Days, computed based on 30 days per month in a year
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Figure 3.9: Proportion of Incidents Reported by the end of 2019

Figure 3.10: Correction Factors
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For the FnI industry, the initial year ahead corrections for 2017 (Fig. 3.11a) and 2018

(Fig. 3.11b) are found to be consistent with 2018 and 2019 reported counts. Beyond mid 2014,

the 2017 year ahead corrections were an underestimate and the 2018 year ahead corrections

were an overestimate. The ES industry (Figs. 3.12a and 3.12b) also showed similar behavior

apart for the recent few months, where the 2017 year ahead corrections were an overestimate

and the 2018 year ahead corrections were an underestimate.

For the HnS industry, the year ahead corrections for 2017 (Fig. 3.13a) were initially

an overestimate and later an underestimate. However, the 2018 year ahead corrections

(Fig. 3.13b) were found to be within an acceptable range of 2019 reported counts. The year

ahead corrections for the PA industry (Figs. 3.14a and 3.14b) were found to be similar to

the HnS industry.

Despite variation in year ahead corrections at the industry level and for the US as a whole,

both the 2017 and 2018 full corrections (dashed lines) reflect an increasing trend in counts,

as expected [9].

3.6 Conclusion

In this research, we created models of reporting delays in US cyber incidents, comparing

four industry sectors–finance and insurance (FnI), educational services (ES), health care

and social services (HnS), and public administration (PA)–to each other and to the US as a

whole. The distribution of reporting delays was found to be bi-modal, with one peak at 0-30

days and a second peak occurring after more than five years. We have interpreted this as

a mixture of two distributions: one for incidents that are discovered immediately, modeled

by an exponential distribution, and one for incidents that are discovered later, modeled by

a normal distribution. Given the distribution of reporting delays, one can correct cyber

incident counts to account for the proportion of incidents that have occurred but not yet

been reported. As expected, these correction factors converge to one as incidents further

and further into the past are considered. For more recent incidents, significant variation

was found between the FnI industry and the US as a whole on the one hand, and the
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other three industries examined on the other. Specifically, the FnI industry showed a low

proportion of incidents which were immediately detected and longer reporting delays in

general. A possible hypothesis is that attackers took greater care to not be detected when

targeting financial institutions. Overall, the proportion of incidents which were immediately

detected has increased over time for the US as a whole and for the four particular industries

considered. This may be a sign that companies have gotten better at detecting intrusions

within a short time, or it may simply indicate a shift in attacker tactics towards “noisier”

attacks like ransomware. Ultimately, the problem of reporting delays is important to model,

both because of the insights to be gained from the perspective of cyber security and because

accounting for as yet unreported incidents is necessary for the construction of accurate cyber

risk models.
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(a) 2017 corrections Vs 2018 cumulative counts (b) 2018 corrections Vs 2019 cumulative counts

Until 201X - Counts reported as of 201X adjusted for the default date of January 1, proportionally
201X Corrected - “Counts until 201X” corrected based on Eq. 2.12
201X Corrected Year Ahead - “Counts until 201X” corrected based on Eq. 2.16

Figure 3.11: Validation Plots for Finance and Insurance Industry76



(a) 2017 corrections Vs 2018 cumulative counts (b) 2018 corrections Vs 2019 cumulative counts

Until 201X - Counts reported as of 201X adjusted for the default date of January 1, proportionally
201X Corrected - “Counts until 201X” corrected based on Eq. 2.12
201X Corrected Year Ahead - “Counts until 201X” corrected based on Eq. 2.16

Figure 3.12: Validation Plots for Education Services Industry77



(a) 2017 corrections Vs 2018 cumulative counts (b) 2018 corrections Vs 2019 cumulative counts

Until 201X - Counts reported as of 201X adjusted for the default date of January 1, proportionally
201X Corrected - “Counts until 201X” corrected based on Eq. 2.12
201X Corrected Year Ahead - “Counts until 201X” corrected based on Eq. 2.16

Figure 3.13: Validation Plots for Health Care and Social Assistance Industry78



(a) 2017 corrections Vs 2018 cumulative counts (b) 2018 corrections Vs 2019 cumulative counts

Until 201X - Counts reported as of 201X adjusted for the default date of January 1, proportionally
201X Corrected - “Counts until 201X” corrected based on Eq. 2.12
201X Corrected Year Ahead - “Counts until 201X” corrected based on Eq. 2.16

Figure 3.14: Validation Plots for Public Administration Industry79



Chapter 4

Modeling under-reporting in cyber

incidents

4.1 Abstract

Under-reporting in cyber incidents is a well-established problem. Due to reputational risk

and the consequent financial impact, a large proportion of incidents are never disclosed to

the public, especially if they do not involve a breach of protected data. Generally, the

problem of under-reporting is solved through a proportion-based approach, where the level

of under-reporting in a data set is determined by comparison to data that is fully reported.

In this work, cyber insurance claims data is used as the complete data set. Unlike most other

work, however, our goal is to quantify under-reporting with respect to multiple dimensions:

company revenue, industry, and incident categorization. The research shows that there is

a dramatic difference in under-reporting–a factor of 100–as a function of these variables.

The output of this work is an under-reporting model that can be used to correct incident

frequencies derived from data sets of publicly reported incidents. This diminishes the “barrier

to entry” in the development of cyber risk models, making it accessible to researchers who

may not have the resources to acquire closely guarded cyber insurance claims data.
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4.2 Introduction

Under-reporting is the problem of incidents being reported less often than the actual number

of incidents. It is a common problem and most commonly studied in medical field [64][122].

A particularly relevant example is a sudden outbreak of COVID cases globally. Most people

only get tested if they show symptoms or have been exposed to someone known to have

been infected. This results in an unrepresentative sample of the full population. Medical

studies are often based on a sample of patients considering the cost associated and difficulty

associated in obtaining complete census data [124]. Ideally, everyone should be tested for

COVID regularly but this would be prohibitively expensive. As a result, a less expensive

small but accurate data set is a practical solution. The small data set would be obtained by

appropriately sampling a portion of the population. This results in a sample that is unbiased

by design.

The Cybersecurity field has struggled with the problem of under-reported cyber incidents.

As a result, it is difficult to get an accurate estimate of the true number of cyber

incidents impacting US organizations, or to accurately estimate total losses from these

incidents. Organizations are reluctant to report cyber incidents since they directly impact

businesses in terms of reputation and financial impact.. In addition, there is a belief

that attackers will never be caught, so victims consider incident reporting a waste of

time [24][37][46][95][117][125].

Correcting for under-reporting in data sets of publicly reported cyber incidents is necessary

when building models from data that is typically included in these data sets, but not

frequently included in claims data. This includes, for example, the number of records lost in

data compromise events. As will be shown, cyber incidents impacting small companies

are more under-reported than those impacting large companies. Since the number of

records compromised and associated cost are typically higher for incidents impacting large

companies, this skews the distributions that are directly constructed from data sets of

publicly reported incidents [113].This is similar to the problem noted in the context of road

accidents being under-reported where under-reported crash data is corrected from hospital

data [33].
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Brookmeyer recommends excluding under-reported data [22]. However, Wood et al. stated

that this would lead to biased statistical models [135]. Elvik and Mysen argued that under-

reporting contributed to incomplete data sets and results bias towards the reported data [33].

There are many studies found in the medical domain addressing under-reporting [64]

[122]. The level of under-reporting in a data set is estimated by comparing it with fully

reported but small data [1][3][4][6][8][12][13][18][19][25][29][32][33][40][41][47][60][66][69][71]

[76][82][83][87][89][91][94][98][99][101][107][108][109][118][123][135]. More than 85% of the

literature applied a proportions approach comparing small reported records against large

population data. While this approach is easy to implement, it is difficult to obtain reliable

data.

Hirvonen et al. studied under-reporting and trends in dietary data to evaluate energy level

and found that women and over-weight individuals often under-report their food intake [64].

They applied logistic regression, which was easy to implement but results in concerns over

the accuracy of the independent predictors. Lissener et al.performed a similar study but

only on women data. They applied multiple regression with various combinations of body

composition factors as an independent predictor and computed the range of under-reporting

level with the mean daily weight change and standard error of mean(SEM25) [88]. Again,

the approach was simple but obtaining such data from individuals can prove difficult.

Hazell and Shakir collected 37 different studies on adverse drug reactions. They estimated an

under-reporting level as the median of the inter-quartile range [58]. This is the most simplistic

and quick approach but it is difficult finding research with under-reporting estimates.

Krantz et al. studied COVID-19 data before its first peak and proposed a new method

of harmonic analysis and wavelets to compute the level of under-reporting [78][79]. This

approach develops complete data from incomplete partial data but involves complex

mathematical models and is computationally intensive.

25SEM = σ√
n
, where n is sample size
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The proposed method models an under-reporting correction factor as a function of population

characteristics. The study shows that there are extremely large differences in correction

factors observed as a function of these variables.

This work presents parameters of a model of under-reporting. The frequency of cyber

incidents of different types changes rapidly as attacker tactics evolve. However, the level

of under-reporting of these cyber events is expected to change more slowly, as this would

be primarily a consequence of legal changes. In the US, applicable laws are typically at the

state level, making large changes in the level of under-reporting at the national level less

likely. Therefore, the model of under-reporting presented here should have continued value

for longer than a model of event frequency.

The model of under-reporting presented here is constructed by joining a number of

proprietary data sets (see Section 4.3). All the constituent data sets are commercially

available, with the exception of the claims and policy data. It is the intent of the authors

for the results of this work to be used in conjunction with commercially available historical

incident data sets and firmographic data sets in order to build unbiased cyber models without

requiring access to claims data. Providing this model of under-reporting to the academic

community should therefore help lower the barrier to entry in the development of cyber

models by eliminating the need to acquire claims and policy data.

4.3 Data

Two proprietary data sets are used for this study – claim-exposure data, which is a small,

unbiased and statistically representative, and historical incident-IED26 data, which is a large

but biased and statistically unrepresentative. The proprietary claim-exposure data is the

collection of more than 30,000 US policies under-written by multiple insurers and claim

information if there exists claims against those policies. The data set includes policy ID,

start and end dates of policy, claim ID, claim date, claim amount, incident description,

26IED stands for Industry Exposure Database
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incident type (extracted from the incident description), employee count, geographic location,

industry, and revenue.

The proprietary historical incident-IED data set consists of a collection of more than 140,000

publicly reported historical incidents in the US over a period 2012-2019. The incidents

in this data set were gathered via numerous collection methods, including scraped from

technology and news websites, Securities Exchange Commission (SEC) filings, and other

sources. An aggregated data set was constructed by combining historical incident data

sets with a proprietary firmographic data set of companies that includes, name, location,

industry, and revenue.

4.4 Methodology

The proposed approach aims to construct a model of under-reporting in cyber incidents as

a function of revenue, incident type and industry. A model of event frequency as a function

of company revenue, industry, and incident type is obtained for both the claims-exposure

data set and the historical incident-IED data set. An under-reporting factor is computed as

a ratio function of these variables.

Due to insufficient data, when examining combinations of revenue, industry, and incident

type, separability of the models is assumed. That is, the incident frequency for a combination

of variables can be expressed as a product of functions of a single variable each [133]. First,

under-reporting corrections are computed as a function of revenue as shown in Eq.4.1.

Assuming the revenue corrections are correct, the under-reporting corrections for revenue

given incident type are computed as function of revenue and incident type as shown in

Eq.4.2. Similarly, the under-reporting corrections for revenue given in any industry are

computed as function of revenue and industry as shown in Eq.4.3. Extending further, the

under-reporting corrections for revenue given incident type and industry can be computed as

function of revenue r, incident type t, and industry i, as shown in Eq.4.4, assuming revenue
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and incident type corrections are correct.

Function of revenue: UR(r) (4.1)

Function of revenue and incident type: UR(r, t) = UR(r)× UR(t) (4.2)

Function of revenue and industry: UR(r, i) = UR(r)× UR(i) (4.3)

Function of revenue, incident type and industry: UR(r, t, i) = UR(r)× UR(t)× UR(i)

(4.4)

4.4.1 Revenue based corrections

The factor UR(r) is computed based on the proportion of frequency of revenue from claim-

exposure data, freqCE(r), and historical incident-IED data, freqInc−IED(r), as shown in

Eq.4.5.

UR(r) =
freqCE(r)

freqInc−IED(r)
(4.5)

For claim-exposure data, the revenue frequency, freqCE(r), is computed as the ratio of

number of claims and the sum of policy years of the policies under-written for companies

with given revenue r, as shown in Eq. 4.6. The policy year refers to the time period, in years,

policy is written for.

freqCE,raw(r) =
Claims(r)∑

p∈Pr
Policy Y ears(p)

(4.6)

where Pr refers to policies written for companies with revenue r

For historical incident-IED data, the revenue frequency, freqInc−IED(r), is computed as ratio

of number of incidents and the number of companies with given revenue r, as shown in Eq.4.7.

freqInc−IED,raw(r) =
Incidents(r)

N(r)
(4.7)

where N(r) is the number of organizations with revenue, r.
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These revenue frequencies are taken on the log10 scale and smoothed over the rolling window

of size d. The smoothed revenue frequency, freqSmooth(log10 r), is computed as an average

of frequencies in the range of revenue, (log10 r − d, log10 r + d).

Considering the trends of revenue frequency shown in Fig.4.1, the exponential function is

fitted on revenue of claim exposure (Fig.4.1a) and polynomials, with revenue frequency on

log10 scale, fitted on historical incident-IED data (Fig.4.1b). In both functions, revenue is

considered on log10 scale. However, the issue is more noticeable in historical incident-IED

data. For historical incident-IED data, the revenue frequency on log10 scale is preferred

considering the concentration of companies with smaller revenue. The exponential model

and the polynomial, fitted with frequency being on log10 scale, ensure the positive values of

frequency on historical incident-IED data.

The exponential function is defined as the power function of the form shown in Eq.4.8.

YExp(x) = aebx (4.8)

where a and b are the fitted parameters

To find the optimal degree for the polynomial, the polynomial is fitted for the multiple

degrees on historical incident-IED train datasets separately and the tested on their test data

sets. The degree is selected based on root mean square error(RMSE).

Finally, two incident frequency models are computed from claim-exposure and the historical

incident-IED data sets. The under-reporting correction factors are computed as the ratio of

the frequencies computed from the two models as function of revenue, as shown in Eq. 4.9.

UR(r) =
YExp(r)

10YPoly(r)
(4.9)

where YExp is the exponential model with claim-exposure data and YPoly is the polynomial

model with historical incident-IED data with revenue frequency on log10 scale.
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(a) Claim Exposure

(b) Historical incident-IED

Figure 4.1: Smoothed Frequency Plots
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4.4.2 Revenue and Incident Type Corrections

The incident type factors are determined by comparing the revenue frequency for the incident

type against the overall revenue frequency (irrespective of any incident type). These factors

are scalar value for the given event type providing the revenue frequency of the incident type

when multiplied with the overall revenue frequency.

Since policies are not specifically under-written for incident type, all policies are taken into

consideration while computing revenue frequency w.r.t. incident type. For claim-exposure

data, the revenue frequency for incident type, t can be computed as shown in Eq.4.10.

freqCE,raw(r, t) =
Claims(r, t)∑

p∈Pr
Policy Y ears(p)

(4.10)

where Claims(r, t) refers to number of claims with revenue r and incident type t and

PolicyY ears(Pr) refers to the time period of the policy unwritten for organization with

revenue r. Similarly, the revenue frequency with respect to incident types considers the

records with given revenue from historical incident-IED data and computed as shown in

Eq.4.11.

freqInc−IED,raw(r, t) =
Incidents(r, t)

N(r)
(4.11)

where Incidents(r, t) refers to number of incidents with revenue r and incident type t and

N(r) refers to the number of policies written for organizations with revenue r.

Again, these frequencies are further smoothed over the rolling window of size d, as discussed

earlier.

The factor, f(t), is computed under the assumption that under-reporting correction factor

of revenue, (r), is correct. The constant multiplier for the given incident type, f(t), is

computed such that the incident type based revenue frequencies can be determined as the

proportion of overall revenue frequencies for claims exposure and historical incident-IED
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dataset respectively, as shown in Eqs.4.12 and 4.13.

freqCE,Smooth(r, t) ≈ fCE(t)× freqCE,F itted(r) (4.12)

freqInc−IED,Smooth(r, t) ≈ fInc−IED(t)× freqInc−IED,F itted(r) (4.13)

where fCE(r, t) and fInc−IED(r, t) are constant multipliers computed by curve fitting

approach such that the sum of squared difference between freq·,Smooth(r, t) and f·(t) ×

freq·,F itted(r) is minimized.

Accordingly, the under-reporting correction factor for given incident type t is computed as

a function of both revenue and incident type, as shown in Eq.4.14-4.15.

UR(r, t) = UR(r)× UR(t) ≈ fCE,(r, t)× freqCE,F itted(r)

fInc−IEDr, (t)× freqInc−IED,F itted(r)
(4.14)

≈ fCE(r, t)

fInc−IED(r, t)
× UR(r) (4.15)

4.4.3 Revenue and Industry Corrections

The revenue and industry corrections are computed in the same way as for revenue and

incident type corrections but revenue frequencies for the given industry are computed

differently.

From claim exposure data, the revenue frequency for industry i can be computed as shown

in Eq.4.16.

freqCE,raw(r, i) =
Claims(r, i)∑

Pr,i∈P Policy Y ears(Pr,i)
(4.16)

where Claims(r, i) refers to number of claims with revenue r, and industry i.

From historical incident-IED data, the revenue frequency for industry i can be computed as

shown in Eq.4.17.

freqInc−IED,raw(i) =
Incidents(r, i)

Nr,i

(4.17)
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Figure 4.2: Under-reporting Factors as function of Revenue

where Incidents(r, i) refers to number of incidents occurred in the industry i and Nr,i refers

to number of companies with revenue r in the industry i.

4.5 Results

In this section, under-reporting corrections are discussed for revenue, revenue and incident

type, and revenue and industry.

4.5.1 Under-reporting Factors: Revenue

Fig.4.2 shows the factors and 95% confidence interval range for under-reporting as a function

of revenue. The factor for low revenue companies found to be maximum as compared to the

companies with high revenue.
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Figure 4.3: Under-reporting Factors as function of Revenue and Incident Type

4.5.2 Under-reporting Factors: Revenue and Incident Type

Table 4.1 shows the under-reporting correction factors for three incident types. Although

HACK and SOC have comparatively smaller under-reporting factors when compared to

RAN, the correction factor for SOC is almost double as of HACK. Fig. 4.3 shows that the

Table 4.1: Under-reporting Factors: Incident Type

Incident Type Factor

HACK 0.8020
SOC 1.5994
RAN 10.9561

HACK incident type has least corrections for the given revenue as compared to the overall.

On the contrary, SOC has higher corrections than overall and RAN requiring the highest

level of corrections. The possible reason could be that there are reporting requirements

for data compromise incidents whereas RAN does not have such requirements. The results

emphasize on the under-reporting factors to be computed individually for incident type -

one correction factor is not an ideal solution for different incident types.
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4.5.3 Under-reporting Factors: Revenue and Industry

Table 4.2 shows the under-reporting correction factors for the five different industries. The

RT and MFG industries have under-reporting factors less than one whereas FnI, PSTS and

WT have more than one. The WT industry requires the largest correction factor of 4.6.

Table 4.2: Under-reporting Factors: Industry

Industry Factor

RT 0.0838
MFG 0.7511
FnI 1.5472
PSTS 1.3960
WT 4.6097

Fig. 4.4 shows the under-reporting factors for five industries compared to the overall. The

under-reporting factor for RT descends below one at revenues about ten million; this

indicates that the separability assumption may not be adequate for this industry. Again,

this emphasizes the under-reporting factors to be computed individually for industries - one

correction factor is not an appropriate solution for different industries.

4.6 Validation

For validation, both claim-exposure and historical incident-IED data sets are split into

training (33.33%) and test data sets(66.67%). The claim-exposure data is stratified on

claims irrespective of revenue, incident type or industry. The true model determining under-

reporting factors is computed using the complete training set.

For further validation purposes, 100 bootstrapped samples with replacement, each from

claim-exposure and historical incident-IED, were generated from training data. In addition,

10,000 factors were computed by comparing all claim-exposure samples with each historical

incident-IED sample. The 95% confidence intervals for the under-reporting factors are

computed separately for UR(r), UR(t), and UR(i) to validate against the corresponding

factors obtained from the test data. Fig. 4.5 shows the validation of under-reporting
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Figure 4.4: Under-reporting Factors as function of Revenue and Industry

corrections for revenue at 95% confidence interval bands. The plot indicates that there

is a higher level of under-reporting for the organizations with lower revenue as compared

to the ones with higher revenue. The correction factors could be more than 100 for low

revenue organizations but found to be lower than one for organizations with revenues above

100 million and then increase - values lower than one is a statistical anomaly, whereas the

increase is due to lack of enough data.
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Figure 4.5: Under-reporting Factors: Revenue

Based on availability of the claim-exposure data, three incident types investigated: Hacking

(HACK), Social Engineering (SOC) and Ransomware (RAN). Although the list of incident

type is not exhaustive, these incident types account for the majority of incidents in both

claim-exposure and historical incident data sets. HACK and SOC two different forms of

data compromise incidents. An incident which begins with HACK or SOC but ultimately

leads to ransom is classified as RAN.

Fig. 4.6 shows under-reporting factors for three incident types. The under-reporting factor

for RAN could range from 2.3 to 12.8. The upper level of HACK is less than the lower level

of RAN. Even upper level of SOC is around 10% higher than the lower level of RAN. The

factors for SOC could be around 2.5 whereas there is minimum level of under-reporting for

HACK.

Based on availability of the claim-exposure data, five industries investigated: Retail Trade

(RT), Manufacturing (MFG), Finance and Insurance (FnI), Professional Scientific Technical

Services (PSTS) and Wholesale Trade (WT). As shown in Fig. 4.7, there is contrast observed

in retail and wholesale trade industries where RT has the least under-reporting factor and
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Figure 4.6: Under-reporting Factors: Incident Type

WT has the highest. The under-reporting factor for FnI industry based on test data is found

to be above 95 percentile range. On the contrary, under-reporting factor for WT industry

based on test data is found to be below 95 percentile range. Since the data split for the

train and test data are samples stratified on claims irrespective of revenue, incident type

or industry, the virtue of the data split could result in these two anomalies. Since under-

reporting factors for incident types are within 95% confidence interval range but those for

industry are not always, it might be worth investigating revenue given incident types within

industries; this could not be done due to lack of data.

4.7 Conclusion

The research proposed the computation of under-reporting factors in more than one

dimension. The under-reporting factors were computed in cyber incidents for the organiza-

tions with varying revenue. The study shows that the organizations with lower revenues

require more correction compared to those with higher revenues. Secondly, the under-

reporting factors are computed for three incident types– hacking (HACK), social engineering

95



Figure 4.7: Under-reporting Factors: Industry

(SOC) and ransomware (RAN)– assuming that the revenue factors are correct,the research

showed that HACK requires the least correction factors and RAN the greatest correction

factor. Thirdly, the under-reporting factors are computed for five industries– Retail Trade

(RT), Manufacturing (MFG), Finance and Insurance(FnI), Professional Scientific Technical

Services (PSTS) and Wholesale Trade (WT)– again under the assumption that revenue

factors are correct. The research showed that WT, FnI, PSTS needs to be corrected

more than overall market, whereas RT and MFG requires less corrections than the overall

market. The research indicates the necessity to address each industry independently for

under-reporting corrections.
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Chapter 5

Conclusion

The research addressed two major problems with cyber incidents– reporting delays and

under-reporting. While reporting delays refers to the cyber incidents reported with delays,

under-reporting refers to the difference between the true rate of claims and the rate as derived

from publicly reported incidents.

5.1 Reporting Delays

To address reporting delays, delay and age were computed. Delay is computed based on

time difference between the incident date and reporting date whereas age is computed as

difference between the incident date and last reporting date in the data set. The debiased

delay distribution is constructed from the distribution of delay and age but found to be

bimodal- with one peak at 0-30 days and a second peak occurring after more than 5 years.

Hence, debiased delay distribution is modeled by mixture of two distributions– exponential,

for incidents discovered immediately but yet to be reported, and normal, for incidents not

discovered immediately. In addition, four key problems were addressed: the distribution

being biased to shorter delays, non-stationarity, delays not addressed beyond maximum

delay in the data set, and longer delays are addressed based on few data points. The first

problem of distribution being biased to shorter delays is addressed by generating the debiased

distribution with delay and age. The second problem of non-stationarity is addressed by
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generating monthly debiased distribution over two-year rolling period. The third problem

of delays not being addressed beyond maximum delay is addressed by defining the bimodal

distribution with mixture distribution over domain [0,∞). The last problem of longer delays

based on few data points is addressed through optimization function where delays further

in time are less prioritized as marginally fewer number of incidents are anticipated with

longer reporting delays. The current cyber incident counts can be corrected to account for

the proportion of incidents that have occurred but not yet been reported with the modeled

debiased delay distribution. The approach was validated by comparing year ahead counts

with year ahead corrections.

A reliable and accurate historical data is required to understand the cyber threat landscape

and build robust cyber risk models. While it is not possible to obtain precise results

for the number of cyber incidents, the proposed algorithm corrects for reporting delays

approximately. The reported cyber incident counts in recent times indicate decreasing trend

simply due to incidents not being reported yet. However, the rate of cyber incidents is

actually increasing in practice which the algorithm unfolds.

Further, the reporting delays are modeled for the US market and compared for four industry

sectors–finance and insurance (FnI), educational services (ES), health care and social services

(HnS), and public administration (PA). These factors eventually expected and found that

to converge to one for incidents in the past. The longer delays are more prominent for FnI

industry as there is small percentage of the incidents being detected immediately. Generally,

the research indicates that US and four industries are actively trying to detect the incidents

in shorter period of time. However, it might be difficult to detect the incident in timely

manner considering the hackers have access to state-of-the-art technology and are becoming

increasingly sophisticated.

5.2 Under-reporting

For under-reporting, correction factors are computed for the organizations’ revenue, revenue

given incident type and revenue given industry for US. The research indicated that the level
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of under-reporting is high for low revenue organizations. To address under-reporting, the

correction factors are computed based on revenue frequency. While the correction factors are

computed for the wide range of the revenue, these factors are multiplied by scalar multiplier

for the given specific incident type or industry to determine the correction factors for revenue

given incident type or revenue given industry.

Three incident types were investigated- hacking (HACK), social engineering (SOC) and

ransomware (RAN). The research showed the under-reporting in RAN incidents require high

level of corrections. This could be the result of not having reporting requirements whereas

HACK and SOC do have such requirements.

Five different industries were evaluated - Retail Trade (RT), Manufacturing (MFG), Finance

and Insurance (FnI), Professional Scientific Technical Services (PSTS) and Wholesale Trade

(WT). The research showed the under-reporting in RT and MFG lower than the overall

market whereas WT, FnI and PSTS have larger.

Data availability is major concern in conducting the research in cyber domain.

On the whole, the research shows that both reporting delays and under-reporting are

important problems to be addressed. These insights can dramatically improve the cyber

risk evaluation.

5.3 Future Work

5.3.1 Reporting Delays

The current research explores the correction factors for reporting delays from US market

and four key industries. The future work could be extended to different markets such as

Europe, Asia, Australia etc. or different industries. In addition, it would be interesting to

investigate how the correction factors vary for the incident types e.g. hacking, malware, etc.

Such research depends hugely on the availability of data.

99



5.3.2 Under-reporting

The current research focuses on determining correction factors for under-reporting for

organizations with the given revenue, revenue given incident type and revenue given industry

under separability assumption. The future work could be relaxing separability assumption,

or extending the analysis to other incident types and industries. This would however require

more data.
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