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Predictive models are becoming more and more commonplace as tools for candidate

antigen discovery to meet the challenges of enabling epitope mapping of cohorts with

diverse HLA properties. Here we build on the concept of using two key parameters,

diversity metric of the HLA profile of individuals within a population and consideration

of sequence diversity in the context of an individual’s CD8 T-cell immune repertoire to

assess the HIV proteome for defined regions of immunogenicity. Using this approach,

analysis of HLA adaptation and functional immunogenicity data enabled the identification

of regions within the proteome that offer significant conservation, HLA recognition within

a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We

believe this unique and novel approach to vaccine design as a supplement to vitro

functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine

design for HIV and potentially other pathogens with the potential for both global and

local coverage.
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INTRODUCTION

Since the Human Immunodeficiency Virus (HIV) was first identified, 77.3 million people have
become infected of which 35.4 million people subsequently died (1). Decades of research has
enabled a comprehensive understanding of the structure, genetics, mechanism of infection,
immune control and immune escape to emerge, resulting in novel targets for interventions, both as
therapeutic targets, and for prophylaxis in the form of a broadly efficacious vaccine (2).

The structure of HIV lends itself to the development of vaccines that target the dominant
surface glycoprotein gp120 and lead to the development of broadly neutralizing antibodies (3).
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Approaches to develop immunization regimes that will bias the
development of this class of antibodies to provide prophylactic
protection against HIV infection are under development with the
first products entering clinical assessment (4). However, natural
control of HIV viral load following the acute viral load burst is
associated with a T-cell mediated response (5) and this suggests
that a vaccine designed to raise T-cell responses may have efficacy
if it is targeted to defined antigenic regions (6) including those
with integral networked topology (7).

There are currently a number of T-cell vaccine candidates
that utilize a variety of novel design approaches being tested in
human clinical trials. The HIV Conserved vaccine (HIVCON)
utilizes a conserved mosaic approach whereby regions of the
proteome that have been identified as conserved within available
databases are arranged in a specific regimen to both elicit
T-cell responses to potential epitopes present within these
regions, whilst limiting immunogenicity to the necessary joining
or junctional regions (8). A second approach is to assemble
known T-cell epitopes in a mosaic approach, whereby composite
proteins are created to include common T-cells epitopes in
a polyvalent design (9). A third approach, HIVACAT T-
cell Immunogen, involves the construction a chimeric protein
encoding 16 continuous segments of HIV derived from Gag,
Pol, Vif, and Nef (10). There are pros and cons to all these
approaches, but a potential caveat to utilizing conserved regions
of the proteome is that historically pathogen diversity has
been measured as the similarity or dissimilarity of sequences
to each other, however a vaccine design should factor in how
this pathogen sequence conservation is viewed by the host
immune system.

Development and implementation of predictive models is
becoming more commonplace as tools for candidate antigen
discovery (11). This is highly relevant for HIV vaccine discovery
where there is a staggering amount of complexity posed by
diversity observed within individuals (12), within and between
clades (13, 14) and within populations (15) making it a
formidable challenge for rational T-cell vaccine design.

Here we present an in silico approach that complements
the vaccine design strategies through the identification of HLA
restricted antigenic regions within diverse HIV sequences based
upon modeling of HLA restricted responses within individuals
and linking these to disease progression via samples obtained
from IAVI Protocol C, a longitudinal acute HIV infection
study in east and sub-Saharan Africa covering multiple incident
infection subtypes (16). We show that within a population,
although HLA sequences show high levels of polymorphism,
there are conserved, and over represented alleles associated
with the >80% of the population covered within the study. In
this study, we propose the use of the artificial neural network,
NetMHCpan (17, 18) as a proxy to identify putative CD8 T-
cell epitopes contained within the HIV transmitted founder virus
(TFV) identified from the Protocol C clinical cohort of sub
Saharan and East Africa. Using the transmitted founder virus
sequence for relevant vaccine design is a well-established concept
(19) and exploiting these predicted peptide/HLA interactions to
generate additional novel metrics of HIV diversity adds another
layer of information to facilitate vaccine design.

TABLE 1 | Distribution of input transmitted founder proteome data.

Clade N Distribution

A 44 Kenya (19), Rwanda (18), Uganda (6), Zambia (1)

C 38 Kenya (2), Rwanda (1), Uganda (2). Zambia (33)

D 27 Kenya (3), Uganda (24)

Recombinant 16 Kenya (6), Rwanda (4), Uganda (8)

Number of sequences from each country listed in parentheses.

We believe that the size of the study cohort used in
this investigation enables an extrapolation and scaling of
the approach to global populations to enable a rationalized
isolation and prediction of antigenic epitopes for any disease
where a T-cell response is dominant in its control. By further
informing vaccine strategies to focus the immune system
against particular pathogens, incorporating potential immune
recognition information into established models may increase
the likelihood of success (20).

MATERIALS AND METHODS

Cohort Characteristics
HLA profiles were evaluated from HIV+ volunteers enrolled
in two IAVI-sponsored clinical cohorts. IAVI Protocol C is
a prospective vaccine preparedness cohort studies of HIV-1
antibody negative heterosexuals or men who have sex with
men in a Uganda Virus Research Institute/Medical Research
Council/Wellcome Trust HIV-1 acquisition cohort study, and in
a heterosexual sero-discordant couple’s cohort study in Rwanda.
Subjects were given HIV counseling, condom provision and
regular HIV testing either monthly or quarterly. Those who
seroconverted to HIV-1 were screened for stage of primary HIV-
1 infection (16). IAVI Protocol G was a cross-sectional cohort
of ∼2,000 HIV positive individuals enrolled at 13 sites around
the world in order to identify circulating broadly neutralizing
antibodies (21).

Near Full Length Transmitted Founder
Genomes
The selection criteria for inclusion in the generation of near full
length transmitted genomes is as previously described (22). For
this analysis, 125 Near Full length transmitted Founder genomes
were evaluated from across Africa (Table 1).

HLA Distribution
The HLA binding predictor NetMHCpan was used to identify
putative epitopes in 125 Transmitted Founder HIV-1 gag
sequences derived from a cohort in Zambia (23). The distance
between two sequences was defined as the percent of mismatched
amino-acids in each 9 mer, summed across all 9 mers spanning
the entire protein (i.e., a 500 aa protein contains 492 × 9
mers, each overlapping by 8 aa). This distance is dependent
on sequences being aligned and therefore sequences sometimes
contain gaps indicating insertions; this treats each gap character
as an aa. Using this metric, the distance for the entire protein
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or for a subset of the 9 mers was determined; the epitope-
based distance included only 9 mers in the alignment that were
predicted to bind to at least one HLA allele. Binding was based on
a threshold of 500 nM, though sensitivity analyses showed similar
results with different thresholds.

Model Implementation
For each virus proteome a NetMHCpan simulation is performed
for each of 46 Human Leukocyte Antigen (HLA) sequences. The
46 NetMHCpan result files for a virus proteome are then filtered
to extract the peptide, HLA and rank binding where the rank
binding is ≤ 2 [lower value is stronger binding (24, 25)]. This
data is then loaded into a PostgreSQL database where an analysis
tool is implemented in SQL stored procedures to identifies
key peptides which appear in at least X viruses strains. The
conservation metric X is defaulted to 2.2% of the total number
of viruses initially being analyzed. The analysis tool then selects
the virus that contributes the most of these key peptides. The
selected virus and associated key peptides are then removed from
the process and the next virus that contributes the most of the
remaining key peptides is selected. The ranking process continues
until all the key peptides are accounted for. The ranking results
are then available to view or download at https://ibpt.iavi.org.

For comparison, set-building was performed a second time
using randomly selected strains instead of choosing the strain
that resulted in the greatest increase of peptide coverage.

HLA Adaptation Analysis
HLA adaptation analysis was performed as previously described
(26). Briefly, each of the 319 peptides in the peptide set was
aligned to the Zambian consensus sequence corresponding to the
protein they were derived from and to HXB2. HLA adaptation
was assessed using a list of statistically significant viral amino
acid-HLA allele associations for Gag, Pol and Nef, previously
described in Carlson et al. (27), as well as a new list generated
for Rev, Tat, Vif and Vpr based on 295 sequences derived from
chronically-infected individuals from Zambia plus 237 subtype C
sequences downloaded from LANL (unpublished). A peptide was
identified as adapted when the residue was positively correlated
with the HLA or was any other residue other than the one
negatively correlated with that HLA or the consensus (referred
to as non-adapted). The correlation of residues to HLA was
determined based on the number of HLA-linked polymorphisms
relevant to the HLA alleles repertoire, as well as the number
of polymorphisms located within well-defined CTL epitopes
restricted by HLA alleles.

IFN-γ ELISPOT
The predicted peptides were evaluated for ability to induce T-cell
responses by IFN-γ ELISPOT using bi-specific expanded CD8 T-
cells as previously described (28). Briefly, PBMCwere thawed and
cultured in RPMI/10%FBSmedia supplemented with IL-2 (Sigma
50U/mL final concentration) and a CD3/CD4 bispecific antibody
(Genscript) to expand CD8 T-cells. On Day 7 of expansion the
CD8 population was assessed by Human IFN-γ 96 well ELISPOT
(Mabtech) as per manufacturer’s instructions. Peptide pools for
319 peptides were prepared as an 11 × 11 × 11 3D matrix with

TABLE 2 | Volunteers selected for determining HLA coverage within a population.

Sample ID HLA-A HLA-A HLA-B HLA-B HLA-C HLA-C

00C175058 A*02:05 A*23:01 B*07:05 B*49:01 C*07:01 C*07:02

00C191996 A*01:01 A*03:01 B*15:03 B*35:01 C*04:01 C*06:02

00C305154 A*68:02 A*74:01 B*15:03 B*18:01 C*02:10 C*05:01

00C362470 A*02:02 A*30:02 B*45:01 B*53:01 C*04:01 C*16:01

00C305125 A*23:01 A*34:02 B*08:01 B*15:10 C*07:01 C*08:02

00C191735 A*33:01 A*74:01 B*14:03 B*49:01 C*07:01 C*08:02

00C275031 A*23:01 A*30:02 B*07:02 B*15:10 C*03:04 C*07:02

00C275048 A*01:01 A*31:04 B*15:03 B*51:01 C*08:02 C*16:01

00C365005 A*29:02 A*30:02 B*42:01 B*57:03 C*17:01 C*18:01

00C365007 A*26:01 A*29:02 B*13:02 B*81:01 C*04:01 C*06:02

00G17616 A*02:01 A*66:01 B*53:01 B*58:02 C*04:01 C*06:02

00G27009 A*02:05 A*30:02 B*14:02 B*58:01 C*07:01 C*08:02

00G27188 A*02:05 A*30:01 B*07:02 B*27:03 C*02:02 C*07:02

each peptide occurring in 3 unique pools. Positive responses were
defined as the mean replicate count minus the mean background
(mock) count where the mock controls must be <50 SFU/106

PBMC and the media only wells <5 SFC/well).

Statistical Analysis
Statistical analyses were carried out using Prism version 6
(GraphPad Software, Inc., La Jolla, CA, USA). Python, Numpy
and matplotlib were used to perform the Principal Component
Analysis (PCoA).

The differences in sequence coverage determined by the
different model parameters were assessed using Area Under
Curve analysis and differences in the predicted coverage of each
sequence was evaluated using a Kolmogorov-Smirnov test. For
experimental ELISPOT data, normal distribution of data was
assessed by the Shapiro–Wilk test. ELISPOT responses were
compared by Mann-Whitney Test. Spearman correlation was
used to assess relationships between ELISPOT responses and
sequence priorities and coverage.

The data can be accessed through dataspace.iavi.org.

RESULTS

HLA Distribution Within Specific
Populations
HLA distribution provides an important metric describing
population diversity and correlates with the breadth of viable
immune recognition within that population, which is relevant to
both immune protection against pathogens and vaccine design
strategies. Within Protocol C, all participants were screened for
HLA composition upon enrollment and Figure 1 reflects the
diversity of HLA Class I alleles within Protocol C (16) at a 2
field (4 digit) level of characterization (29).This data represents
the HLA diversity of 613 participants and the prevalence of the
HLA A, B, and C alleles is displayed as the relative percentage of
the cohort.
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FIGURE 1 | Frequency of each HLA Class I allele (HLA-A, HLA-B, and HLA-C)

represented within IAVI Protocol C Alleles. Red boxes demarcate the allele

frequencies contained within 13 pre-selected volunteers (Table 2) with

percentage coverage listed above each stacked histogram plot. Seventeen

Individual alleles contribute to HLA-A analysis, 21 Individual alleles contribute

to HLA-B analysis, and 13 Individual alleles contribute to HLA-C analysis.

Given the expected diversity of the HLA profile, it was
an unexpected observation that >80% of the HLA Class I
diversity of all alleles, are covered by 10 volunteers within
the Protocol C cohort, supplemented with 3 individuals drawn
from IAVI Protocol G (21) (Table 2). Furthermore, only an
additional 11 Class I alleles with frequencies >1% but <5%
within IAVI Protocol C are excluded from this analysis
(Supplementary Table 1), indicating that even with a reduced
subset of samples it may still be possible to capture the diversity
of the full cohort HLA at the sequence level.

To further characterize the diversity of the volunteers listed
in Table 1, an HLA binding profile was modeled for each allele
by predicting the binding affinity for each 9 mer peptide derived
from a representative panel of HIV gag amino acid sequences
using the NetMHCpan4.1 binding algorithm (18). This modeling
enables us to define a binding profile of each HLA allele and each
volunteer based on their HLA genotype. Based on the similarities
of their binding profiles we were then able to cluster HLA
alleles and/or volunteers to visualize and reassess HLA diversity
(Figure 2). For example, a two-dimensional representation of
HLA diversity in Protocol C can be generated using their pairwise
HLA binding similarities and principal component analysis using
a Spearman rank correlation-based distance such that alleles with
higher positive correlation have a shorter distance while alleles
with a lower correlation or negative correlation have a longer
distance (D= [1—rho]/2). The analysis revealed distinct clusters
of predicted HLA binding profiles (blue dots, Figure 2) which
suggested that it was possible to identify a subgroup of Protocol
C volunteers that were representative of the overall cohort HLA
diversity (red dots, Figure 2).

Figure 3 illustrates that coverage of the optimal peptide sets is
influenced by the prevalence of HLA alleles within the prediction.

FIGURE 2 | Two-dimensional representation of HLA diversity using Principal

Component Analysis (PCoA). A HIV-1 Gag binding profile was predicted for

every HLA allele using NetMHCpan and a set of transmitted founder

sequences. The binding profile of each volunteer (red dot) was defined by

taking the union of predicted binding for each of their HLA alleles. PCoA was

performed using the pairwise similarity matrix of all volunteers, revealing

distinct clusters of individuals. A subgroup of 13 volunteers were chosen to

provide optimal coverage of the HLA binding profiles (blue dots).

As cumulative sets of HLA alleles are removed (starting with the
least frequent alleles) there is minimal loss of epitope binding
coverage observed (<10%) until a key inflection point is reached,
leading to a precipitous loss of coverage, concordant with the
frequency of the HLA alleles that are removed. Interestingly, the
trend of minimal coverage loss at a minimal HLA frequency is
observed independent of the size of the predicted peptide set with
a comparable pattern observed for libraries of 300, 250, 200 and
150 peptides suggesting that while the HLA allele binding profile
is peptide specific, it may also be independent of the peptides if a
sufficient number are used.

Development of a Predictive Model for HIV
Diversity
Using NetMHCpan (at a 1% Binding Threshold), predicted 8,
9, and 10 mer epitopes were derived from TFV gag sequences
(N = 125) obtained from HIV-infected volunteers enrolled in
IAVI Protocol C, and identified in association with the HLA
alleles present (listed in Table 1). Initial model development
utilized a 1-select parameter where peptides were considered
individually to determine the best coverage. This resulted in
the prediction of 6,562 peptides (Supplementary Table 2) and
no difference in best coverage mapping vs. random selection
by Kolmogorov-Smirnov test (p = 0.4670) was observed.
Subsequent analysis of this model revealed that 4,812 (73%) of
these peptides were either unique to an individual gag sequence
or present in only two gag sequences. If only peptides that were
present in ≥3 virus sequences (3-select best) were considered,
this led to the prediction of 1,750 peptides (26.7% of the 1-
select best model), which was shown to be more effective at
mapping coverage than randomly selecting peptides (p< 0.0001)
(Supplementary Figure 2, Supplementary Table 2).
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FIGURE 3 | Coverage per predicted peptide calculated against a defined set of HLA alleles. Size of segments on X axis from left to right represents cumulative,

combined HLA allele frequencies that are iteratively removed from the analysis, starting with least frequent alleles. Blue line—modeling using predicted 300 peptides.

Red line—modeling using predicted 250 peptides. Green line—modeling using predicted 200 peptides. Purple line—modeling using predicted 150 peptides.

Further model development evaluated the effect of varying
the binding threshold on the predicted outcomes. The binding
threshold is a measurement of confidence that a predicted
peptide will associate with the prescribed HLA, for example
a 1% binding threshold factors in a 1% false positive rate.
Running the model whilst varying binding thresholds at 0.5, 1,
and 2% resulted in the identification of 955, 1,750 and 3,023
peptides, respectively (Supplementary Table 2). No difference
was observed in coverage when the 1% binding threshold
was set to a less stringent 2% or a more stringent 0.5%
(p = 1 and p = 0.6430), therefore a 1% binding threshold
was selected for all future analyses to maximize coverage
whilst being able to distinguish additional conserved epitopes
(Supplementary Figure 2).

Modeling of HIV Diversity for Full Length
Transmitted Founder Proteomes
These same parameters (1% Binding Threshold, Rank Binding
≤2, Peptide Conservation ≥2.2%) were then applied to analyze
125 Transmitted Founder proteome sequences (excluding
envelope) derived from IAVI’s Protocol C (see Tables 1, 3 for
input sample data and model parameters). The initial evaluation
identified 14,953 predicted peptides occurring with a frequency
of 2.2% in our population. This peptide set covers all predicted
affinities and coverages and may represent multiple HLA
interactions/peptide. To evaluate the distribution of affinities to
the primary associated HLAs with Rank Binding scores were
assessed (Figure 4A). Rank binding is an alternative metric for
HLA:peptide affinity that can be deployed in order to normalize
the large diversity in the range of predicted binding values for the
different HLA molecules and therefore limit bias derived from
over-represented HLA (18). Rank binding assigns each peptide a
score with peptides annotated as a strong binder if their score is
<0.5 or a weak binder if the score is 0.5–2.0.

To further control for potential bias within the peptide-HLA
interactions, the peptides were then analyzed by both affinity and
Rank Binding to all predicted HLA interactions (Figure 4B) and

TABLE 3 | Model parameters.

Parameter Values

Binding threshold 1%

HLA allele contributions All HLA alleles from 13 individuals (Table 1)

HLA haplotype weighting 0

Rank binding <2.0

Peptide conservation (%) 2.2

Peptide length 8, 9, 10, and 11 mers

the frequency that these peptides occurred in the population in
the context of the specific HLA alleles (Figure 4C).

This analysis identified a range of predicted binding
profiles for the different peptide-HLA interactions (see
Supplementary Table 1 for full HLA allele identities). HLA-
A∗02:02, HLA-A∗31:04, and HLA-B∗15:03 were identified as
having particularly high predicted affinity peptide interactions,
whereas HLA-B∗14:03, HLA-B∗15:10, and HLA-C∗04:01
have much lower predicted affinity peptide interactions. This
differential pattern of binding may be explained due to the large
diversity in the range of predicted binding values for the different
HLA molecules. When plotted using the Rank Binding metric
these differences are less pronounced although trends of stronger
associations to specific HLA alleles remain.

Implementing these frequency and binding thresholds to
identify HIV-specific predicted CD8 T-cell epitope peptides can
be used as a functional metric to assess HIV diversity. By
assuming that these predicted peptides provide a novel tool
for ranking HIV proteome diversity, it is possible to assign a
coverage gain value to each sequence and then utilize those values
to rank each sequence for the coverage it provides within the
sample population. By implementing these calculations, it is then
possible to identify the sequences that are necessary to obtain the
optimum level of epitope restricted sequence coverage.
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FIGURE 4 | Affinity plots for all predicted peptides with conservation of ≥2.2% (n = 14,953). (A)—Predicted peptide affinity (Rank Binding) vs. primary associated

HLA. (B)—Predicted peptide affinity (Rank Binding) vs. peptide frequency within transmitted founder proteome. (C)—Predicted peptide frequency vs. primary

associated HLA.

FIGURE 5 | Cumulative coverage distribution plots of full length transmitted

founder gag sequences using a 3-select coverage model and a 1% Binding

Threshold, 3-Select best (red), and 3-Select random (blue). P-values

calculated using Kolmogorov-Smirnov test.

The implementation of this model can then be used to target
and prioritize individual proteomes. Figure 5 illustrates how
for 125 transmitted founder virus proteomes, achieving 90%
coverage requires 33 prioritized viruses, which decreases to 22
and 16 viruses if 80 or 70% coverage is desired, respectively (data
not shown). Importantly, ∼40% more viruses are required to
achieve 90% coverage if sequences are randomly selected (n= 45
p < 0.0001).

In silico Characterization of Predicted
Peptides
Whilst evaluating peptides at a prevalence of ≥2.2% is desirable
from the perspective of understanding population coverage, it is
more challenging to map potential regions of the proteome for
anti-HIV T-cell specificities due to the large levels of redundancy
and overlap in evaluating each HLA/epitope interaction. By
selecting HIV sequence coverage as the primary parameter
and predicted affinity as a secondary characteristic the peptide
library should contain both predicted high and lower affinity

epitopes with optimum coverage, that may have functionality
if represented at high enough abundance. Through further
stratifications of the predicted peptide set to limit sequence
overlap, and through assigning a minimum population coverage
of 40% (selected to maintain sequence conservation and
not introduce multiple sequence variations) resulted in the
identification of 957 peptides. Of these peptides, an unbiased
subset of 319 peptides were selected at random from across the
proteome for further in silico and in vitro characterization.

HLA adaptation in a particular epitope is defined as the
presence of a particular residue that has been statistically linked
to an individual HLA, indicating a process of immune selection
in that context (26). Vaccine design utilizing conserved epitopes
may unwittingly overlook the observation that not all epitopes
in the transmitted virus will be consensus and in fact, some may
actively promote CTL escape (30). The peptides identified by
the 3-select model were evaluated for predicted HLA adaptation
as previously described (26). Of these peptides 75/319 were
identified as containing a residue that was adapted, although
interestingly the predicted adaptation was against alternative
HLA alleles not predicted by the model for 70/75 predicted
peptides with only 2 out of 5 adapted peptides associating to the
primary HLA allele (Supplementary Table 4).

Predicted Peptide in vitro Characterization
To confirm that the selected subset of predicted peptides were
recognized by anti-HIV specific T-cells, IFNγ ELISPOT assays
were performed using a 3DMatrix approach described elsewhere
(31). The peptides were evaluated in samples from 23 HIV+
volunteers at a single time point∼12 months post-estimated date
of infection to determine the contribution of individual HLA
and input sequences and correlate these metrics to observed T-
cell responses. These volunteers were identified for whether their
transmitted founder sequences were included (Group “Seq In”-
−10 volunteers) or excluded in the modeling analysis (Group
“SeqOut” 13 volunteers). ELISPOT responses were also evaluated
at a second time point ∼60 months post EDI, although this data
was not included in the analysis, Supplementary Table 5).

To evaluate whether the model introduced bias from
volunteers who contributed their transmitted founder sequence
compared to volunteers whose sequence was not included,
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FIGURE 6 | IFNγ ELISpot responses observed in HIV+ Volunteers. (A)—Number of total ELISpot responses observed in volunteers whose transmitted founder

proteome sequence was included within the in-silico prediction (Seq In: N = 10) and volunteers whose transmitted founder proteome sequence was not included

within the in-silico prediction (Seq Out: N = 13). Shapiro-Wilk values Seq In: W = 0.7887, p = 0.0008. Seq Out: W = 0.8976, p = 0.0315. Mann-Whitney test, p =

0.6215. (B)—Correlation of total number of ELISpot responses in volunteers whose transmitted founder proteome sequence was included within the in-silico

prediction against the order of priority the sequence was predicted to occur (Spearman Correlation; r = 0.1356, p = 0.2209). (C)—Correlation of total number of

ELISpot responses in volunteers whose transmitted founder proteome sequence was included within in silico prediction against the % coverage each epitope

represented (Spearman Correlation; r = 0.2695, p = 0.0357).

IFNγ ELISpot responses were analyzed at 12 months post-
estimated date of infection. The results indicated no significant
difference in the median number of responses per volunteer
(median responses/volunteer n = 4.5 group Seq In vs. median
responses/volunteer n = 4 group Seq Out, Figure 6A). Further
analysis revealed that there was no bias in responses toward
the volunteers with sequences predicted to contribute the most
coverage vs. those volunteers whose sequences contributes less
to coverage (Figure 6B). Assessing the number of individual
ELISPOT responses per peptide revealed a trend toward
increasing number of responses as the conservation of the
peptides increases, although this correlation was not significant
(Figure 6C).

DISCUSSION

We propose that through the addition to the predictive
algorithm NetMHCpan, two novel parameters are defined that
can be exploited to aid the rational selection of T cell vaccine
immunogens. The first parameter confers the ability to assign
a diversity metric to the HLA profile of individuals within a
population. The existing metrics of 2-field characterization of
HLA alleles enables frequencies of alleles to be calculated but has
several limitations when considering HLA diversity/similarity.
A clear limitation is that the peptide binding profile of two
alleles may not be strongly associated with the similarity of
their 2-field allele representation (32). A second method for
characterizing HLA allele diversity involves the assessment of the
amino acid sequence of the MHC protein with a focus on the
peptide binding groove (33). Building on this idea, an alternative,
advantageous approach to assessment of the diversity of the HLA
frequency may therefore be to use computationally predicted
peptide binding of the HLA alleles based on machine learning
algorithms trained on functional binding data as well as the
amino acid sequences of the HLA proteins (17). We propose an
alternative metric of HLA diversity that utilizes the predicted

binding affinity of a reference amino acid sequence to assign
each HLA allele an individual binding score. By evaluating the
individual HLA profiles of individuals in a studied cohort, it
is then possible to calculate a combined HLA diversity metric.
Using these values, individual volunteers can be mapped within
specific populations and distance scores calculated between
each allele and each volunteer. Using this approach, we have
demonstrated that it is possible to select individuals within a
cohort that are “representative” of the population from which
they are drawn. Implementing this stratification of volunteers
may have implications for the design of smaller experimental
clinical trials.

The second parameter is a metric for HIV diversity
determined through the perspective of predicted binding of
putative CD8 T-cell/HLA epitopes. Previous evaluations of
HIV diversity rely on sequence clustering and alignments to
order individual sequences. This alignment is appropriate for
comparing the actual sequence of a virus genome or proteome,
however this approach is limited for evaluating how an individual
may recognize a specific proteome. By considering sequence
diversity in the context of an individual’s HLA profile and
therefore potential CD8 T-cell immune repertoire, an additional
diversity metric can be layered to represent how an individual
may be predicted to view a virus proteome and through
combining the in-silico metrics, it is possible to rank HIV
proteome sequences by the coverage they provide within the
population across individuals. This ability to rank sequences
according to putative immunogenic breadth additionally enables
the interpretation of functional immunological killing assays
like the viral inhibition assay (34, 35). Traditionally these
assays have been interpreted as a binary assessment of the
number of viruses inhibited. Using these novel metrics, it
would now be possible to assign a population coverage score
to each virus or panel of viruses and as such be able to
provide an estimate as to the potential anti-virus killing
activity of a volunteer based on the pattern of viruses they
can inhibit.
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IFNγ ELISpot analysis using the peptides predicted by the
model revealed that there was no significant increase in the
number of ELISpot responses/volunteer if the individual’s TFV
proteome sequence was included in the prediction compared
to the number of responses/volunteer if an individual’s TFV
proteome was not included. This data indicates that using a
subset of samples for prediction has not created any inward bias
toward the input source but is representative of the population.
The frequency of responses observed in this study for both groups
are lower than those previously reported (36–38), however
this reflects the increased stringency incorporated into the
development of this peptide set whereby only peptides with a
predicted coverage > 40% were included. By way of comparison,
the conservation threshold for the peptides evaluated by Kunwar
et al. (36) and Sunshine et al. (38) were 15 and 5%, respectively,
with a response rate/volunteer of 7 and 12 epitopes, respectively.

This hypothesis indicates that through understanding the
conservation, adaptation and functional score assigned to any
population of target sequences, it is possible to embed this metric
within algorithms to fully evaluate potential immunogenicity
within the context of sequence conservation and HLA allele
frequency and may contribute to expedited vaccine design
and iterative testing strategies aimed at inducing protective
CD8 mediated T-cell immunity. The principals underpinning
this approach have applicability to other disease models and
geographies for which comparative input data is available and
protective CD8 responses are desirable.
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