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Abstract

Prevalent cohort studies are widely used for their cost-efficiency and con-
venience. However, in such studies, only the residual lifetime can be ob-
served. Traditionally, researchers rely on self-reported onset times to in-
fer the underlying survival distribution, which may introduce additional
bias that confounds downstream analysis. This study compares two stack-
ing procedures and one mixture model approach that uses only residual
lifetime data while leveraging the strengths of different estimators. Our
simulation results show that the two stacked estimators outperform the
nonparametric maximum likelihood estimator (NPMLE) and the mixture
model, allowing robust and accurate estimations for underlying survival
distributions.
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Chapter 1

Introduction

Survival data describes the length of time between an initiating event and a
terminating event. In epidemiological studies, the terminating event could
be disease relapse or death from disease. For example, survival data is of-
ten used to describe the time duration from the onset of a disease to death
or the time span from treatment to relapse. Frequently, in such studies, the
event of interest is not observed to occur within the study’s time window
for all subjects. In the medical context, this may happen because the study
is scheduled to be terminated due to practical constraints, e.g. budgetary
limitations, or because some patients are lost to follow-up, that is, we lose
contact with them for any number of possible reasons. As a result, sur-
vival data is characterized by so-called right censoring. In this case, we will
only know that the value is larger than a so-called censoring time, but we
will not know its precise value. For example, if a study ends before a pa-
tient dies of a certain disease, researchers can only be sure that this patient
survives beyond the end of the study, i.e, the date at which the patient is
right-censored, but the patient’s exact survival time remains unknown. In
the remainder of this work, we refer to right-censoring due to a study’s ter-
mination as administrative censoring to contrast it with loss to follow-up
right censoring.

Figure 1.1 displays a schematic of what is termed an incident cohort
study. For example, suppose the research interest is the survival time of
a certain disease since the diagnosis of this disease. Patients recruited in
an incident cohort study have not experienced diagnosis yet. Therefore,
both the onset time and the failure time or the censoring time are observed.
However, although incident cohort studies provide data from the under-
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lying target population of interest, they are often time-consuming and ex-
pensive. By comparison, prevalent cohort studies are more economical and
practical, which makes them a common practice for data gathering. These
studies are characterized by the identification and enrollment of individu-
als who have, by the beginning of the study, already experienced the ini-
tiating event of interest. These subjects are then followed forward in time
for a specified period, with some experiencing the terminating event of in-
terest within administrative censoring.

Figure 1.1: Incident Cohort Study, with three hypothetical patients: the
terminating event is observed within the study window for the topmost
patient, yielding an exact survival time; the other two patients are right-
censored, either because they were lost to follow-up (middle) or because
the study ended (bottom).

In practice, prevalent cohort studies accrue subjects over a short pe-
riod of time, but they are often theorized as slicing into a population at a
specific time point to identify subjects. Figure 1.2 displays a pictorial rep-
resentation of a prevalent cohort study. Let the date of screening for our
prevalent cohort study be denoted by R, and suppose that an individual
i has an onset of the condition of interest at Oi. The full survival time of
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interest is Ti, which is composed of the backward recurrence time Wi and
the forward recurrence time Ti −Wi [4]. In related literature, some authors
refer to the backward recurrence time as the current duration [10] and the
forward recurrence time as the residual lifetime [3, 12]. Since the backward
recurrence time occurs before the start of the study, it is only possible to
observe the forward recurrence time during the study. Let Ci denote the
censoring time, that is, the time from the start of the study until loss-to-
follow-up or administrative censoring. Then the actually observed time
since the beginning of the study, i.e, the prevalent day, until failure or cen-
soring is Xi = min(Ci, Ti −Wi), which is left-truncated and possibly right-
censored. The term “left-truncation” refers to the idea that some patients
(e.g., see the topmost individual in Figure 1.2) will have experienced the ter-
minating event before even being observable in the study. These subjects
can be thought of as being “truncated” from our sample, that is, missed
entirely due to our sampling scheme. Moreover, this illustrates an added
complication of the prevalent cohort study design: the subjects that we do
observe do not constitute a random sample from the target population, but
rather, they tend to have longer survival times. This can be understood as
follows: a subject is only observable in a prevalent cohort study if Oi < R
and Oi + Ti ≥ R, that is, conditional on surviving long enough to make it
into the study. The observed data from a prevalent cohort study can thus
be summarized by the triple Oi = {Wi, Xi, δi}, where δi = 1Ci>Ti−Wi repre-
sents the status indicator for the ith subject.

Since all recruited subjects into prevalent cohort studies have already
experienced the onset or initiating event, prevalent cohort studies demand
less time and financial resources than incident cohort studies. Ideally, the
full prevalent observation could be used (that is, the sum of the recalled
backward recurrence time and the observed forward recurrence time). These
“recalled” backward recurrence times, Wi, can be obtained by interviewing
subjects, for example, in order to determine as good as possible when the
initiating event occurred. In practice, however, attempts to recall when
onset might have occurred can be unreliable. This can pose yet another
challenge to the estimation of the underlying survival curve from the full
left-truncated times obtained from a prevalent cohort study.

This practical difficulty of left-truncated data obtained from a prevalent
cohort study provides the motivation to only use the possibly censored for-
ward recurrence times or residual lifetimes, Xi, in order to estimate the
underlying survival distribution. Under the assumption of a stationary in-
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Figure 1.2: Example of a prevalent cohort study. Each line represents an
individual, and only the second, third, and fourth individuals are recruited
into the study. Only forward recurrence time, Xi, can be observed directly
for recruited subjects. Individual 2 yields an exact observation, while the
data for individuals 3 and 4 are right-censored. δi = 1 for exact observa-
tions, i.e, the second individual in the figure; δi = 0 for censored observa-
tions, i.e, the third and fourth individuals

cidence rate (i.e., of a roughly constant onset incidence), the relationship
between the underlying survival curve, S, and the forward recurrence time
density function, f f wrd, is well documented in the literature [1]. We can
thus exploit this relationship to estimate the survival curve of interest, S,
from the target population, using data generated by f f wrd.

Regardless of the data at our disposal, estimates of S can be arrived
at by adopting either a parametric or a non-parametric approach. Each of
these broad approaches, however, has advantages and weaknesses. On one
hand, any single parametric model could be biased if its distributional as-
sumptions are not met; on the other hand, even an optimal non-parametric
estimator (i.e., the non-parametric maximum likelihood estimator, or NPMLE)
may yield wide confidence intervals due to its intrinsic robustness stem-
ming from a lack of assumptions about the data-generating process. More-
over, as we will see in Section 2.4, the NPMLE, being solely data driven, is
only defined over a limited support corresponding to the study’s follow-
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up period. Consequently, there is no hope, from the NPMLE, of being able
to estimate S at times that lie beyond the length of the study’s follow-up
period.

An alternative approach that we explore throughout this paper is that of
combining parametric and non-parametric estimators to arrive at new es-
timators which overcome the respective shortcomings (e.g., potential mis-
specification, and lack of precision and definition) of the individual com-
ponent estimators. Traditionally, so-called mixture models can be used to
combine parametric models from the same family. However, the inclusion
of a non-parametric estimator, and the fact that mixture models have tradi-
tionally only allowed for multiple groups sharing a single parametric fam-
ily signify that they may not adequately serve our purposes, which in part
aims to introduce a process that is more robust to model misspecification.

By contrast, a stacking approach [2, 21] may provide more flexibility
in terms of allowing for both non-parametric and distinct parametric fam-
ily components to combine into a single estimator of S. This may allow
us to benefit from desirable properties of both the parametric and non-
parametric estimation procedures. Broadly speaking, stacking first obtains
estimates for each candidate model, and then optimizes an objective func-
tion to arrive at a set of weights for combining the candidate models into a
single estimator. Nevertheless, there is still much room to explore different
modeling choices. For example, Smyth and Wolpert propose a method to
form a stacked estimator where the stacking is carried out on the density
functions of the data, which in their case is assumed to be uncensored [17].
Alternatively, Wey, Connett, and Rudser [20] extend the concept of stack-
ing to a combination of survival functions using potentially right-censored
data. This study modified both methods so that they can be applied to for-
ward recurrence time data collected in prevalent cohort studies.

In Section 2, we establish our model assumptions and the relationship
between forward recurrence times and underlying survival times, laying
the foundation for our procedures. In Section 2.5, we elaborate on the
details of how a stacking approach can be used to linearly combine both
parametric and non-parametric estimators with the goal of estimating the
underlying target survival curve, S. In Section 2.5.2, we introduce an al-
ternative stacking method that combines density estimators instead of sur-
vival curves. Section 2.6 presents a third strategy that uses a mixture model
approach. We evaluated the three methods through simulation studies,
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whose results are reported in Section 3. Discussions for the simulation re-
sults can be found in Section 4. We conclude in Section 5 that either the
stacked survival estimator or the stacked density estimator can be used
to obtain an accurate and robust estimator for survival data collected from
prevalent cohort study designs using only the observed forward recurrence
time data.



Chapter 2

Methods

2.1 Model Assumptions

Our method is based on the relationship between the forward recurrence
time data density function and the underlying (or target) survival distri-
bution, S. This relationship is based on two frequently made assumptions
[20]:

i. Non-informative censoring: We assume that the process by which sub-
jects are right-censored is non-informative for their survival time. This
assumption is very common in the literature, and it can be under-
stood as independence between the censoring time random variable
and the failure time random variable. Alternatively, we can think of
this assumption as stating that knowledge of the censoring time does
not provide any information about the occurrence of the terminating
event being imminent, say. For a censored data point, we only know
that the survival time is greater than the observed censoring time.

ii. Stationary incidence process: We assume that the rate of disease occur-
rence is constant in the population. This is another common assump-
tion in the literature. If we are not prepared to make this assump-
tion, an alternative is to conduct an analysis conditional on the ob-
served truncation times, or to assume a parametric form for the onset
process. If we are not prepared to make any assumption about the
disease onset process, then it would become impossible to estimate
survival due to an identifiability issue. That is, observed data could
provide information about S, or could be due to changes in the fre-
quency of onsets (or initiating events). We note that, as a consequence
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of this stationarity assumption, the truncation time distribution is uni-
form, and the forward and backward recurrence time distributions
are identical [1].

2.2 Relation between Residual Lifetime Distribution
and the Underlying Survival Time Distribution

Suppose that we denote the density function of the forward recurrence
times, (Ti−Wi), by f f wrd. Then, under assumptions i and ii, it is well-known
that we have the following relationship between f f wrd and the target (un-
derlying) survival curve, S [1, 9, 11, 19]:

Theorem 1.

f f wrd(t) =
S(t)

µ
(2.1)

where µ = E[T]

The following proof [1] uses the length-biased distribution of T, T̃. The
use of T̃ reflects that the survival data collected in prevalent cohort studies
is length biased, i.e, it is more likely for individuals with longer survival
time to be recruited into the study. An illustration of the distinction be-
tween T and T̃ is presented in Figure 2.1, where X̃ and W̃ are the length-
biased distributions of X and W.

Proof. Denote by T̃ = W̃i + X̃i the length-biased distribution of T. The
probability to observe T̃i is proportional to Ti. Under stationary incidence
rates, W follows a uniform distribution fW with a corresponding cumula-
tive density function FW . Given that T has a density function fT and mean
survival time E[T] = µ, write
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(a)

(b)

Figure 2.1: T̃ is the length-biased distribution of T. (a): T1, T2, T3, and T4
are the survival time of four individuals with distribution T; (b): only T2,T3,
and T4 are sampled from the length biased distribution T̃ since individual
1 experiences the failure event before the prevalent day when the study
begins.

fT̃,W̃(t, w) = f (t, w|T ≥W)

=
f (t) fW(w)∫ ∞

0 fW(u)S(u)du
1(t ≥ w)

=
f (t)∫ ∞

0 S(u)du
1(t ≥ w)
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Since
∫ ∞

0 S(u)du = µ, it follows that

fT̃,W̃(t, w) =
f (t)
µ

and

fW̃(w) =
∫ ∞

w
fT̃,W̃(t, w)dt

=
S(w)

µ

Under the assumption of stationary onsets, we shall show below that
the length-biased backward and forward recurrence times are identical in
distribution.

Theorem 1 yields the following useful result for fT̃:

fT̃(t) = f (t|T ≥W)

=
∫ ∞

0
f (t, w|T ≥W)dw

=
∫ t

0
f (t, w|T ≥W)dw

=
∫ t

0

f (t) fW(w)∫ ∞
0 fW(u)S(u)du

dw

=
f (t)FW(t)∫ ∞

0 fW(u)S(u)du

Under the stationarity assumption, ii, we have FW(t) = t fW(t), and the
above equation reduces to the well-known length-biased distribution of T,
that is,

fT̃(t) =
t f (t)

µ
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Thus,

fW̃(w|T̃ = t) =
fT̃,W̃(t, w)

fT̃(t)
=

1
t

.

To derive the distribution for the forward recurrence times, X, we write:

f f wrd(x|T̃ = t) = fW̃(t−x|T̃=t)= 1
t

Then,

f f wrd(x) =
∫ ∞

x
fT̃,X(t, x)dt

=
∫ ∞

x
fX̃(x|T̃ = t) fT̃(t)dt

=
∫ ∞

x

1
u

u f (u)
µ

du

=
S(x)

µ

Finally, this implies

f f wrd(0) =
S(0)

µ
=

1
µ

Thus, from Equation (2.1), f f wrd(t) = S(t) f f wrd(0), which suggests a
natural estimator of S to be

Ŝ(t) =
f̂ f wrd(t)

f̂ f wrd(0)
(2.2)

Equation (2.1) is used to construct likelihood functions used in paramet-
ric estimations, while Equation (2.2) is explicitly used in the non-parametric
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estimation once the estimated density f̂ f wrd(t) is obtained using an algo-
rithm due to Denby and Vardi [5], as explained in Section 2.4.

2.3 Parametric Estimator

We use maximum likelihoods estimators for parametric models. Specifi-
cally, let θ be the parameter vector of the assumed parametric distribution.
The maximum likelihood estimator θ̂ is obtained by maximizing the likeli-
hood function:

L(θ) =
n

∏
i=1

f δi
f wrd(xi)S

1−δi
f wrd(xi) (2.3)

Substituting equation (2.1) allows us to re-write the likelihood function:

L(θ) =
n

∏
i=1

S(Xi; θ)δi

(∫
z>xi

S(z; θ)
)1−δi

µ(θ)
(2.4)

where µ(θ) =
∫ ∞

0 S(u; θ)du.

A natural parametric estimator, Ŝ, for S is thus:

Ŝ(t) = S(t; θ̂) (2.5)

where θ̂ is the maximum likelihood estimate of θ.

2.4 Non-parametric Estimator

As parametric models may have misspecified assumptions, a non-parametric
estimator can be considered to provide a more robust option. Since we are
employing forward recurrence time data, a standard non-parametric ap-
proach for right-censored data (i.e., the Kaplan-Meier curve applied to the
forward recurrence times) would ignore the special structure suggested by
equation (2.1). In particular, (2.1) implies that the forward recurrence time
density is a non-increasing function, a fact that can be exploited in the esti-
mation procedure.
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Denby and Vardi proposed an algorithm for determining the non-parametric
maximum likelihood estimate (NPMLE) of a non-increasing density func-
tion when using potentially right-censored data [5]. When the largest ob-
servation is censored, the likelihood function in (2.3) only has a supremum
but no maximum. Thus, Denby and Vardi proposed the M-restricted maxi-
mum likelyhood estimate (MLE) of the density, where all the remaining proba-
bility mass is placed at an extremely large time, M.

Definition 2.4.1. (M-Restricted Maximum Likelihood Estimate) Denote by
DM the set of all nonincreasing left continuous density functions with sup-
port on (0, M]. The M-restricted MLE is [5]:

max
g∈DM

L(g|data)

This problem always has a solution, and can be solved iteratively using
a version of the Renewal Theory (RT) algorithm [5, 18].

However, this M-restricted NPMLE has a local bias near 0. Note that
this bias also occurs in the absence of censoring, where the asymptotic
properties of the NPMLE under the constraint of decreasing density have
been established [16]. This leads to the conjecture that this phenomenon
might be the result of a different rate of convergence near 0 [5]. As equation
(2.2) reveals that our proposed estimator depends on f̂ f wrd(0), it is neces-
sary to correct this local bias.

This motivates our use of the corrected Denby-Vardi estimator. The details
on the corrected Denby-Vardi estimator can be found in [5], which aims to flat-
ten the peak near 0. In what proceeds, when we refer to the Denby-Vardi
estimator, we tacitly mean this corrected version. In particular, we submit
the corrected Denby-Vardi estimator as a candidate model for the stacking
procedure that is described in Section 2.5.

2.5 Stacking Procedures

2.5.1 Stacking survival curves

Assuming that there are m candidate models, we first compute the corre-
sponding forward survival functions estimators,

Ŝ1, f wrd(x), Ŝ2, f wrd(x), . . . , Ŝm, f wrd(x),
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using the maximum likelihood procedure for the parametric models, and
the Denby-Vardi estimator in the non-parametric case. We propose an esti-
mator to balance the pros and cons for different models by combining them
linearly, resulting in an estimator of the form

Ŝ f wrd(x) =
m

∑
k=1

akŜk, f wrd(x)

The weights for the linear combination are obtained via the algorithm
proposed by Wey, Connett, and Rudser [20], in which we minimize the
squared errors of forward survival function as measured by inverse-probability-
of-censoring weighting Brier Score. We now describe this procedure in
more details.

Definition 2.5.1. (Brier Score)

Squared error for survival functions at a given time point t is measured
by the Brier Score. In the absence of censoring, we have

BS(t) =
1
n

n

∑
i=1

(
Zi(t)− Ŝ(t)

)2

where Zi(t) = 1(ti > t) and ti is the event time for the ith observation.

To evaluate the estimator’s performance at time t, if the failure event
of the ith observation does not occur by t, then it is 1− Ŝ(t) = F̂(t) that
contributes to the Brier Score. In this case, smaller estimated survival prob-
ability at t, Ŝ(t), is penalized. By contrast, if the failure event of the ith

observation has occurred by time t, greater Ŝ(t) is penalized.

Since ti may not be observed, inverse-probability-of-censoring-weights (IPCW)
[13, 20] are used to account for the probability of an observation being cen-
sored. This adjusts for a potential bias resulting from loss-to-follow-up.

Definition 2.5.2. (Inverse-Probability-of-Censoring-Weighted (IPCW) Brier
Score)

Let ti be the event time for the ith observation in Definition 2.5.1, ci
the censoring time, G the survival function of the censoring distribution,
Ti(t) = min{ti, t}, and ∆i(t) = 1Ti<ci . We can define [20].
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IPCW − BS(t) =
1
n

n

∑
i=1

∆i(t)
G(Ti(t))

×
(
Zi(t)− Ŝ(t)

)2

We note the following items regarding use of IPCW Brier Score:

(1) The weight for an uncensored observation depends on whether the
event occurs by time t

(2) Censored observations with ci > t also contribute to IPCW-BS(t)

(3) Censored observations with ci < t only contribute indirectly through
the estimation of the censoring distribution.

To optimize for the weights â1, . . . , âm to linearly combine m models, the
IPCW Brier Score is minimized over a set of time points, t1, . . . , ts, under the
constraints âk ≥ 0 and ∑m

k=1 ak = 1. That is:

â = arg min
a

s

∑
r=1

n

∑
i=1

∆i(t)
G(Ti(t))

×
(

Zi(t)−
m

∑
k=1

akŜ(−i)
k (t)

)2

(2.6)

where a = {a1, a2, . . . , am} and Ŝ(−i)
k is the survival estimate from the kth

model leaving the ith observation out, resulting in n-fold cross-validation.
In practice, 5-fold cross validation is used instead to facilitate computa-
tional efficiency. Furthermore, for computational simplicity, this work chooses
to optimize the IPCW Brier Score over nine time points that are equally
spaced in the range of observed forward recurrence time data as imple-
mented in [15].

It can be shown that there exists a set of weights such that the stacked
model performs at least as good as the best candidate available in terms of
squared error. It is true, however, that the estimated weights obtained from
any particular data set may differ from the ideal set of weights [20].

Finally, the forward stacked survival estimator obtained in this fashion
ensures that the corresponding density function has a non-increasing den-
sity, since a density function is the negative derivative of a survival curve,
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f f wrd(x) = − d
dx

S f wrd(x) =
m

∑
k=1

ak fk, f wrd(x),

thus yielding a linear combination of non-increasing density functions for
forward recurrence time data.

Transferring the weights obtained from the forward recurrence distri-
butions, we can obtain a stacked estimator for the underlying survival func-
tion, S, in the following intuitive manner:

Ŝ(t) =
m

∑
k=1

âkŜk(t)

As discussed in Section 4, we note that this transfer of weights is ad-
hoc, but one that is interpretable given the assumption that the underlying
survival distribution can be described by a stacking model.

2.5.2 Stacking density functions

In Section 2.5.1, we discuss a method for stacking a set of survival func-
tions. Alternatively, after obtaining estimates for k individual models using
residual lifetime data, we can stack their density functions

f f wrd(x) =
m

∑
k=1

πk fk, f wrd(x).

where the set of linear combination coefficients, π1, π2, . . . , πm, can be
obtained by an EM algorithm so that the likelihood of the stacked density
model to observe the forward recurrence time data could be maximized
[17]. Algorithm 1 describes below the framework to optimize for the set of
linear combination coefficients πk:

Cross-validation is used in the training processing to prevent overfit-
ting. To save computational time, we used a 5-fold cross validation for
simulation results presented in Section 3.2 as described in Algorithm 2.
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Algorithm 1 Optimizing for the coefficients for the stacked-density-
estimator through EM algorithm

1: Set π
(0)
j = 1

m for all j.
2: Denote by

r(t+1)
ij =

π
(t)
j Lj(xi)

∑m
k=1 π

(t)
k Lk(xi)

the responsibility that model k takes for data point i at the (t + 1)th

iteration. Here, Lk(xi) is defined by Equation 2.3. Alternatively, rij can
be thought as the probability for data point i to come from candidate
model j

3: Iteratively update by

π
(t+1)
j =

∑n
i=1 rij

n

Algorithm 2 Cross-Validation for stacked-density estimator
Split the data into 5 folds for cross-validation. Obtain 5 estimators

for each of the M candidate models. Step 1 and 2 are the same as those
for stacking survival functions. Compute the likelihood for each of the
N observations under each of the M models and obtain an N ×M ma-
trix L where Lij is the likelihood to observe data i under model j as
obtained from equation 2.4. Although 2.4 is an expression for paramet-
ric models, likelihood for the NPMLE is calculated in the same fashion.
Here the likelihood calculation differs from Smyth and Wolpert’s work
because of censoring. Feed L into equations (1) and (2) to maximize
cross-validated likelihood. After a set of weights π’s are obtained ac-
cording to forward survival time distributions, transfer the weights in
the same fashion as Section 2.5.1 describes.

2.6 Mixture Model

In contrast to stacking procedures, we acknowledge that a mixture model
could be adopted to combine models from different families if all candidate
models are parametric.

Suppose there are d parametric models with parameters θ1, θ2, . . . , θd,
and let σ1, σ2, . . . , σd be the mixing probabilities where σk > 0 and ∑d

k=1 σk =
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1. Similar to the setting of stacking, we assume the underlying full survival
distribution follows a mixture model. That is

S(t; θ, σ) =
d

∑
k=1

σkSk(t; θk).

where θ = {θ1, θ2, . . . , θd} and σ = {σ1, σ2, . . . , σd}

This implies

µθ,σ =
∫ ∞

0

d

∑
k=1

σkSk(t; θk)dt

=
d

∑
k=1

σk

∫ ∞

0
Sk(t; θk)dt

=
d

∑
k=1

σkµk(θk)

where µk(θk) represents the expected value of the kth parametric model.

It follows that the likelihood can be written as

L(θ, σ) =
n

∏
i=1

(
S(ti; θ, σ)

µθ,σ

)δi
(∫ ∞

ti

S(t; θ, σ)

µθ,σ
dt
)1−δi

= µn
θ,σ

n

∏
i=1

(S(ti; θ, σ))δi

(∫ ∞

ti

S(ti; θ, σ)dt
)1−δi

=

(
d

∑
k=1

σkµk(θk)

)n n

∏
i=1

(S(ti; θ, σ))δi

(∫ ∞

ti

S(t; θ, σ)dt
)1−δi

The set of parameters, θ and σ, are estimated simultaneously by max-
imizing numerically the above likelihoods, and the optimized weights σ
thus can be applied directly to combine the associated underlying survival
functions.

One potential advantage of the mixture model approach is that there is
no ad-hoc transferring of mixture weights, as it is needed for the stacking
procedures. In Section 3, we present extensive simulation results to com-
pare the two stacking procedures with the mixture model approach.
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Simulation Study

Right-censored forward recurrence time data is simulated using the frame-
work employed by McVittie et al.[15]. Briefly, we first generate the on-
set time O from a Uni f orm(50) distribution and then simulate the failure
time T assuming different underlying true survival distributions. Cases
with T < 50−O are filtered out to represent individuals unobservable in
a prevalent cohort study whose failure event occurs before the study ini-
tiation. We keep generating the onset-failure pair (O, T) until a dataset
with sample size n is obtained. The residual lifetimes are then calculated as
Xi = Ti − (50−Oi) for i = 1, 2, . . . , n. Both administrative censoring and
random censoring are considered. To generate a dataset with administra-
tive censoring rate, q, the censoring time C∗ is set to be the 1− qth quantile
of X. For random censoring, the censoring time Ci is generated from an
exponential distribution. All codes for simulations can be found in Section
A.3.

3.1 Comparison with the Denby-Vardi NPMLE

We simulated Weibull (2,2) data under 10%, 20%, and 30% administrative
censoring rate and compared the prediction accuracy of NPMLE and the
two stacked estimators. Figure 3.1 shows the discrete integrated squared
survival errors (DISSE) [15] for the NPMLE and the stacked estimator in-
cluding the NPMLE, Weibull, Lognormal, Log-Logistic, and Gamma mod-
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els as a measure of mean squared errors (MSE), where

DISSE =
k

∑
i=1

(ti − ti−1)(Ŝ(ti)− S(ti))
2

Essentially, the DISSE is a measure to numerically compute the sum of
squared errors based on the survival curves. It is calculated during the
time span 0-10, which covers nearly all the non-zero density weight for the
Weibull(2,2) distribution. Both stacked estimators produce smaller DISSEs
compared with the Denby-Vardi estimator, where the stacked survival es-
timator yields a slightly smaller DISSE, which is reasonable since the stack-
ing weights for stacked survival estimators are optimized by directly min-
imizing the IPCW Brier Score as a measure of MSE. The NPMLE performs
poorly as the administrative censoring increases due to its lack of ability
to predict any potentially non-zero survival probability after the end of the
study, i.e., after administrative censoring. Table 3.1 and Table 3.2 present
the optimized stacking weights in the stacked survival and stacked den-
sity estimators, respectively. For both estimators, the stacked estimator’s
weights on the NPMLE diminish quickly due to increasing administrative
censoring rates, which corroborated the observations in [15]. The dominant
weights the Weibull model receives in Table 3.1 also demonstrates that un-
der this simulation setting, the stacked survival procedure is able to shift
the weights towards the correct parametric family.

Administrative Censoring Rates
Stacking Weights

NPMLE Weibull Loglogistic Lognormal Gamma
10% 0.004 0.981 0.010 0.002 0.003
20% 6.017×10−4 0.974 0.023 1.329×10−7 1.911×10−3

30% 2.983×10−9 0.847 0.111 1.042×10−7 0.042

Table 3.1: Weights for the five candidate models in the stacked survival
procedure under varying rates of administrative censoring

Administrative Censoring Rates
Stacking Weights

NPMLE Weibull Loglogistic Lognormal Gamma
10% 0.012 0.393 0.234 0.276 0.086
20% 0.012 0.352 0.210 0.283 0.142
30% 0.071 0.082 0.088 0.598 0.161

Table 3.2: Weights for the five candidate models in the stacked density pro-
cedure under varying rates of administrative censoring
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The superiority of a stacked estimator over the NPMLE in the presence
of a high administrate censoring rate is also demonstrated by an applica-
tion on the dementia dataset collected by the Canadian Study of Health
and Aging (CSHA) through a prevalent cohort study during the year span
1991-1996. However, the nature of dementia makes the recalled disease on-
set times susceptible to bias, thus motivating the use of an estimator that
is based solely on the observed residual lifetime. Figure 3.2 shows the es-
timated survival curves by the non-parametric corrected Denby-Vardi es-
timator and a stacked survival estimator that is composed of the NPMLE,
Weibull, Log-Normal, and Gamma models. The Denby-Vardi NPMLE drops
to 0 after 60 months when the study ended, while by comparison, the
stacked estimator can capture the tail behavior by incorporating paramet-
ric models.

3.2 Comparison with Stacked Density

A simulation study is also conducted to compare the stacked-survival-function
estimator with the stacked-density-function estimator assuming random
right-censoring. Since the former aims at minimizing mean squared errors
as measured by IPCW Brier Score while the latter aims at maximizing likeli-
hoods, both the DISSE and the Kullback-Leibler divergence (KLD) are used
as evaluation metrics.

The inclusion of a non-parametric model would cause the stacked es-
timator to be non-parametric in nature. Due to the construction of the
stacked estimator, it is impractical to obtain an estimated density func-
tion for the underlying survival time. Therefore, in order to compute the
Kullback-Leibler divergence, the Denbi-Vardi NPMLE is excluded from the
candidate models for stacking in the following simulations.

In the first scenario, a single distribution is used to simulate failure
times. A Weibull (2,2) distribution and a Weibull (0.75,3) distribution are
used to generate survival times exhibiting an increasing hazard and a de-
creasing hazard, respectively. The censoring time distribution is adjusted
such that the censoring rate is kept around 30%. In each scenario, fifty
datasets with a sample size of 125 are generated with a random censor-
ing rate of 30%. Two types of stacked models are considered, depend-
ing on when the correct model–the Weibull model in our case–is included
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or not, where the latter scenario aims at reflecting the fact that in reality
the correct model family is usually unknown. That is, we want a sim-
ulation scenario that assesses the robustness of our procedures in situa-
tions where the underlying truth is not a candidate model for stacking.
When the correct model is included, we consider stacking all four paramet-
ric models–Weibull, Log-Logistic, Log-Normal, and Gamma–and stacking
only Weibull and Gamma models. The stacking weights, the DISSE and
KLD of individual models, the stacked-survival-function estimator, and the
stacked-density-function estimator are reported in Tables 3.3-3.8. All simu-
lation results are obtained using a sample size of 125.

Overall, the two stacked estimators have similar performances in both
DISSE and KLD. We also note that all models perform worse in the decreas-
ing hazard case, possibly due to the asymptotic behavior of the Weibull(0.75,3)
hazard function at the time point 0. We repeated the simulation scheme
for Gamma models under both increasing and decreasing hazards and ob-
tained similar results as reported in the supplementary materials.

Model DISSE KLD
Weibull 0.02153351 3.720× 10−4

Loglogistic 0.04721325 16.101× 10−4

Lognormal 0.03657954 11.003× 10−4

Gamma 0.0363825 6.634× 10−4

Table 3.3: DISSE, and KLD for individual parametric estimators under a
Weibull (2,2) distribution

Weights
DISSE KLD

Weibull Loglogistic Lognormal Gamma
0.811 −− −− 0.189 0.02378625 4.287×10−4

0.573 0.131 0.152 0.144 0.02796682 6.432×10−4

−− 0.208 0.438 0.354 0.03734887 9.891×10−4

Table 3.4: Stacking weights, DISSE, and KLD for stacked-survival-function
estimator under a Weibull(2,2) distribution

Apart from simulating data from a single distribution, we also sim-
ulated data from a mixed distribution. Though this is a less likely sce-
nario in real life, this simulation is conducted to examine the performance
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Weights
DISSE KLD

Weibull Loglogistic Lognormal Gamma
0.736 −− −− 0.264 0.02634225 4.597×10−4

0.602 0.143 0.114 0.140 0.03187206 7.526×10−4

−− 0.150 0.351 0.498 0.03710031 10.546×10−4

Table 3.5: Stacking weights, DISSE, and KLD for stacked-density-function
estimator under a Weibull(2,2) distribution

Model DISSE KLD
Weibull 0.1371731 0.8285432

Loglogistic 0.4891242 9.682708
Lognormal 0.1873343 34.62643

Gamma 0.2923004 2.168843

Table 3.6: DISSE, and KLD for individual parametric estimators under a
Weibull(0.75, 3) distribution

Weights
DISSE KLD

Weibull Loglogistic Lognormal Gamma
0.6855028 −− −− 0.3144972 0.1486238 1.158258
0.2081505 0.2756152 0.2366610 0.2795733 0.2514906 2.46644
−− 0.2882678 0.3057394 0.4059928 0.2660464 2.724732

Table 3.7: Stacking weights, DISSE, and KLD for stacked-survival-function
estimator under a Weibull(0.75, 3) distribution

Weights
DISSE KLD

Weibull Loglogistic Lognormal Gamma
0.6109639 −− −− 0.3890361 0.164746 1.207803
0.2591137 0.1087186 0.2329598 0.3992079 0.2120041 3.378248
−− 0.1119335 0.3379473 0.5501193 0.2227059 3.982036

Table 3.8: Stacking weights, DISSE, and KLD for stacked-density-function
estimator under a Weibull(0.75, 3) distribution

of the stacked-survival-function and the stacked-density-function estima-
tors in the absence of any single correct parametric model. Fifty datasets
of sample size 125 with 30% random right-censoring rate are generated,
where half of the data comes from a Weibull(2,2) distribution and the other
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half comes from a Gamma(2,2) distribution. We consider two sets of candi-
date models for stacking: a Weibull-Gamma stacking model and a stacking
model including Weibull, Log-Logistic, Log-Normal, and Gamma models.
The stacking weights, DISSE, and KLD for the two estimators are reported
in Table 3.9. Both estimators have similar performance as measured by
DISSE, while the stacked-density-function estimator has a slightly better
KLD. However, in the case of stacking only Weibull and Gamma models,
the stacking weights estimated by the stacked-survival-function estimator
are much closer to the underlying 50-50 truth.

Estimator
Stacking Weights

DISSE KLD
Weibull Log-Logistic Log-Normal Gamma

stacked-survival-function estimator
0.440 −− −− 0.560 0.036 0.109
0.227 0.168 0.217 0.387 0.021 0.065

stacked-density-function estimator
0.333 −− −− 0.667 0.036 0.104
0.300 0.109 0.304 0.287 0.019 0.064

Table 3.9: Stacking weights, DISSE, and KLD for the stacked-survival-
function estimator and the stacked-density-function estimator under a
mixed distribution. Both estimators utilize only the residual lifetime data.

3.3 Evaluation for A Mixture Model Approach

We generate forward recurrence time data from a Weibull (2,2) distribution
as described in Section 3 to evaluate the performance of the mixture model
approach. 50 datasets were simulated, each of sample size of 125. The para-
metric nature of this approach excludes the inclusion of the NPMLE. Fur-
thermore, the number of parameters present in the mixture model poses
difficulty for estimation due to its high dimensionality. For example, we
are not able to obtain optimized parameters when we use all four paramet-
ric families–Weibull, Lognormal, Loglogistic, and Gamma–as components
for the mixture model, which involves 12 parameters in total. Moreover,
the estimated parameters for individual parametric models could be un-
reasonable, which results in the platform-like segments in Figure 3.3. As
suggested by Table 3.10, the model performs poorly except for the Weibull-
Gamma mixture case, which still has a large variance and suffers from un-
realistic bumps compared with the results in Table 3.4. Additional simula-
tions presented in the supplementary materials suggest this problem per-
sists even if the models contained in the mixture come from the same para-
metric family. However, as Figure S1 suggests, switching back to using
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full survival data rather than the residual lifetime data avoids the problem,
which is confirmed by previous literature [6, 7, 14]. It could be that the
bumpiness when only forward recurrence time data is used is a result of
numerical issues during the optimization process or concavity-related is-
sues, as discussed in the supplementary materials.

Weibull-Gamma Lognormal-Loglogistic-Gamma
DISSE 0.082 0.281

Table 3.10: DISSE of mixture models using residual lifetime only under
Weibull (2,2) truth
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Figure 3.1: (a) MSE for NPMLE, stacked survival estimator, and stacked
density estimator under increasing rates of administrative censoring; (b)-
(d) predicted survival curves for NPMLE and the two stacked estimators
under 10% , 20 %, and 30% administrative censoring. Both stacking ap-
proaches outperform the NPMLE in the presence of administrative censor-
ing.
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Figure 3.2: NPMLE (in black) and the stacked estimator (in red) with 95%
bootstrapped pointwise confidence interval for three dementia subgroups
in CSHA [15]
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(a) Weibull-Gamma mixture model
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(b) Lognormal-Loglogistic-Gamma mixture model

Figure 3.3: Survival curves estimated by mixture models that include (a)
Weibull and Gamma models and (b) Lognormal, Loglogistic, and Gamma
models, excluding the correct parametric Weibull distribution; data was
generated under a Weibull(2,2) distribution
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Discussion

4.1 Alternative Estimation Methods

In comparison to the ad-hoc weight transferring involved in the stacked-
survival-function estimator and the stacked-density-function estimator dis-
cussed throughout our work, Equation (2.1) and Equation (2.2) allow alter-
native estimators as described below:

1. Stacking Forward Survival with Inversion

Once a set of weights are optimized via Brier Score to obtain a linear
combination of forward survival functions Ŝ f wrd(t) = ∑m

k=1 αiŜk, f wrd(t),rather
than transferring the weights to combine the underlying survival func-

tions, the relationship S(t) = f f wrd(t)
f f wrd(0)

can be used again.

Specifically, since

f̂ f wrd(t) = −
d
dt

Ŝ f wrd(t) = −
m

∑
k=1

αi f̂k, f wrd(t),

we can define an estimator as follows:

Ŝ(t) =
f̂ f wrd(t)

f̂ f wrd(0)
=

∑m
k=1 αi f̂k, f wrd(t)

∑m
k=1 αi f̂k, f wrd(0)
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2. Stacking Forward Density with Inversion

Corresponding to the stacked-density-function estimator described
in Section 2.5.2, after estimating f̂ f wrd(t) = ∑m

k=1 αi f̂k, f wrd(t) via the

EM algorithm, we can use S(t) = f f wrd(t)
f f wrd(0)

to estimate Ŝ(t).

Though these two approaches avoid the ad-hoc transferring of weights,
we lose the clear interpretability of the methods in Sections 2.5.1 and
2.5.2, since the estimated Ŝ(t) can no longer be written as a linear
combination of individual survival functions Ŝi(t). There, these two
methods are not recommended for practice.

Similarly, with respect to the mixture model adopted in Section 3.3
where the underlying distribution is assumed to be a mixture, we can
assume instead that the residual lifetime data follows a mixed distri-
bution. In this case, write the residual lifetime density distribution is
f f wrd(t) = ∑d

k=1 σi fk, f wrd(t; θk). It follows that the likelihood for right-
censored residual lifetime data with sample size n is

L(θ, σ) =
n

∏
i=1

(
d

∑
k=1

σk fk, f wrd(ti; θk)

)δi
(∫ ∞

ti

d

∑
k=1

σk fk, f wrd(t; θk)dt

)1−δi

After optimizing for θ̂ and σ̂, we could estimate the underlying sur-
vival distribution by:

S(t; θ̂, σ̂) =
∑d

k=1 σ̂k fk, f wrd(t; θ̂k)

∑d
k=1 σ̂k fk, f wrd(0; θ̂k)

.

This approach is not adopted because its assumption is less natural
and causes difficulty in interpretation. That being said, future work
could investigate the performance of each of these alternatives.

4.2 Performance of Model-Mixture Approach

We observe that mixture models produce sub-optimal performances when
we base the estimation only on forward recurrence times. We hypothesize
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two reasons: the complex forms of likelihood functions and high dimen-
sionality. Equation (2.4) suggests that the likelihood function we use has
a complicated form that involves integrating survival functions when the
estimation is based solely on the information provided by forward recur-
rence times. Moreover, as the mixture model optimizes for both parameters
for individual model candidates and mixture weights simultaneously, the
dimension of the space the optimization occurs over rises drastically as the
number of candidate models increases. The high dimensionality may con-
tribute to non-identifiability, where there is no single set of parameters that
could give optimal performance.

4.3 Choice between the Two Stacked Approchaes

Simulation results in Section 3 suggest that both the stacked-survival es-
timator and the stacked-density estimator perform relatively well when
applied to residual lifetime data. Since stacking weights in the stacked-
survival estimator are optimized by minimizing the IPCW Brier Score, while
in the stacked-density estimator are obtained via maximizing likelihoods,
we adopted both the DISSE and the KLD as metrics to evaluate their perfor-
mances. Though often the stacked-survival estimator generates a smaller
DISSE as expected, we also observed in Table 3.7 and Table 3.8 that the
stacked-survival estimator sometimes gives a slightly higher DISSE. We
conjecture that this might be due to the fact that our stacked-survival proce-
dure only optimizes the IPCW Brier Score on nine equally spaced points for
computational efficiency, resulting in stacked weights that deviate from the
true optimal value. That having been said, based on the simulation results,
both estimators give comparable performances in different simulation set-
tings. In terms of computational efficiency, both stacking methods require
estimating individual candidate models. However, simulation results sug-
gest that optimizing stacking weights for the stacked-survival estimator
runs roughly three times faster than the stacked-density estimator. Opti-
mizing fifty datasets each of a sample size of 125 requires approximately 20
seconds for the former while 60 seconds for the latter using CPU. Thus, ei-
ther method could be used to estimate survival data collected in prevalent
cohort studies using only residual lifetime information, while the stacked-
survival estimator is slightly superior in terms of running time.
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4.4 On the Case of Decreasing Hazard

Simulation results suggest that all estimators, individual or stacked, all per-
form better in the presence of increasing hazards in comparison to decreas-
ing hazards. Though a clear explanation of the reasons behind this obser-
vation is still under investigation, we hypothesize that this might be due
to the length-biased survival data collected during prevalent cohort stud-
ies. Using the simulation scheme laid out in Section 3.2, we simulated fifty
datasets, each containing 125 subjects with a 30% random censoring. Fig-
ure 4.1 shows the estimates and 95% confidence intervals using a Weibull
model fitted to full prevalent data generated from a Weibull (2,2) distri-
bution with an increasing hazard and a Weibull (0.75, 3) distribution with
a decreasing hazard, respectively. We chose not to adjust for length bias
in order to gauge the effects of length bias on estimation. It appears esti-
mation suffers from more severe bias under a decreasing hazard than un-
der an increasing hazard, which is reasonable since in the former case, a
larger proportion of subjects with earlier failure events would be excluded
from sampling. It is possible that the larger MSE or KLD we observed in
data simulated under decreasing hazards in Section 3 is a result of remnant
length bias that is more severe for survival data with decreasing hazards.
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Figure 4.1: Weibull estimates unadjusted for length-bias and their 95% con-
fidence intervals using simulated full survival data from prevalent study
(red) (a) an increasing hazard using Weibull(2,2) and (b) a decreasing haz-
ard using Weibull(0.75,3) with 30% random censoring. Under a decreasing
hazard, the estimates are impacted more severely by length-bias.
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Concluding Remarks

Survival data collected in prevalent cohort studies are partially observed.
Though residual lifetimes are directly observed, researchers have relied
on self-reported onset times to estimate underlying survival distributions.
However, in certain settings, self-reported onset times may not be reliable,
and thus may introduce additional bias that produces undesirable esti-
mates. This project exploited the relationship between the density of the
forward recurrence time and the underlying survival distribution under
the assumption of stationary onset times to avoid using self-reported onset
times.

Though this relationship is well-known, improvements could be further
achieved by combining non-parametric estimators and parametric estima-
tors from different families together in order to obtain an estimator can
enjoy the low variance of parametric models while avoiding model mis-
specifications. Previously, [15] developed the stacked-survival estimator to
address this issue. This study investigated the alternative option to stack
density functions rather than survival functions and explored the possibil-
ity to apply a mixture model under the setting of residual-lifetime-based
survival estimation. Results have shown that the stacked survival esti-
mator outperforms NPMLE alone, especially in the presence of high ad-
ministrative censoring. Simulation results also suggested that the stacked
survival estimator and the stacked density estimator have similar perfor-
mances in terms of DISSE and KLD. Though previous literature has ap-
plied a mixture model for full survival data, our results suggest that mix-
ture models are not suitable for estimations based on residual lifetimes.

Lastly, we acknowledge that the stacking methods discussed in this
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work do not incorporate covariates to predict survival times. Convention-
ally, covariate effects in survival analysis are estimated by parametric mod-
els or semi-parametric models such as the Cox model, though [8] proposed
a method for covariate-adjusted non-parametric survival curve estimation.
It remains to be investigated how to incorporate covariates for the predic-
tion of survival time using forward-recurrence-time-based estimation pro-
cedures.
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Appendix A

Supplementary material

A.1 Additional Simulations for Comparison between
Two Stacked Estimators

A.1.1 Data Generated from a Gamma (2,1) Distribution with an
Increasing Hazard

Model MSE KLD
Weibull 0.02658461 0.1138012

Loglogistic 0.06089398 0.3611299
Lognormal 0.03772015 0.3773242

Gamma 0.03360495 0.1368174

Table S1: DISSE, and KLD for individual parametric estimators under a
Gamma (2,1) distribution

Weights
MSE KLD

Weibull Loglogistic Lognormal Gamma
0.4335266 −− −− 0.5664734 0.03179796 0.1226104
0.3182486 0.3070779 0.1729068 0.2017667 0.03655998 0.1875371
0.4839072 0.2978241 0.2182687 −− 0.03527199 0.1657934

Table S2: Stacking weights, DISSE, and KLD for stacked-survival-function
estimator under a Gamma(2, 1) distribution
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Weights
MSE KLD

Weibull Loglogistic Lognormal Gamma
0.5361875 −− −− 0.4638125 0.03033129 0.08992327
0.4729728 0.1830774 0.2482173 0.0957324 0.03155281 0.1299453
0.5382773 0.1858990 0.2758237 −− 0.03137829 0.1301424

Table S3: Stacking weights, DISSE, and KLD for stacked-density-function
estimator under a Gamma(2, 1) distribution

A.1.2 Data Generated from a Gamma (0.8,5) Distribution with a
Decreasing Hazard

Model MSE KLD
Weibull 2.105723 4.251685

Loglogistic 3.473024 23.08009
Lognormal 2.944581 109.9397

Gamma 2.077842 6.262271

Table S4: DISSE, and KLD for individual parametric estimators under a
Gamma (0.8,5) distribution

Weights
MSE KLD

Weibull Loglogistic Lognormal Gamma
0.4300011 −− −− 0.5699989 2.072471 4.706692
0.27769444 0.26727826 0.05555535 0.39947196 2.440104 6.849669
0.63363418 0.27347327 0.09289255 −− 2.549522 7.360706

Table S5: Stacking weights, DISSE, and KLD for stacked-survival-function
estimator under a Gamma(0.8, 5) distribution

A.2 Abnormal Behavior of Mixture Models When resid-
ual lifetime Data is Used

To identify the cause of the bumpiness observed in the mixture models,
we simulated fifty datasets from a mixture distribution of Weibull(3,3) and
Weibull(5,5) using a sample size of 1000 and a right-censoring rate of 0.15,
where 80% data comes from Weibull(3,3) and 20% data comes from Weibull(5,5).
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Weights
MSE KLD

Weibull Loglogistic Lognormal Gamma
0.4798271 −− −− 0.5201729 2.086596 4.948595
0.3059291 0.1305337 0.1928793 0.3706579 2.342791 6.958089
0.6551547 0.1446893 0.2001560 −− 2.442306 7.240001

Table S6: Stacking weights, DISSE, and KLD for stacked-density-function
estimator under a Gamma(0.8, 5) distribution

The residual lifetime data is obtained using the same simulation scheme as
described in section 3. We considered a mixture model with two Weibull
components and a Weibull-Log-Logistic mixture model, and compared the
estimated survival curves using either the full survival data or the residual
lifetime in Figure S1, which shows the estimated survival curves for fifty
simulated datasets of sample size 125 under a 15% rate of random censor-
ing. We simulated this set of data under a smaller rate of random censoring
to focus on comparing the effects of using forward recurrence data versus
fully observed survival data.
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(a) Estimated survival curves by a Weibull-Weibull mixture model using
full survival data
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(b) Estimated survival curves by a Weibull-Weibull mixture model using
only residual lifetime data

Figure S1: Switching from using the full survival data to the residual life-
time data causes the bumpiness observed in mixture models despite differ-
ent selections of mixture components. Data is generated from a mixture of
Weibull(3,3) and Weibull(5,5) distribution



Codes Availability 47

A.3 Codes Availability

All codes and resources used in this project can be found at https://www.
dropbox.com/sh/ct1qkqn3m7z10j7/AAA_FHKqhfYLjHhKxOVbNMgCa?dl=0. Scripts
for the stacked survival estimator are based on [15].
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