
Road Detection for Driving Applications based on
Histograms

I. Cousseau
UNS

Bahia Blanca, Argentina

D. Gigena Ivanovich
IIIE

CONICET
Bahia Blanca, Argentina

P. Julian
DIEC-IIIE

UNS-CONICET
Bahia Blanca, Argentina

Abstract—A simple method to detect the boundaries of a
road from images is proposed. General considerations for the
calculation of a bird’s-eye view transformation and the use of
histograms are established. A high-level algorithm is developed
and implemented at RTL level, which is further synthesized for
an FPGA.

Index Terms—Road detection, lane detection, histograms.

I. INTRODUCTION

Road detection is a central issue in the development of
autonomous vehicles. A method designed for this purpose has
to fulfill certain requirements: low processing time, low power
consumption, robustness and portability. In particular, a low
processing time is critical for use in real-time applications.

FPGA (Field-Programmable Gate Array) devices are a
useful platform for hardware computational acceleration due
to their low cost and reconfigurability. Applications for road
detection are developed in [1]–[3], focused on the efficient
implementation of the Hough Transform, which is a commonly
used technique for line detection in images. However, the
detection performance of the Hough Transform declines if
the road is not well marked, i.e., it presents incomplete or
unexpected lane markers [4]. Moreover, road shape differs
from a line in a number of practical situations, for example, if
the road lines painting is degraded or the road curb is irregular.

This motivates the development of a different approach
in our paper, oriented to take into account more general
conditions. A simple detection method is implemented using
histograms. Besides, a reduced number of operations tends
to result in low processing time and resource utilization, and
serves as a good basis to add greater complexity in future
applications.

Previous work based on the calculation of histograms has
been done in [5], where histograms are used to detect potential
lane-marker objects which are then analyzed based on their
geometries, shapes and positions. Our approach incorporates
the use of a bird’s-eye view transformation (also called Inverse
Perspective Transformation). This transformation is used to
greatly simplify the boundary detection problem by converting
its shape to an almost straight vertical line.

The architecture is developed with the specific purpose of
handling video sequences produced by an event based CMOS
imager [6].

II. PRELIMINARY CONCEPTS

A. Bird’s-eye view transformation
A bird’s-eye view (BEV) of a scene is obtained if the ob-

server or camera is situated at a certain height perpendicularly
to the ground plane. This view removes perspective effects
from the captured images and allows distances in pixels to
be related linearly to real world distances in meters [7]. If
the camera intrinsic (focal length and principal point) and
extrinsic (height and inclination angles) parameters are known,
an homography can be defined [8].

Assuming a pinhole camera model, the camera’s mapping
between the 3D world and the 2D image is defined by the
camera matrix

P = K [R | t] (1)

where K is the intrinsic or calibration matrix, R is the rotation
matrix and t is the translation matrix (these last two are related
to the camera location). In homogeneous coordinates

~xp = P ~Xm = P

2

664

X

Y

Z

1

3

775 (2)

where ~xp is an image point (in pixels) and ~Xm is a 3D-world
point (in meters). It is assumed that the ground plane satisfies
Z = 0 and the camera matrix can be reduced to

~xp = H ~xm (3)

where H is the homography matrix and ~xm is a 2D-world
point (in meters). The inverse of the homography matrix is
then used to retrieve the original scene information,

~xm = H
�1

~xp. (4)

B. Road image analysis with histograms
An expected binary bird’s-eye view image of a road is

shown in Fig. 1, which represents an ideal detection scenario.
A histogram is calculated summing the pixel values corre-
sponding to each column. It is assumed that the camera is
aligned with the center of the image and, under normal driving
conditions, each side of the road is located in each half of
the image. Starting from the center of the histogram, the first

2021 Argentine Conference on Electronics - CAE

978-1-7281-7579-9/21/$31.00 ©2021 IEEE 67 IEEE Catalog Number CFP21S41-ART

(a) Bird’s eye view image. Cam-
era position is indicated with a
red dot.

(b) Histogram calculated from
the bird’s eye view image. The
first local maximum for each side
of the histogram (starting from
the center) is indicated in green.

Figure 1: Expected bird’s eye view image to use for road
detection and its corresponding histogram.

local maximum in both directions (from right to left for the
right half of the histogram, from left to right for the left half
of the histogram) provides information about the approximate
location of the road border.

However, this basic calculation is vulnerable to detection
errors that may arise in real world situations. For example,
due to road irregularities there could be small spots in the
road that may result in erroneous maxima detected. Fig. 2
shows an image taken with an event camera and its associated
bird’s-eye view. The detection can be made more robust by
imposing that the local maximum must be higher than a fixed
threshold value.

For the purpose of establishing this value, the road is
approximated by a solid straight line with a given width
and inclination angle (to a vertical line). It is assumed that
histogram values have to be higher than the hypothetical
histogram values of a minimum reference line. This threshold
value can be approximated by

thr =
w

sin(a)
(5)

where w is the expected minimum width of the road (in pixels)
and a is the maximum expected inclination angle (usually
between 10� and 20�). The minimum expected width of the
road in pixels can be related to a distance in meters (usually
between 5 and 10 cm).

Moreover, the BEV image could be cut in an arbitrary
number of horizontal slices and then a histogram would be
calculated for each slice. The threshold value is valid for each
histogram and can be applied to them. To choose a reasonable
number of slices it must be considered that the slice pixel
height must be kept relatively distant from the threshold value.

Dividing the image in slices and applying the analysis
described before results in a number of points that belong
to the road for each side of the image, instead of just one.
These points could be compared among themselves to discard

(a) Original view frame.

(b) Bird’s-eye view transforma-
tion.

(c) Histogram calculated from
bird’s eye view. The first local
maximum for each side of the
histogram (starting from the cen-
ter) is indicated in green.

Figure 2: Bird’s eye view transformation and histogram cal-
culation.

outliers and improve the robustness of this method. This
approach is not developed in this paper and it is left for future
work.

Finally, for simplicity, the BEV image could also be cut
in two halves vertically to calculate a histogram for each of
them. As mentioned before, it is assumed that each half of the
image corresponds to each side of the road. The analysis for
each half of the histogram only differs in the local maximum
search direction, i.e., for the histogram that belongs to the left
half of the image, the first maximum is searched from right
to left and, for the histogram that belongs to the right half of
the image, the first maximum is searched from left to right.

C. FRIS2D event based imager
The FRIS2D is the fourth design version in the series of

read-out ICs for infrared imagers using in-pixel sigma-delta
converters and automatic pixel selection [6]. This chip contains
an array of 127 ⇥ 127 pixels on a 40 µm pitch and has been
fabricated in an IBM 90 nm process. The schematics of the
FRIS2D cell is shown in Fig. 3. It consists of a photodi-
ode that discharges an integrating capacitance, followed by
a synchronous sigma-delta converter that drives a feedback
transistor that injects charge to balance the photodiode current.
The output of the converter feeds a decimator that has a non-
uniformity correction per pixel.

The FRIS2D is capable of outputting pixel values under
certain conditions, for example when the change in the abso-
lute or relative value has changed by a certain programmable
amount. As a consequence, a sparse output is obtained with

2021 Argentine Conference on Electronics - CAE

978-1-7281-7579-9/21/$31.00 ©2021 IEEE 68 IEEE Catalog Number CFP21S41-ART

Figure 3: FRIS2D schematics.

only significant information. For the purposes of the current
paper, a standard camera was used to collect images and an
emulator was developed to produce an event based output as
is explained next.

D. Data collection
A camera was characterized and used to collect data.

Camera intrinsic parameters were obtained using the Camera
Calibrator App in MATLAB™ [9]. The camera was located
at a fixed position in order to take a set of 30 images of a
calibration board in different positions.

Figure 4: Checkerboard images used for camera calibration.

As shown in Fig. 4, the calibration pattern is a checkerboard.
The size of the squares is known and the application uses
this information to estimate the parameters. The procedure
to obtain the camera extrinsic parameters is similar but the
checkerboard is located on the ground and the application
infers the reference zero height plane from it.

In order to collect real data, the camera was mounted on the
front of a vehicle facing forward in the road direction and a
Full-HD video was recorded. A Matlab script is used to mimic
the output of an event detection imager. First, successive
frames are read from the video and converted from RGB to
grayscale. Value variation between frames for each pixel is
analyzed. If this variation is greater than a minimum threshold
and lower than a maximum threshold, it is stored in a new
image. Then, Matlab’s image resizing function (imresize) is

used to downsize video resolution to 128 ⇥ 128. This is
an emulation of ideal event detection and does not model
FRIS2D pixel noise, but inherits its image resolution. Finally,
the obtained images are binarized.

III. PROPOSED ALGORITHM

We are assuming that there is a table already preloaded
with a list of BEV pixel coordinates and the corresponding
coordinates of the pixels in the original image. This table is
built to avoid the computation of coordinates during execution
time. Fig. 5 illustrates the table that contains row and column
of the BEV image on the left and the associated row and
column of the original image on the right. Whenever a BEV
pixel needs to be computed, the table is used to obtain the
original image coordinates, access the original image and get
the value of the pixel.

Figure 5: The path of a BEV image pixel to its corresponding
histogram value.

The proposed algorithm is summarized in Fig. 6. It begins
with the storage of the binary image of the road. As the
objective of the algorithm is to find only the first local
maximum of a set of column histograms, it is not necessary to
calculate all the histograms. The BEV image pixel values can
be summed and compared in an orderly fashion, i.e., summing
only those pixels corresponding to a column to produce one
element of the histogram and then proceed to compare it with
the previous one to determine if it corresponds to a local
maximum.

A. Architecture
The resolution of the BEV image to be analyzed is 128⇥128

pixels. This image is subdivided into two halves horizontally
and then in eight slices vertically, resulting in 16 blocks. For
each of these blocks, the previous algorithm is applied. Fig.
7 shows the resulting histograms for the case when they are
calculated completely. Fig. 8 shows the detected histogram
maxima in the original, event detection emulation and bird’s
eye view images.

Each of the blocks obtained after dividing the image is a 16-
by-64 set of pixel addresses (14-bit registers). As mentioned
before, the inverse BEV transformation is implemented as a
list of related pairs of pixel addresses (i.e. a BEV frame pixel
address and its corresponding original frame pixel address)
stored in a table. The BEV pixel address is used as the table
address to be read and the original frame address as the value
read. Then, the original frame pixel address is used to retrieve
a binary pixel value from the image stored in memory.

The table is sorted in a particular way. First, the 16
BEV image pixels that correspond to each block column are

2021 Argentine Conference on Electronics - CAE

978-1-7281-7579-9/21/$31.00 ©2021 IEEE 69 IEEE Catalog Number CFP21S41-ART

Figure 6: Algorithm flowchart.

Figure 7: Split bird’s-eye view frame (for Fig. 2-a) and the
corresponding histogram for each block.

grouped. Then, these groups are sorted in the same order as
the columns would be picked and compared for histogram
calculation. Thus, the table can be read sequentially by reading
a set of 16 successive table values (block column) at a time.
Table calculation, sorting and loading into memory is done
offline. Table dimensions are 14 bits ⇥ 214.

Once read, pixel values are summed and compared with the
previous sum (first, the previous sum has to be higher than
the detection threshold). At the same time, the BEV column
address is checked to verify if the end of a block was reached.
In general, the result of these two comparisons determines the
next BEV column address to be read (next address in normal
operation or jump to next block if a local maximum was found)
and the value stored as the previous sum (save current sum in
normal operation or reinitialize to zero if a local maximum was

(a) Original frame.

(b) Emulated FRIS2D frame
(event detection and 128 ⇥ 128
resolution).

(c) Bird’s eye view frame.

Figure 8: Application of FRIS2D emulation and histogram
detection to a frame. Detected maxima in histograms are
indicated with green dots (in the center of their corresponding
bird’s eye view horizontal slices). Camera position is indicated
with a red dot.

found). Finally, the BEV column address is used to access its
corresponding BEV pixel addresses in the table and the cycle
starts over. At any time, if a local maximum is found, the
previous BEV column address is stored (this is the maximum
column or location).

A simplified description of the design is shown in Fig.
9. It can be divided into two functional blocks. The inverse
BEV block is used to manage the inverse BEV transformation,
retrieve original image information stored in memory and
provide this data to the processing block. The processing block
executes the add/compare operations needed to process data
and determine histogram maxima location. Parallelization is
added through the utilization of more add/compare units (a
total of 4 units as indicated in Fig. 9) and segmentation of the
inverse BEV transformation table.

These two functional blocks work simultaneously in a short
pipeline, which in one clock cycle performs the following
operations:

• a set of pixel values is processed by the processing block.
• the next set to be processed is loaded by the inverse BEV

block and made available at the input of the processing
block for the next cycle.

A few extra registers are added for this purpose. Moreover,
a special case arises in the immediate cycle after maximum
detection: the next data to be processed is already loaded

2021 Argentine Conference on Electronics - CAE

978-1-7281-7579-9/21/$31.00 ©2021 IEEE 70 IEEE Catalog Number CFP21S41-ART

Figure 9: RTL design with functional blocks delimitation.
Inverse BEV block and processing block are indicated with
blue and red dashed lines respectively.

but the maximum was already found, so this data must be
ignored. The processing block is implemented as an FSM to
take into account this behavior, with a 1-bit state register: state
0 corresponds to normal operation, state 1 is only reached
when a maximum is detected and produces a one-clock cycle
wait.

B. Simulation and synthesis results

The design is written in Verilog HDL, simulated and
synthesized for implementation in the Xilinx™ Arty Z7-20
Development Board with the Xilinx™ Vivado Design Suite.
This design can be synthesized with a maximum clock of
100MHz. Utilization and power reports are indicated in Table I
and Fig. 10 respectively. Design simulation captures are shown
in Figs. 11-a and 11-b.

Table I: Vivado Synthesis utilization report.

Resource Utilization Available Utilization (%)
LUT 4137 53200 7.78
FF 236 106400 0.22
IO 10 125 8.00

For the particular frame used in Fig. 11 simulation, maxima
detection is accomplished in around 2000 ns. Nevertheless,

Figure 10: Vivado Synthesis power report.

a worst case scenario can be approximated by taking into
account the BEV image subdivision done previously,

Detection time =
Clock period⇥Block width⇥Blocks

Add/compare units
. (6)

If the clock frequency is 100MHz,

Detection time =
10ns⇥ 64⇥ 16

4
= 2560ns. (7)

IV. CONCLUSIONS

In this paper we have proposed an architecture for road
detection using the BEV algorithm oriented to event based
cameras. As a first step, we characterized a camera to col-
lect real images. Then, we developed an algorithm based
on histograms to detect road boarders. We implemented an
inverse BEV transformation using a table-based approach.
Histogram use for road detection was established with a few
improvements, such as the detection threshold value and image
slicing to calculate more histograms in parallel. An algorithm
was proposed and translated into a simple RTL design, which
was synthesized with a 100MHz clock.

The proposed method results in a number of points (as the
number of maxima locations) that belong to the road border.
Further processing could be done using this points. Linear
interpolation to discard possible outliers is a simple correc-
tion and could greatly improve the quality of the obtained
information. Comparison of points between frames in time
could be implemented with a variable degree of complexity.
For example, the obtained information could be fitted into the
road model proposed in [10] for a Kalman filter-based tracking
algorithm.

Taking into account its low resources and time cost, this
method could be used paired with additional tools. For exam-
ple, morphological image processing operations or clustering
[11] require more complex implementations and could use
the additional quick information to improve or double-check
results.

REFERENCES

[1] I. El Hajjouji, S. Mars, Z. Asrih, and A. El Mourabit, “A novel
FPGA implementation of Hough Transform for straight lane detection”,
Engineering Science and Technology, an International Journal, vol. 23,
pp. 274–280, 2019.

2021 Argentine Conference on Electronics - CAE

978-1-7281-7579-9/21/$31.00 ©2021 IEEE 71 IEEE Catalog Number CFP21S41-ART

(a) Output signals of the complete design and all signals (including internal signals) of one add/compare unit.

(b) Zoom in to maximum detection.

Figure 11: Design simulation with a 100MHz clock frequency.

[2] E. Shang, J. Li, X. An, and H. He, “A real-time lane departure
warning system based on FPGA”, 14th International IEEE Conference
on Intelligent Transportation Systems (ITSC), pp. 1243–1248, 2011.

[3] X. Lu, L. Song, S. Shen, K. He, S. Yu, and N. Ling, “Parallel Hough
Transform-based straight line detection and its FPGA implementation in
embedded vision”, Sensors (Basel, Switzerland), vol. 13, pp. 9223–47,
2013.

[4] J. B. McDonald, R. Shorten, and J. Franz, “Application of the Hough
Transform to lane detection in motorway driving scenarios”, Proceeding
of Irish Signals and Systems Conference, 2001.

[5] J. P. Gonzalez and U. Ozguner, “Lane detection using histogram-based
segmentation and decision trees”, 2000 IEEE Intelligent Transportation
Systems. Proceedings (Cat. No.00TH8493), pp. 346–351, 2000.

[6] J. H. Lin, P. Pouliquen, A. G. Andreou, A. Goldberg, and C. Rizk
“Flexible readout and integration sensor (FRIS): a bio-inspired, system-
on-chip, event-based readout architecture”, Proc. SPIE 8353, Infrared

Technology and Applications XXXVIII, 83531N, May 2012.
[7] S. Abbas and A. Zisserman, “A geometric approach to obtain a bird’s

eye view from an image”, 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pp. 4095–4104, 2019.

[8] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed., Cambridge University Press, ISBN: 0521540518, pp.
153–158, 2004.

[9] “Mathworks: Calibrate a monocular camera.” [On-
line]. Available: https://www.mathworks.com/help/driving/ug/calibrate-
a-monocular-camera.html

[10] H. Sahli, P. Muynck, and J. Cornelis, “A Kalman filter-based update
scheme for road following”, 1996 IAPR Workshop on Machine Vision
Applications, pp. 5–9, 1996.

[11] R. Ajaykumar, A. Gupta, and S. N. Merchant, “Automated lane detec-
tion by K-means clustering: A machine learning approach”, Electronic
Imaging, vol. 2016, pp. 1–6, 2016.

2021 Argentine Conference on Electronics - CAE

978-1-7281-7579-9/21/$31.00 ©2021 IEEE 72 IEEE Catalog Number CFP21S41-ART

