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Abstract: Streptococcus pyogenes, or group A Streptococcus (GAS), a gram-positive bacterium, is
implicated in a wide range of clinical manifestations and life-threatening diseases. One of the
key virulence factors of GAS is streptopain, a C10 family cysteine peptidase. Since its discovery,
various homologs of streptopain have been reported from other bacterial species. With the increased
affordability of sequencing, a significant increase in the number of potential C10 family-like sequences
in the public databases is anticipated, posing a challenge in classifying such sequences. Sequence-
similarity-based tools are the methods of choice to identify such streptopain-like sequences. However,
these methods depend on some level of sequence similarity between the existing C10 family and the
target sequences. Therefore, in this work, we propose a novel predictor, C10Pred, for the prediction of
C10 peptidases using sequence-derived optimal features. C10Pred is a support vector machine (SVM)
based model which is efficient in predicting C10 enzymes with an overall accuracy of 92.7% and
Matthews’ correlation coefficient (MCC) value of 0.855 when tested on an independent dataset. We
anticipate that C10Pred will serve as a handy tool to classify novel streptopain-like proteins belonging
to the C10 family and offer essential information.

Keywords: C10 family; cysteine peptidase; streptopain; machine learning; support vector machine;
feature selection; Boruta

1. Introduction

Streptococcus pyogenes, or group A Streptococcus (GAS), a gram-positive bacterium, is a
reason for causing a wide range of clinical manifestations, from superficial infections to
severe, life-threatening diseases [1,2]. Globally, GAS pharyngitis accounts for more than
600 million cases annually [3]. Another superficial infection frequently caused by GAS is
impetigo, commonly found in tropical, resource-poor settings [4]. It has been estimated that
more than 162 million children globally suffer from impetigo at any time [5]. On the other
hand, GAS causes severe and life-threatening infections, such as bacteremia, meningitis,
necrotizing fasciitis (NF), sepsis, and streptococcal toxic shock syndrome (STSS) [6,7]. Fur-
thermore, GAS infection can also develop immune-mediated sequelae like acute rheumatic
fever (ARF) and acute post-streptococcal glomerulonephritis (APSGN) [8]. ARF can lead
to rheumatic heart disease (RHD), a significant cause of mortality and morbidity result-
ing from the severe condition associated with cardiac failure, stroke, and early death [8].
APSGN can contribute to chronic renal failure [9,10]. Although now rare in developed
world countries, ARF and APSGN still maintain a significant presence in economically
disadvantaged populations accounted for by poor hygiene and limited resources [11,12].
However, relatively rare invasive infections are often associated with high mortality and
morbidity [3]. The global incidence of invasive GAS diseases is reportedly around 6 cases
per 100,000 people per year [13]. The highest incidence of invasive GAS diseases is seen in
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the elderly, followed by young children, particularly those under one year of age [14]. GAS
infections are significantly associated with high morbidity and mortality rates worldwide.
GAS diseases were estimated to cause more than 500,000 deaths in 2005 [3], and RHD alone
was estimated to account for 320,000 deaths in 2015 [15].

Streptopain, also known as streptococcal pyrogenic exotoxin B (SpeB), streptococcus
peptidase A (SPP), and streptococcal cysteine protease (SCP), is one of the major viru-
lence factors for GAS [16–18]. According to MEROPS [19], an online peptidase database,
streptopain is classified as a C10 family (also known as the streptopain family) of cysteine
peptidases. There are 16 clans of cysteine peptidases, including some unclassified, of which
four comprises proteases with diverse catalytic types [19]. Each of these clans exhibits
a distinct fold and is further divided into separate families [20]. Streptopain belongs to
Clan CA of cysteine proteases and shares the clan with the first-ever discovered cysteine
protease, i.e., papain (isolated from Carica papaya). Cysteine proteases use the reactive site
cysteine as the catalytic nucleophile and the histidine to perform peptide bond hydrolysis.
Streptopain shares limited similarity with papain, and the catalytic cysteine and histidine
residues in streptopain (C47and H195) have similar order to papain (C25 and H159), in-
cluding some identical neighboring residues [19,20]. Sequence analysis of all intermediates
and final product demonstrates that streptopain, similar to papain, prefers substrates with
hydrophobic residues [21]. However, streptopain lacks the presence of Asn or Asp residue
equivalent to the Asn in the papain family, which forms the catalytic triad in cysteine
peptidases. Also, in contrast to other papain family members, streptopain has significant
insertions and deletions outside its conserved core. The pro-domain of streptopain has a
fold that is unique among the other proteases [22].

Streptopain is present in all the isolates of S. pyogenes, and therefore is a predominant
extracellular protein that accounts for approximately 95% of total secreted proteins [23].
Streptopain is extracellularly released from GAS to the culture medium in a zymogen form,
i.e., proSPEB [24,25]. Zymogen (proSPEB) is converted to the mature mSPEB either by
autoproteolysis or exogenous proteases. Structurally, the conformation of the C-terminal
loop and the orientation of the catalytic H195 residue plays an important role in acti-
vating proSPEB to mSPEB [21]. NMR analysis demonstrates that the C-terminal loop of
streptopain is flexible, controls the substrate binding, and therefore has diverse substrate
specificity [22,26]. Streptopain has diverse substrate specificity in processing streptococcal
proteins and host proteins. This diverse substrate specificity leads to its different biolog-
ical effects [27]. For example, streptopain degrades extracellular matrix (ECM) proteins
fibronectin and vitronectin, which help in bacterial attachment to host cells [28]. It also
cleaves and activates matrix metalloproteases (MMPs) and therefore helps in extracellular
matrix degradation, which eventually leads to increased bacterial dissemination [29,30].
In addition to host proteins, streptopain releases streptococcal surface proteins like M-
protein, protein F1, protein H, Sda1, Fba, and superantigen1 [27]. Besides protease activity,
streptopain also exhibits transferase and esterase activities. A variant of streptopain with
an Arg-Gly-Asp motif that binds integrins αvβ3 and αIIbβ3 has been reported in the M1
serotype isolates [31].

Although much of the work on this C10 cysteine peptidase has been reported from
Streptococcal strains, studies have also identified SpeB homologs from other bacterial
species. Among them is interpain A (InpA), which was identified from an oral anaerobe
Prevotella intermedia. InpA plays an essential role in the oxidation and breakdown of
hemoglobin and the subsequent release of haem [32]. Similarly, two genes encoding
periodontain (PdnA) and thiol protease/hemagglutinin (PrtT) from Porphyromonas gingivalis
share significant homology to SpeB [33]. Streptopain homologs have also been discovered
from bacterial species that inhabit organisms other than humans. This includes bacteria
that are pathogenic to marine aquaculture. For example, the FcpB gene in Flavobacterium
psychrophilum, a Gram-negative fish pathogen, encodes a 394 amino-acid protein fcpB [34].
This protein shares significant homology with cysteine peptidases such as streptopains
and other C10 family members from different bacterial species, including Flavobacterium
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branchiophilum, Dyadobacter fermentans, Bacteroides intestinalis, and Spirosoma linguale [34].
Similarly, a gene cluster MARIT_2328 in Tenacibaculum maritimum encodes a multi-domain
protein from the C10 family peptidase, which is significantly similar to SpeB, and likely
plays a role in colonization and invasion [35]. The genomic overview of the peptidases of
anaerobic Gram-negative bacteria Prevotella and Paraprevotella species which inhabit the
oral cavity, GI tract, and urinary tract of animals and humans, provided a comprehensive
analysis of various peptidases [36,37]. Genomic sequencing of Prevotella and Paraprevotella
species demonstrated the presence of a total of 78 distinct peptidase families. This analysis
shows that C10 family peptidases were among the most abundant [38].

Since its discovery, several streptopain homologs have been identified, many of which
remain uncharacterized. Additionally, the large-scale bacterial genome sequencing projects
may have led to a rapid increase in the number of potential C10 family-like sequences
in the public databases, posing a challenge to annotating such sequences. Moreover, ex-
perimental identification and characterization of streptopain and its homologs is costly
and time-consuming. Therefore, novel computational methods are required that pro-
vide robust techniques for correctly identifying C10 family cysteine peptidases from their
primary amino acid sequences. At present, methods based on sequence-similarity such
as BLAST [39] and HMMER [40] are the only approaches that are available to identify
streptopain-like sequences. However, one of the main drawbacks of such techniques is
that they are meaningful only if there exists some level of sequence similarity between
the existing C10 family and the target sequences. Consequently, these methods fail to
discover novel sequences comprising streptopain-like domains. Hence, machine learning
(ML)-based approaches offer encouraging alternatives to develop novel predictors for such
classification problems.

With this background, we propose the first ML-based tool, C10Pred, which can predict
C10 family proteins from their primary sequences. The predictor incorporates optimal
features from different encodings (hybrid features) for better performance. We expect
that C10Pred will be a competent tool for identifying the C10 family or streptopain-like
sequences, which will help investigate their functional roles in many bacterial diseases.
The C10Pred web server is freely available at https://procarb.org/c10pred/ (accessed on
16 August 2022).

2. Results
2.1. Overview of the Dataset

The positive dataset comprises a non-redundant set of 336 C10 family peptidases
belonging to the PFAM family “Peptidase_C10”, whereas the negative data consists of
350 sequences from other cysteine peptidase families within the MEROPS [19] database
(Table 1). This dataset represents sequences from a wide range of taxonomic groups and
corresponds to 82 and 283 unique bacterial taxonomic groups in the positive and negative
datasets, respectively (Figure 1 and Table S1). The functional annotation of the dataset was
carried out with an eggNOG mapper [41] and suggested that more than 80% of sequences
in the positive dataset belong to an unknown functional category (S = 43.54%) or did not
have any hits in the eggNOG database. In contrast, the annotation was much better for the
negative dataset. Some of the well-annotated COG categories include posttranslational
modification, protein turnover, chaperones (O = 18.85%), cell wall/membrane/envelope
biogenesis (M = 12%), and amino acid transport and metabolism (E = 8.57%) (Figure S1).
These data suggest that only limited information is available on the functional roles of C10
family peptidases and their homologs.

https://procarb.org/c10pred/
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Table 1. A statistical summary of the training and independent datasets. * = Non-C10 family cysteine
proteases; ** = All bacterial sequences except C10 family or streptopain proteins.

Datasets

Class Training Set
Independent Validation Sets

VS1 VS2 VS3

Positive (C10 family
cysteine proteases) 269 67 82 82

Negative 280 70 200 * 349 **
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Figure 1. Number of most abundant taxonomic groups in the (A) positive, and (B) negative datasets.
Complete list is provided in Table S1.

2.2. The Overall Framework of the Proposed Predictor

Figure 2 summarizes the overall framework for the C10Pred, which essentially consists
of four main steps: (i) construction of training and independent datasets; (ii) encoding of
various sequence-derived features (e.g., AAC, AutoC, CTD, CTriad, DPC, QSO, SOCN, and
Hybrid); (iii) feature selection using Boruta algorithm, and (iv) selection of the final model
exhibiting best performance in terms of MCC. Accordingly, the corresponding feature set
with the best performance was considered to be the optimal set.

2.3. Amino Acid Composition in C10 and Non-C10 Sequences

To determine the presence of any compositional differences between C10 and non-C10
peptidases, we compared the AAC of the positive and negative datasets. The AAC of both
these datasets is shown in Figure 3, which shows the higher frequency of hydrophobic
amino acids like tryptophan (W), methionine (M), glycine (G), Isoleucine (I), and uncharged
polar amino acids, including asparagine (N), threonine (T), and tyrosine (Y) in the C10
protein sequences (Wilcox test; p < 0.05) as compared to non-C10 peptidases. Interestingly,
as compared to C10 peptidases with only aspartic acid as the dominant polar residue,
the non-C10 were dominant in most of the charged polar residues, including arginine
(R), glutamate (E), and histidine (H) residues. The most important characteristic feature
for identification purposes could be the lesser frequency of charged polar residues and
dominance of hydrophobic amino acids, particularly tryptophan, the rarest of the amino
acids. The dominance of hydrophobic amino acids with a lesser frequency of charged
residues in turn signifies the increased stability of C10 peptidases compared to non-C10
peptidases. The peculiar compositional differences between the peptidases in turn infer
that our model could use the presence of specific amino acids as a suitable strategy to
categorize C10 peptidases from non-C10 peptidases.
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Figure 2. Schematic overview of the C10Pred tool demonstrating the four main stages of the predictor
development. The first stage comprises the generation of the datasets, and the second stage consists
of feature extraction from the primary amino acid sequences. In the third stage, we constructed
five ML-based classifiers, namely, KNN, NB, RF, SVM, and NNET, using different feature sets and
selected the best classifier. In parallel, we also performed feature selection using the Boruta algorithm.
Finally, SVM was selected as the best ML classifier, and the performance of various optimal feature
encodings was evaluated. KNN: K-nearest neighbors; NB: Naive Bayes; RF: random forest; SVM:
support vector machines; NNET: neural network.
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2.4. Comparison of Various Machine Learning Classifiers

To assess the performance of various ML classifiers, we exploited five commonly
used ML approaches (KNN, NB, RF, SVM, and NNET) on seven independent feature
encodings and their hybrid. The performance of all these classifiers was assessed by using
10-fold cross-validation. Our comparative analysis suggests that the average performance
of SVM was consistently better than four other classifiers in terms of accuracy and MCC
on multiple feature encodings (Figures 4 and S2). Although the average performance
of NNET was equally better, SVM demonstrated a slight edge by performing better on
4/8 descriptors (e.g., AAC, AutoC, CTD, and CTriad). In contrast, DPC, SOCN, and hybrid
feature encodings performed better when NNET was used to train the model. Similar
performance was observed for both these models when QSO was used as an input feature.
These data indicated that SVM was the best performing classifier, and thus it was selected
for further analysis.
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Figure 4. Average performance comparison of five ML-based classifiers (KNN, NB, RF, SVM, and
NNET) using eight different feature encodings. The performance of each individual feature encoding
for all classifiers is shown in Figure S2.

2.5. Performance Evaluation of Various Feature Encodings

We used SVM to probe the potential of each feature encoding in correctly differentiat-
ing C10 and non-C10 peptidases using 10-fold cross-validation. The performance achieved
by each descriptor is shown in Table 2. Our data on the 10-fold cross-validation test shows
that DPC followed by hybrid features achieved the best performance with accuracy scores
of 93.4% and 92.9%, respectively. In addition to the high accuracy, these two features also
exhibited encouraging MCC values that ranged between 0.85–0.86. In contrast, the accu-
racy scores for other descriptors (AAC, AutoC, CTD, CTriad, and QSO) were reasonable
(84–90%), although with limited MCC scores. Models based on SOCN were the worst
performing, with an accuracy of 75% and an MCC of 0.508.
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Table 2. Performance of SVM on various feature encodings in 10-fold cross-validation. Accuracy
scores ≥ 90% are in bold.

Features Dimension Size Accuracy Sensitivity Specificity MCC

AAC 20 0.880 0.874 0.886 0.759
AutoC 720 0.883 0.877 0.889 0.767
CTD 147 0.900 0.892 0.907 0.800

CTriad 343 0.878 0.874 0.882 0.756
DPC 400 0.934 0.944 0.925 0.869
QSO 100 0.889 0.885 0.893 0.778

SOCN 60 0.754 0.755 0.754 0.508
Hybrid 1790 0.929 0.944 0.914 0.858

2.6. Optimal Feature Selection for Each Encoding

Recognizing that almost all the features except AAC and SOCN have large dimension
sizes (≥100), some of the encodings might be superfluous or may not be equally signifi-
cant. Therefore, this necessitates the application of feature selection protocol to eliminate
redundant and insignificant encodings. We applied the Boruta algorithm to explore if
it was able to slash the feature dimensions and affect the overall performance. Table 3
compares the performance achieved by various feature encodings using optimal features
when classifying C10 and non-C10 peptidases. From this table, we also observed that when
predicting C10 and non-C10 peptidases, the number of features was significantly reduced
for hybrid features (92.23%), AutoC (85.83%), CTriad and DPC (~80%), QSO (55%), and
CTD (39.45%). A limited number of features (3.33%) were removed for SOCN, while no
dimension reduction was observed for AAC.

Table 3. The best performance achieved by various feature encodings using optimal features on
10-fold cross-validation. Values in bold indicate improvement in performance by at least 2% after
feature selection.

Features Dimension Size Accuracy Sensitivity Specificity MCC

AutoC 102 0.900 0.881 0.918 0.800
CTD 89 0.907 0.903 0.911 0.814

CTriad 67 0.883 0.874 0.893 0.767
DPC 79 0.925 0.926 0.925 0.851
QSO 45 0.913 0.907 0.918 0.825

SOCN 58 0.756 0.755 0.757 0.512
Hybrid 139 0.956 0.944 0.968 0.913

Following the reduction of feature dimensions, we explored the performance of each
feature encoding using the optimal features and compared it with the respective controls
(all features). Figure 5 shows a marginal improvement in the performance of most feature
encodings, especially in the AutoC, QSO, and the hybrid, by 1.64%, 2.37%, and 2.73%,
respectively, as compared to their controls. The improvement shown by CTD, CTriad, and
SOCN is only marginal (<1%). Interestingly, there was a slight decrease of 0.01% in the
performance of DPC when optimal feature sets were used.
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features and optimal features.

Next, to examine whether the optimal features are any better than the features excluded
for each feature encodings, we developed prediction models based on excluded features
and compared their performance with the control (using all features) and the optimal
features. We observe that the models based on optimal features performed consistently
better than those based on the excluded features (Figure 5). Notably, the average accuracy
achieved by the optimal feature-based models is about 10% higher than the models based on
excluded features and 1% higher compared to the controls when predicting C10 peptidases.
Similarly, models based on optimal features exhibit better MCC scores than the control
and excluded features. For example, using control feature encodings for AutoC, QSO,
and hybrid, the classifier exhibited the MCC scores of 0.767, 0.778, and 0.858, respectively.
However, using optimal features for these encodings, a significant increase in their MCC
scores was observed (e.g., 0.80, 0.825, and 0.913). In contrast, classifiers based on excluded
features performed worst, and the MCC scores for these three encodings are 0.593, 0.464,
and 0.80, respectively. These data suggest that the Boruta algorithm identified important
features contributing to improved performance and overall dimension reduction.

2.7. Performance Comparison on Independent Datasets

It is well known that the testing of an ML algorithm on the training data does not
provide the best clue regarding its performance on the unseen data because of the deceiv-
ingly overall high accuracies [42]. Therefore, to verify whether the consistence performance
is shown by various feature encodings, we assessed each of these optimal feature-based
encodings on the independent validation set VS1. The results on VS1 indicate that hybrid
features show the best performance, which is similar and consistent with the performance
obtained in the 10-fold cross-validation test (Tables 3 and 4). This hybrid model using
optimal features achieves an accuracy, sensitivity, specificity, and MCC of 0.927, 0.896,
0.957, and 0.855, respectively. Specifically, the accuracy and MCC achieved using hybrid
encodings are approximately 3–19% and 7–38% higher, respectively, than the other feature
encodings. Furthermore, to graphically visualize the performance of various encodings, an
ROC curve was generated by computing and plotting the true positive rate (TPR) versus
the false positive rate (FPR) (Figure 6). In such plots, a higher AUC score indicates a better
classifier performance. From this figure, we again observe that the hybrid classifier using
optimal features showed the best AUC of 0.98. These data demonstrate that the hybrid
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model using optimal features has the potential to accomplish promising performance.
Therefore, this classifier was selected as a final model. Although DPC based classifier
also exhibited a similar AUC value (Figure 6), it showed poor performance when other
evaluation metrics such as accuracy and MCC were considered.

Table 4. Performance comparison of various optimal feature encodings on VS1 dataset. Accuracy
scores ≥ 90% are in bold.

Features Accuracy Sensitivity Specificity MCC

AutoC 0.839 0.731 0.943 0.692
CTD 0.839 0.791 0.886 0.681

CTriad 0.861 0.776 0.943 0.731
DPC 0.891 0.836 0.943 0.785
QSO 0.869 0.836 0.900 0.738

SOCN 0.737 0.701 0.771 0.474
Hybrid 0.927 0.896 0.957 0.855
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To further assess the performance of C10Pred we used an additional validation set,
VS2. Figure 7 shows the confusion matrix for predicting the binary classification of C10
peptidases. Specifically, the figure shows that 4/82 positive sequences were incorrectly
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predicted, whereas only 3/200 negative sequences were classified as positive sequences.
The three negative sequences, incorrectly predicted as positive sequences, include papain
domain containing C1 family cysteine protease, caspase P20 domain-containing protein,
and a C25 family cysteine protease, respectively. Interestingly, similar to the amino acid
composition of the positive dataset (Figure 3), all these three sequences also exhibited
a higher percentage of TYR residue than the average value for the negative sequences.
Similarly, the 3

4 positive sequences, wrongly identified as negative sequences, exhibited
a TYR profile similar to the negative sequences. The amino acid composition of some
other residues (e.g., TRP, LEU, and GLY) in these four positive sequences also deviated
and was analogous to their counterparts in the negative dataset. The accuracy, MCC,
and AUC achieved by our proposed method on the VS2 dataset are 0.975, 0.94, and
0.968, respectively. As mentioned in the methods section, the negative dataset comprises
sequences representing all other cysteine peptidases except C10 family proteases. Therefore,
to assess how the model behaves if a more diverse set of sequences is used as a negative
dataset rather than just other families of cysteine proteases, we compiled another non-
redundant dataset of 349 negative sequences from the UNIPROT [43] database. This new
set of negative sequences was merged with the positive sequences of the VS2 dataset to
form additional validation set VS3 (Table 1). Compared to VS1 and VS2, VS3 consists of all
bacterial sequences except the C10 family or streptopain proteins. It should be noted that
both VS2 and VS3 validation sets comprise sequences that show <50% sequence similarity
with the positive data. On assessing the performance of C10Pred using the VS3 dataset, a
slight increase in accuracy (0.979%), with a small decrease in MCC (0.933), was observed
(Figure S3). Altogether, the results demonstrate the remarkable performance achieved by
C10Pred, which could be further enhanced by exploiting large-scale training data when it
becomes available in the future.

1 
 

 

Figure 7. Confusion matrix of predicted results on additional independent dataset VS2. The matrix
represents the output distribution for each of the two classes (C10 or non-C10).
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2.8. Software Availability

To make our method publicly available so that potential users may benefit from it,
both the standalone as well as the webserver version for C10Pred are freely accessible at
the following link: https://procarb.org/c10pred/ (accessed 16 August 2022). The input to
both the versions is the fasta formatted sequences, and the prediction results are available
as a downloadable comma-separated file (CSV). All instructions and datasets used in this
work are available on the C10Pred homepage.

3. Discussion

S. pyogenes expresses a highly conserved virulence factor streptopain (a C10 family
cysteine peptidase) known to degrade an array of GAS and host proteins [44]. Although
much of the work on this C10 cysteine protease has been reported from Streptococcal
strains, many recent studies have identified this protease or its homologs in other bacterial
species [34,35,45,46]. The biological activities and molecular functions of proteins can
be predicted from their amino acid sequences [47]. Therefore, in the present study, we
exploited the available C10 family sequences to develop the ML-based predictor, C10Pred,
to classify the C10 family proteases.

We utilized seven feature encodings (AAC, AutoC, CTD, CTriad, DPC, QSO, and
SOCN) and also combined all these features (hybrid) to predict C10 proteases using SVM.
These features have been used extensively in various sequence-based protein classification
problems [48–52]. The performance results from each encoding performed well, especially
with DPC and CTD-based classifiers. However, the predictor’s performance using SOCN
descriptors was moderate. Interestingly, when we applied the feature selection protocol,
we observed that optimal hybrid encodings outperformed the other features. Therefore,
we considered it to be the most efficient feature for the prediction of C10 enzymes. This
dimension reduced the optimal hybrid feature set of 139 descriptors showing a >2% in-
crease in the overall accuracy of the classifier and about a 5% increase in its MCC score.
The corresponding sensitivity and specificity values for these optimal 139 features are
0.944 and 0.968, respectively. Selection of optimal features is one of the essential steps
in developing ML-based models because the original set may contain redundant and
non-informative features [49]. These copious non-informative and redundant descriptors,
especially in the case of high dimensional features, affect the prediction accuracy. Therefore,
selecting optimal features is regarded as one of the most influential steps in ML-based
prediction [53–56]. Recognizing the potential of feature selection, we applied the Boruta
feature selection method, which has been widely applied effectively in several biological
applications [57–59], and consequently identified optimal features. Among these, the major
contribution was from AutoC (~27%), followed by CTD, DPC, QSO, CTriad, AAC, and
SOCN. Although AutoC descriptors were the major contributors, the top 10 most important
features were dominated by DPC (5/10), QSO (4/10), and a single Y residue of AAC. These
top-scoring dipeptides included GW, GC, WG, GY, and YN. It should be noted that these
dipeptides comprise residues that are more abundant in C10 peptidases than non-C10
peptidases (Figure 3).

Based on the performance obtained on the hybrid model using an optimal feature
set, the SVM-based predictor C10Pred was constructed. Moreover, the dataset generated
in this work has a stringent sequence identity of ≤40%, which is essential to avoid over-
estimating the predictive performance of a predictor [49]. Importantly, this is the first
ML-based method for predicting C10 family peptidases using sequence-derived informa-
tion, and is freely available as a web server. Since there is no other method available for
the prediction of C10 peptidases or their homologs, a direct comparison is impossible.
Although C10Pred exhibited acceptable predictive performance, there is scope for further
improvements. For example, constructing a model on a larger dataset when it becomes
available, testing other feature encodings, and exploiting different ML algorithms such as
stochastic gradient boosting [60].

https://procarb.org/c10pred/
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4. Materials and Methods
4.1. Data Acquisition and Data Organization

All protein sequences representing “the Peptidase_C10” family (PFAM ID: PF01640)
within the PFAM [61] database were retrieved. All non-standard amino acids containing
sequences were removed, and sequences shorter than 100 amino acids were also excluded.
The remaining sequences were subjected to a redundancy removal by applying CD-HIT
v4.8.1 [62] with the 40% sequence identity cut-off.

The negative dataset was generated as follows: (i) retrieved all PFAM sequences
belonging to various cysteine peptidase clans/families except the family C10 which was
used as a positive dataset. (ii) Non-standard amino acids containing sequences were
eliminated. (iii) Sequences having a length between 100 and 2300 amino acids were
retained only, and (iv) We further filtered the negative dataset at 40% sequence identity
cut-off using CD-HIT. These steps generated a large number of over 47,000 sequences in the
negative dataset. To generate a balanced dataset, we randomly selected negative samples
that were similar in number to the positive dataset. To ensure a limited similarity between
the positive and negative datasets, we removed all the negative samples that showed ≥25%
sequence identity with the positive dataset.

Both these datasets mentioned above were combined and divided into a training
and an independent validation set (VS1) by using the createDataPartition function of the
CARET (short for Classification And REgression Training) package [63] available in R
(https://www.r-project.org/: accessed 16 August 2022).

Furthermore, to assess the robustness of our method, we constructed an additional
independent validation set (VS2) by retrieving all the streptopain sequences available in
the NCBI protein database. After filtering non-standard amino acid-containing sequences,
the sequences were further processed for redundancy removal at a 50% sequence identity
cut-off. Subsequently, we removed all the sequences that shared ≥50% sequence similarity
with the positive dataset. Again, a negative dataset of 200 sequences was randomly
constructed and combined with these sequences. The overall summary of the datasets is
provided in Table 1.

4.2. Feature Encoding

To develop an ML model, sequences with varying lengths were converted to fixed-
length feature vectors using feature encoding algorithms. In this work, we used an R
package ‘protr’ [64] to generate seven different features that have been extensively used
in previous works. These features represent major compositional and physicochemical
characteristics of a sequence and are described below:

4.2.1. Amino Acid Composition (AAC)

The AAC of a protein sequence represents the fraction of each of the 20 standard
amino acid residues. AAC has a fixed length of 20 features, and it can be mathematically
represented as

AAC(i) =
AAi

K
(1)

where AAi represents the number of amino acids of type i, and K denotes protein sequence length.

4.2.2. Autocorrelation (AutoC)

Autocorrelation descriptors are defined based on the distribution of amino acid prop-
erties along the sequence. AutoC descriptors are grouped into three types: (i) Moran,
(ii) Moreau-Broto, and (iii) Geary, and can be denoted by Equations (2)–(4), respectively.

AC(d) =
N−d

∑
i=1

PiPi+dd = 1, 2, . . . , nlag (2)

https://www.r-project.org/
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where d is the lag of autocorrelation; Pi and Pi+d are the amino acid properties at position i
and i+d; nlag represents the maximum value of the lag.

I(d) =
1

N−d ΣN−d
i=1

(
Pi − P

)(
Pi+d − P

)
1
N ∑N

i=1
(

Pi − P
)2 d = 1, 2, . . . , 30 (3)

C(d) =
1

2(N−d)ΣN−d
i=1 (Pi − Pi+d)

2

1
N ∑N

i=1
(

Pi − P
)2 d = 1, 2, . . . , 30 (4)

where d is the autocorrelation lag, Pi and Pi+d are the amino acid properties at positions i
and i+d, and P is the average value of property P denoted as: P = ∑N

i=1 Pi/N.

4.2.3. Composition (C), Transition (T), and Distribution (D) (CTD)

The CTD descriptors were described more than two decades ago to predict protein
folding classes and represent the distribution of amino acid patterns for specific structural
and physicochemical properties of protein sequences [65,66]. In CTD, the 20 standard
amino acids are divided into three groups based on seven different types of physicochemi-
cal properties such as hydrophobicity, normalized van der Waals volume, polarizability,
polarity, etc. (Table S2). In CTD, C is the fraction of polar, neutral, and hydrophobic residues
of a given protein sequence:

C(a) =
Za

K
, a ∈ {neutral, polar, hydrophobic} (5)

Za is the number of amino acids of type a in the given sequence.
T computes the percentage frequency of a specific property of an amino acid pro-

gressed by another property:

T(ab) =
Zab + Zba

K− 1
, a, b ∈ {(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)} (6)

where Zab and Zba represent the number of dipeptides encoded as ab and ba in the sequence.
Finally, D comprises five values for each of the three groups and determines the

percentage of a target sequence length within which 25, 50, 75, and 100% of the amino
acids of a specific property are located. In summary, CTD generates a feature vector
of 147 dimensions.

4.2.4. Conjoint Triad (CTriad)

The CTriad encodings were first used to predict protein-protein interactions [67]. In
CTriad, a protein sequence is depicted as a vector space containing features of amino acids.
Consequently, the vector space is trimmed by clustering the 20 naturally occurring amino
acids based on their dipoles and side chains volumes, resulting in a 343-dimensional feature
vector for any given protein sequence.

4.2.5. Dipeptide Composition (DPC)

DPC is a fixed length of 400 (20 × 20) features and is defined as the frequency of two
amino acid types in a given protein sequence:

DPC(ab) =
zab

K− 1
(7)
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4.2.6. Quasi-Sequence Order (QSO)

QSO descriptors are derived by measuring the physicochemical distance between the
amino acids of a given protein sequence and result in a fixed length of a 100-dimensional
feature vector [68,69]. The first 20 quasi-sequence-order descriptors are defined as:

Xr =
fr

∑20
r=1 fr + w ∑

maxlag
d=1 τd

r = 1, 2, . . . , 20 (8)

where fr is the normalized occurrence for amino acid type, I and w is a weighting factor
(w = 0.1). The other 30 quasi-sequence-order are defined as:

Xd =
wτd−20

∑20
r=1 fr + w ∑

maxlag
d=1 τd

d = 21, 22, . . . , 30 (9)

4.2.7. Sequence Order Coupling Number (SOCN)

The d-th rank sequence-order-coupling number is defined as:

τd = ∑N−d
i=1 (di,i+d)

2d = 1, 2, . . . , maxlag (10)

where di,i+d is the maximum lag, and the protein length must not be less than max lag.

4.3. Machine Learning Models

To get a quick approximation of the best ML classifier, we assessed five commonly
used ML algorithms, namely, K-nearest neighbors (KNN), naive Bayes (NB), random forest
(RF), support vector machines (SVM), and neural network (NNET), by using CARET [63].
Using the 10-fold cross-validation (CV) approach, we assessed the performance of a given
set of eight feature encodings (AAC, AutoC, CTD, CTriad, DPC, QSO, SOCN, and Hybrid)
using default parameters for each corresponding ML algorithm.

4.4. Feature Selection

To improve the feature representation capability and determine the subset of ideal
features that can correctly classify C10 peptidase (streptopain) and non-C10 peptidase (non-
streptopain) sequences, we used the R implementation of the Boruta package (v7.0.0) [70].
Boruta is a feature selection algorithm and feature ranking based on the RF algorithm.
Boruta analyzes the feature importance values calculated for the real predictor variables
against the shadow variables (i.e., variables created by the permutation of these variables
across observations). For each run, an RF is trained using a double length set of predictor
variables comprising of an equivalent number of actual and shadow variables. For each
of the real predictor variables, a statistical test is performed comparing its significance in
relation to the utmost importance value accomplished by a shadow variable. Each variable
can be classified as important or unimportant based on the importance values. Finally,
all unimportant and shadow variables are eliminated. The process is repeated until all
variables have been classified as important or unimportant, or a specific number of runs
(maxRuns) have been achieved [71]. The default value of the maxRuns parameter is 100,
and we observed that it was too small for the algorithm to classify variables as important or
unimportant. Therefore, we set the max runs parameter to 1000. Any remaining tentative
features were checked by the TentativeRoughFix function, which compares the median
Z-score of a tentative feature and the median of maximum Z-scores among shadow features
(MZSF) across the previous RF runs and eventually makes a decision. Overall, Boruta
performs a top-down approach for relevant features by comparing the set of original
attributes [72] and has been used in many feature selection tasks [71,73,74].
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4.5. Performance Evaluation Metrics

To estimate the performance of our ML models, we used four widely used metrics that
estimate the quality of binary classification. These include sensitivity, specificity, accuracy,
and Matthews’ correlation coefficient (MCC) and are expressed as:

Sensitivity =
TP

TP + TN

Speci f icity =
TN

TN + FP

Accuracy =
TP + TN

TP + FP + TN + FN

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false
negative, respectively. In all cases, the higher the value, the better the prediction performance.

5. Conclusions

Cysteine peptidases that belong to the C10 family are represented by streptopain or
streptopain-like proteases. These enzymes are critical virulence factors that cause tissue
damage and severe lethal effect in GAS-infected mice, involved in toxic shock syndrome
and apoptosis. Initially identified in all GAS, this protease has been identified in several
other bacterial species. Therefore, an attempt was made to construct a novel ML model
(C10Pred) using SVM and optimal features from the primary amino acid sequences. The
predictive performance of C10Pred on 10-fold cross-validation and three independent
datasets (VS1, VS2, and VS3) exhibited encouraging performance. Our predictor is a
handy tool to classify novel C10 family or streptopain-like proteins, and offers essential
information for researchers interested in C10 family proteases.
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