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Multi-method investigation of factors 
influencing amyloid onset  
and impairment in three cohorts

Tobey J. Betthauser,1,2 Murat Bilgel,3 Rebecca L. Koscik,1,2,4 Bruno M. Jedynak,5 

Yang An,3 Kristina A. Kellett,1,2 Abhay Moghekar,3 Erin M. Jonaitis,1,2,4 

Charles K. Stone,2 Corinne D. Engelman,1,4,6 Sanjay Asthana,1,2,4,7 

Bradley T. Christian,1,8,9 Dean F. Wong,10 Marilyn Albert,11 Susan M. Resnick3 and 
Sterling C. Johnson1,2,4,7 for the Alzheimer’s Disease Neuroimaging Initiative

Alzheimer’s disease biomarkers are becoming increasingly important for characterizing the longitudinal course of 
disease, predicting the timing of clinical and cognitive symptoms, and for recruitment and treatment monitoring 
in clinical trials. In this work, we develop and evaluate three methods for modelling the longitudinal course of amyl
oid accumulation in three cohorts using amyloid PET imaging. We then use these novel approaches to investigate fac
tors that influence the timing of amyloid onset and the timing from amyloid onset to impairment onset in the 
Alzheimer’s disease continuum.
Data were acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study 
of Aging (BLSA) and the Wisconsin Registry for Alzheimer’s Prevention (WRAP). Amyloid PET was used to assess glo
bal amyloid burden. Three methods were evaluated for modelling amyloid accumulation using 10-fold cross-valid
ation and holdout validation where applicable. Estimated amyloid onset age was compared across all three 
modelling methods and cohorts. Cox regression and accelerated failure time models were used to investigate 
whether sex, apolipoprotein E genotype and e4 carriage were associated with amyloid onset age in all cohorts. Cox 
regression was used to investigate whether apolipoprotein E (e4 carriage and e3e3, e3e4, e4e4 genotypes), sex or age 
of amyloid onset were associated with the time from amyloid onset to impairment onset (global clinical dementia 
rating ≥1) in a subset of 595 ADNI participants that were not impaired before amyloid onset.
Model prediction and estimated amyloid onset age were similar across all three amyloid modelling methods. Sex and 
apolipoprotein E e4 carriage were not associated with PET-measured amyloid accumulation rates. Apolipoprotein E 
genotype and e4 carriage, but not sex, were associated with amyloid onset age such that e4 carriers became amyloid 
positive at an earlier age compared to non-carriers, and greater e4 dosage was associated with an earlier amyloid on
set age. In the ADNI, e4 carriage, being female and a later amyloid onset age were all associated with a shorter time 
from amyloid onset to impairment onset. The risk of impairment onset due to age of amyloid onset was non-linear 
and accelerated for amyloid onset age >65. These findings demonstrate the feasibility of modelling longitudinal amyl
oid accumulation to enable individualized estimates of amyloid onset age from amyloid PET imaging. These esti
mates provide a more direct way to investigate the role of amyloid and other factors that influence the timing of 
clinical impairment in Alzheimer’s disease.
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Introduction
Alzheimer’s disease is characterized by the aggregation of 
beta-amyloid plaques and neurofibrillary tau tangles, followed by 
subsequent neurodegeneration and progressive cognitive decline.1–4

The disease course consists of an extended ‘preclinical’ phase in 
which Alzheimer’s disease pathology is accumulating before the on
set of clinical symptoms.5 The preclinical phase may last 20 years or 
more, although the empirical basis for this is largely at the group le
vel6–9 where studies have observed predictable change in amyloid le
vels.7,9–11 Robust methods for estimating amyloid onset and thereby 
demarcating the onset of preclinical Alzheimer’s disease in indivi
duals are needed and appear to be feasible.11–15 Although conceptual
ly promising, existing methods require further validation in 
additional cohorts to elucidate Alzheimer’s disease timing and de
mentia risk. Additionally, autonomous methods could broaden ac
cessibility to other cohorts and applications such as spatiotemporal 
modelling. Here, we report two new autonomous methods for esti
mating individualized amyloid onset age and evaluate these methods 
with our previously published approach.13 We then use these meth
ods to investigate factors that influence amyloid onset age, amyloid 
accumulation rates and time from amyloid onset to impairment.

Apolipoprotein E (APOE) genotype, specifically APOE-e4 allele 
carriage and gene dosage, is the most established risk factor for 
beta-amyloid accumulation and cognitive impairment in sporadic 
Alzheimer’s disease.16 Dementia prevalence studies demonstrate 
a gene–dose-dependent relationship wherein dementia risk in
creases and dementia onset age decreases with lower APOE-e2 dos
age and higher e4 dosage.17–19 Some studies have observed an 
interaction between APOE and sex such that females with one or 
more APOE-e4 alleles experience earlier dementia onset relative 
to e4 non-carriers, but a similar result was not observed for male 
APOE-e4 carriers.20 Biomarker studies indicate amyloid positivity 

(A+) prevalence increases with increasing APOE-e4 dosage, and de
creases with increasing e2 gene dosage (except e2e4 carriers) com
pared to e3 homozygotes.8,21 Neuroimaging studies have also 
shown e4 carriers become A+ earlier than non-carriers.8,12,22,23

Thus, an explanation for e4 carriers becoming impaired earlier in 
life is that they start accumulating beta-amyloid earlier in life. To 
test this hypothesis, we need to determine whether the relation
ship between APOE genotype and A+ prevalence is due to an earlier 
amyloid onset age, a difference in amyloid accumulation rates or a 
combination of both. There is also a need to determine whether fac
tors such as APOE genotype, sex or age of amyloid onset shorten/ 
lengthen the preclinical timeframe.

This work builds on two previous papers where we demonstrated 
methods that provide individualized estimated A+ onset age (EAOA) 

based on one or more 11C-Pittsburgh Compound B (PiB) PET scans. 

These methods were developed separately in the Baltimore 

Longitudinal Study on Aging (BLSA)12 and the Wisconsin Registry 

for Alzheimer’s Prevention (WRAP).13 The BLSA study used non- 

linear mixed-effects modelling with random effects to derive EAOA 

and showed asymptomatic APOE-e4 carriers exhibited earlier EAOA 

than non-carriers. The WRAP study used group-based trajectory 

modelling (GBTM) and Bayes’ theorem to obtain EAOA and showed 

EAOA could align observations by A+ duration (age at observation 

minus EAOA; termed amyloid chronicity). Higher amyloid chronicity 

was associated with faster rates of cognitive decline, increased cog

nitive impairment risk and was more strongly associated with 

MK-6240 tau PET than age in initially unimpaired WRAP participants.
In this work, we present a simplification to the GBTM approach 

and introduce two new autonomous methods for modelling longi
tudinal amyloid PET trajectories. All algorithms were evaluated in 
three cohorts: the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) using 18F-florbetapir, the BLSA using 11C-PiB and the WRAP 
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using 11C-PiB. Our aims were to: (i) cross-validate three methods to 
model amyloid accumulation, impute EAOA and predict amyloid 
PET levels; (ii) characterize associations between APOE genotype 
and sex with EAOA and amyloid accumulation rates; and (iii) char
acterize dementia risk and time from EAOA to dementia associated 
with APOE genotype, EAOA and sex.

Materials and methods
Study participants

Participants were included from ADNI, BLSA and WRAP studies if 
they had at least one amyloid PET scan and a cognitive diagnosis 
available in addition to each cohort’s inclusion/exclusion criteria 
(see Johnson et al.24 Ferruci,25 Weiner et al.26 and Resnick 
et al.27 references for cohort information; participant summary in 
Table 1). Participants’ written consent was obtained in each source 
study according to the Declaration of Helsinki and under local 
Institutional Review Board approvals.

Cohort descriptions

ADNI

Data used in this article were obtained from the ADNI database (ad
ni.loni.usc.edu). ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. Weiner, MD. 
The primary goal of ADNI has been to test whether serial MRI, 
PET, other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease. For 
up-to-date information, see www.adni-info.org. Diagnostic cogni
tive status was established from the ADNI diagnosis table.

BLSA

At enrolment into the BLSA PET neuroimaging substudy,27 partici
pants were free of CNS disease, severe cardiac disease, severe pul
monary disease and metastatic cancer. Participants with a clinical 
dementia rating (CDR)28 of zero and ≤3 errors on the Blessed 
Information-Memory-Concentration test29 were categorized as 
cognitively normal; otherwise, cognitive status was determined 
by consensus case conference on review of clinical and neuro
psychological data. Dementia and MCI diagnoses were based on 
Diagnostic and Statistical Manual of Mental Disorders30 (DSM-IIIR) 
and Petersen criteria,31 respectively.

WRAP

WRAP participants are unimpaired at enrolment and complete 
comprehensive neuropsychological assessments roughly biennial
ly.24 Cognitive status (unimpaired, MCI, dementia) was established 
by consensus conference as previously reported for WRAP 
participants.32

Diagnostic status (unimpaired, MCI, dementia) was established 
across cohorts for descriptive purposes using similar criteria. 
Clinical progression was assessed using the CDR scale when 
applicable.28

Amyloid PET processing, quantification 
and positivity

Cortical amyloid burden was assessed using either dynamic 11C-PiB 
(BLSA and WRAP) or late-frame 18F-florbetapir (ADNI) PET imaging 
using separate processing and quantification methods optimized 
within each cohort to provide the highest quantitative accuracy 

and lowest binding estimate variance (see Supplementary material
for details).33–37 ADNI cortical Florbetapir standard uptake value ra
tios (SUVRs; eroded white matter reference region) processed by 
the Banner Alzheimer’s Institute were downloaded from the 22 
November, 2019 data freeze. Mean cortical PiB distribution volume 
ratios (DVRs; cerebellar grey matter reference region) were estimated 
using different reference tissue methods for BLSA37 (DVRRTM3P) and 
WRAP (DVRLGA).36 A+ thresholds were established based on separate 
studies for each cohort. Florbetapir SUVRWM > 0.8 (33.1 Centiloids) 
was used for ADNI based on receiver operating characteristic ana
lyses (AUC 0.91, 91% negative agreement, 82% positive agreement) 
comparing SUVRWM with a published threshold from Berkeley pro
cessed data.38 BLSA used DVRRTM3P > 1.066 (20.6 Centiloids) derived 
from Gaussian mixture modelling.12 DVRLGA > 1.19 (21.6 Centiloids) 
was used for WRAP based on receiver operating characteristic ana
lysis with visual assessment.39 DVR and SUVRWM values were 
mapped to Centiloids40 using linear regression for reporting and 
to estimate the time difference between A+ thresholds 
(Supplementary material).

Amyloid trajectory modelling and estimated 
amyloid onset age

Three methods were used to model longitudinal amyloid PET tra
jectories and estimate amyloid onset age (EAOA). Descriptions of 
each method are provided next with additional details in the sup
plement. Models were trained separately for each cohort using sub
sets of participants with ≥2 amyloid PET scans (Table 1, left three 
columns). EAOA and A+ duration (A+ duration = age at observa
tion—EAOA) were estimated from trained models for all 
participants.

Group-based trajectory modelling

As previously reported,13 the GBTM EAOA method applies 
GBTM41,42 to identify the optimal number and shape of age-related 
DVR/SUVR group trajectory equations (up to cubic polynomial). 
EAOA is calculated for each group function by solving for age at 
the A+ threshold. Life expectancy at the last scan is used13 to 
estimate EAOA for an intercept-only (representing amyloid 
non-accumulators) group function. Each participant’s EAOA is 
calculated as the weighted sum of group function EAOAs 
with weights derived from residuals for each function 
(Supplementary material). DVR/SUVR prediction is accom
plished by modelling the DVR/SUVR versus A+ duration curve 
using piecewise regression, and solving this modelled curve for 
DVR/SUVR at the time difference between the reference scan 
and the scan of interest for prediction.

Ordinary differential equation–Gaussian process

The ordinary differential equation–Gaussian process (ODE–GP) 
algorithm is a gradient matching method43 that fits a non- 
parametric ODE to data. The first step of ODE–GP estimates 
DVR/SUVR gradients for each participant using linear regres
sion. The second step solves a non-standard GP regression 
problem using data from all participants in the sample, ac
counting for both the noise in measurements and in the esti
mated gradients. An approximate solution is provided using a 
second-order Taylor expansion of the Gaussian process using 
a Gaussian kernel. The kernel radius is estimated by maximiz
ing the marginal likelihood of the data. The fitted model allows 
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for prediction of past and future DVR/SUVR for a participant 
using a single DVR/SUVR value at a given age as an initial con
dition for the ODE. A prediction is made by integrating numer
ically the ODE using the Euler method. Since the fitted model is 
autonomous (time-invariant), we summarize the fitted data 
with a growth curve defining the DVR/SUVR as function of the 
time since the A+ threshold.

Sampled iterative local approximation

The sampled iterative local approximation (SILA) algorithm uses 
discrete sampling of DVR/SUVR versus age data to establish the re
lationship between DVR/SUVR rate and DVR/SUVR. Numerical 
smoothing (robust LOESS) and Euler’s method are used to numeric
ally integrate these data to generate a non-parametric DVR/SUVR 
versus A+ duration curve with zero time corresponding to the A+ 
threshold. EAOA is calculated for each person by first solving this 
curve for time using a person’s observed DVR/SUVR, and subtract
ing the estimated A+ duration from their age at that scan. SUVR/ 
DVR is estimated for antecedent or prospective scans by solving 

the DVR/SUVR versus time curve for DVR/SUVR at the time corre
sponding to the difference between reference and target scans.

Statistical analyses

Aim 1: evaluating and comparing amyloid modelling 
methods

Aim 1 compared EAOA and A+ duration outcomes across the three 
methods and evaluated the predictive performance of each method 
within each cohort. The composition of the model training and test
ing sets varied depending on the analysis goals described next. 
Computational speed was evaluated for autonomous methods 
ODE–GP and SILA (Supplementary material).

Inter-method comparisons of EAOA and amyloid 
accumulation curves

EAOA and SUVR/DVR versus A+ duration curves were compared 
across methods in each cohort. EAOA and A+ duration were 

Table 1 Demographics and cohort summaries

Modelling sets All participants

ADNIa BLSAa WRAPa ADNI BLSA WRAP

N 739 142 179 1215 207 272
Female, n (%) 345 (46.7) 71 (50.0) 120 (67.0) 570 (46.9) 104 (50.2) 185 (68.0)
Race, n (%)

American Indian or Alaskan Native 2 (0.3) 0 1 (0.6) 2 (0.2) 0 4 (1.5)
Asian 11 (1.5) 2 (1.4) 1 (0.6) 19 (1.6) 4 (1.9) 1 (0.4)
Native Hawaiian or Other Pacific Islander 1 (0.1) 2 (1.4) 0 2 (0.2) 3 (1.4) 0
Black or African American 24 (3.2) 25 (17.6) 7 (3.9) 46 (3.8) 36 (17.4) 10 (3.7)
White 689 (93.2) 112 (78.9) 169 (94.4) 1127 (92.8) 162 (78.3) 256 (94.1)
Other or multiple 11 (1.5) 1 (0.7) 1 (0.6) 16 (1.3) 2 (1.0) 1 (0.4)
Unavailable/unknown 1 (0.1) 0 () 0 3 (0.2) 0 0

APOE genotype, n (%)
e2e2 1 (0.1) 1 (0.7) 0 2 (0.2) 2 (1.0) 0
e2e3 67 (9.1) 15 (10.6) 16 (8.9) 99 (8.1) 25 (12.1) 30 (11.0)
e2e4 15 (2.0) 6 (4.2) 5 (2.8) 24 (2.0) 8 (3.9) 10 (3.7)
e3e3 371 (50.2) 84 (59.2) 88 (49.2) 589 (48.5) 118 (57.0) 132 (48.5)
e3e4 233 (31.5) 33 (23.2) 63 (35.2) 394 (32.4) 49 (23.7) 88 (32.4)
e4e4 52 (7.0) 2 (1.4) 7 (3.9) 107 (8.8) 3 (1.4) 10 (3.7)
Unknown 0 1 (0.7) 0 0 2 (1.0) 2 (0.7)

Baseline diagnosis, n (%)
Unimpaired 303 (41.0) 142 (100) 177 (98.9) 461 (37.9) 207 (100) 261 (96.0)
MCI 386 (52.2) 0 2 (1.1) 559 (46.0) 0 9 (3.3)
Dementia 50 (6.8) 0 0 195 (16.0) 0 2 (0.7)

Baseline age, mean (SD) 73.4 (7.4) 75.9 (7.9) 61.0 (6.2) 73.7 (7.6) 75.8 (8.2) 62.4 (6.7)
PET follow-up duration years, mean (SD) 4.14 (1.93) 5.13 (3.18) 6.25 (2.11) 2.52 (2.52) 3.52 (3.6) 4.11 (3.43)
Number of amyloid PET scans, n (%)

1 — — — 476 (39.2) 65 (31.4) 93 (34.2)
2 307 (41.5) 39 (18.8) 56 (20.6) 307 (25.3) 39 (18.8) 56 (20.6)
3 235 (31.8) 38 (18.4) 96 (35.3) 235 (19.3) 38 (18.4) 96 (35.3)
4 163 (22.1) 25 (12.1) 25 (9.2) 163 (13.4) 25 (12.1) 25 (9.2)
5 33 (4.5) 14 (6.8) 2 (0.7) 33 (2.7) 14 (6.8) 2 (0.7)
6 1 (0.1) 13 (6.3) 0 1 (0.1) 13 (6.3) 0
7 0 3 (1.4) 0 0 3 (1.4) 0
8 0 5 (2.4) 0 0 5 (2.4) 0
9 0 3 (1.4) 0 0 3 (1.4) 0
10 0 1 (0.5) 0 0 1 (0.5) 0
11 0 1 (0.5) 0 0 1 (0.5) 0

SD = standard deviation. 
aSubsets from each cohort with two or more amyloid PET scans used for longitudinal modelling.
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estimated for all participants using each participant’s observed 
DVR/SUVR and age at their last available amyloid PET scan. 
Pearson correlations compared EAOA between methods separately 
for A+ and A− groups. Amyloid accumulation curves (i.e. DVR/SUVR 
versus estimated A+ duration) were compared by plotting observed 
DVR/SUVR values at the first scan as a function of estimated A+ dur
ation referencing the last scan for participants with ≥2 scans. EAOA 
accuracy was evaluated in A− to A+ converters (n = 72 ADNI; n = 6 
BLSA; n = 22 WRAP) by calculating the proportion of times age last 
A− ≤ EAOA ≤ age first A+ and calculating the conversion midpoint 
error (years between EAOA and the midpoint age between A− A+ 
observations).

Method predictive validity

Predictive validity to estimate future and past DVR/SUVR and ele
vated or non-elevated amyloid PET (A±) status was evaluated using 
holdout validation (all methods; ADNI) and 10-fold cross-validation 
(ODE–GP and SILA; all cohorts). Holdout validation was limited to 
ADNI because the larger sample enabled separate training and test
ing partitions with similar amyloid distributions. GBTM was omit
ted from 10-fold cross-validation because it would have required 
∼90 h of human time. Stratification methods for 10-fold and hold
out validation samples are provided in the Supplementary 
Material. For each method and cohort, models were trained on sub
sets of longitudinal data, and then DVR/SUVR and age at a single 
reference scan (last or first) were used to predict DVR/SUVR at an 
earlier or later PET scan for participants omitted from model train
ing. Forwards prediction was evaluated by predicting DVR/SUVR at 
each person’s last observation inputting each person’s first obser
vation, whereas backwards prediction used the last observation 
to predict DVR/SUVR at the first observation. DVR/SUVR prediction 
residuals were used to investigate associations with factors that 
might influence model prediction (reference DVR/SUVR, age and 
time from reference scan) and to generate model summary statis
tics. A± prediction performance was evaluated using balanced ac
curacy (adjusted for imbalanced A+ and A− frequency), sensitivity 
and specificity. We also compared EAOA estimates derived from in- 
sample versus out-of-sample prediction schemes graphically and 
using Pearson correlations. After observing similar model perform
ance for ODE–GP and SILA methods, analyses for aims 2 and 3 used 
the average of ODE–GP and SILA EAOA.

Aim 2: APOE and sex associations with EAOA 
and amyloid accumulation rate

The impact of sex and APOE-e4 carriage on amyloid accumulation 
rates were evaluated by investigating the relationship between 
DVR/SUVR rate and DVR/SUVR. Smoothed DVR/SUVR rate versus 
DVR/SUVR curves were generated for each cohort, and separately 
for comparison groups (APOE-e4 carriers versus non-carriers; males 
versus females) by applying local regression with weighted linear 
least squares to the mean within-person DVR/SUVR rate versus 
DVR/SUVR data. Ninety-five percent confidence intervals were esti
mated using 1000 bootstrapped samples with replacement.

The second part of Aim 2 addressed three questions: (i) what 
age does A+ onset occur; (ii) what is the A+ risk conferred by 
APOE; and (iii) does A+ onset differ between APOE groups? We as
sessed whether and how much EAOA differs across APOE geno
types using survival analyses, as previously described.44 The 
event time was EAOA for A+ individuals and age at last PET obser
vation (right censored) for individuals that were A− but could be
come A+. Kaplan–Meier plots by APOE-e4 carriage (excluding 

e2e4), and separately by APOE genotype (e2e3, e2e4, e3e3, e3e4, 
and e4e4), were compared in each dataset. Survival curves were 
compared using log-rank tests with pairwise comparisons con
ducted for APOE groups. Median survival times with 95% confi
dence intervals for APOE groups (e4 carriers and non-carriers; 
APOE genotypes) were reported for groups that reached 50% prob
ability of remaining A−. APOE-e2e2 carriers were excluded from 
genotype analyses due to low frequency. We used Cox proportion
al hazards models to quantify A+ risk by APOE-e4 carriage, and by 
APOE genotype in separate models. Accelerated failure time (AFT) 
models quantified relative differences in EAOA by APOE-e4 car
riage and genotype. Cox proportional hazards and the AFT models 
covaried for sex.

Aim 3: Effects of APOE, sex and EAOA on time from  
A+ onset to dementia

WRAP and BLSA observed few clinical conversions compared 
to ADNI. Therefore, we used a subset of 595 ADNI participants 
to investigate the effects of EAOA, sex and APOE on time from 
EAOA to impairment. ADNI participants were included if they 
were not impaired before EAOA, with CDR ≥1 as the criterion 
for impairment.28 APOE-e2e4 carriers were excluded due to 
the combination of risk and protective effects and low fre
quency (n = 15). We used Cox survival models to estimate haz
ard and survival functions of impairment from EAOA and their 
relationship with APOE-e4 carriage, sex and EAOA. The Cox 
model outcome was time from EAOA to impairment for those 
who became impaired, and time from EAOA to age at last 
CDR (right censored) for those that remained unimpaired. 
Predictors included education, sex, APOE-e4 carriage, EAOA, 
EAOA2, sex*EAOA, sex*EAOA2, APOE*EAOA, APOE*EAOA2. 
EAOA2 was included to allow for accelerated log hazard of im
pairment with increasing EAOA. Non-significant interactions 
were removed from the model. Analyses were repeated using 
APOE genotypes (e3e3, e3e4, e4e4) instead of APOE-e4 carriage. 
Results are reported as hazard ratios, median unimpaired sur
vival time and the ten-year unimpaired rate with confidence 
intervals estimated using 1000 bootstrapped samples with 
replacement.

Data availability

Data from the WRAP (https://wrap.wisc.edu) and BLSA (https://blsa. 
nih.gov) can be requested through an online submission process. 
ADNI data can be obtained via the ADNI and LONI websites. ODE– 
GP and SILA algorithms are available at https://gitlab.com/ 
bilgelm/amyloid-ode-gp and https://github.com/Betthauser- 
Neuro-Lab/SILA-AD-Biomarker, respectively.

Results
Study sample descriptive statistics 
and demographics

Table 1 shows demographic and summary statistics for the three 
cohorts and model training subsets. ADNI and BLSA cohorts were 
11.3 and 13.4 years older, respectively, than WRAP, which had a 
mean age of 62.4 years at baseline amyloid PET scan. BLSA and 
WRAP samples were primarily unimpaired at baseline PET whereas 
ADNI had 62% impaired participants (MCI or dementia). Study par
ticipants primarily identified as white (ADNI: 93%, BLSA: 78%, 
WRAP: 94%). Demographic variables were similar for the subsets 
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used for model training and testing. The mean (SD) PET follow-up 
for these subsets was 4.14 (1.93), 5.13 (3.18) and 6.25 (2.11) years 
for ADNI, BLSA and WRAP, respectively.

Aim 1: amyloid modelling methods comparison and 
evaluation

Inter-method comparisons

Amyloid versus age data and A+ thresholds are shown for each co
hort in Fig. 1 (top row). Each cohort had a visually apparent group of 
amyloid non-accumulators below the A+ threshold and a group of 

amyloid accumulators crossing and above the threshold. Overall, 
the three methods produced similar amyloid accumulation pat
terns (middle row, Fig. 1), with the largest differences observed in 
ADNI. EAOA was highly linearly correlated between method pairs 
in A+ participants (rPearson = 0.88–1.00) with lower correlations ob
served in A− participants (rPearson = 0.76–0.95; Fig. 1 bottom row; 
Supplementary Tables 2 and 3). The largest inter-method EAOA dif
ferences were observed in A− participants and at high DVR/SUVR 
where longitudinal observations were sparse (Supplementary 
Fig. 1). In A± convertors, EAOA accuracy ranged from 16.7% (1/6, 
GBTM in BLSA) to 77% (17/22, SILA in WRAP), and the mean error 

Figure 1 Observed and modelled amyloid trajectories and EAOA. Observed amyloid PET by age (top row), modelled amyloid accumulation patterns 
(middle row) and EAOA (bottom row) for each method and cohort (each column represents a cohort). APOE genotype is colour coded for plots in the 
top row. Equivalent Centiloid values corresponding DVR and SUVR from each cohort are represented along the right side of the plots in the middle 
and top row for reporting purposes. A+ thresholds in all cohorts were slightly above the visually apparent group of longitudinal amyloid non- 
accumulators suggesting those above A+ thresholds had a high likelihood of future amyloid accumulation (see also Supplementary Fig. 8). The plots 
in the middle row represent backwards prediction of the duration A+ (estimated duration A+ at first scan using last scan for a within-person reference). 
Open circles in the bottom row indicate participants who were A− at their last observation and demonstrate the instability of estimating the onset age of 
A+ in cases with low amyloid levels. This suggests that interpretation of EAOA in A− cases is probably limited.
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ranged from −3.65 (GBTM in ADNI) to 1.96 years (GBTM in BLSA) 
across all cohorts and methods (Supplementary Fig. 2 and 
Table 4). GBTM, ODE–GP and SILA had similar EAOA accuracy and 
errors in BLSA and WRAP cohorts, whereas EAOA accuracy was 
lower and errors were higher for GBTM in ADNI compared to 
ODE–GP and SILA.

Forwards and backwards predictive validity

The time for prediction evaluation ranged from 0.9 to 13.1years. Using 
holdout cross-validation in ADNI, all three methods had high balanced 
accuracy (94–98%) for predicting future or antecedent A± status 
(Supplementary Table 5). Sum of squared residuals were ODE–GP < 
SILA <GBTM for backwards SUVR prediction, and ODE–GP <GBTM< 
SILA for forwards SUVR prediction with all methods except GBTM re
porting higher residual sum of squares for forwards compared to back
wards SUVR prediction. Using 10-fold cross-validation in all cohorts, 
ODE–GP and SILA had similar SUVR/DVR predictive performance with 
balanced accuracy ranging from 94 to 99% for backwards A± prediction 
and 82–96% for forwards A± prediction. Prediction error was lower for 
backwards prediction compared to forwards prediction for ODE–GP 
and SILA in all three cohorts. Model residuals were weakly associated 
with age at reference scan (|Spearman’s rho| ≤0.26) and time to/from 
reference scan (|Spearman’s rho| ≤0.28) for all methods and cohorts 
(Supplementary Tables 6–9 and Supplementary Figs 3–6). ODE–GP and 
SILA had weak to moderate associations between prediction residuals 
and reference SUVR/DVR (|rSpearman| ≤ 0.41), whereas GBTM had a mod
erate association in the ADNI dataset (rSpearman =0.45 and 0.61 for back
wards and forwards prediction, respectively). EAOA was highly linearly 
correlated (rPearson >0.99) for all methods and cohorts when using 
out-of-sample (10-fold or holdout cross-validation) versus in-sample 
training/prediction paradigms (Supplementary Fig. 7). No convergence 
issues were observed during model fitting.

Aim 2: EAOA, sex and APOE genotypes

APOE, sex and rate of amyloid accumulation

No differences were observed in SUVR/DVR rates versus SUVR/DVR 
between males and females or between APOE-ϵ4 carriers and non- 
carriers (all cohorts) or between impaired versus unimpaired in 
ADNI (Fig. 2 and Supplementary Figs 8–10).

Effect of APOE and sex on EAOA and A+ risk

The mean (SD) estimated time between A+ thresholds across ODE– 
GP and SILA methods was 0.42 (0.11) years from BLSA to WRAP and 
4.53 (1.11) years from BLSA to ADNI.

At what age does A+ onset occur?

EAOA by APOE genotype is shown for each cohort in Fig. 3 for ob
served A+ participants. Kaplan–Meier curves by APOE-e4 status 
and genotype are presented in Fig. 4. The difference in Kaplan– 
Meier curves between APOE-e4− and e4+ (excluding e2e4) was stat
istically significant in each dataset (ADNI P < 10−15, BLSA P = 0.003, 
WRAP P = 10−11). In ADNI, the median A− survival age was 84.2 
(95% confidence limits: 82.7, 88.1) for e4− and 69.1 (68.2, 70.5) for 
e4 + . Median survival times for e4− could not be estimated in 
BLSA and WRAP because this group did not attain 50% A+ probabil
ity. Median A− survival time for e4+ was 83.0 (lower 95% confidence 
limit = 72.1) in BLSA and 70.7 (67.0, 73.0) in WRAP. In ADNI, all pair
wise survival curve comparisons among e2e3, e2e4, e3e3, e3e4 and 
e4e4 were statistically significant (P < 0.0008) except for differences 
between e2e4 and e3e4 (P = 0.33). In WRAP, e2e3 versus e3e4, e2e3 ver
sus e4e4, e3e3 versus e3e4, and e3e3 versus e4e4 were significant (P < 
0.0002). No significant pairwise comparisons were found in BLSA, 
but the e3e3 versus e3e4 and e3e3 versus e4e4 comparisons were 

Figure 2 Amyloid accumulation rates by APOE Carriage and Sex. Comparisons of amyloid accumulation rates as a function of amyloid level between 
APOE-e4 carriers and non-carriers (top row) and between males and females (bottom row) for each of the three cohorts (columns). Scatter plots show the 
within-person amyloid rate as a function of their mean DVR or SUVR value. Local regression with weighted linear least squares lines show the average 
relationship between the rate of amyloid change and the amyloid level for the entire sample, and for subsets of APOE-e4 carriers and non-carriers and 
for females and males. Shaded regions represent the 95% confidence intervals derived from 1000 bootstrapped samples. The relationship between the 
amyloid accumulation rate and the level of amyloid burden was similar between APOE-e4 carriers versus non-carriers, and between males versus fe
males across all cohorts. This suggests the rate of amyloid accumulation does not differ by APOE-e4 carriage or sex.
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near significance (P = 0.059). In ADNI, the median A− survival time 
was 83.1 (81.3, 85.4) for the e3e3, 74.2 (lower 95% confidence limit 
= 67.4) for e2e4, 70.5 (69.4, 71.8) for e3e4, and 64.0 (62.5, 66.4) for 
e4e4. In BLSA, the median A− survival time was 83.0 (lower 95% con
fidence limit = 72.1) for e3e4 and 63.5 (lower 95% confidence limit = 
57.2) for e4e4, and in WRAP, 70.7 (67.7, 73.0) and 61.7 (lower 95% con
fidence limit = 49.1), respectively.

What is the risk of A+ conferred by APOE?

Cox proportional hazards models adjusted for sex showed e4 + was as
sociated with a greater risk of becoming A+ in each dataset [hazard ra
tio (HR) (95% CI) ADNI: HR = 3.97 (3.35, 4.70), P < 10−15; BLSA: HR = 2.29 
(1.35, 3.90), P = 0.002; WRAP: HR = 5.66 (3.24, 9.86), P = 10−9]. Sex and 
interaction of e4+ by sex were not significant for explaining 
A+ risk. Results using APOE genotype instead of e4± for A+ risk are 
shown in Supplementary Table 10. In ADNI, the e2e3 genotype was as
sociated with a lower A+ risk compared to e3e3 [HR = 0.37 (0.22, 0.62), P 
= 0.0002], whereas e2e4 was associated with higher risk [HR = 2.37 
(1.40, 4.00), P = 0.0013]. In each cohort, e3e4 and e4e4 were associated 
with higher A+ risk, with the point HR estimate for e4e4 being higher. 
The difference in the risk conferred by e4e4 versus e3e4 was statistic
ally significant in ADNI only [HR = 2.25 (1.78, 2.85), P < 10−10].

Does EAOA differ between APOE groups?

AFT models adjusted for sex indicated e4+ individuals had earlier 
EAOA [ADNI: β= −0.18 (−0.20, −0.16), P < 10−15; BLSA: β= −0.14 (−0.23, 

−0.053), P = 0.0017; WRAP: β= −0.26 (−0.35, −0.17), P < 10−8]. Sex differ
ences in EAOA were not significant nor was the interaction between 
APOE-e4 status and sex in any cohort. In ADNI, compared to e3e3, 
the e2e3 group had a later EAOA [β= 0.12 (0.064, 0.168), P = 0.00001], 
whereas e2e4 [β= −0.11 (−0.18, −0.036), P = 0.0034], e3e4 [β= −0.14 
(−0.16, −0.12), P < 10−15] and e4e4 [β= −0.24 (−0.28, −0.21), P < 10−15] 
groups had earlier EAOA (Supplementary Table 11). Additionally, 
the e4e4 group had earlier EAOA relative to e3e4 [β= −0.10 (−0.14, 
−0.067), P < 10−7]. In BLSA, compared to e3e3, the e2e4 [β= −0.21 
(−0.41, −0.013), P = 0.037], e3e4 [β= −0.13 (−0.23, −0.035), P = 0.0076] 
and e4e4 [β= −0.28 (−0.57, −0.011), P = 0.059] groups had earlier 
EAOA. In WRAP, compared to e3e3, the e3e4 [β= −0.23 (−0.33, −0.14), 
P = 0.000001] and e4e4 [β= −0.35 (−0.53, −0.17), P = 0.00015] groups 
had earlier EAOA. Kaplan–Meier curves and AFT model results were 
similar when using left, interval and right censoring with only ob
served data, but confidence intervals were larger compared to pri
mary analyses using EAOA (Supplementary material).

Aim 3: EAOA, sex, APOE and time to impairment

Participant demographics for this ADNI subset are provided in 
Table 2. Interactions between sex or APOE-e4+/− with linear and 
quadratic EAOA terms were not significant (global test P = 0.44 and 
P = 0.17, respectively) in Cox proportional hazard models investigat
ing time from EAOA to impairment onset. Results for HR, median 
unimpaired survival times and 10-year unimpaired survival rates 

Figure 3 EAOA by APOE genotype. Estimates are shown only for individuals whose observed A+ onset preceded their last PET visit. Data shown are the 
average of the estimates computed by the SILA and ODE–GP methods. To assess whether A+ onset age differs by APOE genotype, we conducted pairwise 
comparisons using AFT models, which allow inclusion of A− participants in the analyses via right censoring. The e3e4 and e4e4 groups had an earlier A+ 
onset compared to e3e3 in all datasets. The e3e4 A+ onset age was 13, 12 and 20% earlier in the ADNI, BLSA and WRAP, respectively, and the e4e4 A+ onset 
age was 21, 24 and 30% earlier. The e2e4 group had an earlier amyloid onset than the e3e3 in the ADNI (10% earlier) and BLSA (19% earlier). e2e3 had a 
later amyloid onset compared to e3e3 in the ADNI only (13% later). The remaining comparisons with the e3e3 group were not statistically significant. 
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are reported as estimate (95% confidence interval). In the adjusted 
Cox hazard model, APOE-e4+ had a 77% greater risk of impairment 
after EAOA compared to e4− [HR = 1.77 (1.33, 2.36), P < 0.0001] and 
males had a 32% lower risk compared to females [HR = 0.68, (0.53, 
0.88), P = 0.003]. Both EAOA and EAOA2 terms were significant (P < 
0.0001). Due to this non-linearity, we report HRs at multiple EAOA 
with each HR corresponding to a decade difference in EAOA. 
Impairment risk was small and not significant for EAOA of 65 versus 
55 [HR = 1.06 (0.89, 1.26)], but was significant for EAOA of 75 versus 65 
[63% greater risk; HR = 1.63 (1.33, 2.00)] and EAOA of 85 versus 75 [HR 
= 2.51 (1.71, 3.68)]. Groupwise unimpaired survival curves are pre
sented in Fig. 5A, C and D with median survival times and 10-year 
unimpaired rates included in Supplementary Table 12. The median 
survival time from EAOA to CDR ≥1 was 13.57 (12.98–14.08) years 
with a 10-year post-EAOA survival rate of 0.744 (0.703–0.786) across 

this ADNI subset. Median survival time from EAOA to impairment 
was shorter for females [12.89 (11.87, 13.66) years] compared to 
males [14.08 (13.57, 14.55) years], and shorter for APOE-e4+ [12.73 
(11.71, 13.42) years] compared to e4− [14.42 (13.97, 15.54) years]. 
The 10-year post-EAOA unimpaired survival rate was lower for fe
males [0.699 (0.644–0.755) years] compared to males [0.784 (0.736– 
0.826) years], and lower for APOE-e4+ [0.691 (0.637, 0.741) years] ver
sus e4− [0.812 (0.766, 0.857) years]. Non-linear median survival times 
and 10-year unimpaired survival rates as a function of EAOA are de
picted in Fig. 5E and F and Supplementary Table 13. Analyses using 
APOE genotype (e3e3, e3e4, e4e4) instead of e4+ versus e4− indicated 
similar results with significant differences between e3e3 and other 
genotypes, but not between e3e4 and e4e4 genotypes (Fig. 5B and 
Supplementary material). Results did not differ when accounting 
for competing risk of death.

Figure 4 A− survival as a function of age by APOE-e4 carriage and APOE genotype. Kaplan–Meier curves showing A− survival for APOE e4 carriers versus 
non-carriers (top row) and for individual APOE genotypes (bottom row) across all cohorts. Individualized estimates of age A+ (average of the SILA and 
ODE–GP estimates) were used for analyses. Individuals that were A− at their last available PET scan (i.e. those where Estimate Age A+ < age at last 
scan) are right censored. Cox proportional hazard models indicated significant differences between e4+ and e4− groups. The hazards for e3e4 and 
e4e4 groups were higher relative to the e3e3 group in all cohorts, and additionally for the e2e4 group in ADNI. e2e3 carriers had a lower hazard in ADNI.
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Discussion
We evaluated three methods to model amyloid accumulation and 
estimate A+ onset age from amyloid PET data in three cohorts 
with different sample characteristics, PET tracers and quantification 
methods. These novel methods were then applied to further explain 
the risk and timing of amyloidosis and dementia onset associated 
with age, sex and APOE genotype. Using individualized EAOA, we 
found APOE genotype, but not sex, significantly affects EAOA with 
e4 homozygotes becoming positive ∼6 to 10 years earlier than e3e4 
heterozygotes (all cohorts), and approximately two decades earlier 
than e3 homozygotes (ADNI). Consistent with previous observa
tions, amyloid accumulation rates are predictable and neither 
APOE genotype, nor sex affected the rate of amyloid accumula
tion.45,46 In an ADNI subset, time from A+ onset to eventual cognitive 
impairment was shorter for APOE-e4 carriers, females and people 
with higher EAOA. Together, these results provide a major advance 
in characterizing the temporal course of Alzheimer’s disease on an 
individual basis and increase understanding of how common risk 
factors affect disease proteinopathy and clinical progression.

Method comparisons and amyloid PET inference

Comparisons of the three modelling methods provide insights into 
model performance, amyloid PET binding estimate interpretation 
and predictability of amyloid aggregation. All methods had similar 
DVR/SUVR predictive validity and produced similar EAOA, except 
GBTM EAOA in ADNI, but differ in efficiency and autonomy. SILA 
and ODE–GP are autonomous requiring ∼1 min and ∼2.5 h compu
tational time to train and estimate model outputs, respectively, 
whereas GBTM requires ∼3–4 h of human time. Because of this hu
man resource burden and comparable or better performance of 
ODE–GP and SILA methods, we forewent additional SUVR/DVR pre
diction evaluation for GBTM. The autonomy of ODE–GP and SILA 
enables translation to additional cohorts or cohort subsets, and 
adaptation to other applications such as spatiotemporal modelling. 
GBTM was harder to fit in the ADNI dataset, which might suggest 
ODE–GP and SILA are more robust against differences in PET quan
tification methods, radiotracers and/or study composition. ODE–GP 
and SILA also produce non-parametric SUVR/DVR versus A+ time 
curves that may better depict the observed nature of amyloid accu
mulation over parametric models that require assumptions of this 
geometric relationship.

Amyloid accumulation patterns were similar between methods in 
the A+ range with inter-method differences increasing dramatically be
low the A+ threshold. This observation, coupled with similarities in 
DVR/SUVR rates, suggests that amyloid accumulation rates are osten
sibly consistent between individuals and predictable once underlying 
amyloid burden sufficiently exceeds amyloid PET detection limits. 
This detection limit and binding estimate accuracy and variance are in
fluenced by several factors including tracer affinity and non-specific 
white matter binding, acquisition length, image reconstruction, scan
ner resolution and image processing and quantification methodology, 
which varied across cohorts in this study.47,48 Below the A+ threshold, 
DVR/SUVR interpretation gradually transitions from being due to amyl
oid to being due to stochastic measurement error, which is consistent 
with PET detection physics,47 the concept of subthreshold amyloid49

and supports previous work proposing two thresholds50 to define three 
interpretation zones: undetectable amyloid, transition and confidently 
A+. EAOA derived from DVR/SUVR in these zones therefore inherit a 
similar interpretation, in which EAOA is interpretable in the A+ range 
and becomes less interpretable as reference DVR/SUVR approaches 
PET detection limits. Similarly, the accuracy and variability of reference 
DVR/SUVR affect the accuracy and variability of imputed DVR/SUVR 
and EAOA. Lower variability of DVR quantification compared to SUVR, 
along with previous work showing Florbetapir has higher variance com
pared to PiB after converting to Centiloids,51 might explain why ADNI 
had a higher Centiloid threshold despite A+ thresholds delineating lon
gitudinal amyloid non-accumulators from accumulators. For this rea
son and because direct comparisons of factors that affect PET 
detection limits and variability were not available across cohorts, we 
used previously validated methods and A+ thresholds from each cohort 
that minimize PET binding estimate variance and used a study design 
focused on replicating findings across cohorts and methods rather 
than attempting pooled analyses across cohorts. As in our previous 
work13 and a recently published similar work14 estimating individua
lized EAOA in people who are A+ enables estimation of A+ disease dur
ation from a single amyloid PET scan. This ability to define disease time 
from amyloid PET provides new insights into how known and unknown 
factors affect dementia risk and timing in Alzheimer’s disease, which 
has clinical trial implications.

APOE, EAOA and dementia timing and risk

Our results support literature showing higher APOE-e4 dosage as
sociates with earlier amyloid and dementia onset.8,12,17–19,21–23,46

Table 2 ADNI participant demographics for Aim 3 analyses

Analysis sample Cognitively normal during follow-up Impaired after A+ onset P-values

n subjects 595 332 (55.8%) 263 (44.2%)
Males 327 (55.0%) 175 (52.7%) 152 (57.8%) 0.22
APOE e4+ 364 (61.2%) 175 (52.7%) 189 (71.9%) <0.0001
White 566 (95.1%) 316 (95.2%) 250 (95.1%) 0.94
Education 16.0 (2.8) [6–20] 16.1 (2.8) [6–20] 15.8 (2.7) [8–20] 0.18
A+ onset age 68.5 (8.7) [41.1–94.9] 70.8 (8.0) [49.0–94.9] 65.7 (8.7) [41.1–88.6] <0.0001
Time (years) to censor/event 9.4 (4.5) [0.2–24.4] 8.5 (4.5) [0.2–20.8] 10.4 (4.4) [0.4–24.4] <0.0001
AV45 SUVRWM last visit 1.03 (0.17) [0.80–1.96] 0.98 (0.14) [0.80–1.59] 1.09 (0.18) [0.80–1.96] <0.0001
Age at first CDR 74.1 (6.9) [55.0–90.3] 74.6 (6.5) [55.0–90.1] 73.5 (7.3) [55.1–90.3] 0.041
Age at last CDR 78.6 (7.7) [55.7–97.4] 79.3 (7.5) [59.0–97.4] 77.7 (7.9) [55.7–96.0] 0.014
Cognitive follow-up (years) 4.5 (3.4) [0–15.1] 4.7 (3.3) [0–15.1] 4.3 (3.5) [0–14.8] 0.15
AV45 last age 77.4 (7.6) [55.6–96.5] 78.2 (7.3) [59.0–96.5] 76.5 (7.9) [55.6–96.0] 0.0061

Continuous variables are represented as mean (SD) [range]. Participants were included in aim three analyses if they were not impaired (i.e. CDR < 1) before the estimated age of 

A+ onset. Fifteen APOE e2e4 carriers were excluded from the analyses due to small sample size and the mixture of risk and protective alleles. Group comparisons (impaired 

during follow-up versus not impaired during follow-up) for continuous and categorical variables used t-tests and chi-square tests, respectively.
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Additionally, we observed significant EAOA differences between 
almost all compared APOE genotypes in ADNI, with similar pat
terns observed in BLSA and WRAP (lack of significance potentially 
due to power limitations and/or cohort makeup). Individualized 
EAOA allowed us to show e4 carriage also shortens the preclinical 
time from A+ onset to dementia onset (in initially unimpaired 
ADNI participants, even after controlling for age and sex). These 

findings suggest APOE-e4 carriers experience a double-hit where
in they accumulate amyloid earlier in life and have a shorter pre
clinical disease phase. Effect sizes for APOE genotype differences 
in EAOA far exceeded differences in time from A+ onset to demen
tia suggesting that when amyloid accumulation begins is a key 
factor explaining APOE associated lifetime dementia risk and 
resilience.

Figure 5 Time from amyloid onset to impairment in ADNI. (A–D) Covariate adjusted survival curves indicating the probability of remaining unimpaired 
as a function of the time from A+ onset demonstrated that APOE-e4 carriage, being female and becoming A+ later in life were all associated with a short
er time from A+ onset to impairment onset (i.e. first CDR ≥1). Dotted lines in A–C represent 95% confidence intervals of the covariate adjusted survival 
functions. (E and F) Median time to impairment and the 10-year unimpaired rate following A+ onset were nonlinearly associated with the EAOA such 
that people who became A+ at an older age had greater risk of becoming impaired in a shorter time from A+ onset.
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Figure 6 Global CDR scores as a function of the time A+ in ADNI subsample from Aim 3 analyses. Observed longitudinal global CDR scores are plotted 
as a function of estimated duration A+ for the ADNI subset used in Aim 3 analyses (top). Histograms depict the time from estimated A+ onset age (EAOA) 
to global CDR = 1 colour coded by APOE genotype (middle) and by EAOA (bottom) for the subset of participants that became impaired (i.e. global CDR ≥1) 
after A+ onset. Time from A+ onset to global CDR ≥1 in this ADNI subsample ranged from 0 to nearly 25 years demonstrating the heterogeneity in the 
timing of dementia onset relative to A+ onset.
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Clinical implications

Consistent with our previous reports,12,13 this work suggests indivi
dualized EAOA and A+ duration are relevant to clinical prognosis 
and treatment planning. Figures 1 and 3 demonstrate EAOA varies 
widely, even within APOE genotypes, spanning ages 40 to 90+ years 
across cohorts. Recruitment differences probably explain some co
hort EAOA differences. Nevertheless, the broad range of EAOA 
highlights the heterogeneity of when amyloid pathology begins to 
accrue. These results and our previous findings13 also underscore 
the need to consider the magnitude/duration of amyloid exposure 
to better inform prognosis compared to binary A±. Comparatively 
less heterogeneity was observed in the time from A+ onset to de
mentia onset (range 0–25 years post-EAOA, Fig. 6) in initially unim
paired A+ ADNI participants. Combining the amyloid chronicity 
framework13 and survival analyses we showed APOE-e4 carriers, fe
males, and people with older EAOA have shorter time from A+ on
set to dementia, and that the effect of EAOA on this timing 
accelerated rapidly after age 65. These methods can also establish 
EAOA, sex and APOE stratified dementia risk probabilities (e.g. 1-, 
5-, 10-year impairment probability) that could inform individua
lized patient prognoses anchored to EAOA, which might also help 
identify optimal treatment windows for anti-amyloid therapies. 
More work is needed to better understand additional factors that 
mediate and moderate both the heterogeneity of EAOA and the tim
ing from EAOA to impairment, and to validate risk probabilities in 
larger and representative samples.

The effects of EAOA, sex and APOE on the timing between EAOA 
and dementia have several potential explanations. Similar findings 
regarding age, but not APOE or sex were recently reported using a 
similar approach.14 EAOA shortening the preclinical timeframe 
may be explained by age-associated increases in comorbidity with 
other age-related diseases such as vascular disease and other neuro
degenerative proteinopathies that co-occur in Alzheimer’s dis
ease.52 APOE-e4 carriage shortening the preclinical timeframe 
could represent a pleiotropic susceptibility effect of APOE on brain 
health since APOE is also implicated in cerebrovascular health.53

Females having shorter preclinical disease is consistent with but 
does not fully explain some epidemiologic reports of sex differences 
in Alzheimer’s disease risk. These results coupled with the observa
tions that sex did not affect EAOA or amyloid accumulation rates is 
consistent with recent findings that observed no sex differences in 
Alzheimer’s disease biomarker prevalence but did observe differ
ences in MCI prevalence.54 More work is needed to understand the 
basis for the observed greater vulnerability to dementia for these 
risk factors. Anchoring such investigations to EAOA may facilitate 
greater understanding of the relative influence of these and other 
factors that are associated with increased Alzheimer’s disease risk.

Strengths and limitations

This work and other recent publications,3,7,11–15,44,55 demonstrate 
the robustness and use of the conceptual framework of defining 
Alzheimer’s disease time using amyloid PET (i.e. an ‘Amyloid 
Clock’) to study disease progression. Strengths of the current study 
include comparisons and consistency of results across three differ
ent methods and cohorts, prediction validation in subsets of ob
served A− to A+ convertors and a methodological framework for 
applying individualized EAOA to characterize biomarker and de
mentia timing and risk in Alzheimer’s disease. Further work is 
needed to better understand the impact of PET quantification and 
processing methods, radiotracers, different PET and MRI scanners, 

and cohort composition on temporal amyloid models, which affect 
EAOA accuracy and harmonization. Additionally, this study used 
convenience samples that were skewed towards highly educated, 
non-Hispanic white people. More work is needed to collect biomar
kers and validate these approaches in diverse populations.

Conclusions
This work demonstrates multiple methods for modelling amyloid 
accumulation and estimating the onset age and duration of A+ 
from PET imaging. These novel approaches and framework can be 
used to more directly investigate the timing of cognitive and patho
logical events in Alzheimer’s disease on an individual basis, and 
understand factors that modify this timing.
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