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Viewpoints

A Proposed Role for Interactions between Argonautes,
miRISC, and RNA Binding Proteins in the Regulation of
Local Translation in Neurons and Glia

Sarah K. Koester1,2 and Joseph D. Dougherty1,2,3
1Department of Genetics, 2Department of Psychiatry, and 3 Intellectual and Developmental Disabilities Research Center, Washington University
School of Medicine, St. Louis, Missouri 63110

The first evidence of local translation in the CNS appeared nearly 40 years ago, when electron microscopic studies showed
polyribosomes localized to the base of dendritic spines. Since then, local translation has been established as an important reg-
ulatory mechanism for gene expression in polarized or functionally compartmentalized cells. While much attention has been
placed on characterizing the local transcriptome and regulatory “grammar” directing mRNA localization in neurons and glia,
less is understood about how these cells subsequently de-repress mRNA translation in their peripheral processes to produce a
rapid translational response to stimuli. MicroRNA-mediated translation regulation offers a possible solution to this question.
Not only do miRNAs provide the specificity needed for targeted gene regulation, but association and dynamic interactions
between Argonaute (AGO) with sequence-specific RNA-binding proteins may provide a molecular switch to allow for de-
repression of target mRNAs. Here, we review the expression and activity of different AGO proteins in miRNA-induced silenc-
ing complexes in neurons and glia and discuss known pathways of miRNA-mediated regulation, including activity-dependent
pre-miRNA maturation in dendrites. We further detail work on AGO and RNA-binding protein interactions that allow for
the reversal of miRNA-mediated translational silencing, and we propose a model for how intercellular communication may
play a role in the regulation of local translation.

Introduction
The potential importance of local translation in CNS function
was first postulated nearly 40 years ago, when polyribosomes
were found to localize to the base of dendritic spines (Steward
and Levy, 1982). Local translation has since been found to be an
evolutionarily conserved cellular mechanism for the spatiotem-
poral regulation of protein translation, allowing cells to form
functionally independent compartments or processes (Lécuyer et
al., 2007; Besse and Ephrussi, 2008; Holt et al., 2019). Thus, the
evolution of regulated local translation in the nervous system is
proposed as an elegant biological solution to allow the distal
processes of these cells to respond to external cues in an inde-
pendent, yet rapid, manner (Ainger et al., 1993; Sakers et al.,
2017; Holt et al., 2019).

Much of our early understanding of local translation came
from studies of neurons. Several studies have provided strong
evidence that essential neuronal processes, including synaptic
plasticity, are dependent on highly regulated local translation

(Kang and Schuman, 1996; D. O. Wang et al., 2009; Holt et al.,
2019). Along with the finding that polyribosomes localize to the
base of dendritic spines, early studies found that transcripts, such
as b -actin, CaMKIIa, and Arc, were localized in growth cones
and dendrites (Burgin et al., 1990; Bassell et al., 1998; Steward et
al., 1998; Rangaraju et al., 2017). These studies led to further
questions regarding whether local translation allows independent
processes to produce a specific response to external stimuli. To
address this, approaches, such as blocking the activity of mini
excitatory synaptic events in a subset of dendrites (Sutton et al.,
2004), stimulating individual dendritic lamina (Farris et al.,
2014), or even specific dendritic spines with two-photon gluta-
mate uncaging (Tanaka et al., 2008; Govindarajan et al., 2011),
have been used. In support of such specificity, these studies
found that selectively blocking dendritic stimulation or activa-
tion of individual spines indeed produced an independent
response involving local translation, and that different transcripts
responded differently to such stimulation (Farris et al., 2014).

In addition to neurons, several groups have shown that local
translation occurs in other cells of the CNS with specialized
domains, including oligodendrocytes (Müller et al., 2013) and
astrocytes (Boulay et al., 2017; Sakers et al., 2017; Mazaré et al.,
2020). To further understand this phenomenon, many groups
have focused on defining the local transcriptome of distal proc-
esses and defining cis-elements within these localized transcripts
sufficient for directing their translocation. Such studies have pro-
vided much insight into unique regulatory features found in the
untranslated regions (UTRs) of neuronal and astrocytic mRNAs,
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such as increased sequence length, GC content, and predicted
secondary structure stability (Ouwenga et al., 2017; Sakers et al.,
2017; Tushev et al., 2018). Furthermore, classical studies in neu-
rons have identified “RNA zipcode” motifs in the 39 UTR of
genes encoding b -actin (Kislauskis et al., 1994) and CaMKIIa
(Mayford et al., 1996). Despite these findings, much less is
understood about the mechanisms suppressing mRNA transla-
tion during localization, how cells may de-repress transcripts in
response to stimuli to turn on translation, and then later degrade
the transcripts to end translation, and the complex role of trans-
regulatory elements in regulating these processes. Several groups
have shown that b -actin mRNAs are localized in a “masked,”
translationally silent state in RNA:protein (RNP) granules, then
“unmasked” on stimulation (Akbalik and Schuman, 2014;
Buxbaum et al., 2014; Park et al., 2014). Interestingly, a biosensor
showing mRNAs that have undergone a round of translation, the
Translating RNA Imaging by Coat protein Knockoff (TRICK),
has shown that mRNAs with a 59 terminal oligopyrimidine motif
are largely sequestered in such translationally “masked” RNP
granules (Halstead et al., 2015), suggesting that this is an impor-
tant regulatory mechanism for a subset of transcripts. However,
the molecular underpinnings of this translational regulation are
less defined.

In the past few decades, miRNAs have emerged as essential
regulators of gene expression during neurodevelopment, with a
regulatory role in various pathways, including establishing neural
patterning, neuronal stem cell fate determination, and neural cell
differentiation (Kosik, 2006; Yoo et al., 2009; Sun et al., 2013;
Stappert et al., 2015). These regulatory functions arise from the
incorporation of a miRNA into a multiprotein complex by
directly binding a member of the Argonaute (Ago) subfamily of
proteins to form the miRNA-induced silencing complexes
(miRISCs). The loaded miRNA guides this complex to a comple-
mentary sequence in the 39 UTR of a target mRNA to mediate
the repression of gene expression (Peters and Meister, 2007). At
;21 nucleotides long, miRNAs offer versatile mechanisms for
specific translational regulation. Yet, their potential role in the
regulation of local translation in cells of the CNS remains largely

uncharacterized. In this review, we assess the distinct expression
patterns and functional characteristics of the core components of
miRISC, as well as known roles of miRNA-mediated local trans-
lation regulation in the context of the CNS as a model for how
specificity might be achieved. We then evaluate dynamic interac-
tions between miRISC and RNA binding proteins (RBPs) to pro-
pose another layer to the model in which local translation is
regulated through these interactions. We lastly speculate a poten-
tial role for intercellular communication in this regulation and
end with the questions for future research directions.

Argonautes and miRNAs: big roles for the small actors
A model describing the regulation of local translation should
address several important questions: (1) How do cells regulate
which transcripts are translocated to distal processes? (2) How
are cells able to repress translation during localization and subse-
quently de-repress the translation of these mRNAs in response
to stimuli? (3) How are cells able to shut off translation of
specific mRNAs when signaling indicates they are no longer nec-
essary? Translational repression by miRISC offers a simple solu-
tion to these questions.

AGO proteins, the core of miRISC, constitute a subfamily of
highly conserved, RNA-directed proteins present throughout all
domains of life (Swarts et al., 2014). The mammalian genome
encodes four distinct AGOs (Ago1-Ago4) characterized by four
conserved domains: the N-terminal domain, PAZ domain, MID
domain, and PIWI domain (Fig. 1a) (Peters and Meister, 2007;
Müller et al., 2020). The PIWI domain, which has structural sim-
ilarities to RNase H, harbors the catalytic tetrad (Yuan et al.,
2005; Müller et al., 2020). However, despite the argonaute sub-
family of proteins being considered the core effectors of miRISC
activity, only AGO2 is believed to have retained endonucleolytic
activity because of the apparent necessity of both the DEDH cat-
alytic tetrad (the residues directly partaking in the catalytic activ-
ity) and two N-terminal motifs (Liu et al., 2004; Müller et al.,
2020), and is thus the most commonly studied. This has left
much to be understood about functional differences between

Figure 1. The mammalian genome encodes four Argonaute proteins. a, The Argonautes are a highly conserved subfamily of proteins: AGOs are characterized by four conserved domains: an
N-terminal domain, PAZ domain, MID domain, and PIWI domain. The catalytic triad located in the PIWI domain is responsible for the endonucleolytic activity of AGO2; however, this activity is
also dependent on two motifs in the N-terminal domain, which are only both present in AGO2 (Müller et al., 2020). b, Argonautes 1-4 have distinct expression patterns in different cell types
of the brain: A cell type-specific RNA-Seq database shows that each AGO displays distinct expression patterns in the different cell types of the brain (Zhang et al., 2014). c, Argonautes 1-4 have
distinct expression patterns in hippocampal astrocytes during development. An astrocyte-maturation RNA-Seq database shows that each AGO displays unique expression patterns throughout
development in mouse hippocampus (Clarke et al., 2018). Figures made in www.BioRender.com.
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AGO2 and the remaining AGO proteins, as well as whether dif-
ferent AGO proteins are used for distinct pathways of regulation.

Studies in stem cell lines have shown that the mammalian
Ago protein subfamily displays significant functional overlap (Su
et al., 2009), while other findings suggest that miRNAs do not
preferentially sort with different AGO proteins (D. Wang et al.,
2012). Despite this, there is also evidence supporting important
functional differences between the subfamily members. For
example, AGO1 and AGO4 have been found to localize in the
nucleus to mediate siRNA-directed transcriptional regulation
(D. H. Kim et al., 2006; Chalertpet et al., 2019), while AGO3 has
been found to localize in P-bodies, and likely functions in a cyto-
plasmic translational repression pathway (Azuma-Mukai et al.,
2008). Thus, further investigation into the unique roles of the dif-
ferent AGO proteins may lead to a greater understanding of
gene regulation, and possibly a novel pathway of local translation
regulation.

It was previously believed that the AGO proteins are ubiqui-
tously expressed in most adult tissue (Sasaki et al., 2003); how-
ever, in-depth RNAseq analysis shows distinct expression
patterns in different cell types of the brain (Fig. 1b) (Zhang et al.,
2014) and at different developmental time points (Fig. 1c)
(Clarke et al., 2018). In mice, for example, AGO1 appears to be
the most abundant AGO in astrocytes, neurons, and oligoden-
drocyte progenitor cells (Zhang et al., 2014). In maturing astro-
cytes, AGO1 is also highly expressed in the hippocampus during
all developmental time points, although the expression levels
decrease between P7 and P32, while the other AGOs display
relatively similar patterns of expression throughout development
(Clarke et al., 2018). AGO2, on the other hand, is strongly
expressed in neurons and astrocytes, while poorly expressed in
myelinating oligodendrocytes. Interestingly, AGO3, which is
only modestly expressed in those cell types, has relatively high
expression levels in newly formed oligodendrocytes. Last, AGO4
is poorly expressed in all CNS cell types (Zhang et al., 2014).
Several aspects of AGO expression remain unclear, such as
whether the relatively high expression of AGO3 in young oligo-
dendrocytes is functionally significant, or whether the distinct
expression patterns of AGO1-AGO4 in specific cell types of the

CNS reflect an important biological phenomenon. Interestingly,
the SFARI gene database, a centralized database with genotypic
and phenotypic information on families affected by autism spec-
trum disorder, lists AGO1, AGO2, and AGO4 as strong candi-
dates for autism spectrum disorder risk genes (Iossifov et al.,
2014; Takata et al., 2018; Sakaguchi et al., 2019; Lessel et al.,
2020), suggesting an important role in the regulation of neurode-
velopment for these members.

While little is known about the distinct functions of the differ-
ent AGO proteins in cells of the CNS, more is understood about
a second essential component of miRISC: miRNAs themselves.
Within the brain, miRNA expression is finely tuned in develop-
mental stage-specific, brain region-specific, and cell type-specific
patterns (Krichevsky et al., 2003; Bak et al., 2008; Pomper et al.,
2020). Moreover, certain miRNAs are selectively enriched within
axonal or dendritic compartments of neurons, suggesting a
potential role in the regulation of local translation (Schratt et al.,
2006; Natera-Naranjo et al., 2010; O’Carroll and Schaefer, 2013;
De Rubeis et al., 2014; Rocchi et al., 2019). Despite the common
belief that miRNA-mediated translational silencing leads directly
to mRNA degradation, it is becoming increasingly apparent that
the actual activity of miRISC depends on factors, such as mRNA/
miRNA seed-sequence complementarity and the composition of
proteins within the complex (Nawalpuri et al., 2020). Therefore,
understanding the heterogeneity in miRISC function is essential
to uncover its potential role in regulating local translation.

The canonical model of miRNA targeting posits that the seed
region of the miRNA, centered around nucleotides 2-8, directs
miRISC to the 39 UTR of target transcripts. Perfect comple-
mentarity between the miRNA and target transcript is largely
believed to direct mRNA cleavage by AGO2 (Fig. 2a) (Yekta et
al., 2004; Bartel, 2009); however, mRNA destabilization before
degradation by other factors was found to be the dominant
pathway of miRISC activity under steady-state conditions
(Eichhorn et al., 2014). In such cases, imperfect seed-sequence
complementarity and different miRISC:protein interactions
mediate various mechanisms destabilizing mRNA, such as
deadenylation and decapping, often followed by transcript
degradation (Fig. 2b) (Filipowicz et al., 2008). Yet, this work

Figure 2. Pathways of miRISC-mediated gene regulation. There are three identified pathways of miRISC-mediated regulation of mRNAs: (a) endonucleolytic cleavage (Ago2 only); (b) desta-
bilization (e.g., decapping or deadenylation) followed by degradation; and (c) translation repression.
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was largely performed in HeLa cells and cultured neutrophils,
which may exhibit different steady-state mechanisms than
postmitotic cells in vivo. Furthermore, the dynamic properties
of the distal processes of neurons and glia, which are often
responding to external signals and cues, are not well modeled
by cultured cell lines. Thus, miRNA-mediated transcript
destabilization and degradation may not be the dominant
pathway active in distal processes in the CNS. Indeed, miRISC
also functions to repress mRNA translation in a manner
decoupled from transcript destabilization and degradation
(Nawalpuri et al., 2020). In this pathway, the association of
mRNAs with miRISC and various RBPs may impede proper
assembly of the translation initiation complex or preclude a
transition to the elongation stage (Fig. 2c) (Filipowicz et al.,
2008; Nawalpuri et al., 2020). Of importance, because mRNAs
are not degraded in this pathway, reversal of this translational
repression may provide an elegant mechanism for the spatio-
temporal control of protein expression, potentially serving as
the foundation of a model for initiating local translation regu-
lation. Likewise, new recruitment of miRISC to mRNA in pe-
ripheral processes in response to other cues could also serve to
end local translation.

Studies in neurons have indeed described important roles for
miRNAs in regulating local protein synthesis in synaptic com-
partments. For example, the first dendritically localized miRNA
to be characterized, miR-134, has been shown to have a role in
negatively regulating dendritic spine size through repression of
Limk1 translation (Schratt et al., 2006). Moreover, the authors
found that this repression was reversed on treatment with
BDNF, suggesting that miR-134-mediated repression plays a
partial role in activity-dependent regulation of translation.
Interestingly, miR-134 is clustered with over 50 other miRNAs
(miR379-410 cluster) that have been found to have activity-de-
pendent transcriptional regulation (Fiore et al., 2009). From
this cluster, the authors found miR-134, -329, and -381 to be
important for activity-dependent dendritic outgrowth. Several
additional miRNAs found to be abundant in synapses, includ-
ing the let-7 family, miR-125b-5p, and miR-128-3p, have also
been found to be dysregulated in CNS pathologies (Epple et al.,
2021). Thus, individual miRNAs as well as miRNA clusters
may serve as essential regulators of local translation for normal
CNS function.

Another intriguing layer of regulation comes from the activ-
ity-dependent localization or processing of precursor miRNAs
(pre-miRNAs) enriched in the distal processes of cells to locally
regulate target gene expression. Pre-miRNAs arise from the nu-
clear processing of primary miRNAs (pri-miRNAs) by Drosha,
followed by exportation to the cytoplasm where processing by
Dicer generates the mature miRNA (Bernstein et al., 2001; Lee et
al., 2003). In neurons, it has been found that several pre-miRNAs
are selectively enriched in dendrites, but may have differing
effects on gene expression on neuronal stimulation (Sambandan
et al., 2017; Zampa et al., 2018). For example, the study by
Sambandan et al. (2017) found that pre-miR-181a, a dendritically
enriched pre-miRNA, was actively processed by Dicer on neuro-
nal stimulation. Furthermore, they found that the mature miR-
181a produced a local downregulation of a target gene, CamKIIa
(Fig. 3a) (Sambandan et al., 2017). Alternatively, the study by
Zampa et al. (2018) found that neuronal stimulation led to an
increased accumulation of pre-miR-134 in the dendritic spines,
where it was independently processed by Dicer to form a func-
tional miRNA. Interestingly, this caused an increase in overall
dendritic protein expression because miR-134, discussed earlier,

also represses locally translated Pumilio 2 (Pum2) mRNA, an
RBP known to bind and repress gene expression (Fig. 3b)
(Zampa et al., 2018). Together, these studies suggest that activity-
dependent miRNA maturation may serve as an additional mech-
anism for regulation of local translation.

Argonaute and RBP interactions: molecular switches for
gene expression
Because of the inherent necessity for fine-tuned, stimulus-de-
pendent protein expression in cells of the CNS, additional levels
of local translation regulation have emerged. RBPs are well-char-
acterized regulators of mRNA transport and translation (Wells,
2006). Furthermore, analysis of locally translated mRNAs has
revealed an enrichment of key RBP binding motifs, such as
Fragile X Mental Retardation Protein (FMRP) and Zipcode
Binding Protein (ZBP) in neurons (Ouwenga et al., 2017; Tushev
et al., 2018), and QKI in astrocytes (Sakers et al., 2017), suggest-
ing an important regulatory role for certain RBPs in local transla-
tion. The interactions between core miRISC components and
associated RBPs are of particular interest in understanding this
complex regulation because, not only does a combination of
miRNAs and RBPs provide additional sequence specificity neces-
sary to tightly regulate which transcripts are locally translated,
but these dynamic interactions also provide a potential mecha-
nism by which distal processes of cells can produce a rapid, stim-
ulus-dependent translational response.

Work done in neurons and oligodendrocytes has shown that
interactions between RBPs and AGO in miRISC may act as a
“molecular switch” regulating translational repression. FMRP is
one such RBP that has been extensively studied because of its
known role in the neurodevelopmental disorder Fragile X
Syndrome (Garber et al., 2008). FMRP has been shown to be an
essential regulator of translation by stalling translating ribosomes
(Darnell et al., 2011), and it has been proposed to regulate local
translation of a variety of synaptic proteins in opposition to glu-
tamate receptor activation (Dölen and Bear, 2008). Later work
has highlighted interactions with miRISC. For instance, Kute et
al. (2019) were interested in understanding the role of FMRP
and the RNA helicase Moloney Leukemia Virus 10 (MOV10), in
NMDAR activity-mediated translational regulation within neu-
rons. NMDAR activation had previously been shown to rapidly
induce translation of specific genes, such as aCamK II and Arc/
Arg3.1 (Scheetz et al., 2000; Bloomer et al., 2008); however, the
factors causing this rapid translational response downstream of
NMDAR signaling were unclear. Using synaptoneurosomes and
polysome fractionation, Kute et al. (2019) found MOV10 incor-
porated in miRISC under basal conditions, but on stimulation,
MOV10 remained bound to the mRNA and dissociated from
miRISC to associate with polysomes. Furthermore, they found
that these associations were dependent on the presence and
phosphorylation state of FMRP (phosphorylation of FMRP pro-
motes the dissolution of MOV10 from FMRP:miRISC), leading
them to propose a mechanism in which the phosphorylation sta-
tus of FMRP functions as a molecular switch regulating transla-
tion downstream of NMDAR signals (Fig. 4a). Interestingly,
previous work by Muddashetty et al. (2011) showed that the de-
phosphorylation of FMRP following Class I mGluR activation
was necessary for the dissociation of AGO from PSD-95 mRNA
to allow translation, supporting a model in which dynamic inter-
actions between different RBPs and miRISC can be finely tuned
to provide a specific translational response to different upstream
signals.
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Other exciting insight into stimulus-dependent de-repression
of local translation by RBPs associated with AGO2 has come
from studies in oligodendrocytes. Myelin basic protein (MBP)
has been well characterized as a locally translated protein in mye-
linating oligodendrocyte processes (Colman et al., 1982; Ainger
et al., 1993; Müller et al., 2013). The RBP HNRNPA2 has been
found to bind a specific sequence of the 39 UTR ofMbp to medi-
ate cytoplasmic transfer and subsequent localization (Hoek et al.,
1998). However, it was unclear how Mbp translation was

temporarily repressed during localization and activated in
response to local triggers. Müller et al. (2013) found that an
interaction between AGO2 and HNRNPA2 was key in orches-
trating this complex translational regulation. Previous work
had found that neuronal stimulation activates Fyn kinase in
oligodendrocytes, which then phosphorylates HNRNPA2 to
cause the release of Mbp mRNA for translation (White et al.,
2008). However, Müller et al. (2015) found that AGO2 was also
a downstream target of Fyn kinase. They postulate that the

Figure 3. Pre-miRNA maturation regulates local translation. a, Activity-dependent maturation of pre-miR-181 regulates local translation of target gene. Pre-miR-181a is a dendritically
enriched pre-miRNA. Upon neuronal stimulation, Dicer activates pre-miR-181a into its mature miRNA. miR-181a-loaded miRISC is then able to target a complementary seed sequence in
CamKIIa mRNA, and repress its expression (Sambandan et al., 2017). b, Activity-dependent dendritic accumulation of pre-miR-134 regulates local translation of repressive RBP. Upon NMDAR
activation, pre-miR-134 is selectively localized to the dendritic spines where it is processed by Dicer independent of NMDAR activity. There, miR-134 targets Pumilio 2 mRNA for degradation.
Because PUM2 is an RBP known to repress translation of target genes, such as voltage-gated Na1 channels, repression of Pum2 translation leads to an increase in expression of several genes
(Zampa et al., 2018).
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phosphorylation of AGO2 by Fyn kinase
decreases its affinity for a small noncoding
RNA (sncRNA), the group previously
uncovered as an inhibitor of Mbp transla-
tion (Bauer et al., 2012), subsequently
causing the release of Mbp mRNA from
miRISC to allow local translation (Fig. 4b).
While it is currently unclear whether the
phosphorylation of HNRNPA2, AGO2, or
both is essential for the stimulus-dependent
release of Mbp for translation, these studies
provide further evidence supporting a role
of RBP and miRISC interactions in the regu-
lation of local translation.

In addition to HNRNPA2, Fyn kinase
has other significant downstream targets
that make promising candidate RBPs
essential for relaying HNRNPA2 signals
from neurons to regulate local translation
in glia. One such RBP is quaking (QKI). A
study by Sakers et al. (2017) characterized
the transcriptome of peripheral astrocyte
processes (PAPs) in mouse cortices. To do
so, they used synaptosome isolation in
conjunction with a translating ribosome
affinity purification (TRAP) method using
astrocyte-specific, Aldh1L1 TRAP mice
(Fig. 5a). Of interest, they found that the
PAP transcriptome was enriched for 39
UTRs containing QKI RBP response elements (Sakers et al.,
2017), and subsequently found that QKI was important for
translational regulation of proteins with functions at or near the
cell surface, suggesting a functional role in local translation
regulation (Fig. 5b) (Sakers et al., 2017, 2021). QKI has intri-
guingly also been found to be a downstream target of Fyn ki-
nase, phosphorylation of which was found to attenuate
binding to Mbp mRNA, and was reported to interact with
AGO2 during localization to stress granules in glia (Zhang et
al., 2003; Lu et al., 2005; Y. Wang et al., 2010). While this
interaction has not been further characterized in mammals,
Akay et al. (2013) reported that the Caenorhabditis elegans
QKI homolog, GLD-1, interacts with various miRISC path-
ways. Thus, future work focusing on potential interactions
between QKI and miRISC may uncover a mechanism for the
regulation of local translation in astrocytes and other glia.

While these as well as other (Kedde et al., 2010; Friend et al.,
2012; Cottrell et al., 2018) studies show that the dynamic interac-
tions between RBPs and AGO may function as a “molecular
switch” for local translation regulation, much remains to be
understood about the complex pathways and interactions
between various RBPs and miRISC components. For example,
while motif analysis has provided insight into RBPs with proba-
ble roles in regulating local translation (Ouwenga et al., 2017;
Sakers et al., 2017; Tushev et al., 2018), a systematic analysis of
RBPs involved in local translation in the major cell types of the
CNS would provide further insight into the molecular mecha-
nisms underlying this regulation. One possibility, proposed by S.
Kim et al. (2021), is that RBPs may open up local mRNA second-
ary structures, thus allowing AGO to access the target site and
repress translation until cellular stimuli allow for the release of
the mRNA. Indeed, it is likely that multiple mechanisms underlie
these complex pathways of translational regulation; thus, the
field of local translation would benefit from further investigation

into the interactions between miRISC and RBPs, and how these
interactions can serve as a “molecular switch” regulating gene
expression.

Intercellular communication in the regulation of local
translation
The interactions between miRISC and different RBPs provide a
dynamic model for the regulation of local translation in which
cells can rapidly respond to cues of activity based on the phos-
phorylation status of different proteins. This model can also
incorporate another layer of regulatory control in the distal proc-
esses of neurons and glia: intercellular communication.

It is well recognized that neurons and glia can release extrac-
ellular vesicles, such as exosomes or microvesicles. However,
because it was originally believed these vesicles were unwanted
materials release by the cells, the study of intercellular communi-
cation via exosomes is still in its infancy (Budnik et al., 2016;
Lizarraga-Valderrama and Sheridan, 2021). Indeed, in recent
years, the role of extracellular vesicles in mediating intercellular
communication has become increasingly appreciated, as extrac-
ellular vesicles have been found to carry cargo, such as lipid sig-
naling molecules, protein, and, interestingly, miRNAs (Budnik et
al., 2016; Lizarraga-Valderrama and Sheridan, 2021).

To further understand the role of exosomes in mediating neu-
ron:astrocyte communication, Men et al. (2019) developed
exosome reporter mice. After confirming neuron-derived
exosomes could be internalized by astrocytes, they then
characterized the miRNA profiles of these exosomes using
miR-microarray hybridization. From this, they found a no-
ticeable difference between the miRNA profile of neurons
and neuron-derived exosomes, suggesting there exists a reg-
ulatory mechanism for miRNA-loading of exosomes. Of
particular interest, they found miR-124-3p was enriched in
neuron-derived exosomes. Previous work by the group
showed that exosomal miR-124 mediated the upregulation

Figure 4. Interactions between Ago and different RBPs allow for de-repression of transcripts on stimulation. a, FMRP and
MOV10 associate with miRISC to reversibly repress translation. FMRP and MOV10, in association with miRISC, inhibit the
translation of the target transcript. Downstream of NMDAR stimulation, FMRP is phosphorylated, causing AGO2 and FMRP to
dissociate from the mRNA:MOV10 complex, allowing for MOV10-bound mRNA to associate with ribosomes for translation
(Kute et al., 2019). b, HNRNPA2 associates with miRISC to reversibly repress Mbp translation. HNRNPA2 and AGO2 repress
translation of Mbp mRNA in oligodendrocytes. Phosphorylation of AGO2 by Fyn kinase causes the dissociation of the miRISC,
allowing for HNRNPA2-bound Mbp mRNA to associate with ribosomes for translation (Müller et al., 2015).
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of the glutamate transporter, GLT-1, translation in astro-
cytes (Morel et al., 2013), which has been characterized as a
locally translated protein in PAPs (Sakers et al., 2017).
Furthermore, they showed that this upregulation was indeed an

indirect translational effect: miR-124-3p inhibited the expression
and activity of two miRNAs (miR-132 and miR-218) known to sup-
press GLT-1 translation (Fig. 6a). Thus, while more work is needed
to characterize the potential local activity of this translational

Figure 6. Intercellular communication via miRNAs may regulate local translation. a, miRNA-loaded exosomes allow for intercellular translational regulation. A neuron packages miR-124-3p
in an exosome, which is taken up by an astrocyte. Once in the astrocyte, miR-124-3p inhibits the inhibitory activity of miR-218 and miR-132, which normally inhibit translation of Glt-1 mRNA
(Men et al., 2019). b, miRNAs released by dying motor neurons in RNP complexes drive astrogliosis in ALS mouse models. Top, Dying motor neuron (red) releases miR-218 in RNP complexes.
Healthy astrocytes (purple) take up these complexes, where miR-218 inhibits Glt-1 mRNA translation. A healthy motor neuron (green) is contacted by a separate process of this astrocyte.
Bottom, The loss of the glutamate transporter causes the astrocyte to become reactive (magenta) and can cause excitotoxicity and further drive motor neuron death (Hoye et al., 2018).

Figure 5. Quaking binding motifs are enriched in transcripts found in PAPs. a, Overview of PAP-TRAP. Sakers et al. (2017) used astrocyte-specific TRAP in conjunction with synaptoneurosome
isolation (PAP-TRAP) followed by RNA-seq to identify transcripts enriched in the peripheral processes of astrocytes. Adapted from Sakers et al. (2017). b, PAP-TRAP showed an enrichment of
transcripts containing Quaking binding motifs localized to PAPs. By comparing the transcripts from SN input, cortex input, and PAP-TRAP, Sakers et al. (2017) identified transcripts specifically
enriched in the PAPs. Within these transcripts, they found an enrichment of the Quaking (QK) binding motif (ACUAAY). Adapted from Sakers et al. (2021).
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regulation in vivo, exosomal communication within the CNS may
offer yet another level of dynamic regulation of local translation.

Such regulation of local translation by exogenous miRNAs
may also provide a better model for understanding the role of
glia in the progression of neurodegenerative diseases, such as
ALS. For instance, as discussed above, miR-124-3p was found to
also increase levels of GLT-1 by suppressing the inhibitory activ-
ity of miR-218 and miR-132. Of importance, GLT-1 downregula-
tion has been implicated in ALS progression and severity
(Rothstein et al., 1995). The work by Morel et al. (2013) showed
that exogenously delivered miR-124 was able to increase the
expression of GLT-1 in an ALS mouse model compared with
control. Intriguingly, while using miRNA Tagging and Affinity-
purification (miRAP) to determine miRNAs associated with
AGO2 in a cell type-specific manner, Hoye et al. (2017, 2018)
also discovered that miR-218 is released in RNP complexes,
rather than in exosomes, by dying motor neurons in an ALS
mouse model. Furthermore, they found that these RNPs were
taken up by astrocytes and inhibit translation of GLT-1, driving
astrogliosis. The proposed model is that miR-218 import-medi-
ated loss of astrocytic GLT-1, which normally allows astrocytes
to clear excess glutamate from synapses, promotes excitotoxicity
on remaining motor neurons. While they did not probe which
proteins were complexed with miR-218, AGO:miRNA com-
plexes have been found circulating in plasma (Arroyo et al.,
2011), suggesting that AGO may also be directly involved in this
process (Fig. 6b). As miR-218 is not expressed in mature astro-
cytes of healthy mice or ALS-mouse models (Hoye et al., 2018),
understanding the role exogenous miRNAs play in the dysregu-
lation of local translation during disease may provide an avenue
for identifying potential therapeutic targets in ALS and other
neurodegenerative diseases.

There are other avenues of intercellular communication with
potential interesting implications in regulating local translation,
namely, endogenous retroelements, such as ARC and PEG10.
Arc, a retrotransposon and immediate-early gene with known,
activity-dependent local translation in dendritic spines, is largely
involved in the endocytic trafficking of AMPARs (Chowdhury et
al., 2006; Bloomer et al., 2008). However, it was more recently
discovered that ARC protein can spontaneously oligomerize to
form virus-like particles that enclose arc mRNA, as well as non-
coding RNAs, to mediate intercellular communication (Ashley et
al., 2018; Pastuzyn et al., 2018). In a similar manner, PEG10, a
different retrotransposon essential for embryo development
(Ono et al., 2006), has also been found to form virus-like par-
ticles that packages its own mRNA in neurons (Segel et al.,
2021). Much remains unclear about these retroelement-derived
proteins and their resulting virus-like particles, including how
they may mediate intercellular communication or synaptic plas-
ticity (Gallo et al., 2018). Future research on the regulation of
local translation and intercellular communication would greatly
benefit from further understanding of ARC and PEG10 virus-
like particles, such as whether glial cells are able to take up these
particles, if these particles contain distinct mRNA, miRNA, or
other ncRNA profiles that may suggest a regulated form of inter-
cellular communication, and whether this mechanism may pro-
vide a potential platform for therapeutic RNA delivery (Segel et
al., 2021).

Conclusions and Perspectives
Over the past several decades, great progress has been made in
characterizing the ability of morphologically complex cells to

direct the localization of a subset of transcripts to distal processes
for future translation. Local translation has been found to be
essential for many functions of the cells of the nervous system,
such as synaptic plasticity (D. O. Wang et al., 2009; Holt et al.,
2019). Yet, many of the mechanisms and trans-regulatory ele-
ments underlying the regulation of this process remain unclear.

The diversity and versatility of miRISC-mediated transla-
tional repression offer a promising model for many reasons.
First, cells must be able to discriminate between transcripts des-
ignated for translocation to distal processes and transcripts
remaining in the soma. While cis-elements in the 39 UTR often
serve as “zipcode motifs,” RBP target motifs alone contain lim-
ited information content; thus, coregulation with miRISC may
provide the high sequence specificity needed for accurate dis-
crimination of several mRNAs sharing RBP target motifs, but
differing miRNA seed sequences. Second, cells must be able to
repress translation of localized transcripts during the process of
translocation while preventing degradation. The heterogene-
ity of miRISC function depends largely on factors, such as
seed-sequence specificity and RBP partners, allowing for
translational repression to occur independent of mRNA deg-
radation. Third, cells must be able to de-repress translation
either on delivery to the distal process or in response to other
cellular stimuli. As the studies discussed above have shown,
post-translational modifications, such as phosphorylation, to
RBPs or AGO allow for dissociation of the mRNA from the
inhibitory complex, thus providing a molecular switch con-
trolling gene expression. Fourth, cells need mechanisms to
shut off translation of specific mRNAs in response to other
signaling cues or when the response has subsided. Local mat-
uration of pre-miRNAs by Dicer in response to stimuli pro-
vides such a mechanism by allowing direct translational
repression of a target gene (Fig. 3a) or more complex transla-
tional regulation by repressing the expression of a repressive
RBP, such as PUM2 (Fig. 3b).

As much of this work has been done in neurons, understand-
ing the dynamic interactions between miRISC and RBPs in other
cell types, such as glia, will provide further insight into this
biologically essential phenomenon. Astrocytes, for example, are
necessary for the regulation of synaptogenesis and synapse matu-
ration, and play a key role in neurodevelopment and neurode-
generation (Sloan and Barres, 2014; Chung et al., 2015). With a
single astrocyte making contact with up to 2 million different
synapses in humans (Oberheim et al., 2009), it is essential for
PAPs to translationally respond independent of signals received
by other processes. Yet, much remains to be understood about
this translational regulation in astrocyte processes. For example,
while astrocyte-derived exosomes have been found to have a
unique miRNA profile (Jovi�ci�c and Gitler, 2017), much less is
known about the presence and profile of miRNAs functioning in
PAPs. Thus, future work on neurodevelopmental and neurode-
generative disorders would greatly benefit from further charac-
terizing the mechanisms regulating local translation in both
neurons and glial cell types.
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