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A B S T R A C T

A substantial body of research now implicates the circadian clock in the regulation of an array of diverse bio-
logical processes including glial function, metabolism, peripheral immune responses, and redox homeostasis.
Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegen-
eration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurode-
generative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and
the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional re-
lationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian
deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.

1. Introduction

The myriad correlations between aging, aging-related disease, and
circadian rhythms (Hood and Amir, 2017; Kondratova and Kondratov,
2012; Leng et al., 2019) provide ample justification for investigation
into potential causative relationships between these phenomena. The
progressively increasing prevalence of circadian dysfunction with in-
creasing age suggests that aging drives circadian dysfunction. However,
disruption of the circadian clock – either behaviorally or through ge-
netic manipulation - can also drive aging-like phenotypes, suggesting
that the relationship between aging and circadian rhythm dysfunction
is bi-directional (Hood and Amir, 2017). More recently, evidence has
accumulated documenting changes in circadian systems preceding or
being predictive of the development of neurodegenerative diseases,
suggesting that circadian dysfunction could increase dementia risk
(Leng et al., 2019). However, this possibility as well as the implication
that aging and circadian dysfunction could represent concomitant,
positively reinforcing cycles of deterioration remain active areas of
investigation. Additionally, while the mechanisms by which these cy-
cles may lead to increased risk for dementia remain unknown, immune
dysregulation and oxidative stress have been identified as prime can-
didates (Leng et al., 2019). Initial studies suggest the circadian clock as
a potentially viable therapeutic target for the treatment of both neu-
rodegeneration and other age-related diseases. In connecting these
concepts, it is helpful to contextualize newer investigations exploring

circadian clock regulation of the immune system by considering what is
known linking circadian dysfunction with aging (Also see (Hood and
Amir, 2017)).

2. Overview of the mammalian circadian system

Circadian rhythms are a fundamental part of biology, as most or-
ganisms have a circadian clock that allows behavioral and physiological
adaptation to the 24-hour light-dark cycle of earth. In mammals, the
“master clock” of the body resides in the suprachiasmatic nucleus (SCN)
of the hypothalamus. The SCN receives synaptic input from the retina
and the cellular clocks within neurons of the SCN are thus entrained to
the external light-dark cycle. These cellular clocks then keep 24-hour
time and the SCN has specific neural circuitry to ensure timekeeping
that is both robust and flexible (Weaver, 1998). The SCN provides
synchronizing cues through regulation of endocrine and autonomic
nervous system function to cellular clocks throughout the body, in-
cluding in neurons and glia in the brain (Mohawk et al., 2012; Prolo
et al., 2005). The core molecular clock found in each cell is comprised
of a positive transcriptional limb and negative feedback limb. The po-
sitive limb is composed of the bHLH-PAS transcription factor BMAL1
(aka Arntl), which forms hetereodimers with CLOCK or NPAS to drive
circadian transcription via binding to E-box motifs. The negative limb
consists of the PERIOD and CRYPTOMCHROME families of proteins,
which are direct transcriptional targets of BMAL1 and which in turn
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inhibit BMAL1 function (Mohawk et al., 2012). The ROR and REV-ERB
proteins, positive and negative regulators of Bmal1 transcription, re-
spectively, are also transcriptional targets of BMAL1 and further mod-
ulate clock timing. This core clock is tuned to a 24-hour period through
the concerted actions of numerous post-translational mechanisms car-
ried out by a network of secondary clock proteins (Wang et al., 2019).
These core clock genes are expressed in nearly every cell in the body
and can generate circadian rhythms in transcription and cellular func-
tion in the absence of any external cues. The circadian clock regulates
between 10-50% of all transcripts in a cell, depending on tissue type,
and influences critical processes such as cell cycle, redox homeostasis,
inflammation, and metabolism (Zhang et al., 2014a). This breadth of
clock-controlled genes may partially explain the wide ranging con-
sequences of circadian clock disruption for aging as well as in the pa-
thogenesis of many chronic diseases (Evans and Davidson, 2013).

3. Behavioral circadian disruptions in aging

On a behavioral level, circadian disruption is a widely-studied
characteristic of both aging (Carskadon et al., 1982; Hayashi and Endo,
1982; Foley et al., 1995; Van Someren, 2000) and neurodegeneration
(Okawa et al., 1991; Hatfield et al., 2004; Morton et al., 2005; Musiek
et al., 2018; Musiek and Holtzman, 2016; Breen et al., 2014). Specifi-
cally, age-associated sleep changes, including sleep fragmentation, re-
present perhaps the most consistent and clear evidence linking beha-
vioral circadian disruption to aging (Hood and Amir, 2017). Sleep
disturbances such as difficulties with falling and staying asleep (Foley
et al., 1995), increased sleep to wake transitions (sleep fragmentation)
(Carskadon et al., 1982; Musiek et al., 2018), and increased daytime
drowsiness and napping (Carskadon et al., 1982; Foley et al., 1995) are
all characteristic of elderly populations. Sleep structure is also altered
(Carrier et al., 2001) with a particularly prominent age-associated de-
crease in slow wave sleep (Hayashi and Endo, 1982; Dijk et al., 2000;
Dijk and Czeisler, 1995; Ohayon et al., 2004; Landolt et al., 1996),
which is deemed important for protein clearance (Holth et al., 2019;
Iliff et al., 2012; Shokri-Kojori et al., 2018; Ju et al., 2017), maintaining
metabolic health (Tasali et al., 2008), and potentially in memory con-
solidation (Rasch and Born, 2013). Interestingly, a recent report details
dampening of rhythms in cortical excitability with age, which corre-
lates with sleep changes and potentially contributes to age-related
cognitive decline (Gaggioni et al., 2019). Older populations tend to
display earlier chronotypes (Carrier et al., 2001; Duffy et al., 1998;
Roenneberg et al., 2007; Zhdanova et al., 2011) while, at least in men,
an individual’s chronotype shifts earlier as age increases (Broms et al.,
2014). Somewhat paradoxically, in a Dutch population aged 18-65, a
later sleep onset was correlated with shorter telomere length
(Wynchank et al., 2019), a feature associated with cellular aging and
senescence (Blackburn et al., 2015). While the robustness of an in-
dividual’s sleep rhythm declines with age, their ability to adapt to an
environmentally imposed phase shift, as with jet lag, also declines with
age in humans (Sellix et al., 2012; Monk et al., 2000) and in mice
(Davidson et al., 2006; Valentinuzzi et al., 1997). Increasing fragmen-
tation of circadian activity rhythms is also specifically noted in aging
men and is independent of preclinical Alzheimer Disease pathology
(Musiek et al., 2018). However, further research is required to disen-
tangle whether these changes reflect alterations to the circadian system
itself, independent from aberrant regulation of sleep homeostasis. The
incorporation of other circadian readouts in addition to sleep may help
facilitate this endeavor.

4. Other systemic circadian changes with aging

Outside of sleep, alterations in several other systemic circadian
processes have been shown with age. For instance, body temperature
normally peaks in the evening while the trough occurs in the early
morning before waking (Refinetti and Menaker, 1992). In aged humans

there is a phase advance in body temperature rhythm such that the
nadir occurs earlier. The relationship between sleep and body tem-
perature rhythms may also be altered, with age being associated with a
later body temperature nadir relative to time of awakening (Duffy et al.,
1998; Czeisler et al., 1992). At least in men (Monk et al., 1995; Vitiello
et al., 1986), there may also be a reduction in amplitude (Czeisler et al.,
1992) and increased variability (Gubin et al., 2006) of the temperature
rhythm in aged adults (60s or older).

Melatonin, a hormone regulated by the SCN and secreted by the
pineal gland, normally induces sleep, possibly by acting on BMAL1
(Beker et al., 2019) and regulates body temperature (Brzezinski, 1997).
A potential decrease in melatonin secretion with age (Skene et al.,
1990; Kin et al., 2004; Zhao et al., 2002) has been inconsistently
documented (Duffy et al., 2002; Zeitzer et al., 1999) and may be spe-
cific to women (Kin et al., 2004). Additionally, it is possible that a
decrease in melatonin secretion could be indicative of pathological
instead of healthy aging (Zeitzer et al., 1999; Waller et al., 2016). In the
SCN, the expression of melatonin receptor declines with age, which
may contribute to the dispersion of behavioral rhythms (von Gall and
Weaver, 2008; Wu et al., 2007). This decrease may be at least partially
responsible for the loss of both sleep and body temperature rhythm
robustness in advanced age.

Glucocorticoids, steroid hormones of which cortisol is the primary
form in humans, have a complex relationship to stress, the immune
system, and the regulation of plasma glucose homeostasis (Oster et al.,
2017). Glucocorticoids are regulated by the SCN, follow a circadian
pattern of secretion, and are potent synchronizers of a number of per-
ipheral molecular clocks (Oster et al., 2017; Balsalobre et al., 2000;
Oster et al., 2006). Van Cauter et al. as well as several others (Van
Cauter et al., 2000; Vgontzas et al., 2003; Kumari et al., 2010) found
that the rhythm in circulating cortisol is dampened in aging, enabled by
a progressive rising of the nadir and accompanied by an overall increase
in levels (Van Cauter et al., 1996). However, others found a phase shift
in elderly subjects, but no change in amplitude (Sherman et al., 1985),
while still others found no major changes in cortisol with age (Touitou
et al., 1982). In mice, an age-related decline in glucocorticoid signaling
in the hippocampus, potentially due to a decrease in glucocorticoid
receptor expression, may play a role in the depletion of the neural stem
cell pool (Schouten et al., 2019). Despite disagreement on specific
cortisol rhythm abnormalities (possibly due to high variability or vastly
different sample sizes), a remaining diurnal rhythm in circulating cor-
tisol in aged humans is consistent between studies (Van Cauter et al.,
2000; Vgontzas et al., 2003; Kumari et al., 2010; Van Cauter et al.,
1996; Sherman et al., 1985; Touitou et al., 1982). This persistence of a
cortisol rhythm in aging, which in contrast to the case of melatonin is
retained during pathological aging (Hatfield et al., 2004; Waller et al.,
2016), adds another level of complexity to the series of interconnected
feedback loops that experience age-associated alterations or losses in
robustness.

5. Age-related changes in the SCN

In addition to the impairments and alterations observed in SCN-
regulated rhythms, age-associated changes in the SCN itself have been
documented. An impairment in the rhythm of neuronal firing in mice
(Nakamura et al., 2011; Farajnia et al., 2012) and flies (Curran et al.,
2019), as well as decreases or altered rhythms (Hofman and Swaab,
1994) in the expression of neuropeptides arginine vasopressin (AVP)
and vasoactive intestinal peptide (VIP) in the SCN have been observed
in humans, especially in men (Zhou et al., 1995), and in rodents (Chee
et al., 1988; Roozendaal et al., 1987) with advanced age. A loss in
GABAergic synapses in the SCN has also been reported in aged mice
(Palomba et al., 2008). GABA-mediated neuronal activity, as well as the
expression of VIP are critically important for the cohesiveness of SCN
neuronal firing rhythms (Aton et al., 2005; Aton et al., 2006) and the
maintenance of behavioral rhythms depends on the coordination of
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SCN neuron firing (Herzog et al., 2004; Vasalou et al., 2009). In a small
sample of elderly people and Alzheimer patients, fragmented sleep-
wake rhythms during life were associated with loss of VIP-ergic neurons
in the SCN on post-mortem examination (Wang et al., 2015). Thus,
current data support the hypothesis that changes in SCN neurons could
contribute to age-associated behavioral rhythm desynchrony. However,
this possibility requires more thorough evaluation to show that these
changes in neuronal populations directly influence organismal rhythms.

6. Aging and circadian clock gene expression

Reports documenting age-induced alterations in the molecular clock
have been more controversial. Some have shown dampening or dis-
persion in the SCN expression rhythms of Bmal1, Clock (Wyse and
Coogan, 2010; Kolker et al., 2003), and Per2 (Nakamura et al., 2015;
Chang and Guarente, 2013) while others report normal Per1 and Per2
rhythms (Yamazaki et al., 2002; Asai et al., 2001) with advanced age.
Altered molecular rhythms, including an impaired ability to phase
reset, have also been observed in the mouse liver (Davidson et al.,
2008) (although to a lesser extent in some reports (Sato et al., 2017;
Novosadova et al., 2018)), heart (Bonaconsa et al., 2014), kidney, lung
(Yamazaki et al., 2002), thymus (Sellix et al., 2012), and pancreas
(Novosadova et al., 2018) among others. However, intact molecular
rhythms have been observed in muscle and epidermal stem cells of aged
mice (Solanas et al., 2017). Interestingly, the induction of replicative
cellular senescence has been found to impair entrainment of the mo-
lecular clock (Kunieda et al., 2006), suggesting that perhaps the accu-
mulation of senescent cells in a given tissue with age could play a role
in the dispersion of circadian phases between cells. Outside of genes
directly involved in the core molecular clock, a large number (more
than 1000) of clock-controlled genes display altered rhythmicity, some
even gaining rhythms with age in the human prefrontal cortex (Chen
et al., 2016). The liver (Sato et al., 2017) as well as muscle and epi-
dermal stem cells (Solanas et al., 2017) also undergo substantial cir-
cadian reprogramming in aged mice. However, more data is needed to
solidify the physiological relevance of altered molecular rhythms,
especially in the aged brain.

7. The circadian system, healthspan, and lifespan

Changes in the circadian system can be predictive of, while inducing
circadian disruption can reduce, healthspan and lifespan. For instance,
the degree of deviation from a 24-hour circadian period was found to be
negatively correlated with lifespan in both rodent and primate species
(Wyse et al., 2010; Libert et al., 2012). Conversely, implantation of
young SCN tissue improved the molecular (Cai et al., 1997) and be-
havioral rhythms (Li and Satinoff, 1998) of rats and the longevity of
aged hamsters after surgery compared with cortex- and mock-im-
planted controls (Hurd and Ralph, 1998). Additionally, inducing
weekly phase shifts, especially phase advances, can reduce survival of
aged, but not young, mice (Davidson et al., 2006) while phase shifting
can also increase the vulnerability of mice to an lipopolysaccharide
(LPS) challenge (Curtis et al., 2015; Marpegan et al., 2009a). Geneti-
cally, ablating the clock via a global knockout of Bmal1 shortens life-
span and induces a number of other “aging-like” pathologies, such as
cataracts and sarcopenia in mice (Kondratov et al., 2006). Moreover,
deficiencies in either Per2 (Fu et al., 2002) or Clock/Bmal1 (Marcheva
et al., 2010) mediated transcription has been shown to exacerbate
cancer or drive age-dependent insulin dysfunction and diabetes, re-
spectively. The pathologies in the Bmal1 KO model have since been
partially attributed to loss of Bmal1 during development/early life
(Yang, 2016) and exhibit tissue specificity (McDearmon et al., 2006).
However, these and further studies utilizing macrophage/monocyte
(Curtis et al., 2015; Adrover et al., 2019; Early et al., 2018; Gibbs et al.,
2012; Nguyen et al., 2013), muscle (Dyar et al., 2014), liver (Jacobi
et al., 2015), brain-specific (sparing the SCN) (Musiek et al., 2013), and

other tissue-specific circadian mutants have recapitulated components
of aging-like phenotypes and vulnerabilities, including insulin re-
sistance (recently reviewed (Stenvers et al., 2019)). Interestingly, a
contingent of these metabolic abnormalities, including lipid accumu-
lation and glucose intolerance, can be mitigated by time restricted
feeding, highlighting the importance of the clock in maintaining me-
tabolic homeostasis (Chaix et al., 2019; Villanueva et al., 2019;
Jamshed et al., 2019). These studies also suggest time restricted feeding
as a potentially viable behavioral intervention for age-related metabolic
dysregulation.

Maintaining the integrity of circadian rhythms is crucial for opti-
mizing a large host of physiological outputs including, but not limited
to long-term potentiation (Barnes et al., 1977; Chaudhury et al., 2005)
and associated cognition (Smarr et al., 2014; Eckel-Mahan et al., 2008),
metabolic health (Paschos et al., 2012), reaction time (Graw et al.,
2004; Scott et al., 2006), and muscle performance (Dyar et al., 2014;
Peek et al., 2017; Sato et al., 2019; Ezagouri et al., 2019), age-asso-
ciated deteriorations of which have been extensively documented. Ac-
cordingly, the perturbation of rhythms, for instance with nighttime
light exposure (Fonken et al., 2012), circadian misalignment (shift
work) (Wefers et al., 2018), or jet lag (Karatsoreos et al., 2011) can
impair these functions. Circadian disruption also negatively impacts
insulin sensitivity as well as increases risk factors (Lieu et al., 2012;
Suwazono et al., 2008; Morris et al., 2016; Curtis et al., 2007) and
worsens outcomes (Beker et al., 2018) for acute neurological and car-
diovascular events, which already display daily rhythms in occurrence
(Thosar et al., 2018; Muller et al., 1985; Panza et al., 1991). These data
suggest that at the very least, disruption of the circadian clock is det-
rimental in the context of aging. The intriguing possibility that such
disruptions could be driving the aging process itself, negatively im-
pacting healthspan and lifespan should be of particular interest to fu-
ture studies. Additionally, recent studies suggest that the efficacy and
toxicity of drug therapies for age-related diseases such as cancer can be
dramatically affected by the circadian phase in which they are ad-
ministered (Slat et al., 2017; Paschos et al., 2010; Borniger et al., 2017).
Circadian regulation of treatment efficacy may become even more
complicated and warrants further investigation in the context of aging,
given the age-related alterations in phase and dispersion of rhythms
discussed here. The intimate interaction between the immune system
and the circadian clock, discussed in the next section, adds yet another
layer of complexity to be considered, and perhaps leveraged, in the
development of therapeutics to treat age-related disease.

Mechanistically, the circadian clock is linked to the mammalian
target of rapamycin (mTOR) and Sirtuin 1 (SIRT1) (Chang and
Guarente, 2013; Ramanathan et al., 2018; Cao et al., 2013; Khapre
et al., 2014; Imai, 2010). These factors are closely tied to the regulation
of aging with mTOR negatively and SIRT1 positively impacting
healthspan and lifespan (Wu et al., 2013; Lamming et al., 2012; Satoh
et al., 2013; Imai and Guarente, 2014; Harrison et al., 2009). SIRT1
interacts with the BMAL1/CLOCK complex and may impact circadian
transcription directly by deacetylating BMAL1 (Nakahata et al., 2008),
PER2 (Asher et al., 2008), and histone H3, acting counter to the histone
acetyltransferase functions of the CLOCK protein itself (Nakahata et al.,
2008). Additionally, levels of NAD+, an essential metabolite and ne-
cessary substrate for SIRT1 deacetylase activity (Imai and Guarente,
2014; Vaziri et al., 2001), as well as the expression of NAMPT, the rate-
limiting enzyme in the NAD+ salvage pathway (Revollo et al., 2004),
have been shown to oscillate in the mouse liver (Ramsey et al., 2009;
Nakahata et al., 2009) and human red blood cells (NADH) (O'Neill and
Reddy, 2011). This circadian clock regulation of NAD+ through
NAMPT is important for maintaining homeostatic levels of mitochon-
drial oxidative phosphorylation (Peek et al., 2013) and for feeding back
into SIRT1 (Nakahata et al., 2008; Ramsey et al., 2009; Nakahata et al.,
2009) (as well as mitochondrial SIRT3 (Peek et al., 2013)) activity.
Although through a modestly different mechanism, modulation of the
circadian clock by SIRT1 is also present in the SCN (Chang and
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Guarente, 2013). In concordance with decreased expression of Sirt1 in
aged animals, this control of the clock by SIRT1 wanes with age (Chang
and Guarente, 2013). An age-associated systemic decline in NAD+
(recently reviewed (Yoshino et al., 2018; Fang et al., 2017; Lautrup
et al., 2019)), possibly due to decreased levels of clock-regulated
NAMPT in several tissues (Stein and Imai, 2014; Yoshida et al., 2019;
Yoshino et al., 2011) has been thoroughly documented. Taken together,
these data suggest that a deficit in the interaction between SIRT1 and
circadian signaling could bear some responsibility for the connection
between circadian dysfunction and the aging process (Hood and Amir,
2017; Chang and Guarente, 2013). In support of this idea, aged mice
experience a substantial dampening of the protein acetylation rhythms
under dual regulation by NAD+/SIRT1 and the circadian clock in the
liver (Sato et al., 2017). These rhythms are restored by caloric restric-
tion (Sato et al., 2017), currently the most robust lifespan extension
intervention (Mitchell et al., 2016). Caloric restriction can also induce
circadian reprogramming in both young (Makwana et al., 2019) and old
animals as well as greatly enhance NAD+ levels and SIRT1 activity
(Sato et al., 2017).

Circadian physiology is also inextricably linked with a number of
other metabolic pathways (Panda, 2016), including the insulin sig-
naling (Stenvers et al., 2019) and mTOR pathways (Ramanathan et al.,
2018; Cao et al., 2013; Khapre et al., 2014; Zhang et al., 2014b), the
suppression of which have both been shown to extend lifespan and
healthspan (Wu et al., 2013; Lamming et al., 2012; Harrison et al.,
2009; Kenyon et al., 1993; Tatar, 2001; Selman et al., 2008). Insulin
induces phosphorylation of BMAL1 via AKT, thereby inhibiting BMAL1
transcriptional activity (Dang et al., 2016). On the other hand, down-
stream insulin signaling target mTOR can also induce BMAL1 phos-
phorylation via S6K1, a modification that enables BMAL1 to play a
critical role in mTOR-regulated translation (Lipton et al., 2015). Ad-
ditionally, activation or inhibition of mTOR results in acceleration or
dampening of the circadian clock, respectively (Ramanathan et al.,
2018; Cao et al., 2013). Calorie restriction, which extends lifespan,
impairs insulin signaling, and inhibits mTOR, also increases Bmal1 ex-
pression and BMAL1 mediated transcription (Patel et al., 2016). Finally,
loss of Bmal1 has been found to increase mTOR activity (although not in
all reports (Beker et al., 2019)), while inhibition of mTOR extends the
lifespan of Bmal1 KO mice by 50% (Khapre et al., 2014). Taken to-
gether, these data suggest a bidirectional relationship whereby main-
taining a metabolic equilibrium that favors longevity also promotes
robustness of the circadian clock, while maintaining the integrity of the
clock may promote longevity by sustaining metabolic homeostasis.

8. Glial clocks and aging

In addition to in the SCN and throughout the body (Yoo et al.,
2004), oscillating molecular clocks have been documented in a variety
of extra-SCN brain regions (Abe et al., 2002) as well as in astrocytes
(Prolo et al., 2005) and microglia (Fonken et al., 2015; Hayashi et al.,
2013). In the SCN, astrocytic clocks are synchronized by VIP (Marpegan
et al., 2009b) and can be altered by immune factors such as TNFα
(Duhart et al., 2013). Astrocytic extracellular ATP release (Marpegan
et al., 2011), which has potential implications for allodynia (Koyanagi
et al., 2016), gliotransmission (Womac et al., 2009), and glutamate
uptake (Beaule et al., 2009) are regulated by the clock. Additionally,
astrocytes play a substantial role in maintaining behavioral circadian
rhythms. For instance, under certain conditions, glial clock dysfunction
can cause behavioral arrhythmicity in flies (Ng et al., 2011). Several
recent studies have independently documented an even more im-
pressive role for the clock in SCN astrocytes in determining the phase
and period of mouse circadian rhythms (Barca-Mayo et al., 2017; Tso
et al., 2017; Brancaccio et al., 2017). Surprisingly, it was also shown
that SCN astrocytes are capable of generating population-wide circa-
dian clock oscillations and mouse activity rhythms in the absence of
intact neuronal clocks (Brancaccio et al., 2019). Despite the prominence

of the astrocyte clock in the SCN, relatively little is known about its
function elsewhere in the brain and outside of behavioral rhythm
maintenance. However, recent evidence suggests that glial clocks may
play a substantial role in regulating the neuroimmune system – dis-
cussed in more detail in the next section - with potential implications
for neurodegeneration (McKee et al., 2019). Notably, glia regulate
blood-brain barrier permeability, which has been shown to exhibit
circadian oscillation in flies (Cuddapah et al., 2019). Additionally,
multiple groups have reported marked aging-induced changes to the
astrocytic (Clarke et al., 2018; Boisvert et al., 2018) and microglial
(Grabert et al., 2016) transcriptomes that may substantially over-
shadow those in neuronal populations (Soreq et al., 2017). Together,
these data suggest that glial clocks may represent a fresh perspective
from which to consider the ballooning interest in the role of both as-
trocytes and microglia in the pathogenesis of neurodegenerative dis-
eases.

9. The clock and the immune system

Recent studies have convincingly demonstrated circadian regulation
of the immune system in the periphery (Scheiermann et al., 2018),
while emerging evidence links the clock to regulation of the immune
response in the CNS (Leng et al., 2019; McKee et al., 2019). Indeed, the
circadian clock regulates inflammatory and oxidative stress responses.
For example, both lesions of the SCN (Guerrero-Vargas et al., 2014) and
light induced rhythm disruption (Adams et al., 2013) can exacerbate
release of cytokines TNFα (Guerrero-Vargas et al., 2014) and IL-6
(Guerrero-Vargas et al., 2014; Adams et al., 2013) in response to LPS,
while LPS can differentially activate SCN neurons based on time of day
(Guerrero-Vargas et al., 2014). Chronic circadian phase shifts (chronic
jet lag) (Castanon-Cervantes et al., 2010) or merely varying the time of
day (Curtis et al., 2015; Marpegan et al., 2009a) can heighten both
inflammation and LPS-induced endotoxemic death in mice. In addition
to the aging-related pathologies previously discussed, global and brain-
specific Bmal1 KO as well as global Clock/Npas2 double KO mice have
age-dependent increases in ROS damage, chronic inflammation
(Kondratov et al., 2006; Musiek et al., 2013) including increased Tnfa,
microglia and astrocyte activation, and synapse degeneration (Musiek
et al., 2013). In monkeys, Bmal1 KO can also induce immune system
activation and depression-like symptoms (Qiu et al., 2019).

Importantly, clock genes including Clock, Per2 (Keller et al., 2009),
Bmal1, and the BMAL1 target Nr1d1 oscillate in peripheral macro-
phages (Nguyen et al., 2013; Keller et al., 2009) and lymphocytes
(Druzd et al., 2017). In humans, the LPS-induced blood levels of cyto-
kines Interferon-γ (IFN-γ), Interleukin-10 (IL-10) (Petrovsky and
Harrison, 1997), and TNFα vary consistently based on time of day while
IL-6 levels vary inconsistently (Alamili et al., 2014; Hermann et al.,
2006). In mice, lymphocyte trafficking (Druzd et al., 2017), LPS-in-
duced monocyte recruitment, cytokine levels including TNFα, IL-6
(Keller et al., 2009), IL-12 (Gibbs et al., 2012), inducible nitric oxide
synthase (iNOS - reactive NO-producing enzyme) (Nguyen et al., 2013),
chemokines including CCL5 (Gibbs et al., 2012), and mortality
(Spengler et al., 2012) exhibit time of day dependence with a reduction
during late wake/early rest periods (Nguyen et al., 2013; Keller et al.,
2009). This reduction can be abolished upon monocyte Bmal1 (Nguyen
et al., 2013) or Nr1d1 (Gibbs et al., 2012) KO indicating an immune-
suppressive role for these proteins. Accordingly, Bmal1 KO in mono-
cytes reduces survival in response to infection and exacerbates chronic
inflammation and glucose intolerance in a mouse model of diet-induced
obesity (Nguyen et al., 2013). Deletion of Bmal1 also induces an Nrf2-
dependent increase in ROS and IL-1β in macrophages (Early et al.,
2018). Disruption of BMAL1-regulated neutrophil aging can impair
immune defense and vascular protection in mice (Adrover et al., 2019).

In vitro, Bmal1 KO can cause increased neuronal degeneration,
death, and susceptibility to oxidative damage (Musiek et al., 2013).
Additionally, it was found that the BMAL1/CLOCK complex binds
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chemokine Ccl2 and Ccl8 promoters (Nguyen et al., 2013) while BMAL1
binds the promoters of genes protective against oxidative stress, which
are also downregulated in global Bmal1 KO mice (Musiek et al., 2013).
Macrophages from global Nr1d1 KO increase IL-6 secretion while REV-
ERBα (Nr1d1) agonist GSK4112 (Gibbs et al., 2012; Sato et al., 2014)
and Nr1d1 overexpression in culture (Sato et al., 2014) suppresses IL-6
release. In further support of BMAL1-mediated immune suppression,
global KO of two repressors of BMAL1 activity, Per2 (Liu et al., 2006)
and microRNA miR-155, can reduce TNFα (Curtis et al., 2015), IL-1β,
and IFN-γ (Liu et al., 2006) secretion upon LPS treatment. Taken to-
gether, these and similar studies make a strong case for the circadian
clock as an important immune regulator, providing a limiting check on
immune over activation in the periphery.

The neuroimmune system, primarily under the purview of glia, may
also be subject to regulation by the molecular clock. In addition to the
astrocytic clock discussed previously, a few recent reports have docu-
mented oscillating clock gene expression including Bmal1, Per2, and
Nr1d1 in microglia (Fonken et al., 2015; Hayashi et al., 2013; Nakazato
et al., 2011). Cytokine levels including Il-6, Tnfa, and the critical in-
flammasome component Nlrp3 (only measured after LPS), among
others, show circadian variation in unstimulated and LPS-stimulated
whole hippocampus and microglia (Fonken et al., 2015). Aging abol-
ishes these differences, clamping the microglial inflammatory response
to LPS at its highest level in younger mice (Fonken et al., 2016). Little is
known about astrocyte clock function in the immune system. However,
we have shown that astrocyte clock dysfunction induces astrogliosis
and can impair neuronal survival (Lananna et al., 2018). Additionally,
BDNF and Nrf2-dependent oxidative stress protection provided by as-
trocytes to neurons (Ishii et al., 2019) and NF-κB-mediated inflamma-
tion may both be regulated by the astrocytic clock (Sugimoto et al.,
2014). Nr1d1 KO induces microgliosis and astrogliosis in vivo and ex-
acerbates the neuroinflammatory response to LPS treatment, including
NF-κB signaling, in vivo as well as in cultured microglia (Griffin et al.,
2019). However, one study demonstrated a surprising depression of Il-6
expression in microglia and a mitigation of stroke damage in vivo after
deleting microglial Bmal1 (Nakazato et al., 2017). The varied results
from glial clock manipulations suggest a more nuanced clock regulation
of the glial immune response and underscore the need for further in-
vestigation. Such efforts may be especially relevant in the context of
neurodegeneration where glial cells play an increasingly appreciated
and crucial role in disease progression.

The general finding of a more active immune system at the rest to
wake transition (Gibbs et al., 2012; Nguyen et al., 2013; Fonken et al.,
2015) is likely preemptive, preparing the body for increased possibi-
lities of infection exposure during “morning” foraging and conserva-
tionist, minimizing both energy expenditure at unneeded times and
collateral damage induced by a constitutively active immune system
(Curtis et al., 2014). These studies in the peripheral and central immune
systems as well as the pro-inflammatory, pro-ROS phenotypes of Bmal1
mutants support the possibility that the circadian clock could regulate
the CNS immune response in microglia and astrocytes. In total, these
data suggest that alterations to circadian systems both in the SCN and in
tissue-specific clocks could play a substantial role in immune hyper-
activation with aging. Thus, these alterations may generate tissue en-
vironments susceptible to the overproduction of oxidative stress and
prime the body for the development of neurodegenerative disease.

10. Circadian clocks and oxidative stress

Considerable evidence supports a bidirectional relationship between
the circadian clock and oxidative stress, as changes in redox status can
influence core clock function, while clock proteins themselves regulate
redox homeostasis of cells (Stangherlin and Reddy, 2013). Binding of
BMAL1/CLOCK to DNA is dependent on the NAD(H)/NADP(H) ratio, a
barometer of cellular redox status, with increased binding occurring
under reducing conditions (Rutter et al., 2001). Circadian rhythms in

hydrogen peroxide levels are observed in cultured cells (Khapre et al.,
2011) and mouse liver, and can directly regulate rhythms in CLOCK
function via cysteine oxidation (Pei et al., 2019). Deletion of the redox-
responsive protein p66shc, which is itself rhythmic, disrupts these oxi-
dation rhythms in CLOCK and alters mouse behavioral and transcrip-
tional rhythms (Pei et al., 2019). Inhibition of the pentose phosphate
pathway (PPP), which is critical for generation of NADPH to fuel ROS
generation by the NADPH oxidase enzymes, as well as for glutathione
production, can also alter clock function (Rey et al., 2016). PPP in-
hibition with resultant loss of NADPH leads to oxidative stress, acti-
vation of the NRF2 redox response pathway, increased BMAL1/CLOCK
DNA binding, altered clock gene expression, and lengthened circadian
period (Rey et al., 2016). NRF2 itself appears to regulate clock function,
as Nrf2-/- cells have diminished clock gene expression and blunted
circadian rhythms in Per2 expression (Wible et al., 2018). In the SCN,
circadian rhythms in redox tone regulate rhythmic neuronal activity via
regulation of potassium currents (Wang et al., 2012). Thus, oxidative
stress can regulate clock function by multiple pathways.

Conversely, the core clock controls expression of redox response
genes and dictates cellular responses to oxidative stress. Drosophila
exhibit circadian rhythms in ROS sensitivity which are lost in ar-
rhythmic Per01 mutant flies. Per01 flies have shortened lifespans, in-
creased oxidative damage, and age-related neuronal degeneration
(Krishnan et al., 2009; Krishnan et al., 2012). Glutathione, a critical
small molecule antioxidant present in all cells, is regulated by the clock
at several levels. Glutathione levels, glutathione-producing enzymes,
and glutathione transferase enzymes all show circadian oscillation in
drosophila and mice (Beaver, 2012; Xu et al., 2012). NRF2, which
strongly regulates glutathione synthesis, is a transcriptional target of
BMAL1 (Early et al., 2018). BMAL1 controls Nrf2 in pancreatic beta
cells (Lee et al., 2013), macrophages (Early et al., 2018), and lung cells
(Pekovic-Vaughan et al., 2014), with loss of BMAL1 causing blunted
NRF2-mediated antioxidant responses and enhancing ROS levels. Ac-
cordingly, deletion of BMAL1 leads to increased oxidative damage in
multiple organs, including the brain (Kondratov et al., 2006; Musiek
et al., 2013). The clock protein REV-ERBα can be induced by oxidative
stress and can in turn regulate expression of the antioxidant tran-
scription factor FOXO1 as well as stimulate autophagy and mitochon-
drial biogenesis (Sengupta et al., 2016; Yang et al., 2014; Woldt et al.,
2013). Overexpression of REV-ERBα provides protection against oxi-
dative stressors and improves mitochondrial function (Sengupta et al.,
2016; Woldt et al., 2013). Oxidative stress in flies can even reprogram
genome-wide circadian transcription toward a redox stress response
(Kuintzle et al., 2017). Taken together, these data suggest that the
circadian clock responds to changes in cellular redox tone and regulates
expression of redox response pathways. As oxidative stress is strongly
implicated in many aspects of aging, age-related changes in clock
function could promote oxidative damage.

11. Circadian dysfunction in Alzheimer Disease

As detailed above, the circadian clock has a panoply of effects on
cellular aging, inflammation, and oxidative stress and is impacted by all
of these processes. Thus, it is perhaps not surprising that circadian
disruption is a common symptom of multiple neurodegenerative dis-
eases (as reviewed in detail elsewhere (Leng et al., 2019; Musiek and
Holtzman, 2016; Videnovic et al., 2014)). Among these, Alzheimer
Disease (AD) is the most common age-related neurodegenerative con-
dition and is associated with considerable circadian dysfunction
(Musiek et al., 2015). The sequence of pathogenic events in AD is
thought to begin with the accumulation of amyloid plaques, composed
of aggregated amyloid-beta (Aβ) peptide, followed by the formation of
hyperphosphorylated tau protein aggregates (neurofibrillary tangles)
within neurons. Plaques appear 10-20 years before disease onset, while
tau pathology is apparent within 5 years of the first symptom and is
closely associated with inflammation and neurodegeneration (Jack Jr.
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et al., 2018). Several human studies using actigraphy show that circa-
dian and sleep fragmentation occur during the presymptomatic phase of
the disease and worsens with disease progression (Musiek et al., 2018;
Ju et al., 2013; Lim et al., 2013; Tranah et al., 2011). This pattern is
similar to that seen in normal aging, but more severe. Degeneration of
the SCN, with subsequent blunting of rhythmic melatonin release, may
provide a mechanistic explanation for this exacerbation (Wang et al.,
2015; Swaab et al., 1985; Skene and Swaab, 2003; Uchida et al., 1996).
However, alterations in BMAL1 methylation (Cronin et al., 2017) or
direct effects of Aβ on BMAL1 degradation have also been proposed
(Song et al., 2015). In the mouse brain, interstitial fluid Aβ levels ex-
hibit a clear circadian rhythm which is driven by the sleep–wake cycle
(Kang et al., 2009). Deletion of Bmal1 causes severe circadian frag-
mentation, significantly blunts Aβ rhythms, and increases amyloid
plaque deposition in a transgenic mouse model of AD (Kress et al.,
2018). The exact mechanisms underlying this effect of clock disruption
on plaques is unclear. One potential mechanism is through dysregula-
tion of sleep, as sleep deprivation can increase Aβ plaque deposition in
mice (Kang et al., 2009), perhaps by increasing neuronal activity-de-
pendent Aβ production (Bero et al., 2011) or by impairing Aβ clearance
through the glymphatic system (Xie et al., 2013). Humans also have
diurnal rhythms in cerebrospinal fluid (CSF) Aβ levels (Huang et al.,
2012). Moreover, sleep deprivation in healthy adults acutely increases
CSF Aβ (Lucey et al., 2017) and may increase amyloid deposition
(Shokri-Kojori et al., 2018). However, kinetic labeling studies suggest
this effect occurs via increased Aβ production, rather than impaired
clearance (Lucey et al., 2017). Extracellular levels of tau also increase
during wakefulness and are exacerbated by sleep deprivation in both
mice and humans (Holth et al., 2019), while sleep deprivation in mice
increases tau pathology (Holth et al., 2019; Zhu et al., 2018; Di Meco
et al., 2014). Thus, the clock may influence amyloid deposition and tau
pathology in part through effects on sleep.

Aside from sleep regulation, circadian disruption could potentially
influence AD or other neurodegenerative diseases by any of the pre-
viously mentioned mechanisms, including alterations in inflammation,
glial function, NAD+/SIRT1 signaling, mitochondrial function, or
redox homeostasis. Circadian regulation of protein misfolding and

proteostasis in the brain is also relatively unexplored, though the clock
has been linked to regulation of autophagy and the proteasome (Woldt
et al., 2013; Ma et al., 2011; Desvergne et al., 2014). Accordingly, the
core clock could potentially be leveraged as a therapeutic mechanism to
optimize these factors in the aging brain and prevent degeneration.
Attempts at improving circadian function indirectly through light and/
or melatonin supplementation have yielded modest or mixed results on
sleep integrity and cognition (Singer et al., 2003; Gehrman et al., 2009;
Xu et al., 2015), but may offer increased benefit when used in combi-
nation (Dowling et al., 2008; Riemersma-Van Der Lek, 2008). A variety
of drugs which directly target the circadian system are currently being
developed and tested (Solt et al., 2012; Hirota et al., 2010; Oshima
et al., 2019), potentially enabling future strategies for treating age-re-
lated pathologies, including neurodegeneration (Musiek et al., 2015).

12. Conclusions

Impaired circadian function and immune dysfunction, including
altered redox homeostasis, coexist consistently across aging and pa-
thological conditions, including neurodegenerative disease (Hood and
Amir, 2017; Leng et al., 2019; Scheiermann et al., 2018). Despite
documented regulatory overlap between these areas, the idea that the
age-worn circadian system could represent a common link between
these phenomena has not been thoroughly explored. Circadian rhythm
integrity, including sleep and metabolic cycle competency, is crucial for
maintaining brain homeostasis, but breaks down in aging and during
neurodegeneration (Fig. 1). At the same time, the circadian clock is
vital in optimizing immune function, which is also compromised in
aging and neurodegeneration. Elucidation of unifying threads that di-
rectly link these observations has the potential to address unanswered
questions in several fields simultaneously. These efforts may reveal
both innovative therapeutic strategies for tempering the ravages of time
and age-related disease while also establishing intriguing avenues for
future study.

Fig. 1. Interaction of aging, circadian rhythms, and
neurodegeneration. Age-related dampening and dis-
persion of circadian rhythms (imprecise light red
oscillation depicting aged vs robust and precise dark
red oscillation depicting young), can promote various
pathogenic changes in the brain, including oxidative
stress, inflammation, glial activation, and metabolic
dysfunction. Disruption of normal sleep-wake pat-
terns can also contribute to these pathologies. Loss of
peripheral circadian synchronization can promote
systemic inflammation and impact the immune
system, potentially contributing to brain dysfunction.
Thus, the circadian system orchestrates brain home-
ostasis through multiple emerging mechanisms, dis-
ruption of which may prime the brain for neurode-
generation.
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