Supplementary Online Content

Triplett RL, Lean RE, Parikh A, et al. Association of prenatal exposure to early-life adversity with neonatal brain volumes at birth. *JAMA Netw Open*. 2022;5(4):e227045. doi:10.1001/jamanetworkopen.2022.7045

eFigure. Participant Flow From Study Enrollment to Inclusion in Current Analysis

eMethods. Supplemental Methods

eTable 1. Identification of Covariates of Interest Associated With Neonatal Volumetric MRI Measures at Birth (N=280)

eTable 2. Identification of Potential Covariates of Interest Associated With Infant Sex (N=280)

eTable 3. Comparison of Full-term Infants Excluded Due to Missing/Low-Quality MRI Data

eTable 4. Comparison of Full Cohort and Infants Excluded From (Largely Due to Prematurity) the Current Study

eTable 5. Full Results of Hierarchical Linear Regression Linking Maternal Social Disadvantage and Psychosocial Stress With Structural MRI Measures at Birth (N=280)

eTable 6. Hierarchical Linear Regression Linking Maternal Social Disadvantage and Psychosocial Stress with Total Brain Volumes (TBV) at Birth (N=280)

eTable 7. Hierarchical Linear Regression Exploring Hemispheric Effects of Maternal Social Disadvantage and Psychosocial Stress (N=280)

This supplementary material has been provided by the authors to give readers additional information about their work.

eFigure. Participant Flow From Study Enrollment to Inclusion in Current Analysis

eMethods. Supplemental Methods

Maternal Measures in the Social Disadvantage Construct. Health insurance status (private, public/no insurance) and highest educational level were obtained at study entry (during the first trimester). Household income and composition were obtained in each of the three trimesters and generated the Income to Needs Ratio (I/R).¹ An I/R of 1.0 is equivalent to the federal poverty line. Home addresses were obtained at birth and used to calculate the national Area Deprivation Index (ADI) percentile. The ADI scores neighborhood disadvantage using US Census data regarding poverty, education, housing, and employment, with higher values indicating greater disadvantage.² The Diet History Questionnaire II (DHQ-II),³ was obtained at the time of neonatal scan. The DHQ-II is a yearly food frequency measure used to characterize nutrition via the Healthy Eating Index (HEI).⁴

Maternal Measures in the Psychosocial Stress Construct. Psychological measures of the Perceived Stress Scale (PSS)⁵ and the Edinburgh Postnatal Depression Scale (EPDS)⁶ were collected in each trimester. The Stress and Adversity Inventory (STRAIN)⁷ is a composite measure of stressful and traumatic life experiences that was obtained at time of neonatal scan (*n*=186) or at follow-up at one or two years (*n*=77). On post-hoc analyses, we did not find differences in the STRAIN stressful/traumatic life event count (*t-statistic*=.85, *two-tailed p*=0.4) or severity (*t-statistic*=1.01, *two-tailed p*=0.3) between mothers who had this collected at birth or at subsequent follow up. The Everyday Discrimination Scale (EDS) was obtained at time of neonatal scan and was scored for the "day-to-day" experience of racial discrimination, with participant response choices that ranged from "never" or "less than once a year" to "every day".⁸

Latent Constructs. Confirmatory factor analysis, distinct from exploratory factor analysis, confirms that variables identified *a priori* load on each factor. MPlus software was used to validate our *a priori* grouping of early life adversity variables into a *Social Disadvantage* latent

factor (variables listed above) and a *Psychosocial Stress* factor (variables listed above). Maximum likelihood estimation was used to derive latent factor scores for these two composite measures for all participants, despite occasional missing datapoints in observed variables.⁹ Selfreported race was highly correlated with Social Disadvantage, offering no additional improvement to the model after other variables were accounted for and, thus, it was not included in either the latent Social Disadvantage or Psychosocial Stress composites. Additionally, maternal substance use, health, and BMI all have complex relationships with both SES and psychosocial factors. Therefore, we analyzed these measures independently of our defined constructs of Social Disadvantage and Psychosocial Stress.

MRI Data Collection, Preprocessing, and Brain Volumetric Measures. T1- and T2-weighted and spin echo fieldmap data were acquired with the following sequence parameters, T1: repetition time (TR)=2400ms, echo time (TE)=2.22ms, voxel size=0.8×0.8×0.8 mm³; T2: TR=3200/4500ms, TE=563ms, tissue T2=160ms, voxel size=0.8×0.8×0.8 mm³, and spin echo: TR=8000ms, TE=66ms, voxel size=2×2×2 mm³; 2 mm isotropic, multiband factor (MB)=1.

The T2-weighted images were first reviewed by a highly experienced imaging scientist (D.A.) and pediatric neurologist (C.D.S.) and evaluated based on image quality and estimated subject motion. Subjects determined to have severe motion during the scan (n=10) were not included in subsequent analyses.

The T2-weighted images were then preprocessed using the following standard steps: gradient and readout distortion correction using the Human Connectome Project preprocessing pipeline,¹⁰ FSL axis reorientation to the MNI152 standard-space template,¹¹ image denoising using Advanced Normalization Tools for Brain and Image Analysis (ANTS) Registration Suite,¹² and co-registration using the Washington University School of Medicine Neuroimaging Laboratory (NIL)'s 4-dimensional floating point (4dfp)-based image analysis.¹³ The resulting T2 images were then used as input for Melbourne Children's Regional Infant Brain atlas Surface (M-CRIB-S) segmentation and surface extraction toolkit, which automatically generated anatomical volume segmentations and reconstructed cortical surfaces.^{14,15} The M-CRIB-S toolkit included N4 bias field correction and brain extraction, as well as automatic segmentation into white and gray matter, cerebellum, brainstem, and subcortical gray matter subdivisions corresponding to FreeSurfer-like labeling. Curvature-based spherical registration and mapping, alignment, and averaging were performed, allowing for spatial normalization within the cohort and to the M-CRIB atlas.

The segmentation volumes and the cortical surfaces were then projected on the T2 images (using Connectome Workbench¹⁶ and ITK-SNAP¹⁷ software packages) to qualitatively evaluate the concordance between segmentations and anatomic structures (including subcortical regions) and cortical surface reconstructions and anatomic gyral and sulcal morphometry. Segmentations and surfaces were rated independently by D.A. and a second, highly experienced rater (D.M.) for necessary edits as is standard with these analysis methods.^{18,19,20,21} For a subset of subjects, segmentations were then manually edited (D.A. and D.M.) using the ITK-SNAP toolkit, and surfaces were regenerated using the M-CRIB-S toolkit. Edits were performed in all three planes to ensure accurate delineation of structures, primarily the supcatentorial gray matter, white matter, and cerebrospinal fluid, also with minor edits of the subcortical structures and the cerebellum. Edited segmentations and surfaces were inspected iteratively, with additional minor edits, if necessary. Final segmentations and surfaces were reviewed and designated as complete by D.A. and C.D.S.

<u>eReferences</u>

1. Brooks-Gunn J, Klebanov PK, Liaw F ruey. The learning, physical, and emotional environment of the home in the context of poverty: The infant health and development program. *Child Youth Serv Rev.* 1995;17(1-2):251-276. doi:10.1016/0190-7409(95)00011-Z

- 2. Kind AJH, Buckingham WR. Making Neighborhood-Disadvantage Metrics Accessible The Neighborhood Atlas. *N Engl J Med.* 2018;378(26):2456-2458. doi:10.1056/NEJMp1802313
- 3. *Diet History Questionnaire*. National Institutes of Health, Epidemiology and Genomics Research Program, National Cancer Institute.; 2010.
- 4. Krebs-Smith SM, Pannucci TE, Subar AF, et al. Update of the Healthy Eating Index: HEI-2015. *J Acad Nutr Diet*. 2018;118(9):1591-1602. doi:10.1016/j.jand.2018.05.021
- 5. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. *J Health Soc Behav.* 1983;24(4):385-396.
- Cox JL, Holden JM, Sagovsky R. Detection of Postnatal Depression: Development of the 10-item Edinburgh Postnatal Depression Scale. *Br J Psychiatry*. 1987;150(6):782-786. doi:10.1192/bjp.150.6.782
- 7. Slavich GM, Shields GS. Assessing Lifetime Stress Exposure Using the Stress and Adversity Inventory for Adults (Adult STRAIN): An Overview and Initial Validation. *Psychosom Med.* 2018;80(1):17-27. doi:10.1097/PSY.00000000000534
- Williams DR, Yan Yu, Jackson JS, Anderson NB. Racial Differences in Physical and Mental Health: Socio-economic Status, Stress and Discrimination. *J Health Psychol*. 1997;2(3):335-351. doi:10.1177/135910539700200305
- 9. Luby JL, Barch DM, Warner B, et al. *Modeling Prenatal Adversity/Advantage: Effects on Birth Weight*. MedRxiv; 2021. doi:10.1101/2021.12.16.21267938
- Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for the Human Connectome Project. *NeuroImage*. 2013;80:105-124. doi:10.1016/j.neuroimage.2013.04.127
- 11. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. *NeuroImage*. 2012;62(2):782-790. doi:10.1016/j.neuroimage.2011.09.015
- Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M. Adaptive non-local means denoising of MR images with spatially varying noise levels: Spatially Adaptive Nonlocal Denoising. *J Magn Reson Imaging*. 2010;31(1):192-203. doi:10.1002/jmri.22003
- 13. Snyder AZ, Acevedo H, Koller J. *4dfp Suite*. Washington University in St. Louis; 2021. https://4dfp.readthedocs.io/
- Alexander B, Murray AL, Loh WY, et al. A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas. *NeuroImage*. 2017;147:841-851. doi:10.1016/j.neuroimage.2016.09.068
- 15. Adamson CL, Alexander B, Ball G, et al. *Parcellation of the Cortex Using Surface-Based Melbourne Children's Regional Infant Brain Atlases (M-CRIB-S).* Neuroscience; 2019. doi:10.1101/544304
- 16. *Connectome Workbench*. Washington University in St. Louis; 2020. https://www.humanconnectome.org/software/connectome-workbench

- Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. *NeuroImage*. 2006;31(3):1116-1128. doi:10.1016/j.neuroimage.2006.01.015
- Qiu A, Rifkin-Graboi A, Chen H, et al. Maternal anxiety and infants' hippocampal development: timing matters. *Transl Psychiatry*. 2013;3(9):e306-e306. doi:10.1038/tp.2013.79
- 19. Wang C, Shen M, Guillaume B, et al. FKBP5 Moderates the Association between Antenatal Maternal Depressive Symptoms and Neonatal Brain Morphology. *Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol.* 2018;43(3):564-570. doi:10.1038/npp.2017.232
- 20. Lehtola SJ, Tuulari JJ, Scheinin NM, et al. Newborn amygdalar volumes are associated with maternal prenatal psychological distress in a sex-dependent way. *NeuroImage Clin.* 2020;28:102380. doi:10.1016/j.nicl.2020.102380
- Beare RJ, Chen J, Kelly CE, et al. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation. *Front Neuroinformatics*. 2016;10. doi:10.3389/fninf.2016.00012

	Mate BN	ernal 11 ^a	MMR	Score	Mat Mar Expo	ernal ijuana osure ^b	Mate Tobac	ernal co Use	In Birth	fant weight	Infan at s	t PMA scan	Infan	t Sex
Volume	r	p	r	р	t	р	t	р	r	p	r	p	t	р
TBV	074	.28	036	.55	-2.06	.04	-3.74	<.001	.432	<.001	.519	<.001	6.33	<.001
Total cGM	046	.50	024	.69	-1.22	.23	-3.14	.002	.440	<.001	.618	<.001	5.48	<.001
Total	084	.22	047	.44	-1.30	.20	-3.77	<.001	.410	<.001	.618	<.001	5.53	<.001
subcortical GM														
Total WM	082	.23	038	.53	-2.54	.01	-3.86	<.001	.373	<.001	.307	<.001	6.19	<.001
Total	076	.27	039	.52	-1.41	.16	-2.69	.008	.372	<.001	.678	<.001	5.24	<.001
Cerebellum														
Gyrification Index	071	.30	035	.56	2.36	.02	64	.53	.270	<.001	.472	<.001	5.56	<.001

eTable 1. Identification of Covariates of Interest Associated With Neonatal Volumetric MRI Measures at Birth (N=280)

MMR = Maternal Medical Risk, PMA = postmenstrual age, TBV = total brain volume, cGM = cortical gray matter, GM = gray matter, WM = white matter. r=Pearson's correlation coefficient. t=independent samples t-test statistic. p values are two-tailed. Values are unadjusted.

^aMaternal pre-pregnancy BMI data available for n=218

^bMarijuana exposure included all mothers with a urine drug screen positive for tetrahydrocannabinol metabolites and/or self-reported marijuana use during pregnancy

Variable, mean (SD)	Males (n=149)	Females (n=131)	t	р
Birthweight (g)	3316 (470)	3191 (500)	2.159	.03
PMA at Scan (weeks)	41.74 (1.27)	41.58 (1.30)	1.074	.28
Social Disadvantage	086 (1.01)	.004 (.921)	.786	.43
Psychosocial Stress	169 (.875)	.049 (.891)	-1.135	.26

eTable 2. Identification of Potential Covariates of Interest Associated With Infant Sex (N=280)

	Adequate MRI (n=280)	Missing/Low- Quality MRI (n=27*)	X²	р
Males, n (%)	149 (53)	16 (59)	.362	.55
Maternal Tobacco Use, n (%)	36 (13)	3 (11)	.068	.80
Maternal Marijuana Exposure, n (%)	74 (26)	5 (19)	.806	.37
			t	р
Birthweight (g), mean (SD)	3258 (488)	3274 (532)	.169	.87
PMA at Scan (weeks), mean (SD)	41.7 (1.3)	42.8 (1.8)	3.17	.004
Maternal MMR score, mean (SD)	1.0 (1.3)	1.0 (1.0)	009	.99
Social Disadvantage, mean (SD)	04 (.97)	.178 (.82)	1.32	.20
Psychosocial Stress, mean (SD)	11 (.88)	.16 (1.10)	1.55	.12

aTable 3 Com	narison of Full-term	Infants Excluded	Due to Missing		/ MRI Data
erable 3. Com	panson or Full-lenn	Initiants Excluded	Due to missing	Low-Quality	/ IVIRI Dala

*n=3 infants met other exclusion criteria (e.g., preterm, NICU stay)

eTable 4. Comparison of Full Cohort⁹ and Infants Excluded From (Largely Due to Prematurity) the Current Study

	Current sample (n=280)	Included in Luby <i>et al.</i> , excluded from current sample (n=119)	X²	р
Males, n (%)	149 (53)	72 (61)	1.80	.18
Maternal Tobacco Use, n (%)	36 (13)	14(12)	.091	.76
Maternal Marijuana Exposure, n (%)	74 (26)	22 (18)	2.89	.09
			t	р
EGA at birth (weeks), mean (SD)	38.6 (1.0)	36.5 (2.9)	-7.61	<.001
Birthweight (g), mean (SD)	3258 (488)	2845 (726)	-5.68	<.001
PMA at Scan (weeks), mean (SD)	41.7 (1.3)	41.4 (1.9)*	-1.49	.14
Maternal MMR score, mean (SD)	1.0 (1.3)	1.8 (2.3)	3.56	<.001
Social Disadvantage, mean (SD)	04 (.97)	.10 (.90)	1.45	.15
Psychosocial Stress, mean (SD)	11 (.88)	.27 (1.0)	3.58	<.001

*n = 105 with attempted MRI scans.

eTable 5. Full Results of Hierarchical Linear Regression Linking Maternal Social Disadvantage and Psychosocial Stress With Structural MRI Measures at Birth (N=280)

	Ste	ep 1	Step 2			Cha Stat	ange istics
	0.		0 ₂	p	FDR-	A D ²	FΔ
VOLUMES		P		P	adjusted q	ΔR⁻	(P)
Cortical Gray Matter	$R^2 = .542$	2, p < .001	$R^2 = .55$	58, p < .001	004		
Sex Birthwoight	.231	<.001	.236	<.001	<.001		
PMA at scan	.203	<.001	.523	<.001	<.001		
Tobacco Use	064	.13	028	.52	.69		
Disadvantage			130	.008	.01	.016	.007
Psychosocial Stress			024	.59	.64		
Matter	$R^2 = .533$	в. р < .001	$R^2 = .55$	59. p < .001			
Sex	.232	<.001	.237	<.001	<.001		
Birthweight	.248	<.001	.197	<.001	<.001		
PMA at scan	.542	<.001	.524	<.001	<.001		
Tobacco Use	105	.014	059	.17	.67		
Disadvantage			156	.002	.003	.026	<.001
Psychosocial Stress			046	.30	.60		
White Matter	R ² = .295	, p < .001	R ² = .364, p < .001				
Sex	.280	< .001	.290	< .001	<.001		
Birthweight	.270	< .001	.184	< .001	.001		
PMA at scan	.223	< .001	.190	< .001	<.001		
Tobacco Use	123	.018	049	.34	.69		
Disadvantage			282	< .001	<.001	.069	< .001
Psychosocial Stress			025	.64	.64		
Cerebellum	$R^2 = .570$), p < .001	$R^2 = .58$	37, p < .001			
Sex	.227	< .001	.228	< .001	<.001		
Birthweight	.205	< .001	.168	< .001	<.001		
PMA at scan	.617	< .001	.605	< .001	<.001		
Tobacco Use	046	.26	011	.79	.79		
Disadvantage			093	.05	.05	.017	.004
Psychosocial Stress			077	.08	.30		
	Ste	ep 1	S	tep 2		Cha Stat	ange istics
REGIONS OF INTEREST	β a	р	βa	p	FDR- adjusted q	ΔR ²	F Δ (p)
Left Hippocampus	R ² = .197	′, p < .001	R ² =.22	21, p < .001			

Sex	.154	.006	.161	.003	.008		
Birthweight	.160	.005	.109	.06	.06		
PMA at scan	.313	< .001	.293	< .001	<.001		
Tobacco Use	075	.18	033	.57	.70		
Disadvantage			177	.007	.01	.023	.019
Psychosocial Stress			.019	.75	.93		
Right Hippocampus	R ² =.197	, p < .001	$R^2 = .22$	20, p < .001			
Sex	.134	.02	.141	.01	.02		
Birthweight	.196	<.001	.145	.01	.02		
PMA at scan	.283	<.001	.262	<.001	<.001		
Tobacco Use	103	.06	060	.29	.58		
Disadvantage			176	.007	.01	.023	.02
Psychosocial Stress			.013	.82	.93		
Left Amygdala	R ² = .377	, p < .001	R ² = .40	98, p < .001			
Sex	.290	< .001	.298	<.001	<.001		
Birthweight	.184	<.001	.126	.01	.02		
PMA at scan	.393	<.001	.370	<.001	<.001		
Tobacco Use	133	.007	083	.09	.58		
Disadvantage			200	<.001	.003	.031	<.001
Psychosocial Stress			.005	.92	.93		
Right Amygdala	R ² = .387	, p < .001	$R^2 = .41$	6, p < .001			
Sex	.273	<.001	.281	<.001	<.001		
Birthweight	.228	<.001	.171	<.001	.003		
PMA at scan	.398	<.001	.375	<.001	<.001		
Tobacco Use	105	.03	056	.25	.58		
Disadvantage			194	<.001	.003	.029	.001
Psychosocial Stress			.005	.93	.93		
Standardized Left Hippocampus ^b	R ² .010	, p = .43	R ² = .0	14, p = .57			
Sex	075	.22	073	.23	.31		
PMA at scan	055	.36	051	.41	.41		
Tobacco Use	.014	.82	.001	.99	.99		
Disadvantage			.017	.81	.86	.004	.58
Psychosocial Stress			.055	.41	.92		
Standardized Right Hippocampus ^b	$R^2 = .024$	4, p = .08	R ² = .0	27, p = .19			

Sex	114	.06	112	.07	.11		
PMA at scan	101	.09	097	.11	.18		
Tobacco Use	021	.73	032	.61	.70		
Disadvantage			.012	.86	.86	.003	.67
Psychosocial Stress			.049	.46	.92		
Standardized Left Amygdala ^b	R ² = .01	1, p = .40	R ² = .020, p = .36				
Sex	.039	.52	.041	.50	.57		
PMA at scan	078	.20	066	.28	.38		
Tobacco Use	059	.33	085	.18	.58		
Disadvantage			.056	.42	.67	.009	.28
Psychosocial Stress			.062	.35	.92		
Standardized Right Amygdala ^b	R ² = .004, p = .78		R ² = .012, p = .64				
Sex	.010	.87	.013	.83	.83		
PMA at scan	060	.32	051	.41	.41		
Tobacco Use	020	.74	043	.50	.70		
Disadvantage			.040	.56	.75	.008	.32
Psychosocial Stress			.070	.29	.92		
	Ste	ep 1	s	tep 2	FDR- adjusted	Change Statistics	
Gyrification Index	ß a	n	ß a	n	a	۸P ²	FΔ (n)
	$R^2 - 264$	P	$\mathbf{P}^2 = 3^2$	12 n < 001	Ч		(9)
Sex	104	, p < .001	115	03	03		
Birthwoight	170	.00	.113	.03	.03		
PMA at scan	.170	.002	402	.07	.07		
Tobacco Lleo	037	<u></u> 	.402	07	07		
Disadvantage	.037	.40	- 260	.07	.07	048	~ 001
Psychosocial Stress			.042	.46	.46	.040	<u><u> </u></u>

^a Standardized coefficient values.

^b Birthweight was not included as an independent variable for relative region of interest volumes adjusted for total brain volume to avoid overfitting. Standardized region of interest volumes were computed as the volume of the region divided by total brain volume.

	Step 1		Ste	ep 2	Change Statistics		
Total Brain Volume	β a	р	βap		ΔR ²	F Δ (p)	
	R ² = .468	, p < .001	R ² = .510	, p < .001			
Sex	.275	< .001	.282	< .001			
Birthweight	.289	< .001	.407	< .001			
PMA at scan	.432	< .001	.221	< .001			
Tobacco Use	099	.029	040	.37			
Disadvantage			214	< .001	.043	< .001	
Psychosocial Stress			034	.47			

eTable 6. Hierarchical Linear Regression Linking Maternal Social Disadvantage and Psychosocial Stress with Total Brain Volumes (TBV) at Birth (N=280)

^a Standardized coefficient values

	Ste	ep 1	Ste	ep 2	Change Statistics	
VOLUMES	βa	р	βa	р	ΔR ²	F Δ (p)
Left Hemispheric						
Cortical GM	$R^2 = .539$	9, p < .001	$R^2 = .556$	5, p < .001		
Sex	.227	<.001	.231	<.001		
Birthweight	.280	<.001	.237	<.001		
Toboooo Lloo	.542	<.001	.520	<.001		
Disadvantage	003	.13	020	006	017	005
Psychosocial Stress			022	.62	.017	.000
Right Hemispheric						
Cortical GM	$R^2 = .538$	8, p < .001	$R^2 = .553$	8, p < .001		
Sex	.234	<.001	.238	<.001		
Birthweight	.289	<.001	.250	<.001		
PMA at scan	.531	<.001	.516	<.001		
Tobacco Use	064	.13	029	.50		
Disadvantage			123	.01	.015	.01
Psychosocial Stress			025	.57		
Left Hemispheric	$P^2 - 201$	n < 0.01	$P^2 - 365$	n < 0.01		
	IX = .29	, p < .001	N = .303	, ρ < .001		
Sex	.279	<.001	.289	<.001		
Birthweight	.272	<.001	.182	<.001		
PMA at scan	.217	<.001	.183	<.001		
Tobacco Use	121	.02	043	.40		
Disadvantage			297	<.001	.075	<.001
Psychosocial Stress			020	.71		
Right Hemispheric Cerebral WM	R ² = .295	5, p < .001	R ² = .358	s, p < .001		
Sex	.280	<.001	.289	<.001		
Birthweight	.267	<.001	.185	<.001		
PMA at scan	.227	<.001	.196	<.001		
Tobacco Use	125	.02	053	.30		
Disadvantage			266	<.001	.063	<.001
Psychosocial Stress			030	.58		
Left Cerebellum	R ² = .551	, p < .001	R ² = .565	i, p < .001		

eTable 7. Hierarchical Linear Regression Exploring Hemispheric Effects of Maternal Social Disadvantage and Psychosocial Stress (N=280)

			I		1	
Sex	.214	<.001	.213	<.001		
Birthweight	.195	<.001	.167	<.001		
PMA at scan	.612	<.001	.604	<.001		
Tobacco Use	052	.21	024	.57		
Disadvantage			061	.21	.014	.012
Psychosocial Stress			089	.05		
Right Cerebellum	R ² = .566	6, p < .001	R ² = .587	7, p < .001		
Sex	.235	<.001	.238	<.001		
Birthweight	.210	<.001	.167	<.001		
PMA at scan	.609	<.001	.594	<.001		
Tobacco Use	038	.35	.001	.97		
Disadvantage			122	.01	.021	.001
Psychosocial Stress			064	.14		
Left Hemispheric	$R^2 - 210$	$a_{\rm n} < 0.01$	$R^2 - 258$	3 n < 001		
Sex	057	29	065	22		
Birthweight	143	01	078	17		
PMA at scan	410	.01	385	< 001		
Tobacco Use	.030	.57	.085	.13		
Disadvantage			- 220	< 001	.039	< 001
Psychosocial Stress			001	.99	1000	
Right Hemispheric		<u> </u>		100		
GI	$R^2 = .252$	2, p < .001	$R^2 = .301$	l, p < .001		
Sex	.137	.01	.150	.004		
Birthweight	.178	.001	.107	.05		
PMA at scan	.403	<.001	.372	<.001		
Tobacco Use	.040	.45	.097	.07		
Disadvantage			268	<.001	.049	<.001
Psychosocial Stress			.078	.17		

^a Standardized coefficient values