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Abstract. In this paper, convergence theorems involving convex inequal-
ities of Copson’s type (less restrictive than monotonicity assumptions)
are given for varying measures, when imposing convexity conditions on
the integrable functions or on the measures. Consequently, a continuous
dependence result for a wide class of differential equations with many in-
teresting applications, namely measure differential equations (including
Stieltjes differential equations, generalized differential problems, impul-
sive differential equations with finitely or countably many impulses and
also dynamic equations on time scales) is provided.
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1. Introduction

Convergence results for varying measures have significant applications to var-
ious fields of pure and applied sciences including stochastic processes, statis-
tics, control and game theories, transportation problems, neural networks,
signal and image processing (see, for example, [2,5-8,15,20,24,28,34]).

E.T. Copson in [4], weakening the monotonicity of a sequence of real
numbers by changing it in a convex inequality involving k consecutive terms
of the sequence, gave a sufficient condition to guarantee the convergence of
bounded sequences of real numbers.
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Recently, following this idea, in [23] the classical Monotone Convergence
Theorem has been generalized by changing the monotonicity with a convexity
condition on the involved functions.

In the present paper, we go further and continue the investigation s-
tarted in [11,14-17,21,22,25,32], providing conditions to ensure convergence
results for a sequence of functions (f,,), integrable with respect to the mea-
sures of a sequence (my,),, when the functions satisty a convexity condition. If
the sequence of measures (m,,),, satisfies a convexity condition, convergence
theorems for the integrals are obtained as well.

The paper is organized as follows.

In Sect. 2, after the Introduction, convergence theorems for varying
measures are given when the sequence of functions (f,,), satisfies inequalities
of Copson’s type (in both increasing or decreasing manners) and the sequence
of measures is setwisely or weakly convergent.

In Sect. 3, the convergence of the sequence ( fQ fdmn)n under a con-
vexity condition on the sequence of measures (my,), is obtained, when again
(my), converges in setwise sense.

Finally, Sect. 4 provides a continuous dependence result for measure dif-
ferential equations under Copson’s type assumptions on the measures driving
the equations. Such outcomes are important in applications since they allow
one to approximate the solutions of a differential problem driven by a general
finite Borel measure by solutions of differential problems driven by measures
with nicer behavior (e.g. [13], [33] or [9], [10], [31] for the more general, set-
valued setting).

Measure differential equations (which can be equivalently written as
Stieltjes differential equations, see [19], [27]) proved themselves very useful in
studying real life processes with dead times or abrupt changes occurring in
their dynamics, e.g. [1], [19] or [29].

We remark that the main theorem of this section, proved for measure
differential equations, could be used to get new continuous dependence re-
sults for generalized differential problems ( [33]), for impulsive differential
equations with finitely or countably many impulses ( [19], [33]) and also for
dynamic equations on time scales ( [13]).

2. Convergence Results Under Convexity Conditions on the
Functions

Let (©2,.A4) be a measurable space and we denote by M™(Q) the family of
finite nonnegative measures on (2, A). Let m,m, € MT(Q) for n € N and
let f,f, : © — R, for n € N, be measurable functions. The symbol L!(m)
stands for the family of Lebesgue integrable functions with respect to (briefly
w.r.t. ) the measure m while fA fdm is the Lebesgue integral of f over a set
Aec A

We recall the following result.
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Lemma 2.1. ([4], [23, Lemmas 1, 2]) Let (zy,), be a sequence of real numbers
which satisfies the inequalities

k
Tpak = Zozjxn+k_j, for all n > 1 (1)
j=1
(Tpgr < Z?:l QjTnip—j, forall n > 1, respectively), where k is a fized
positive integer, the coefficients o are strictly positive and Z?zl o =1.
Then the sequence Yy, = min{a,_1,...,Tp_r}, n > k+ 1, is increasing
(yn = max{x,_1,...,Tn_k}, n > k+1 is decreasing, respectively). Moreover,
if the sequence (xy,)y, satisfies (1) and if X = lim,,_ o x,, then x, < kX for
alln > 1.

In the whole Section we will consider a sequence of functions (fy)n
satisfying

frtr(x Z a; foir—j(x), foralln>12¢€Q, (2)

or, respectively, the reverse inequalities

k
e Z @ foii-j(x), foralln>1z€Q, (3)

where k is a fixed positive integer, the coeflicients «; are strictly positive and
k
Zj:l Oéj =1.

2.1. Setwisely Convergent Measures

We are now giving convergence theorems with convexity conditions on the
functions and setwise converging measures.

We recall that a sequence (my,,), converges setwisely to m (m, ~ m) if
for every A€ A

lim m,(A) =m(A)

n—oo

([21, Sect. 2.1], [17, Definition 2.3])

Definition 2.2. Let (m,,), C M(TQ). We say that a sequence (f,,), : Q@ — R
is uniformly (my,)-integrable on (2 if

lim Sup/ | frnldm, =0. (4)
ATFOneN S| fn|>a}

If f,, = f for all n € N, then we say that f is uniformly (m,)-integrable on
0.

In the proof of our convergence results, we will use the following propo-
sition:
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Proposition 2.3. ( [11, Proposition 2.10 and Corollary 2.8]) Let (my), C
MT(Q) converge setwisely to m € M (Q). Moreover, let f : 2 — R be
uniformly (my,)-integrable on 2. Then f € L*(m) and for all A € A

lim f dm,, = / fdm. (5)

We show that if (f,,), satisfies a convexity condition of Copson’s type
the convergence holds for the sequence (f, ), not only for the function f (see
(6) below).

Theorem 2.4. Let f, : Q@ — [0,400], n € N, be a sequence of measurable
functions satisfying (2) and let m and m,, n € N, belong to M*(Q). Then
there exists a measurable function f : Q@ — [0, 400] such that lim,, . fn(x) =
f(z) for all x € Q. Suppose that

(2.4.1) [ is uniformly (my,)-integrable on 2;

(2.4.%) (mp)n is setwisely convergent to m.

Then, for all A € A,

lim ndm, = dm. 6
[ fuim /Af (6)

n—oo

Proof. According to Copson’s theorem applied to each x € 0, we can find a
function f : Q — [0, +00] such that

lim f,(x) = f(x) for all x € Q.

n—-+oo

Since each function f,, is measurable, the function f is also measurable.
To prove the assertion, it is sufficient to prove the equality (6) for A = 2.
Fix 2 € Q and define for each n > k + 1

gn(x) = min{fnfl(-r)a SR fnfk(l)}
Now by (2) and Lemma 2.1 it follows that

gn(x) S gn+1($) é fn(x)

and lim,, 4 o0 gn(2) = f(2).

Therefore, applying the monotone convergence theorem for setwise con-
verging measures ( [17, Corollary 6.2]) to the increasing sequence (g, ), we
get

lim gndmn:/fdm.
Q

n—-+oo QO

Observe that [, fdm € [0,+o00]. If [, fdm = 400, then since for all n € N
gn(2) < fn(x), passing to the limit we obtain

/fdm:+oo: lim gndm, = lim /fndmn.
Q

n—-+o0o Q n—-+o0o Q
Assume that [, fdm < +oc and consider hy,(z) = min{l,—1(z),...,lh,_x(x)}

for n > k, where [,(x) = Zle fn—j(x). The sequence (I,), satisfies the
inequality
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B

Ltk (z Z ilnti—j(x), foralln>12 €

therefore, by Lemma 2.1 it follows that (h,,), is an increasing sequence with
lim_ha(r) = k- £(z)
for all x € Q. Moreover, for every n > k

foi (@) < hn(x) < k- f(2);
therefore, applying the Dominated Convergence Theorem for varying mea-
sures [30, Proposition 18, p.232] we conclude that

lim fndmn:/fdm.
Q Q

n—oo

If we consider now the decreasing case (3), we have the following

Theorem 2.5. Let f,, : Q@ — [0,+00] be a sequence of measurable functions
such that (3) holds and let m and m,, n € N, belong to M™(Q). Then there
exists a measurable function f : Q — [0, +00] such that lim, oo fn(z) = f(x)
for all x € Q.

Suppose that

(2.5.9) f1, fa,. .., fr are uniformly (my)-integrable on 2 and fi, fa,. ..,
fr € Ll(m);

(2.5.01) (my)n is setwisely convergent to m.

Then, for all A € A,

lim fndmn / fdm. (7)

n—oo

Proof. The existence of f : Q — [0,400] such that lim, . fu(z) = f(z)
for all x €  can be proved as in Theorem 2.4. It is sufficient now to show
the equality (7) for A = £2. Fix « € Q and define for n > k + 1,

gn(z) = max{fn_1(x),..., fa—k(z)}.

By Lemma 2.1, (g, (z)), is a decreasing sequence satisfying

fn—l(x) < gn(x) < gn—l('r) for all n > kv

moreover, by the definition of g, () we get

lim _ga(r) = lim_fale) = /(2).

n—-+o0o
Now observe that if f; and f, are in L*(m) and are uniformly (m,, )-integrable
on {2, then the same is true for max{fi, fo} = w Therefore, the
function gg41(z) = max{fi(x),..., fi(z)} € L*(m) and it is uniformly (m,,)-
integrable.
By Proposition 2.3 it follows that

n—oo

lim [ gryidmy, :/gk+1dm-
Q Q
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Besides, fn(r) < gn+1(z) < grpt1(z) for n > k, so applying the Lebesgue
convergence theorem for setwise convergent measures ( [30, Proposition 18,
p.232]) we get

lim fndmn / fdm.

n—0o0

2.2. Weakly Convergent Measures

We are now considering convergence theorems with convexity conditions on
the functions and weakly converging measures.

For the following two results we suppose that €2 is a locally compact
Hausdorff space and A will be its Borel o-algebra. We denote by Cy(€2) the
family of all bounded continuous functions on 2.

We recall that a sequence (my,), converges weakly to m (m,, — m, [21,
Sect. 2.1]) if

/gdmn — / gdm, for all g € Cp(2).
Q Q

We have the following

Theorem 2.6. Let f, : Q@ — [0,+00], n € N be a sequence of lower semi-
continuous functions satisfying (2) and let m and m,, n € N, belong to
M (Q).Then there exists a measurable function f : Q — [0,+oc] such that
lim, o fu(x) = f(x) for all x € Q. Suppose that

(2.6.3) f is uniformly (m,)-integrable on £2;

(2.6.i1) [ is continuous;

(2.6.455) (my,)y is weakly convergent to m.

Then, for all A € A,

lim fndmn / fdm. (8)
n—oo
Proof. The proof follows as in Theorem 2.4, but in this case we have to
apply the monotone convergence theorem for weakly convergent measures (
[17, Theorem 6.1]) when [, fdm = oo.

If fﬂ fdm < 400 then, as in the previous result, we have that

fo—k(z) <k-f(x) foralln >k and x € €,

and since by (2.6.1) the function f is uniformly (m,,)-integrable it follows
that the sequence (fy)y is uniformly (m,,)-integrable on 2. Consequently,
by the Lebesgue convergence theorem for weakly convergent measures ([17,
Corollary 5.1]), we get

lim fndmn f/fdm

n—oo

If condition (3) holds instead, then the following can be proved.
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Theorem 2.7. Let f, : Q — [0,400], n € N, be a sequence of lower semicon-
tinuous functions such that (3) holds and let m and m,, n € N, belong to
M (Q).Then there exists a measurable function f : Q — [0,+oc] such that

lim, oo frn(x) = f(z) for all x € Q.

Suppose that

(2.7.4) f1, fa,. .., frx are uniformly (my)-integrable on 2 and fi, fa,. ..,
fr € Ll(m);

(2.7.43) f is continuous;

(2.7.455) (My)y is weakly convergent to m.

Then, for all A € A,

I - dm, = | fdm.
im Afm /Afm (9)

Proof. The proof follows as that of Theorem 2.5. Since
fo(@) < gn(x) < gry1(z) foralln >k

and since by (2.71) the function gy is uniformly (m,,)-integrable on , it fol-
lows that the sequence (f,), is uniformly (m,)-integrable as well. Therefore,
applying the Lebesgue convergence theorem for weakly converging measures
( [17, Corollary 5.1]) we deduce that

lim fndmn / fdm.

n—oo

3. Convergence Results for Measures Satisfying Convexity
Conditions

In this section we will consider limit theorems of the following type:

/Qfdmn - /Qfdm

where the sequence of measures (m,,), satisfies a convexity condition.

It is known (see [12], p 30) that if (my,), is a sequence of measures
converging setwise to a set function m, then m is a measure if one of the
following holds:

1) (my)n Is an increasing sequence;
2) (Vitali-Hahn—Saks) m is finite-valued.

We want first to prove that if we substitute the monotonicity condition
by one of the following inequalities of Copson type,

M ik(A) 2> ajmnirj(A), foralln>1,A€ A, (10)
or

k
Mk (A Z ajmpti—;(A), foralln>1A¢c A, (11)
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where k is a fixed positive integer, the coefficients «; are strictly positive and
> j—1 @ = 1, we still obtain that m is a measure.

Proposition 3.1. Let (my,), be a sequence in M™(Q) converging setwisely to
a set function m : A — R. If (10) holds then m is a measure.

Proof. Fix A€ A and for n > k+1 let
Vp(A) = min{m,_1(4),...,m,—(A)}.
Then v, (A4) < m,(A) for each n > k; indeed,

k k
1%MQ§}m%4mzZ%%w:%my

Moreover, vy, (A) < vp41(A) for all n € N, since
Unt1(A) = min{m,(A),...,mp_r+1(A)}
> min{m,,_r(A4), min{m, (A),...,mp_r11(A)}}
= min{m, (A),v,(A)} = v,(4).

Therefore, (v,), is an increasing sequence of measures, thus it converges to
a measure v. We want to prove that the sequence (mn)n converges to v as
well. Fix A € A. If v(A) — +oo then as

Un(A) <mp(A) for all n > k,

also m, (A) — +o0. Assume that lim, . v, (A) = ¥(A) < +00. Then for
every € > 0 there exists n. € N such that whenever n > n.

V(A) —e <vy(A) <v(A).
If1<s<k

For each n > n, thereis 1 <s
V(A) = vpyry1(A) = mpgs(A) = (1= as)(v(A) —e) + asmn(A)
=my(A4) + (1 — as)(v(4) — e —mn(A)).

Also v(A) — e < vp(A) < mp(A), so if o is the least of the coefficients o
satisfying

v(A) Z mn(A) + (1 = a)(v(A) —e = mn(A)) = am,(4) + (1 — a)(v(4) —¢)
we get

amp(A) < v(A) — (1 — a)(v(A) —¢).
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Therefore

whence
1—«

V(A) — & < vn(A) < ma(A) < v(A) + e.

@
This implies that the sequence (my,),, setwise converges to v which is a mea-
sure, and since by hypothesis (m,,), converges to m, it follows that m = v is
a measure. g

An analogous result holds in the case of the reverse inequality in the
convex combination, assuming that the measures my,ms, ..., m; are finite-
valued.

Proposition 3.2. Let (my,), be a sequence in M™(Q) converging setwise to a
set function m : A — R. If (11) holds and my,ma,...,my are finite-valued,
m 1S a Mmeasure.

Proof. The proof is similar to that of Proposition 3.1. In this case considering
for n > k v, (A4) = max{my_1(A),...,mn—r(A)},

Un(A) > my(A) and v,(A) > vpp1(A).

Since vi11(A) = max{my(A),...,m1(A)} is finite-valued, reasoning as be-
fore we obtain that there is a coefficient 0 < av < 1 such that
1—
V(A) — — 2 <mp(A) < v(A) +e

and the thesis follows. O

Besides, a sequence (my, ), for which (10) holds can be shown to satisfy
a domination condition.

Proposition 3.3. Let (my,), be a sequence in M™(Q) converging setwise to a
set function m : A — R and satisfying (10). Then for all A € A andn > 1,
mu(A) < km(A).

Proof. Fix A € A. For n > k + 1 consider the sequence of measures (v,,)n
defined by

Un(A) =mp_1(A) + -+ mu_i(A).
Then

k k
va(A) > ajmp 1 j(A) +-+ > aymn_x;(A)
j=1 j=1

= al(mn,g(A) +... mn,k,1<A)) + ag(mn,g(A) +... mn,k,Q(A))
Tt g1 k() M ak(A))

k
= avaj(4)
j=1
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so also the sequence (v,,(A)), verifies the Copson’s inequality and if for n >
E+1

Nn(A) = min{v,—1(A),...,vp—r(A)}
then 7, (A) < npe1(A) for all n > k, and it follows by Lemma 2.1 that the
sequence 1, (A) is divergent or it converges to some A(A). If it is divergent
there is nothing to prove, otherwise assume that it is convergent to A(A4) and
so by the previous Proposition 3.1 it follows that A is a measure and the
sequence (vp,), is also setwise convergent to A.

On the other hand by Proposition 3.1 the sequence (m,,(A)), converges
to m(A), and from the definition of the sequence of measures (v, ), it follows
that A(A) = km(A).

To prove that m,,(A) < km(A), we observe that

1 (A) = min{v, 1 (A), ... v (A)}
= min{(mnf2(A) +otmag-1(A)), - (Mp—k—1(A)
+ot mn—zk(A))}
and since the term m,_x_1(A) is an addend in every term we get
Mp—k—1(A) < n,(A) < km(A).
Therefore
mp(A) < Npagr1(A) <km(A) foralln e Nand A€ A

and the thesis follows. 0
Now we are able to prove the convergence results of this section.

Theorem 3.4. Let [ : Q — R be a nonnegative measurable function and let
(mn)n be a sequence in M™T(Q) convergent setwisely to a set function m :
A — R and satisfying (10). Then for all E € A

lim / fdm,, = / fdm. (12)
n—-4o0o E E
Proof. 1t is sufficient to prove the equality (12) for E' = 2. For every A € A
and for all n > k + 1 let
Vp(A) = min{m,_1(4),...,m,—x(A)}.

Then as in Proposition 3.1 we get that the sequence (v, (A)), is increasing
and v, (A) < my,(A) for all n > k. Moreover, the sequence (v,), converges
to m. So it follows by the convergence theorem for monotone measures ( [21,

Theorem 2.1 (c)]) that
lim / fdv, = / fdm.
n——+00 O Q

If [, fdm = 400, then one can see that

—l—oo:/fdm— hm fdung lim /fdmn
Q n—+o Jo

n— 400

and the assertion is proved.
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Assume now that [, fdm < +o0, ie. f € LY(m). Tt follows by Proposi-
tion 3.3 that m,(A) < km(A) for all n € N and A € A, also

/ fd(km) = k/ fdm < +o0;

Q Q

therefore, the statement follows from [21, Theorem 2.1 (b)] O
For the opposite inequality we have the next result.

Theorem 3.5. Let f : Q — R be a nonnegative measurable function and let
(Ma)n be a sequence in MT(Q) converging setwise to a set function m : A —
R. Assume that (11) holds and fQ fdmj < oo, for j=1,...,k. Then for all
EcA

lim / fdm, = / fdm. (13)

n—-+oo E E

Proof. 1t is sufficient to prove the equality (13) for E' = {2. For every A € A
and for all n > k + 1 let

v (A) = max{my,_1(4),...,m,—(A)}.

Then as in Proposition 3.2 we get that the sequence (v,(A)), is decreasing
and for all n > k v,,(A) > m,(A). Moreover, the sequence (1), converges
to the measure m. Also for all n > k

/ fdvger > / fvy > / fdm,

so it follows by [21, Theorem 2.1 (b)] that

liIJIrl /fdmnf/fdm

4. Application to Measure Differential Equations

We apply in this last section a previously obtained convergence result in order
to get a continuous dependence feature of a measure differential equation

da(t) = f(t,x(t))dm, x(0) = xo, (14)
where Q = [0,1] and A is its Borel o-algebra, m € M™([0,1]) and f :
[0,1] x R — R4,

A function z : [0,1] — R? is a solution of this problem if

x(t) = zo + f(s,z(s))dm(s) for every t € [0,1],
[0,%)
where the integral is understood in Lebesgue sense.

We recall that every finite Borel measure on the real line coincides
with the Lebesgue—Stieltjes measure induced by some non-decreasing left-
continuous function (see [3, Theorem 3.21]), consequently looking for solu-
tions in the described sense for such an equation is equivalent to looking for
solutions of a Stieltjes differential equation (we refer to [19] or [27]).
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A global existence and uniqueness result for measure differential equa-
tions under Lipschitz assumptions on the right-hand side, stated for the e-
quivalent formulation with Stieltjes derivative, was given in [19, Theorem 7.3]
(see also [13, Theorem 5.3], [19, Theorem 7.4] for local results). We can also
refer to [33, Theorem 5.4].

Theorem 4.1. Let f: [0,1] x R — R? satisfy:

i) for every x € R, f(-,x) is measurable;
it) f(-,x0) is Lebesgue-integrable w.r.t. m;
iii) there exists a map L : [0,1] — [0,400) Lebesgue-integrable with respect
to m such that

| f(t, ) — f(t, )| < L)z -y, form —a.e. t€[0,1], z,y € R%
Then (14) has a unique solution on [0,1].

We remind the reader that a function h : [0, 1] — R is called regulated
(we refer to [18] for a detailed discussion on this notion) if there exist

h(t+) = tfli_>Htl+ h(t'), for all t € [0,1), g(s—)= s'h—gl— h(s"), for all s € (0,1].

The following related concept ( [18]) is very useful for getting compactness
for regulated functions; a set F of R%valued regulated functions on [0, 1] is
said to be equi-regulated if for every ¢ > 0 and every tg € [0, 1] there exists
0 > 0 such that, for all f € F,

i) [[f(t) = f(to—)|| <& whenever ty—0 <t < to;

ii) |If(s) — f(to+)|| <& whenever ty < s <tg+ 9.

We also recall, for completeness, a recent Gronwall inequality for mea-

sure differential equations.

Theorem 4.2. ([26, Corollary 4.5]) Let u, K, L : [0,1) — [0, +00) be such that
L,K - L,u- L are Lebesque-integrable w.r.t. the measure m € M™*([0,1]). If

u(t) < K(t) —|—/ L(s)u(s)dm(s), for every t € [0,1),
[0,t)
then
u(t) < K(t) + K (s)L(s)elie:0 KO g (5, for every ¢ € [0, 1).
(0,8)

We present now the main result of this section on the behavior of the
solution of (14) when the measure m is varying.
Theorem 4.3. Let f:[0,1] x R — R? satisfy:

i) for every x € R, f(-,x) is measurable;
ii) f("wO) € Ll(m);
iii) there exists a map L : [0,1] — [0,400) Lebesgue-integrable with respect
to m such that

1f(tx) = f& )l < L)z —yll, forallt € [0,1], z,y € RY
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iv) there exists a map M : [0,1] — [0, 400) Lebesgue-integrable with respect
to m such that

Il f(t,2)|| < M(t), foralltel0,1], z € R

Let (my,)n, be a sequence in M™([0,1]) setwise convergent to m € M+
([0,1]) and satisfying (10).

Then the sequence (), of solutions of the measure differential problems
dx(t) = f(t,z(t))dmy, x(0)=xg (15)
converges uniformly on [0,1] to the solution x of (14).

Proof. Let us first note that by Proposition 3.3, f(-,x¢), L and M are also
Lebesgue-integrable w.r.t. every m,, since m,, < km for all n € N.

Besides, the assumptions on f ensure that for any function y : [0,1] —
R? the map f(-,y(-)) is measurable (therefore, by hypothesis iv) and the
previous observation, Lebesgue-integrable w.r.t. m and also w.r.t. m,,, for
every n € N).

Then let us see that (||, — x||), is bounded on [0, 1]. Indeed, for any
n€Nandt € [0,1],

[z (t) = 2(B)]] = H/[O y f(s,wn(s))dmn(s) — f(s,(s))dm(s)

(0,%)

< [ Wrsanehldmats) + [

[0t 0,

: 1f (s, 2(s))[| dm(s)
t
and using Proposition 3.3 brings us to

lea(t) — ()] < / ISzl dtem)(s) + /

s

) [1f (s, ()| dm(s)

)

<(k+1) [ M(s)dm(s) < (k+1) [ M(s)dm(s).
[0,t) [0,1)

We can write, for each ¢ € [0, 1],

[0,¢) [0,t)

< S, xn(8)) — f(s,2(s))| dmn(s
< /[O,t) [ £( (s)) — f(s,z(s))] (s)

f(s,2(s))dmn(s) — f(s,(s))dm(s)

[0,t) [0,t)

+

Applying Theorem 3.4,

f(s,z(s))dm,(s) — f(s,z(s))dm(s) pointwisely.
0,9 [0,



274 Page 14 of 18 V. Marraffa and B. Satco MJOM

But the sequence <f[0 ) f(s,x(s))dmn(s)) is equi-regulated by [18, Theo-
’ n

rem 3.10], as there is a nondecreasing function given on [0, 1] by
) = [ 15wt s

satisfying, for every 0 <t <t <1 and every n € N,

)

f(sa x(s))dmn(s) - f(sa x(s))dmn(s)

[0,t) [0,t7)

< [, 152 ldmats

f(s,(s))dmn (s)

[t:t)

< [ ISl dtem) (s

= h(t") — h(t).

As it is well-known ( [18, Theorem 3.3]), any equi-regulated, pointwisely
convergent sequence of regulated functions converges uniformly, therefore

f(s,z(s))dmy(s) — f(s,2(s))dm(s) uniformly,
[07‘) [07)
i.e. for every € > 0 one can find n. € N such that

f(s,(s))dmn(s) — f(s,(s))dm(s)

[0,t) [0,t)

<eg, foralln >n., t €[0,1].

Using now the Lipschitz assumption on f, for every such n we get

lzn(t) —z(t)] < / L(s)||zn(s) — z(s)||dmy,(s) + ¢, for every t € [0,1].

)

As (||zn, — x||)n is bounded on [0,1], we can apply, for each n > n., the

Gronwall type result ( [26, Corollary 4.5]), in order to deduce that

llzn(t) — z(t)]| < / L(s)sef[s’” LEOdma (™) g, (s) + €, for every t € [0,1).
[0,t)

Again by Theorem 3.4, the sequence ( f[ L(7)dm,, (7)) is convergent, there-

fore bounded, say by M; > 0, whence

0,1)

/ L(r)dmy(t) < M;, foralls<tel0,1], n€N.
[s,t)
Consequently, for all ¢ € [0,1],

/ L(s)ef[s~t> L@ dma(™) g, (s) < / L(s)eMdm,(s) < Mye™, ¥YneN
[0,t) [0,t)

and so

[zn(t) — 2(t)|| < e (14 MieM), for every t € [0,1) and n > n..
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Due to the left-continuity of z,, and x we get
2n(1) —2(1)]| <e(1+ MMt | for every n > n.

and the proof is over. O
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