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Abstract: A small library of highly functionalized phenylaminopyrazoles, bearing different sub-
stituents at position 1, 3, and 4 of the pyrazole ring, was prepared by the one-pot condensation
of active methylene reagents, phenylisothiocyanate, and substituted hydrazine (namely, methyl-
and benzyl-hydrazine). The identified reaction conditions proved to be versatile and efficient. Fur-
thermore, the evaluation of alternative stepwise protocols affected the chemo- and regio-selectivity
outcome of the one-pot procedure. The chemical identities of two N-methyl pyrazole isomers, se-
lected as prototypes of the whole series, were unambiguously identified by means of NMR and mass
spectrometry studies. Additionally, semiempirical calculations provided a structural rationale for
the different chromatographic behavior of the two isomers. The prepared tetra-substituted pheny-
laminopyrazoles were tested in cell-based assays on a panel of cancer and normal cell lines. The
tested compounds did not show any cytotoxic effect on the selected cell lines, thus supporting their
pharmaceutical potentials.

Keywords: tetra-substituted pyrazoles; mass-spectrometry; antiproliferative activity; computational
simulations

1. Introduction

Pyrazole represents a distinctive scaffold in medicinal chemistry [1–9] as pyrazole-
containing compounds showed a wide spectrum of biological properties. As recently
reviewed by Ebenezer and coworkers [10], pyrazoles showed anti-inflammatory activ-
ity [11,12] which was able to reduce the level of TNFα and/or the release of NO [13,14].
Furthermore, some pyrazole derivatives proved to be more potent COX-2 inhibitors than
celecoxib with minimal ulcerogenic effect associated [15–17]. Some derivatives showed
anti-inflammatory/analgesic dual activity [18,19], whereas other pyrazole compounds
proved to interfere with the cannabinoid system and exert an analgesic effect [20]. Pyrazole
derivatives proved also to be efficient antibacterial agents [21] able to block the prolifera-
tion of Gram-positive and Gram-negative pathogens through different mechanisms (e.g.,
inhibition of DNA-gyrase or DHFR enzymes) [22,23]. Additionally, a number of pyrazole
derivatives showed anticancer activities [24,25] on different tumor cell lines. The molecular
mechanism behind the antiproliferative activity of pyrazole compounds include the inhibi-
tion of the VEGFR-2 kinase [26], the dual blocking of cyclin-dependent kinase and histone
deacetylase [27], or the targeting different signaling pathways, including ERK/MAPK
and phosphatases [28]. Finally, pyrazole derivatives showed antifungal, hypoglycemic,
antileishmanial, antimalaria, antituberculosis, and antioxidant properties thus supporting
the pharmaceutical relevance of this heterocyclic nucleus [10].
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In particular, functionalized phenylamino-substituted pyrazole derivatives proved to
be effective agrochemical fungicides [29–31], hypoglycemic [32–34], and antiproliferative
(Bruton’s kinase inhibitors or necroptosis-based cancer agents) [35–37] compounds. Inter-
estingly, recent patents reported combination of fungicidal phenylamino pyrazoles with
other compounds as novel insecticide and antibacterial agents [38,39].

According to the literature, phenylamino-substituted pyrazoles can be prepared by
either the cyclization with hydrazine of a N,S-thioketal intermediate [40] or the function-
alization of a thiomethyl pyrazole with a suitable aniline [41]. These protocols allowed
the preparation of tri- and tetra-substituted phenylamino pyrazoles in good yields though
relying on stepwise protocols. Recently, we reported the chemo-selective, one-pot synthesis
of highly substituted pyrazole compounds through the condensation of an active methylene
reagent (AMR), isothiocyanate, and hydrazine [42]. Among the prepared tri-substituted
pyrazoles, selected derivatives showed interesting antiproliferative activity being able to
selectively inhibit the growth of SkMel28 and HeLa cells without affecting the proliferation
of human fibroblasts [42]. To further evaluate the versatility of the developed procedure
and identify unreported synthetic strategies for the preparation of pharmaceutically attrac-
tive phenylamino pyrazoles [29–39], we studied the condensation of phenylisothiocyanate,
AMRs, and substituted hydrazines (namely, methylhydrazine and benzylhydrazine) to
afford tetra-functionalized phenylamino-substituted pyrazole derivatives 1–7 (Scheme 1,
Table 1). Eventually, the antiproliferative/cytotoxic activities of the synthesized molecules
were evaluated against a panel of eight tumor and one normal fibroblast cell lines for
preliminary biological characterization.
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Scheme 1. One-pot synthesis of N-substituted pyrazoles 1–7. Reaction conditions: (a) DMFdry, NaH,
PhNCS, rt, 1 h; (b) MeI, rt, 3 h; (c) methylhydrazine or benzylhydrazine, 100 ◦C, 4 h. The structures
of AMRs I–VI are reported in Table 1.

2. Results and Discussion
2.1. Chemistry

AMRs I–VI (Table 1) were sequentially reacted with phenylisothiocyanate, methyl
iodide, and the proper substituted hydrazine under the previously reported one-pot, three-
step conditions (Scheme 1) [42]. Briefly, the reaction in basic condition of AMRs with
the phenylisothiocyanate led to the formation of thioamide intermediates A− that were
S-methylated in situ with iodomethane. The so obtained N,S-thioketal intermediates B
were then condensed with substituted hydrazine to afford ring-opened intermediates C
that led to the final pyrazole compounds 1–7 in moderate-to-good yields (Table 1).
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Table 1. Synthesized pyrazoles and active methylene reagents employed in the synthesis.
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I CN CN 1 [43] NH2 Me 56
II CN COC(Me)3 2 t-Bu Me 61
III CN COPh 3 Ph Me 60
III CN COPh 4 Ph CH2Ph 27
IV COPh COPh 5 Ph Me 50
V COOMe CN 6 NH2 Me 12
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Intriguingly, the tested conditions proved to be highly regio- and chemo-selective,
allowing the isolation of a single N1-substituted pyrazole derivative. In particular, out of
the two nucleophilic centres of methyl- or benzyl-hydrazine, the substituted nitrogen atom
would selectively displace the SMe group of intermediates B leading to the formation of
intermediate C (Scheme 1). As previously observed for unsubstituted hydrazine [42], the
reactivity of hydrazinic NH2 group in intermediates C is selectively oriented toward X or
Y group, leading to the formation of a unique N1-substituted pyrazole. Thus, when X =
COOMe and Y = CN, the hydrazinic amine group attacked the nitrile group, leading to the
unique isolation of the 3-aminopyrazole derivative (compound 6, Table 1) whereas when
X = CN and Y = COR, the cyclization reaction occurs on the ketone even in the presence
of a relevant steric hindrance (e.g., t-Bu; compound 2, Table 1). The chemical identities
of the pyrazole derivatives were assessed by NMR analysis and the NOESY spectrum of
derivative 1 showed signals at {3.40; 6.80} ppm and {3.40; 8.50} ppm, thus indicating a
spatial proximity between N-methyl groups and phenyl and NH hydrogens, respectively.

To further investigate the regioselectivity of the reaction, the synthesis of pyrazole 8
(closely related to derivative 6) was carried out in a stepwise fashion (Scheme 2). Thus,
ethyl cyanoacetate VII was condensed with phenyl isothiocyanate in the presence of NaH
and then S-methylated. The so-obtained N,S-thioketal BVII (yield: 65%) is a push–pull
alkene bearing two electron withdrawing groups at one end of the double bond (i.e., COOEt
and CN) and two electron donating substituents at the other end (i.e., NHPh and SMe).
This arrangement promotes the π delocalization from the electron-donating groups (‘push’
terminus) to the electron-withdrawing groups (‘pull’ terminus) thus lowering the energetic
barrier to C=C rotation [44–49] and enhancing the reactivity of push–pull alkenes with
nucleophilic and electrophilic species. For these reasons, push–pull alkenes are versatile
synthons used for the preparation of various chemical heterocyclic derivatives [49–51].
Differently from the one-pot procedure, the reaction between BVI and methylhydrazine
in solvent free conditions led to the formation of a mixture of the two N-methyl pyrazole
isomers 8a and 8b that were isolated in 30% and 70% quantitative yield, respectively. The
two pyrazole compounds were separated by column chromatography and their chemical
identity was unambiguously identified by NMR and mass spectrometry analyses.
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Additionally, the methylation of pyrazole 9 (obtained as previously reported [42]) in
the presence of K2CO3 has been evaluated as an alternative procedure to afford compounds
8 (Scheme 2). Surprisingly, in the adopted conditions only compound 8b has been isolated,
thus highlighting the effect of the reaction conditions on the regioselective outcome of
the procedure.

2.2. NMR and Mass Spectrometry Analyses of Derivatives 8a and 8b

The comparative analysis of the 2D-NMR spectra collected for 8a and 8b allowed
the unambiguous assignment of the chemical structure of two pyrazole regioisomers. In
particular, derivative 8a displayed a signal at {3.35; 6.63} ppm in the NOESY spectrum
related to the interaction between the spatially closed N-methyl and phenyl hydrogens
(signal a, Figure 1). This signal is absent in the spectrum of 8b, given the different relative
position of the two groups. Furthermore, the interaction between the N-methyl hydrogens
and the pyrazole carbon through a J3

C-H coupling constant observed in the HMBC spectra
further supported the identification of the two isomers (signals b and c, Figure 1). In
particular, the peak observed at {3.35, 142.14} ppm refers to the heteronuclear coupling
between the N-methyl hydrogens and the pyrazole carbon atom substituted with the N-
phenyl group (i.e., compound 8a) whereas the signal at {3.48, 148.76} ppm is related to the
coupling between the methyl hydrogens and the pyrazole atom bearing the amine group
(i.e., compound 8b).
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In order to confirm the different structure of the two isomers 8a and 8b (Scheme 2), a
complete flow injection analysis (FIA) mass spectrometry characterization was carried out.
The protonated molecule ions [M + H]+ of both analytes were identified in the full scan
spectra at m/z 261.1344 (Figure S32, Supplementary Material); then, each molecule ion was
subjected to collision-induced dissociation (CID) separately to produce fragment ions. The
main fragment generated at the collision energy of 60 eV was m/z 215.0926 for both species
(D and D′, Scheme 3). Interestingly, the two isomers showed a different behavior in the MS2

spectrum as 8a (and not its isomer 8b) led to the formation of the transient intermediate
species at m/z 233.1033 (Figure S33, Supplementary Material). This observation highlighted
a different susceptibility to the collision energy between the two compounds. In particular,
the fragmentation of 8b C(O)-O ester bond would directly afford the pyrazole acyl ion
D (Scheme 3) and ethanol. Conversely, 8a would form D′ by a two-step fragmentation
pattern that involved the initial cleavage of the ethyl group (and the consequent formation
of the carboxylic acid intermediate E; Scheme 3) followed by the elimination of a water
molecule. Q-Exactive plus does not allow us to run canonical MSn experiments. However,
we can set up a ‘non-specific’ in source fragmentation step able to ascertain, in the full scan
analysis, the characteristic fragment ion identified during the first MS2 experiments. Thus,
we selected m/z 215.0926 ion as the progenitor fragment and a MS3 experiment was carried
out. This protocol has been repeated for both isomers and for all of the successive MSn

analyses. This new fragmentation generates a main product ion at m/z 200.0690 (fragment
F, Scheme 3), compatible with the loss of the pyrazole methyl group. It is worth noting that
8a and 8b led to the formation of this common fragment that yielded the same ion panel,
comprising m/z 117.0575, m/z 160.0393 and m/z 171.0551. The latter fragment would be
probably due to the rearrangement of pyrazole ring to obtain a cyclopropenyl ring after the
loss of two nitrogen atoms (fragment G, Scheme 3) [52]. Further fragmentation of ion G led
to the formation of fragments m/z 144.0442, m/z 116.0497, and m/z 104.0498 possibly as
the sequential loss of HCN, CO, and a carbon atom (Scheme 3).
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Moreover, the MS3 analysis of the m/z 215.0926 ions evidenced that 8b-derived
molecules (namely ion D, Scheme 3) can undergo to an alternative fragmentation, gen-
erating an ion fragment at m/z 170.0600 which was not observed in the case of the 8a
(Figure S34, Supplementary Material). This further difference in the behavior between
the MS2 products of the two isomers can be explained by the partial elimination of the
amino-group from the pyrazole ring, followed by the N-C transposition of the methyl group
(Scheme 4). The C-methylated intermediate was not identified in our study, but it has been
reported in the literature for other pyrazole compounds structurally related to derivatives
8a and 8b [52]. The elimination of N2H2 would generate an unstable intermediate that
cyclizes to form the benzoazepine fragment H (Scheme 4). On the basis of the collected data,
we can speculate that the rearrangement of molecule D (m/z 215.0926) to afford fragment
H (Scheme 4) can only occur if the N-methyl and amino groups are in close proximity, thus
confirming the chemical identity of 8b. The same transposition would be disadvantaged
when these two groups are not in adjacent positions, as with compound 8a.
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The different chemical identity of compounds 8a and 8b would also affect the retention
times of the two isomers (t(r)8a = 13.70 min; t(r)8b = 20.03 min) during the reverse phase
(RP) HPLC analysis. In fact, in compound 8a the pyrazole N-methyl group would prevent
the adjacent phenyl ring to lay on the same plane of the pyrazole nucleus thus reducing
the compound’s affinity for the RP stationary phase. Conversely, in derivative 8b the
pyrazole N-methyl group would not influence the geometry of the N-phenyl ring that
therefore would be co-planar to the heterocyclic portion. To further support this observation,
semiempirical computational simulations (MOE software) were carried out on the two
isomers (Figure 2). In the minimum energy conformers of 8a and 8b, the phenyl and
pyrazole rings would assume different reciprocal orientations being co-planar in compound
8b and laying on two different planes in derivative 8a. The methyl-induced distortion of the
phenyl ring would also affect the intramolecular hydrogen-bonding in the two conformers,
as indicated by the different C=O···HN distances and geometries in the two conformers
(Figure 2).
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2.3. Antiproliferative Activity

To evaluate their effect on cell proliferation, phenylamino-pyrazole derivatives 1–8
were preliminarily tested using the MTT assay. A panel of eight tumor cell lines (namely,
breast cancer: MCF7, MDA-MB231, SK-Br3; melanoma: SKMEL-28; ovarian cancer: SKOV-
3; liver cancer: Hep-G2; cervical cancer: HeLa; lung cancer: A549) and one normal human
fibroblasts cell line (GM-6114) was considered. The mean growth percentage values were
determined at the fixed concentration of 10 µM. Cisplatin was used as reference drug.

The results showed in Table 2 demonstrated that all tested compounds did not exhibit
significant antiproliferative activity (grow inhibition percentage values higher than 68.36%)
against the considered cancer cell lines. Moreover, all compounds proved to be non-
cytotoxic against the human fibroblasts GM-6114 cell line at the concentration of 10 µM
(mean growth percentage range: 84.57–109.73%). Interestingly, derivatives 1–8 showed
similar mean growth percentage values with previously synthesized N-unsubstituted
analogs [42], thus highlighting that N-alkylation of the pyrazole nucleus marginally affected
the antiproliferative/cytotoxic properties of the series.
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Table 2. Antiproliferative activity of pyrazoles 1–8 a.

Cpd
Mean Growth Percentage ± SD

MCF7 MDA-
MB231 Sk-Br3 SKMEL28 SKOV3 Hep-G2 HeLa A549 GM-6114

1 108.43 ±
7.38

113.77 ±
4.39

92.72 ±
2.94

91.62 ±
3.38

107.78 ±
3.35

105.55 ±
7.40

97.39 ±
10.47

111.66 ±
3.77

89.08 ±
11.38

2 107.37 ±
10.99

112.16 ±
6.85

85.66 ±
3.28

92.87 ±
4.06

107.12 ±
5.64

94.15 ±
3.81

96.42 ±
7.05

113.10 ±
5.64

90.65 ±
3.32

3 118.46 ±
6.19

115.98 ±
2.45

83.05 ±
2.41

92.97 ±
3.68

115.25 ±
3.37

112.20 ±
7.47

110.40 ±
2.49

115.25 ±
5.96

109.73 ±
8.12

4 92.21 ±
5.41

89.69 ±
2.90

84.72 ±
4.38

68.36 ±
3.13

80.45 ±
3.38

105.51 ±
8.80

73.77 ±
6.86

71.00 ±
3.40

83.00 ±
6.51

5 111.88 ±
5.19

111.89 ±
2.95

101.95 ±
3.18

119.57 ±
1.57

105.35 ±
6.08

110.03 ±
2.11

115.87 ±
9.17

112.22 ±
4.10

102.18 ±
8.31

6 105.46 ±
5.68

109.32 ±
6.43

81.74 ±
4.92

105.04 ±
2.76

109.12 ±
5.64

102.04 ±
4.42

92.32 ±
2.62

121.90 ±
5.92

84.57 ±
4.03

7 104.20 ±
3.10

110.14 ±
4.88

89.26 ±
3.54

109.99 ±
3.30

106.54 ±
4.47

107.16 ±
12.07

85.42 ±
6.98

115.77 ±
3.02

87.45 ±
7.73

8a 98.06 ±
3.31

87.02 ±
5.76

94.76 ±
4.00

82.21 ±
4.00

106.46 ±
6.18

101.20 ±
9.16

103.26 ±
9.57

99.70 ±
9.20

107.65 ±
3.92

8b 100.13 ±
6.20

89.99 ±
5.16

100.28 ±
4.10

81.21 ±
4.31

102.97 ±
4.37

98.37 ±
8.17

110.61 ±
7.72

86.65 ±
9.83

118.99 ±
9.70

cisplatin 72.74 ±
5.48

86.07 ±
7.04

70.59 ±
3.83

44.40 ±
2.53

36.83 ±
4.35

38.07 ±
2.22

29.33 ±
2.23

59.09 ±
6.03

39.52 ±
2.74

a Data mean values for three separate experiments.

3. Materials and Methods
3.1. Chemistry

Commercially available active methylene reagents, phenyl isothiocyanate, substituted
hydrazine and reagents (55% sodium hydride dispersion in mineral oil, iodomethane)
were purchased by Alfa-Aesar and Sigma-Aldrich. DMF was reagent grade and was
dried on molecular sieves (5 Å 1/16” inch pellets). Unless otherwise stated, all commer-
cial reagents were used without further purification. Organic solutions were dried over
anhydrous sodium sulphate. A thin layer chromatography (TLC) system for routine moni-
toring the course of reactions and confirming the purity of analytical samples employed
aluminium-backed silica gel plates (Merck DC-Alufolien Kieselgel 60 F254). DCM or
DCM/2% methanol were used as a developing solvent and detection of spots was made
by UV light and/or by iodine vapors. Melting points were determined on a Fisher-Johns
apparatus and are uncorrected. 1H NMR and 13C NMR spectra were recorded on a Varian
Gemini (Palo Alto, CA, USA) or JEOL JNM-ECZR (Tokyo, Japan) instrument; chemical
shifts were reported in δ (ppm) units relative to the internal reference tetramethylsilane,
and the splitting patterns were described as follows: s (singlet), bs (broad singlet), d (dou-
blet), t (triplet), q (quartet), and m (multiplet). The first order values reported for coupling
constants J were given in Hz. Elemental analyses were performed by an EA1110 Analyzer,
Fison Instruments (Milan, Italy).

3.2. General Synthetic Procedure for the Preparation of Pyrazoles 1–7

To a dry DMF (10 mL) solution of the proper active methylene reagent (10 mmol), 55%
sodium hydride dispersion in mineral oil (0.44 g, 10 mmol) was added under stirring at rt.
After 45 min phenylisothiocyanate (1221 µL, 10 mmol) was added in a single portion. The
reaction mixture was stirred for 1 h at rt, then iodomethane (629 µL, 10 mmol) was added.
After 3 h, the reaction mixture was treated with the proper substituted hydrazine (25 mmol)
at rt and was heated at 95–100 ◦C for 4 h. The reaction mixture was diluted with water
(150 mL) and extracted with dichloromethane (3 × 30 mL). The combined extracts were
washed with water (5 × 30 mL), dried with anhydrous Na2SO4, and filtered. Evaporating
in vacuo gave a residue that was purified by crystallization from the suitable solvent or
solvent mixture.
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3-amino-1-methyl-5-(pheylamino)-1H-pyrazole-4-carbonitrile (1). White solid. Mp 210–212
◦C (DCM-MeOH); Yield: 56%. 1H NMR (400 MHz, DMSO-d6): δ 3.40 (s, 3H, CH3N); 5.42
(bs, 2H, NH2); 6.77–6.82 (m, 2H, arom. H); 6.83–6.89 (m, 1H, arom. H); 7.20–7.26 (m, 2H,
arom. H); 8.50 (bs, 1H, NH phenyl). 13C NMR (101 MHz, DMSO-d6) δ 34.80, 69.74, 114.44,
115.69, 120.38, 129.25, 142.52, 144.40, 155.68. HRMS (ESI/APCI) m/z [M + H]+ for C11H11N5
calcd 214.1087, found 214.1089. Calcd for C11H11N5: C = 61.96; H = 5.20; N = 32.84. Found:
C = 61.60; H = 5.50; N = 32.96.

3-(tert-butyl)-1-methyl-5-(pheylamino)-1H-pyrazole-4-carbonitrile (2). White solid. Mp
157–159 ◦C (DCM); Yield: 61%. 1H NMR (400 MHz, DMSO-d6): δ 1.33 (s, 9H, t-Bu); 3.59
(s, 3H, CH3N); 6.80–6.90 and 7.23–7.27 (m, 5H, arom. H); 8.62 (bs, 1H, NH, exchangeable).
13C NMR (101 MHz, DMSO-d6) δ 160.46; 146.95; 142.23; 129.25; 120.66; 115.87; 114.80; 79.16;
35.44; 33.17; 28.88. HRMS (ESI/APCI) m/z [M + H]+ for C15H18N4 calcd 255.1604, found
255.1606. Calcd for C15H18N4: C = 70.84; H = 7.13; N = 22.03. Found: C = 70.96; H = 7.45;
N = 22.06.

1-methyl-3-phenyl-5-(phenylamino)-1H-pyrazole-4-carbonitrile (3). Yellow solid. Mp 229–
231 ◦C (Ether-DCM); Yield: 60%. 1H NMR (400 MHz, DMSO-d6): δ 3.74 (s, 3H, CH3N);
6.92–6.96 (m, 3H, arom. H); 7.26–7.32 (m, 2H, arom. H); 7.41–7.53 (m, 3H, arom. H); 7.83–
7.87 (m, 2H, arom. H); 8.86 (bs, 1H, NH, exchangeable). 13C NMR (101 MHz, DMSO-d6)
δ 35.36, 72.30, 115.81, 117.88, 122.48, 127.52, 128.87, 129.19, 129.47, 131.06, 140.90, 146.96,
147.94. HRMS (ESI/APCI) m/z [M + H]+ for C17H14N4 calcd 275.1291, found 275.1293.
Calcd for C17H14N4: C = 74.43; H = 5.14; N = 20.42. Found: C = 74.38; H = 5.47; N = 20.38.

1-benzyl-3-phenyl-5-(phenylamino)-1H-pyrazole-4-carbonitrile (4). White solid. Mp 167–
169 ◦C (Ether-DCM); Yield: 27%. 1H NMR (400 MHz, DMSO-d6): δ 5.26 (s, 2H, CH2Ph);
6.82–6.86 and 7.06–7.08 and 7.20–7.34 and 7.52–7.59 (m, 15H, arom. H); 8.98 (bs, 1H, NH,
exchangeable). 13C NMR (101 MHz, DMSO-d6) δ 152.23; 148.43; 141.89; 136.49; 130.44;
129.26; 128.98; 128.69; 128.66; 127.66; 126.81; 126.58; 120.02; 116.49; 114.12; 80.51; 52.86.
HRMS (ESI/APCI) m/z [M + H]+ for C23H18N4 calcd 351.1604, found 351.1603. Calcd for
C23H18N4: C = 78.83; H = 5.18; N = 15.99. Found: C = 78.62; H = 4.94; N =1 5.79.

(1-methyl-3-phenyl-5-(phenylamino)-1H-pyrazol-4-yl)(phenyl)methanone (5). White solid.
Mp 140–142 ◦C (DCM-MeOH); Yield: 50%. 1H NMR (400 MHz, DMSO-d6): δ 3.66 (s,
3H, CH3N); 6.90–7.02 and 7.15–7.34 and 7.68–7.70 (m, 15H, arom. H); 9.22 (bs, 1H, NH,
exchangeable). 13C NMR (101 MHz, DMSO-d6) δ 191.81; 152.84; 145.60; 141.10; 138.70;
130.49; 130.20; 128.99; 128.89; 128.00; 127.98; 127.25; 120.23; 116.82; 106.23; 37.16. HRMS
(ESI/APCI) m/z [M + H]+ for C23H19N3O calcd 354.1601, found 354.1601. Calcd for
C23H19N3O: C = 78.16; H = 5.42; N = 11.89. Found: C = 78.06; H = 5.76; N = 11.86.

Methyl 3-amino-1-methyl-5-(phenylamino)-1H-pyrazole-4-carboxylate (6). White solid. Mp
151–153 ◦C (DCM-MeOH); Yield: 12%. 1H NMR (400 MHz, DMSO-d6): δ 3.32 (s, 3H,
NCH3); 3.56 (s, 3H, CH3O); 5.32 (bs, 2H, NH2, exchangeable); 6.62–6.68 (m, 2H, arom. H);
6.76–6.72 (m, 1H, arom. H); 7.15–7.21 (m, 2H, arom. H); 7.91 (bs, 1H, NH, exchangeable).
13C NMR (101 MHz, DMSO-d6) δ 34.86, 50.28, 89.62, 115.02, 119.54, 129.08, 142.21, 144.40,
154.97, 163.72. HRMS (ESI/APCI) m/z [M + H]+ for C12H14N4O2 calcd 247.1190, found
247.1190. Calcd for C12H14N4O2: C = 58.53; H = 5.73; N = 22.75. Found: C = 58.84; H = 5.42;
N = 22.43.

1-methyl-N5-phenyl-4-(phenylsulfonyl)-1H-pyrazole-3,5-diamine (7). White solid. Mp 203–
205 ◦C (DCM); Yield: 60%. 1H NMR (400 MHz, DMSO-d6): δ 3.27 (s, 3H, CH3N); 5.38 (bs,
2H, NH2, exchangeable); 6.45–6.47 and 6.75–6.78 and 7.07–7.11 and 7.37–7.40 and 7.51–7.55
and 7.69–7.72 (m, 10H, arom. H); 7.95 (bs, 1H, NH, exchangeable). 13C NMR (101 MHz,
DMSO-d6): δ 152.19; 144.13; 143.21; 140.29; 132.69; 129.12; 128.90; 125.82; 119.51; 114.52;
98.12; 34.82. HRMS (ESI/APCI) m/z [M + H]+ for for C16H16N4O2S calcd 329.1067, found
329.1064. Calcd for C16H16N4O2S: C = 58.52; H = 4.91; N = 17.06; S = 9.76. Found: C = 58.64;
H = 4.92; N = 17.13; S = 9.37.
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3.3. Synthesis of Ethyl 2-Cyano-3-(methylthio)-3-(phenylamino)acrylate (BVI)

To a dry DMF (15 mL) solution of ethyl cyanoacetate (1085 µL, 10 mmol) cooled at
0 ◦C, 55% sodium hydride dispersion in mineral oil (0.44 g, 10 mmol) was added in a
single portion. The reaction mixture is stirred for 10 min at 0 ◦C and phenylisothiocyanate
(1221 µL, 10 mmol) was added and stirring was prolonged for 2h. Methyl iodide (629 µL,
10 mmol) was added and the mixture was stirred at rt for 16h. The reaction mixture
was diluted with water (50 mL) and a yellow solid precipitated. The crude material was
collected by filtration, dried, and used without further purification.

Mp 83–85 ◦C (water) (litt [53]: 82 ◦C); Yield: 65%. 1H NMR (200 MHz, CDCl3): δ 1.34
(t, 3H, J = 7.2 Hz, CH3); 2.23 (s, 3H, SCH3); 4.27 (q, 2H, J = 7.2 Hz, CH2O); 7.21–7.49 (m, 5H,
arom. H); 11.51 (bs, 1H, NH, exchangeable). Calcd for C13H14N2O2S: C = 59.52; H = 5.38;
N = 10.68; S = 12.22. Found: C = 59.82; H = 5.42; N = 10.60; S = 11.37.

3.4. Synthesis of Compounds 8a and 8b

A mixture of BVI (2.67 g, 10 mmol) and methylhydrazine (590 µL, 11 mmol) was
heated in a sealed tube at 80 ◦C for 1.5 h. The mixture was cooled at rt and water (10 mL)
was added. A white solid precipitated and was collected by filtration. TLC analysis (eluent
DCM/2% methanol mixture) revealed two spots with Rf values of 0.11 (compound 8a)
and 0.30 (compound 8b). The solid was dissolved in DCM and the two compounds were
separated by column chromatography (silica gel, eluent: DCM-DCM/20% MeOH).

Ethyl 3-amino-1-methyl-5-(phenylamino)-1H-pyrazole-4-carboxylate (8a). White solid. Mp
138–140 ◦C (EtOH); Yield: 70%. 1H NMR (400 MHz, DMSO-d6): δ 0.94 (t, 3H, J = 7.1 Hz,
CH3-C); 3.35 (s, 3H, CH3N); 3.96 (q, 2H, J = 7.1 Hz, CH2O); 4.71 (bs, 2H, NH2, exchangeable);
6.61–6.69 (m, 2H, arom. H); 6.74–6.85 (m, 1H, arom. H); 7.12–7.22 (m, 2H, arom. H); 7.93
(bs, 1H, NH, exchangeable). 13C NMR (101 MHz, DMSO-d6) δ 13.91, 34.73, 58.71, 89.84,
114.91, 119.42, 129.02, 142.14, 144.62, 154.88, 163.33. HRMS (ESI/APCI) m/z [M + H]+ for
C13H16N4O2 calcd 261.1346, found 261.1344. Calcd for C13H16N4O2: C = 59.99; H = 6.20;
N = 21.52. Found: C = 60.20; H = 6.10; N = 21.86.

Ethyl 5-amino-1-methyl-3-(phenylamino)-1H-pyrazole-4-carboxylate (8b). White solid. Mp
144–145 ◦C (EtOH); Yield: 30%. 1H NMR (400 MHz, DMSO-d6): δ 1.30 (t, 3H, J = 7.1 Hz, CH3-
C); 3.48 (s, 3H, CH3N); 4.25 (q, 2H, J = 7.1 Hz, CH2O); 6.23 (bs, 2H, NH2, exchangeable);
6.78–6.87 (m, 1H, arom. H); 7.18–7.28 (m, 2H, arom. H); 7.50–7.55 (m, 2H, arom. H);
8.05 (bs, 1H, NH, exchangeable). 13C NMR (101 MHz, DMSO-d6) δ 14.56, 33.95, 58.91,
81.87, 116.27, 119.59, 128.81, 141.36, 148.76, 149.86, 163.95. HRMS (ESI/APCI) m/z [M +
H]+ for C13H16N4O2 calcd 261.1346, found 261.1344. Calcd for C13H16N4O2: C = 59.99;
H = 6.20; N = 21.52. Found: C = 60.18; H = 6.15; N = 21.32.

3.5. Synthesis of Compound 8b via Pyrazole Methylation

A dry DMF solution (5 mL) of pyrazole 9 [26] (377 mg, 1.5 mmol) and anhydrous
K2CO3 (251 mg, 1.8 mmol) was stirred at rt for 10 min. Methyl iodide (94 µL, 1.5 mmol) was
added and the suspension was stirred at rt for 16h. The sequential addition of water (10 mL)
and solid ammonium chloride (pH = 7) led to the isolation of a white solid. Purification by
crystallization from DCM/EtOH mixture afforded 118 mg (30% yield) of compound 8b.

3.6. Mass Spectrometry Analysis
3.6.1. LC-HRMS

The two isomers were analyzed by high pressure liquid chromatography conducted
using a Vanquish (Thermo Fisher Scientific, San Jose, CA, USA) UHPLC system composed
of binary pump, autosampler, and column oven. In details, 10 µL of a 1:1 mixture of the
two isomers (concentration 1 µM each) was injected onto a Simmetry 300 C18 column
(150 × 1 mm, 3.5 µm particle size) (Waters) maintained at 25 ◦C. The eluents were 0.1%
formic acid (eluent A) and acetonitrile (eluent B). Flow rate was 100 µL/min. The mobile
phase was a binary linear gradient in the following sequence: isocratic 20% B for five
min, a linear gradient over the course of 60 min to 100% B, maintained at 100% B for
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10 min and finally a linear gradient to 20% B in one min. The re-equilibration time in
20% B was 15 min. After HPLC separation, the eluent was directly sent to a Q Exactive
Plus Orbitrap mass spectrometer (ThermoScientific, San Jose, CA, USA) equipped with a
heated electrospray ionization source (HESI-II). Before analyses, the mass spectrometer was
externally calibrated with the positive ion calibration solution (Thermo Fisher Scientific).
Positive full-scan mass spectra were recorded in the mass range m/z 100–400, at resolution
35,000. The following operating parameters were applied: sheath and auxiliary gas flow
rate were 35 and 10 respectively; spray voltage 3.5 kV; S-lens RF level 100; capillary
temperature 250 ◦C. The autogain control (AGC) was optimized at 106 with a maximum
injection time (maxIT) of 250 ms. Software used for operating the UHPLC/HR-MS was
Xcalibur (version 4.1). The full scan data were processed and the identity of the isomers
was confirmed by comparing the high-resolution experimental data with their theoretical
molecular weight.

3.6.2. FIA MS/MS

For MS/MS spectra collection, each sample was dissolved in DMSO (final concentra-
tion: 10 mM) and, after further dilution in acetonitrile (final concentration 100 nM), it was
analyzed by flow injection mass spectrometry (FIA-MS). Briefly, five microliters of sample
were injected into an eluent flow containing 0.1% formic acid in acetonitrile, generated by
a Vanquish UHPLC system (Thermo Fisher Scientific, San Jose, CA, USA). The flow rate
was 100 µL/min. The eluent was directly sent to a Q Exactive™ Plus Hybrid Quadrupole-
Orbitrap™ Mass Spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped
with a heated electrospray ion source (HESI-II). Prior to each series of acquisitions, the mass
spectrometer was externally calibrated with Positive Ion Calibration Solution (Thermo
Fisher Scientific, San Jose, CA, USA). The same MS operating parameters as LC-MS analysis
were applied. Full scan data were processed with Xcalibur version 4.1 (Thermo Fisher
Scientific, San Jose, CA, USA). High-resolution mass spectra, ranging from 100 to 600 m/z,
were acquired in positive ion mode.

3.6.3. Biology

MTT assay was accomplished on a group of eight tumor cell lines: SKOV-3 (ovarian
adenocarcinoma, ATCC, Manassas, VA, USA); MCF-7 (breast adenocarcinoma, Biologic
Bank and Cell Factory, IRCCS Policlinico San Martino, Genoa, Italy); Hep-G2 (hepatocel-
lular carcinoma, ATCC, Manassas, VA, USA); SK-Mel28 (skin melanoma, Biologic Bank
and Cell Factory, IRCCS Policlinico San Martino, Genoa, Italy); MDA-MB231 (breast adeno-
carcinoma, Biologic Bank and Cell Factory, IRCCS Policlinico San Martino, Genoa, Italy);
HeLa (cervical adenocarcinoma, Biologic Bank and Cell Factory, IRCCS Policlinico San
Martino, Genoa, Italy); SK-BR3 (breast adenocarcinoma, Biologic Bank and Cell Factory,
IRCCS Policlinico San Martino, Genoa, Italy); A549 (lung carcinoma, Biologic Bank and Cell
Factory, IRCCS Policlinico San Martino, Genoa, Italy) and one normal cell line: Gm-6114
(embryonic human fibroblast, ATCC, Manassas, VA, USA). All cell lines were grown in
DMEM (with 10% FBS, 2 mM Glutamine and 1% penstrep. All reagents were purchased
from EuroClone (Milan, Italy), incubated at 37 ◦C with 5% CO2 and humidified environ-
ment. Briefly, the nine cell lines were plated in 96 well plates at a proper cell density to
achieve about 85% of confluence at the end of the protocol. The next day, the chemical
compounds were dissolved in DMSO at a concentration of 10 mM. This stock solution
was diluted using the complete growth medium and added to the wells to obtain the
final working concentration of 10 µM. After an incubation of 48 h, we add 30 µL of MTT
(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) diluted at 2 mg/mL
with 1× PBS. After 4 h of incubation, the surnatant was eliminated and 100 µL/well of
DMSO were used to solubilize the formazan precipitate. Then, subsequent to a 20 min
incubation, the OD were measured at 570 nm using a plate reader. The results are expressed
as a percentage of the control samples (100%) in which the cell lines were incubated with
the same amount of solvent but without any chemical compounds. The assay was repeated
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three times. In each set, every single compound was tested six times. Means and standard
deviations were calculated.

3.7. Computational Calculations

The chemical structures of compounds 8a and 8b were drawn with MOE2009.10
(builder module) and energy minimization was carried out according to AM1, as imple-
mented in MOE software version 2009.10. The calculations were run on a Linux PC (Intel®

processor Core™ i7-2600 CPU@3.40 GHz).

4. Conclusions

A series of novel tetrasubstituted phenylamino pyrazoles has been prepared by the
one-pot condensation of AMR, phenyl isothiocyanate, and substituted hydrazines. The
adopted synthetic procedure proved to be versatile and efficient as demonstrated by the
various properties of the AMR groups and the different steric hindrance of the substituted
hydrazine compounds. Additionally, the developed protocol proved to be regio- and
chemo-selective, allowing the isolation of compounds 1–7 as single N-substituted pyrazole
isomer. The regioselectivity of the one-pot procedure was further studied by adopting a
stepwise protocol. The condensation of the N,S-thioketal BVI with methylhydrazine led to
the formation of the two N-methyl pyrazole isomers 8a and 8b which were separated and
fully characterized by NMR and mass spectrometry analyses. Conversely, the methylation
of N-unsubstituted pyrazole 9 allowed the isolation of a single N-methyl derivative (namely,
compound 8b). In preliminary cell-based assays, the prepared compounds proved to be
poorly cytotoxic against both a panel of mutated cell lines and normal human fibroblasts.
Overall, the results of the current study further extend the applicability of the previously de-
veloped one-pot procedure and provided alternative synthetic routes for the regioselective
synthesis of pharmaceutically attractive phenylaminopyrazole compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27185814/s1, Figure S1: 1H-NMR (400 MHz, d6-DMSO)
spectrum of compound 1; Figure S2: 13C-NMR (101 MHz, d6-DMSO) spectrum of compound 1; Figure
S3: 2D NOESY (d6-DMSO) spectrum of compound 1; Figure S4: 2D HMBC (d6-DMSO) spectrum of
compound 1; Figure S5: Fullscan analysis of compound 1; Figure S6: 1H-NMR (400 MHz, d6-DMSO)
spectrum of compound 2; Figure S7: 13C-NMR (101 MHz, d6-DMSO) spectrum of compound 2;
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