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Multilevel evolution shapes the
function of NB-LRR encoding
genes in plant innate immunity

Maria Raffaella Ercolano*, Daniela D’Esposito,
Giuseppe Andolfo and Luigi Frusciante

Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
A sophisticated innate immune system based on diverse pathogen receptor

genes (PRGs) evolved in the history of plant life. To reconstruct the direction

and magnitude of evolutionary trajectories of a given gene family, it is critical to

detect the ancestral signatures. The rearrangement of functional domains

made up the diversification found in PRG repertoires. Structural

rearrangement of ancient domains mediated the NB-LRR evolutionary path

from an initial set of modular proteins. Events such as domain acquisition,

sequence modification and temporary or stable associations are prominent

among rapidly evolving innate immune receptors. Over time PRGs are

continuously shaped by different forces to find their optimal arrangement

along the genome. The immune system is controlled by a robust regulatory

system that works at different scales. It is important to understand how the PRG

interaction network can be adjusted to meet specific needs. The high plasticity

of the innate immune system is based on a sophisticated functional

architecture and multi-level control. Due to the complexity of interacting

with diverse pathogens, multiple defense lines have been organized into

interconnected groups. Genomic architecture, gene expression regulation

and functional arrangement of PRGs allow the deployment of an appropriate

innate immunity response.

KEYWORDS

NBS-LRR genes, functional domain, genome organization, regulatory elements, plant
receptor genes network, innate immunity
Overview

A large assortment of innate immunity receptors, able to perceive pathogen invasion

and to activate a defense response, have evolved in plants.

Cell surface receptors, such as receptor-like proteins (RLPs) and receptor-like kinases

(RLKs), are mainly involved in monitoring the extracellular space to detect exogenous
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(microbe-associated molecular patterns, MAMPs) or

endogenous elicitors (damage-associated molecular patterns,

DAMPs) generated by plant pathogens (Heil and Land, 2014;

Tanaka and Heil, 2021). A typical RLP structure is composed of

an extracellular domain, responsible in MAMP/DAMP

perception, a single-pass transmembrane region and a short

cytoplasmic tail (Thomas et al., 1997). RLK are structurally

similar to RLPs except for the presence of an intracellular

kinase domain instead of the short cytoplasmic tail (Fritz-

Laylin et al., 2005). Thanks to the kinase domain, RLKs are

able to trigger signaling on their own (Liebrand et al., 2013 and

2014; Gust and Felix, 2014), whilst RLPs need to interact with a

protein containing such domain to activate the downstream

signaling (Jamieson et al., 2018).

Intracellularly, nucleotide-binding leucine-rich repeat

proteins (NB-LRRs or NLRs) can directly or indirectly

recognize “effectors,” molecules secreted or delivered by

pathogens into the cytoplasm to promote virulence (Van der

Hoorn and Kamoun, 2008). NLRs have a stereotypical domain

structure that allows them to recognize effectors and activate

immunity. The nucleotide-binding (NB) domain, containing an

ADP–ATP switch system that regulates the protein ON/OFF

state, is the central module of NLR proteins (Takken et al., 2006).

In addition, several leucine-rich repeats, that promote pathogen

recognition and interact with the NB domain to prevent

autoactivation, are found at the C-terminus (Wang et al.,

2019). The N-terminal domain, thanks to the Toll/interleukin-

1 receptor (TIR), coiled-coil (CC), resistance to powdery mildew

8 (RPW8) or similar domains, is mainly involved in downstream

signal transduction (Bentham et al., 2017).

The domain composition and architecture of pathogen

receptor genes (PRGs) are important for the protein function.

A domain is an evolutionary conserved entity because it has a

specific functionality due to its fold. Thus, each conserved

segment has a key role in protein function and folding (Moore

et al., 2008). The two groups of PRGs share important

characteristics and their activation promotes several common

signaling pathways (Pruitt et al., 2021; Ngou et al., 2022). Both

can trigger an immune response, including the activation of

mitogen-activated protein kinase cascades, the production of

reactive oxygen species, the increase in cytosolic calcium

concentration and the expression of defense genes (Asai et al.,

2008). In addition, NLRs can prompt a response that often

culminates in a hypersensitive response (HR) (Dangl and Jones,

2001). It is worth noting that the RLP/RLK gene families result

involved in several cellular processes, including growth,

development and plant innate immunity (Andolfo et al.,

2013), whilst NLRs are predominantly devoted to the

activation of defense responses. The latter class showed a

remarkable diversification within species and across species to

meet specific needs (Barragan and Weigel, 2021). In addition,

NLR gene signaling can rapidly augment the transcript and/or

protein levels of key components of downstream immune
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response increasing the plasticity of innate immunity (Maruta

et al., 2022).

Plant innate immunity originated for combating diverse and

ever-evolving pathogens and the complex organization of its

main players has an important role in its functioning. Here, we

summarize the current view of the dynamics of NLR domain

arrangement and the genomic architecture of plant defense

arsenal on different scales, ranging from physical organization

to transcriptional regulation. We describe links between genome

organization and various genomic processes, such as the

interplay between different PRGs. Finally, we provide an

overview of the mult i level organizat ion of innate

immune response.
Domain adaptation for promoting
specific functions

The typical domains of NLR were already present in proteins

of bacteria, protists, glaucophytes and red algae. In such

organisms the NB is preferentially associated with domains

l i k e WD or be ta - t r ansduc in repea t s (WD40) or

Tetratricopeptide repeat (TPR) domains to perform

recognition/transduction activities (Andolfo et al., 2019).

Several NB proteins with innovative domain combinations

evolved in early plants. Independent NLR associations may

have originated in Chlorophyta and in Charophyta algae

(Sarris et al., 2016; Gao et al., 2018) by convergent evolution.

An intriguing cross-species domain assembly between the NB

domain and the LRR domain was highlighted in Charophyta

unicellular green algae by Andolfo et al. (2019). The LRR-region

of such genes showed high homology to RLPs, underpinning a

putative cell-surface localization and an interconnected

evolution history. Novel domain combinations have appeared,

and the recombination of existing units has provided new

functionalities. Best suited proteins with different cell locations

from the plasma membrane (RLPs/RLKs) to cytoplasm (NLRs)

have been employed for assembling a plant immunity network

with the emergence of multicellularity. A burst of NB-LRR genes

was observed in nonvascular plants (mosses, liverworts, and

hornworts) mediated by reshuffling at the N- and C-terminal

regions (Bornberg-Bauer et al., 2010; Sarris et al., 2016; Ortiz and

Dodds, 2018). In vascular plants a large number of LRR

encoding proteins, able to detect a variety of pathogens, was

widespread in different species (Baggs et al., 2017). The structure

and composition of such complex receptors have changed over

time and the domain reorganization had an important role in

evolutionary innovation (Urbach and Ausubel, 2017; Gao

et al., 2018).

The ancient domain remodeling was further complicated by

functional links connecting domains, supradomains and

multidomains during the evolution of domain organization

(Nepomnyachiy et al., 2017; Aziz and Caetano-Anollés, 2021).
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Basic principles of PRG domain composition emerged by

comparing the distributions of the theoretical and observed

domain association in 33 eudicots, highlighting that the 30%

of possible combinations were missed, more than 60% of protein

showed two or three domains but up to 20% were single domains

(Sanseverino and Ercolano, 2012). Favorable protein

conformations can be promoted by specific domain

combinations. In addition, proteins including domains with a

two-component response, such as DNA-binding activity linked

to transcriptional regulation of responses to stressors and signal

transduction systems, may have some benefits (Aziz and

Caetano-Anollés, 2021).

The complex long-term coevolutionary arms race between

plant and pathogens promoted species specific NLR

combinations. For instance, TIR-NB-LRR (TNL) proteins are

predominant in basal lineages and represent an important

portion in the eudicot genomes but are absent in the

monocots (Shao et al., 2016; Andolfo et al., 2017). A large

reservoir of single domains or truncated NLR proteins is also

scattered within resistance loci (Nishimura et al., 2017; Zhang

et al., 2017).

The evolutionary trajectories of plant receptor genes have

been extended through the addition of endogenous and

exogenous functional domains, such as the C-terminal jelly-

roll/Ig-like domains (C-JIDs), found in many TNLs, that directly

interact with effectors (Ma et al., 2020; Martin et al., 2020), or

integrated decoy (ID) domains that can bind pathogen effectors

(Cesari et al., 2014; Kroj et al., 2016). Unraveling protein

architecture and discovering local sequence conservation and

diversification provides the key to understanding how proteins

evolve (Konagurthu et al., 2021). For instance, evolution studies

on plant NB domain showed that motif patterns are rearranged

to acquire more tuned functions and to refine folding ability

(Andolfo et al., 2020). Over an evolutionary timescale, the

immune receptors are under a strong selection pressure for

fixing functional advantages.
Spatial genome organization of
NB-LRR genes

Genomic-centric processes shaped the PRGs organization.

NLR number can vary by orders of magnitude across different

species with most plant genomes containing several hundred

family members (Shao et al., 2016). Even closely related species

can show lineage-specific mechanisms driving NLR expansions

and contractions that reflect the plant lifestyle and the selection

pressures derived from the environment (Tamborski and

Krasileva, 2020), indicating that NLR evolution exhibits

dynamic patterns of birth and death (Michelmore and Meyers,

1998). The NBS-LRR genes are not randomly distributed within

plant genomes but rather are mainly organized in multi-gene
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clusters in hot-spot regions of plant genomes (Meyers et al.,

1999; Hulbert et al., 2001; Richly et al., 2002; Zhou et al., 2004;

Ameline-Torregrosa et al., 2008). NLR clusters can be divided

into: homogenous clusters, including the same type of NLR, and

heterogenous clusters containing diverse NLR classes. In

addition, clusters containing a mixture of NLR, RLP and RLK

were also found (Andolfo et al., 2013). Evolutionary forces

governing gene clustering are not completely understood. The

occurrence of gene duplication had great impact on expansion of

this gene family in plant genomes (Baggs et al., 2017). Copy

number variation likely maintains a diverse array of genes to

retain advantageous resistance specificities (Jiang and Assis,

2017). Non-functional copies can evolve into functional alleles

conferring disease resistance and changes in a pseudogene can

lead to the gain of function. Individual NLR genes have also been

associated with extreme allelic diversity as a consequence of

point mutations enriched in surface-exposed regions of LRRs for

acquiring new pathogen recognition capabilities by positive

selection, inter-allelic and paralog recombination and domain

fusions (Joshi and Nayak, 2013). On the other hand, large

genomic deletion/insertion can provide the loss/gain of a

specific gene family. Plant species arsenals are set up by the

interplay of large-scale gene organization, that determines global

conservation in the order of loci, and extensive local genome

rearrangements mediated by recombination, tandem

duplication, segmental and ectopic duplication, unequal

crossovers, transposons, horizontal transfer and other

reshuffling elements (Andolfo et al., 2021).

Adaptive diversification is induced by species-specific

pathogen pressure thanks to the genome plasticity of plants

(Mace et al., 2014; Di Donato et al., 2017; Mizuno et al., 2020).

Regardless of the type of molecular mechanism, variations

impact functionality and gene expression (Halter and Navarro,

2015). It seems that there is higher degree of association between

genes in a cluster than just preferential co-localization. Recent

studies showed that chromosomal regions with a defined gene

density and activity, and with corresponding chromatin

accessibility, histone modifications, and replication timing, are

essential to orchestrate complex regulatory networks (Fritz et al.,

2019). Each level of gene-genome intrinsic architecture is

governed by mechanisms that we are just beginning to

investigate (Nieri et al., 2017; Choi et al., 2018). An even more

overwhelming challenge will be deciphering how PRGs are

arranged, expressed and regulated within the three-

dimensional (3-D) cellular context.
Regulation of NB-LRR expression

The plant immune response must be highly plastic and

strictly regulated, given the different types of pathogens to
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counteract and its fitness cost. In fact, plants not challenged by

pathogen show a basal level of PRG expression that is able to

monitor non-self-mediated changes in the plant cell while

minimizes costs of expression (Richard et al., 2018; Borrelli

et al., 2018). On the other hand, when attacked by pathogens a

tight regulation of the immune transcriptome is essential for the

activation of effective defense response (Karasov et al., 2017).

The plant immune transcriptome is regulated by many different,

interconnected mechanisms that can determine the rate at which

genes are transcribed. Epigenetic modifications, such as DNA

methylation (associated with actively transcribed genes), are

required in the regulation of PRGs. Trimethylation of lysine 4

of histone H3 (H3K4me3), di- or trimethylation of H3K36 have

been identified being epigenetic modifications essential for the

defense response (Richard et al., 2018). In addition,

ubiquitination of histones regulates the expression of NLR

genes (Zou et al., 2014; Lai and Eulgem, 2018). Interestingly,

areas of the genome featuring NLRs also frequently contain high

densities of transposons (Miyao et al., 2003; Wei et al., 2016; Lai

and Eulgem, 2018), which may attract epigenetic modifications

to reduce transcription in the area. TFs, such as WRKY, are

involved in PRGs regulation through the binding to W-boxes

found generally enriched in promoter regions of NLR genes

(Mohr et al., 2010; Richard et al., 2018). Small RNAs (sRNAs),

including microRNAs (miRNAs) and small interference RNAs

(siRNAs) (Waheed et al., 2021) function as negative regulators of

NLR transcripts (Zhai et al., 2011; Li et al., 2012; Shivaprasad

et al., 2012; Halter and Navarro, 2015).

The RNA surveillance pathways also have a leading role in

the control of NLR-mediated resistance signaling. For example,

nonsense-mediated mRNA decay (NMD) of NLR transcripts

appears to play a role in defense induction similar to the

miRNA/phasiRNA cascades. The perception of MAMPs can

trigger transient suppression of NMD of NLR transcripts and,

consequently, a temporary increase in NMD-targeted NLR

transcripts, associated with enhanced disease resistance

(Gloggnitzer et al., 2014). In addition, the nuclear RNA

exosome regulates innate immunity in plants. For instance,

mutations in components of the RNA exosome, which

degrades RNAs in a 3′ to 5′ direction, suppress RPS6-

dependent autoimmune phenotypes (Takagi et al., 2020).

Alternative splicing can destabilize NLR transcripts triggering

their own degradation and preventing their over accumulation

(van Wersch et al., 2020). However, at least in some cases,

alternative splicing can secure the synthesis of diverse transcript

isoforms for full immunity (Jung et al., 2020). Recently published

studies indicated that alternative polyadenylation (APA) of pre-

mRNA is also an important regulatory mechanism of plant

immune responses (Jia et al., 2017). APA can produce distinct

transcript forms that differ in their coding sequences and in their

3’-untranslated regions, which are important for their function,

stability, localization and translation efficiency of target RNA.
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Immune response networking

A complex network of interactions, based on intra- and

inter-gene relationships, multilevel genome organization and

DNA transcription and translation processes, regulates

pathogen recognition events and defense responses. The

defense mechanisms can be modulated through mutual

interaction of a core set of receptors capable to activate the

innate immunity responses (Saloman et al., 2020). The first

discovered NLR-NLR cooperation dates to about twenty years

ago, when it was discovered that two TNL genes, RPP2A and

RPP2B, were required for resistance to downy mildew

(Sinapidou et al., 2004). There are now many examples of

NLR pairs, such as the Arabidopsis RPS4/RRS1 and the rice

RGA4/RGA5 pairs (Cesari et al., 2014). One member (sensor)

mimics the target of a pathogen effector, while the other member

of the pair functions as a signaling ‘executor’ module that

transduces the effector recognition. Moreover, it is emerging

that many NLR-mediated immune responses require the

presence and activity of so-called ‘helper’ NLRs, downstream

signaling centers for a diverse array of sensor NLRs (Jubic et al.,

2019). In this coupled reaction, sensor NLRs perceive effectors,

and helper NLRs are involved in converting effector perception

into immune activation (Cesari, 2018). Helpers are the Activated

Disease Resistance 1 (ADR1), N Requirement Gene (NRG1) and

NLR-REQUIRED FOR CELL DEATH (NRC1) (Gabriëls et al.,

2007; Wu et al., 2016; Dong et al., 2016). Intriguingly, NRCs

were first reported as required for the full function of

transmembrane and cytoplasmic resistance receptors (Collier

et al., 2011; Leibman-Markus et al., 2018). Functionally

redundant NRC paralogs can display distinct specificities

toward different sensor NLRs that confer immunity to

oomycetes, bacteria, viruses, nematodes, and insects (Wu et al.,

2017). The biochemical determinants that trigger helper-

activation and physical interactions between sensor and helper

remain unknown. Helpers could therefore act as ‘hubs’ to

control signaling, guarding the whole immune signaling

pathway rather than a specific molecule affected by an effector

(Zhang et al., 2017; Leibman-Markus et al., 2018). Most likely,

NLR helpers represent signal transduction and/or amplification

levels that empower the innate immunity network (Wu et al.,

2016). In addition, the plant pathogen immune response is

promoted by the cooperation between the intracellular and

extracellular receptors, even beyond early perception events

(Yuan et al., 2021). A critical signaling component linking cell

surface receptors and NLR-mediated immunity pathways is

provided by reactive oxygen species produced by NADPH

oxidase RBOHD (Yuan et al., 2021).

High-throughput gene expression data can provide reliable

information for the inference of PRGs (Calle Garcıá et al., 2022).

In two tomato-pathogen-specific interactions, different networks

of PRGs acting in concert were found (Andolfo et al., 2014).
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Although, plant immunity shares the same signaling

mechanisms, the rewiring of PRGs networks may promote

connection changes among defense pathways in specific plant-

pathogen interactions. Investigation of differentially regulated

PRGs could lead to the identification of pathogen-specific

response patterns. Multiple responses can be merged into a

single network model for capturing all the possible

dynamic trajectories.
Organization of immune responses

Defense scenarios can be depicted taking into account: the

layer of defense, direct and indirect interaction, the network of

response, cell sensing of pathogen and fitness needs (Andolfo
Frontiers in Plant Science 05
and Ercolano, 2015). NLRs are involved in both perception and

activation of immune signaling. Recent breakthroughs are

starting to disclose mechanisms by which NLRs initiate

immune signaling after effector perception. Conformational

changes lead to the exchange of ADP by ATP and the

oligomerization induction with the establishment of a

functional ‘resistosome’ (Burdett et al., 2019). Complex

formation, self-association or heteroligomerization was shown

to be important for the activity of many NLRs (Casey et al., 2016;

Zhang et al., 2017; Li et al., 2020; Jacob et al., 2022).

Understanding how molecular entities evolve, work and are

interconnected in any biological process is crucial. The high

plasticity governing the innate immune system is founded on a

complex functional architecture and a multi-level control as

proposed in the Figure 1 model. Multiple levels, including gene
FIGURE 1

Organizational overview of plant innate immune system. Upper middle panel. The immune system functioning is modulated by a fine control
over the pathogen receptor genes (PRGs) activities at different levels (ovals). They include gene structure, genome space, molecular interaction
and gene expression regulation. The connections among the different levels show a very complex and dynamic arrangement (indicated by
arrows). All the potential levels can determine the loss/gain of connections in PRG network. Left panel. PRGs network organization in plants not
challenged by pathogen. NLRs are in a resting state (OFF state) resulting in a PRG surveillance activity to recognize potential pathogen infection.
Right panel. PRGs network organization challenged by pathogen. The activation of a sensor NLR and a potential helper (ON state) can initiate a
response culminating in innate immunity. The network edges represent every kind of biological interaction influencing the member activity.
Gray color indicated the changing connections among members of each network. NLR, nucleotide-binding leucine-rich repeat proteins; RLK,
receptor-like kinase; RLP, receptor-like protein.
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structure, genome-gene relationships, gene regulation,

molecular interaction show highly dynamic connections

(Figure 1 upper middle panel) that are able to regulate the

innate immunity receptors with a different output, surveillance

or defense response (Figure 1 left and right panels). In particular,

within this model, PRGs are involved in a “multi-actors” system,

including NLRs that may act as sensors or “helpers” (Figure 1

left and right panels). Leading sensors are able to coordinate a

response, which may include the activity of different PRG groups

(Andolfo et al., 2014; Ngou et al., 2021). The understanding of

network structure, considering the distribution of the interaction

strength, the challenges for the establishment of these

interactions and the corresponding effects could be highlighted

by a decomposition approach. It would be interesting to dissect

the whole set of molecular interactions across the different levels,

to identify the role and the spatial distribution of each element.

Current knowledge of the immune network system is still

limited and can be improved by studying its structural

properties. Pathogen receptor system is continuously shaped

over time to find its optimal arrangement thanks to different

biological dynamics.
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