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Abstract Astrometric detection involves precise measurements of stellar positions,
and it is widely regarded as the leading concept presently ready to find Earth-mass
planets in temperate orbits around nearby sun-like stars. The TOLIMAN space tele-
scope [39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric
monitoring of bright binary stars. In particular themissionwill be optimised to search
for habitable-zone planets around α Centauri AB. If the separation between these
two stars can be monitored with sufficient precision, tiny perturbations due to the
gravitational tug from an unseen planet can be witnessed and, given the configuration
of the optical system, the scale of the shifts in the image plane are about one-millionth
of a pixel. Image registration at this level of precision has never been demonstrated
(to our knowledge) in any setting within science. In this paper, we demonstrate that
a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified
simulations of the TOLIMAN data and we present the full experimental pipeline to
recreate out experiments from the simulations to the signal analysis. In future works,

M. D. Veneri (B) · A. Picariello
University of Naples Federico II, DIETI, Naples, Italy
e-mail: michele.delliveneri@unina.it

A. Picariello
e-mail: antonio.picariello@unina.it

L. Desdoigts · P. Tuthill
School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
e-mail: louis.desdoigts@sydney.edu.au

P. Tuthill
e-mail: peter.tuthill@sydney.edu.au

M. A. Schmitz
Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton
NJ08544, USA
e-mail: morgan.schmitz@astro.princeton.edu

A. Krone-Martins
Donald Bren School of Information and Computer Sciences, University of California,
Irvine, CA 92697, USA
e-mail: algol@uci.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Zelinka et al. (eds.), Intelligent Astrophysics, Emergence, Complexity
and Computation 39, https://doi.org/10.1007/978-3-030-65867-0_8

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65867-0_8&domain=pdf
mailto:michele.delliveneri@unina.it
mailto:antonio.picariello@unina.it
mailto:louis.desdoigts@sydney.edu.au
mailto:peter.tuthill@sydney.edu.au
mailto:morgan.schmitz@astro.princeton.edu
mailto:algol@uci.edu
https://doi.org/10.1007/978-3-030-65867-0_8


168 M. D. Veneri et al.

all the more realistic sources of noise and systematic effects present in the real-world
system will be injected into the simulations.

1 Introduction

Astronomy seeks to answer our deepest questions. Where did it all begin and how is
it going to end? Are we alone in the Universe? Is there life beyond our biosphere—or
conversely is Earth and our planetary system in some way unique? Such inquiries
have given rise to the fields of astrobiology and exoplanetary research.

Despite our long term commitment to explore these questions, the development
of instruments capable of detecting planets around distant stars has proven to be
one of the most challenging astronomical quests [22]. The first exoplanet orbiting a
Sun-like star was detected through small deviations caused in radial velocity mea-
surements of its host [27, this work was subsequently awarded the 2019 Nobel Prize
in Physics]. A little more than twenty years later, there are more than 4000 con-
firmed exoplanets.1 The celestial garden is therefore a fertile ground for discovery,
and the synergy between new astronomical missions and modern statistical learning
techniques promises an exceptionally bright future for this rapidly expanding field.
Discovery and characterisation of exoplanets is particularly suited to combinations
of approaches that can push the boundaries in both the acquisition of exceptionally
clean, low-noise data, as well as the ability to sift large volumes of observations in
order to extract subtle signals that are often submerged under orders of magnitude
by statistical and systematic noise. Every technology in this area has to face these
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problems because, on a cosmic scale, exoplanets are almost completely irrelevant.
They contribute only infinitesimally to the mass or energy budget of galaxies. Even
in our own solar system major gas-giant planets such as Neptune and Uranus evaded
detection until the advent of the modern telescope; the challenge of discovery at
light-year distance scales can seem forbidding.

The most successful techniques to reveal exoplanets are indirect in that they
do not witness signals from the planet itself, but rather the planet’s influence on
its host star. One is the transit method which witnesses a dip in starlight as the
planet traverses the observer’s line-of-sight to the star. An alternative method is the
radial velocity, which records to-and-from perturbations in the velocity of the star,
as it is perturbed by the gravitational field of the planet. The TOLIMAN (Telescope
for Orbital Locus Interferometric Monitoring of our Astrometric Neighbourhood)
program was motivated by the realisation that neither of these methods are suited
to answer a fundamental question: are there any potentially habitable exoplanets
around the Sun’s nearest neighbour twin system—α Centauri AB? Unfortunately,
the transits require an alignment, a very rare event, while radial velocity can find
massive gas-giant planets, but not small rocky exo-Earths in the habitable zone of
the system.

Arguably, a very promising alternative method is the most traditional branch
of Astrometry: the study of deviations in the position of the star in the plane of
the celestial sphere that, in this case, are imposed by the motion of the star and the
exoplanet around a common center ofmass. Like all signals in this domain of science,
the deviations in position are very small, of the order of one micro-arcsecond. To
give a sense of scale, for an observer on Earth, this is the angle subtended by a coin
held edge-on (∼2mm) while standing on the moon. For the specific case we are
interested in, the situation is even more interesting.

α Centauri is a binary star system (thus the A/B), with two stars constantly in
motion one around each other. If their motion could be monitored, for example by
taking a series of images at different times, one would see the distance between
the center of the stars changing as their orbit evolves. After their equivalent of a
year this pattern would repeat—thus, by observing the separation between the stars
during some time one would detect a periodic signal. This expected signal would
be slightly different if one considers the presence or absence of an Earth-like planet
as the third element in this system—and that is the type of perturbation we aim at
measuring. One can imagine that at such scales even the smallest deviations in the
position of the satellite or thermal effects in its structure and instruments are enough
to build up noise in each image, which is orders of magnitude higher than the signal.
TOLIMAN has been designed to implement innovative optical principles to deliver
a robust estimate of this signal, despite the inevitable presence of many competing
random processes and systematic noise. Details can be found in [39] and in Sect. 3
of the present work. A critical component for the success of the mission is our ability
to extract periodic signals at the milliarcsecond level from a data stream consisting
of over a million of images downlinked from the satellite.

The general process to solve this problem has at least two major stages: first, it
is necessary to estimate the period of one cycle for the binary star system; then, a
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more careful analysis of the amplitude deviations at the relevant periods enables the
discovery of additional clues about the presence of the planet. In this chapter, we
present some first concepts of one of the possible strategies to solve the first stage
directly from raw, imaging data.

Given a series of images of a binary star system as observed by the TOLIMAN
mission, our framework uses an unsupervised neural network to learn an abstract
(latent), low dimensional representation of the data (the raw images). Here we use
a deep convolutional autoencoder [15]. This step reduces the dimensionality of the
problem from 256 × 256 pixels (size of the images) at each sampling time to 1
parameter of the latent space, which can then be analyzed as a traditional time series.
An overview of the workflow is given in Fig. 1. We use simplified simulated versions
of the images to be measured by TOLIMAN to show how one can use concepts
of neural networks to construct a data analysis pipeline that may be able to extract
periodic astrometric signals with an amplitude up to a million times smaller than the
pixel size.

In this chapter, we shall guide the reader through all the modules illustrated in
Fig. 1. Section2 gives an overview of the astrometric principles that inspired the
TOLIMANmission, presented in more details in Sect. 3. We then show how the sim-
ulationswere constructed in Sect. 4, with a brief review of the principles of traditional
dimensionality reduction techniques in Sect. 5. We introduce basic concepts of deep
learning, and how they can be used to learn a meaningful non-linear representation
of the input data, in Sect. 6. In Sect. 7 we analyze the architectural choices made
to build the deep convolutional autoencoder and in Sect. 8 the time-series analysis
tools, which allow to extract the periodic signal from the data latent space. Once
most of the tools are presented, we show the performed experiment and their results
in Sect. 9. We finally draw the conclusions in chapter in Sect. 10.

2 Astrometry

Before delving in the conceptual diagramof Fig. 1,wewant to introduce the astromet-
ric detection field and thus the reasons behind the TOLIMAN satellite architectural
choices. Astrometric detection involves precise measurements of stellar positions
and it is widely regarded as the leading concept presently ready to find Earth-mass
planets in temperate orbits around nearby sun-like stars [e.g. 34, 36]. The principle
for detecting a planet using astrometry is the same as that adopted by the hunters of
unseen companions of stars [e.g. 2] about two hundred years ago. As a planet orbits
the star, the latter is tugged in a small circle by reflex motion, thus, by careful mea-
surements of the position of the star over time (either in a local or global frame, that
must be more stable than the signal produced by the invisible companion), these tiny
displacements, imposed on the host star by the gravity of orbiting exoplanets, yield
a solution for the planet mass and orbit. Unlike other methods, there are few blind
spots, and the signal generated by companions increases with planet-star separation,
converse to both radial velocity and transit methods. These unique characteristics
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Fig. 1 Conceptworkflow.The underlying concept of the proposed data analysis is based onfinding a
lower-dimensional representation (a compression) of the raw data which preserves periodic signals.
Once a suitable representation is found, the effect caused by the presence of the planet can be
detected using a time series analysis

make it ideal for probing habitable zones at larger orbital radii. Furthermore, the
intrinsic signal (the amplitude of the periodic angular wobble on the sky) is inversely
proportional to distance, favouring stars in the immediate neighbourhood of the Sun.

However, despite the potential promise, astrometric detection for exoplanetary
discovery has not yet entered the mainstream. The angular excursions induced by
habitable-zone Earth-analog planets are small, of order of one micro-arcsecond even
for best-case targets, such as Alpha-Centauri. Ground-based high precision astrom-
etry campaigns must fight the considerable sources of noise, such as the starlight
path through the Earth’s turbulent atmosphere. Long-baseline optical interferome-
ters have historically delivered precisions better than 100µ-arcseconds, with a recent
resurgence of interest prompted by ESO’s GRAVITY instrument [16] with accuracy
an order of magnitude better, which is still not sufficient for Earth-mass planets, how-
ever. Furthermore, the nearest stars to Earth present a large apparent angular diameter
and are correspondingly difficult to observe on long baselines, since they are over-
resolved objects, and thus present challenges to the interferometric technique, due to
low fringe contrast. These intrinsic challenges for ground-based astrometric obser-
vation have increasing the interest in space. Global, large space astrometric surveys
over wide angles have proved to be extremely productive delivering fundamental
stellar positions, distances and kinematics with the ESA/HIPPARCOS mission [11],
and its ambitious successor ESA/Gaia [13, 14], which is nowmeasuring billion stars
with precisions of the order of ∼10µas. Although the Gaia mission expected to
deliver a rich harvest of gas giant planets [e.g. 3, 31], in order to detect and study
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rocky planets in temperate orbits, we need to push detection thresholds down to levels
better than 1µas, something that will require dedicated new concepts.

Conventional astrometry approaches measure the position of a star, using a grid
of reference nearby objects. This requires relatively large fields of view since the
distance between science targets and sufficiently bright reference objects are of the
order of several arcminutes. However, maintaining long-term instrumental stability
over such large angles is notoriously challenging. Several interesting missions have
been proposed by groups in Europe [36], the US [40] and China [4], addressing the
different concepts to solve this problem with highly stable and continuously moni-
tored spacecrafts and instruments. This poses, however, an additional non-negligible
problem: the instrumental cost scales significantly with the field-of-view. Thus it is
natural to ask the question if it is possible to obtain micro-arcsecond level measure-
ments for certain targets, like Alpha-Centauri, using much narrower fields-of-view,
and thus avoiding the high costs associated to the stability of large field-of-view
concepts.

2.1 Narrow-Angle Astrometry

Our ability to perform narrow field astrometric science ultimately rests on the ability
to precisely register the position of the stellar image in each exposure. This meets
a fundamental photon noise limit, even with a perfectly stable optical apparatus.
Typically any bright nearby star will provide enough photons so that this theoretical
limit is not a major problem, requiring only minutes or hours of integration with
a telescope of reasonable aperture. However, the critical limitation is not set by
photons from the target star but from the absolute stability of the image plane sensor
required to perform the measurement; something that can only be accomplished
with continual monitoring and ongoing calibration. For the practical narrow-field
astrometry, registration of the images is performed by simultaneous monitoring of
a constellation of background stars, which provide instantaneous information about
the exact plate scale and further order deformations. Our astrometric detection error
budget is therefore dominated by the accumulation of sufficient counts on thesemuch
fainter reference stars that, for a field of view of several arcminutes, are likely to be
thousands of times fainter than the target star. The concept underlying the TOLIMAN
mission was developed on the principle that it is possible to entirely sidestep this
dilemma for the special case of observations of bright binary stars.

Where two bright stars lie close together in the sky, precise monitoring of their
separation will deliver the key science with negligible photon noise. In particular,
α Centauri is almost ideally tailored for a mission exploiting narrow-angle self-
referenced astrometric detection. As our nearest celestial neighbour system, Alpha
Cen’s pair of solar-analogue stars means that habitable-zone exoplanets could be
true Earth-twins in year orbits: at the sweet spot for detectability within an attainable
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mission duration and yielding signals factors of 2–10 times stronger than the next-
best systems. The two habitable zones have wide enough orbits to yield good signals,
yet not so wide as to require an extended mission lifetime for detection.

3 TOLIMAN

The TOLIMAN space telescope [39] is a low-cost mission which aims to push the
boundaries of astrometric measurements in binary star systems and to enable the
detection of Earth-like planets around α Centauri, our closest extra-solar system.
The mission is optimised to search for habitable-zone planets that, for α Centauri,
implies deflections with amplitudes of order of ∼1µas over roughly 1-year orbital
periods. The detection of such a small astrometric signal has never been reported
before in the astronomical literature.

To accomplish this task with an affordable spacecraft and mission profile, an
innovative optical and signal encoding architecture was proposed. It explores and
reformulates the idea of a Diffractive Pupil based optical system.

As originally envisaged, a diffractive pupil telescope would have a set of diffrac-
tive features, most simply a regular array of small opaque dots, embedded in the
pupil of the instrument [e.g. 17]. These must be anchored to some element with
extreme mechanical stability. The features cause starlight to diffract in the image,
essentially forming a pattern whose features are exactly known and stable so long
as the diffractive pupil remains stable. For bright sources, this simple concept offers
a cunning solution to the key problem that overwhelmingly dominates astrometric
error budgets: the stability of the instrument.

When trying to reference stellar positions at micro-arcsecond scales, a host of
small imperfections and mechanical drifts, warps and creep of optical surfaces, gen-
erates systematic instabilities that can be orders of magnitude larger than the true
signal. Rather than trying to directly contain all these errors, the Diffractive Pupil
approach sidesteps them. It creates a new ruler of patterned starlight against which
to register positions in the image plane. The cleverness of this approach is that the
diffractive grid of starlight suffers identical distortions and aberrations to the signal
that is measured. Therefore, drifts in the optical system cause identical displacements
of both the object and the ruler being used to measure it, making data immune to a
large class of errors that encompasses other precision relative astrometry approaches.

The opaque dots pupil proposed byGuyon et al. [17] results in a diffraction pattern
where the image plane is populated by a regular grid of sidelobe images diffracted
from the bright target star. However,when considering broadband illumination, band-
width smearing of the starlight will draw each sidelobe into a narrow radial streak
or ray. The signal recovery proceeds by registering the location of these rays against
the background field stars. Because the diffractive ruler takes the form of long nar-
row radial rays, positional information recovered must be in the orthogonal ordinate.
Therefore, the primary observable consists of the recovery of azimuthal positions of
(a rich field of) background stars registered against the nearest diffraction rays. For



174 M. D. Veneri et al.

Fig. 2 Left Panel: a conceptual design pupil for the TOLIMAN mission, with white/black regions
indicating discrete phase steps of 0/π . Right Panel: the monochromatic PSF generated yields a
complex and strongly featured pattern extending from the core, uniformly filling the region with
sharp fringes

the TOLIMAN mission, the diffractive pupil formulation described above has two
fatal flaws: (1) it relies on background field stars and (2) with its radially smeared
ruler it is unable to yield precision measurement of the separation of any binary star.
For only a single pair of stars, as is the case of Alpha-Centauri, radial information is
essential. Instead, TOLIMAN proposes a novel form of diffractive ruler which gen-
erates fine-featured patterns capable of spanning the required separations between
the components of a binary star system.

TOLIMAN requires diffractive pupils capable of creating patterns with a sharp
structure extending in the radial direction. Our primary design driver was to find
patterns that create a region on the image plane uniformly filled with features that
have the highest gradient energy and that occupy the minimum span in dynamic
range. Essentially, the former criteria attempt to optimise our ability to accurately
register the resulting pattern—fitting algorithms rely on regions where the image
has the strongest slopes or sharp edges. The latter condition is required to spread
the starlight preventing saturation of the detector, and spanning the separation of the
binary with diffractive features so as to enable the diffractive pupil methodology.
Such a design is depicted in Fig. 2 and is now seen to meet our goal of filling the
entire diffractive region, including the core, with sharp structure. Sharp gradients in
the image plane optimise the ability to precisely register such an image.
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3.1 The TOLIMAN Data Challenge

In its simplest form, extracting the science signal arising from TOLIMAN data
requires the exact registration of two overlapping point-spread functions, one for
each component of the binary star, in the image sensor plane of the orbiting space
telescope. If the separation between these two stellar images can be monitored with
sufficient precision, tiny perturbations due to the gravitational tug from an unseen
planet can be detected. Given the configuration of the optical system, the scale of the
shifts in the image plane are about one-millionth of a pixel (10−6 pix), thus exquisite
stability is required: these motions are only manifest as a sinusoidal perturbation
over year timescales.

Although there are many potential sources of imperfection and error, this first
study restricts itself to the most basic and fundamental one, with noise processes
arising principally from photon noise and the spatial discretization of the signal.
Additional terms, as imperfect spacecraft pointing, jitter and roll stability, will be
addressed in future work. For the present study, simulated and laboratory testbed
data were created to embody such error terms.

A pictorial illustration of the basic challenge is shown in Fig. 3: two patterns exist
within the frame of data, in this case without the noise terms. High degrees of sharp
image structure result in a data for which accurate image registration is possible;
however, on the other hand the levels of extreme measurement precision required to
obtain the science move this from a relatively routine exercise in image processing
(at levels of 10−2 pixel) to an unsolved problem at signal fidelity levels never yet
attempted (at levels of 10−6 pixel).

Fig. 3 A simulated binary
star as observed with the
conceptual design
TOLIMAN pupil discussed
above
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4 Simulations

We are now ready to describe the simulations of the TOLIMAN data, i.e. the inputs
of our conceptual workflow shown in Fig. 1. These simulations were necessary given
that no testbed has been build yet to accurately reproduce the TOLIMAN data. This
section, thus, describes the formalism and necessary steps to produce a mock data set
that mimics the precision level required by the TOLIMAN mission. The first chal-
lenge in developing a method capable of extracting a signal as small as one-millionth
of a pixel is to develop a computational model capable of emulating such signal under
varying conditions of noise. Although injecting a signal into an image may seem a
rather trivial task, conventional approaches fall short when pushed to the limits of
precision required by the TOLIMANmission, often resulting in large computational
cost. The traditional simulation approach consists of generating a super-sampled
Point Spread Function (PSF). Since stars can be considered point sources, to sim-
ulate a stellar field as would appear on the detector, we simply need to shift and
downsample that PSF in the sensor grid. Thus, by assigning it to either random or
specified positions within the image and repeating the procedure for many different
point sources, we can recreate a stellar field. While this can be made computation-
ally efficient today using the widespread GPU accelerators, such traditional methods
unfortunately introduce errors orders of magnitude greater than the signal we expect
to measure, thus requiring alternative approaches to the generation of the mock data.

4.1 The Fast Fourier Transform

The Fast Fourier Transform (FFT) has long been used as an optical simulator since
it performs the same operation numerically as a focusing mirror or lens does opti-
cally. An input image will undergo a transformation from a spatial representation
to a frequency representation when observed at the focal plane. The Fast Fourier
Transform operates on a digitised representation of the input with an O(n.log(n))

computational complexity, making it a corner stone in basic computations of optical
systems. In this section, presenting the basic underpinnings, we detail how one can
use FFT’s to create images of stellar fields with the injection of arbitrarily sized
positional information.

Generating these PSF’s is conceptually straightforward, requiring only the rep-
resentation of the electric field at the aperture E(x, y, λ) = A(x, y)eiθ(x,y,λ) as its
amplitude A(x, y) and phase θ(x, y)and combine these terms into a complex array.
The PSF in the (u, v) focal plane is then found by taking the power of the resultant
FFT of the complex array.

PSF(u, v) = |F {E(x, y, λ)}|2 = |F {A(x, y)eiθ(x,y,λ)}|2 (1)
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Positional information can then be injected through applying a linear gradient to
the phase θ . An Optical Path Difference (OPD) is introduced across the aperture
by any source off-axis from the normal of the telescope pointing. Easily calculated
through the angular offset from the normal, the OPD simply translates into phase as
a function of the observation wavelength.

θslope(x, y, λ) = 2π

λ
OPD(x, y) (2)

Having this mathematical representation of on-sky position to telescope response
allows for arbitrary signal sizes to be introduced to any stellar objects. Other natural
or designed phase perturbations like optical aberrations (coma, astigmatism, etc.) or
devices like the TOLIMAN diffractive pupil can easily be represented and added to
the other phase sources. Optical aberrations are not explored in this work but the
principles underpinning their simulation follows simply from this work. Other phase
devices like the TOLIMAN diffractive pupil θPupil(x, y, λ) follow the same general
idea. Formulated as a mirror with ‘steps’ cut in, we take the height of each step
h(x, y) and translate to phase by taking the OPD as twice the height of the step.

θPupil(x, y, λ) = 2π

λ
2h(x, y) (3)

The total phase θ is then a linear combination of these effects. Taking the field
amplitude A(x, y) as unity for all non-masked regions of the aperture gives the full
description of the electric field E(x, y, λ).

Having formulated the electric field response to the system, we must introduce
a complete description of the optical architecture. This is described by a handful
of parameters: aperture diameter D, effective focal length f l and pixel size dpix .
Desiring computational efficiency through the inclusion of our optical system, we
define some value Nout to be the size of the array which we pass to the FFT. This
is the primary driver behind the computation cost. Using this value and the previ-
ously described parameters, the size of the array NE representing our electric field
E(x, y, λ) can be found. Note all arrays are taken to be of size N × N . These two
values necessarily differ as a way to encode optical parameters without focal plane
interpolation. The ratio between Nout and NE determines sampling in the focal plane
matching that of our system.

NE = Nout
dpix × λ

D × f l
(4)

Embedding this array representing the electric field into an Nout sized array, we
use Eq.1 to generate a PSF that requires no interpolation and can have positional
signals of any size injected, limited only by floating-point precision of course. Further
details and descriptions of these processes can be found in [32].
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4.2 Generating Data

With the tools to simulate PSF’s through our optical system we must now generate
a data set. By adding basic noise processes, stellar spectrum and astrometric signals
we can create a comprehensive set of images that can be used to test the recovery and
reconstruction abilities of all the data-driven techniques described in this chapter.
Here a balance must be struck, generating a truly comprehensive data set for the
TOLIMANmission is merely intractable. With a full signal period of order one year,
any data set must present the foundamental challenges of the mission in an efficient
way. Here we examine choices such as number of wavelengths, stars and images to
simulate, along with the included noise processes.

One of the first things to consider is the size of the data set, the total number of
images produced. The TOLIMAN signal is introduced to the α Cen system through
the gravitational tug of an orbiting planet and so our signal is sinusoidal by nature. The
orbital period that we are searching for is of order of a single year, and so producing
a ‘frame by frame’ data set would be computationally intractable. Consequently, we
need to generate each ‘image’ as a representation of a collection of multiple from
the actual telescope. We chose to represent three full signal cycles over 1000 images,
with each image representing approximately a full day.

Observing in the visible spectrum over a 100nm bandwidth, the choice spectral
resolution is essential. The wavelength dependence of the PSF demands that the
image at each wavelength be computed individually. To represent the real world as
closely as possible, a spectral resolution of 1nm was chosen for several reasons: (1)
firstly the Toliman PSF is spread over many diffraction limits (10λ/D) so at the outer
reaches bandwidth smearing begins to have a substantial effect on the PSF shape (for
an example see Fig. 4); (2) secondly, by choosing to maintain the stellar alignment
on the detector constant and keeping one of the stars stationary, we can massively
reduce the number of PSFs we must compute. A stationary star only requires the
calculation of a single broadband PSF. For the moving star, since the TOLIMAN
signal is sinusoidal by nature and the stellar alignment is kept stationary, we only

Fig. 4 TOLIMAN PSF at different bandwidths. Left: Monochromatic 600nm. Centre: 550–600
(best resembles actual mission). Right: 500–700
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need to calculate the PSFs for a single signal cycle. The result is a large overhead for
small simulations but with the benefit of being able to produce large and accurate
simulations efficiently.

Given our spectral resolution, we can use one of the many libraries available to
generate spectra that reflect the true stellar parameters for each star. These libraries
access existing stellar databases and recreate synthetic spectra for a host of variable
stellar parameters such an effective temperature, metalicity and observational flux.
We used Pysynphot [35] to generate stellar spectra and fluxes for our system. This
package uses models built fromHST observations across the HR diagram to simulate
atmospheric emissions fromdifferent stars. Taking the relative fluxes and total photon
counts output from this system, we can scale each monochromatic PSF by its relative
power to recreate accurate PSFs.

While real data will feature many varied noise processes, here we only consider
two noise sources: photon and detector noise. These are dictated by Poisson and
Gaussian statistics respectively. Detector noise is primarily driven by random thermal
fluctuations of the discrete electrons that carry the signal through the detector. With
available modern low-noise sensors, this noise is not expected to limit the extraction
of the signal since it averages out to some constant value over many frames. The
addition of even modest levels of this noise also serves a separate motivation: to
allow for a smoother error space. This helps numerical algorithms converge faster as
fine structures in the gradients are rounded and the algorithms can follow a smooth
descent to the optimum. On the other hand, photon noise is an essential processes
that must be examined. Arising from the discrete nature of photons, this noise is
simulated at each pixel by drawing from the Poisson distribution whose mean is
dictated by the PSF. When performing image registration of small signals such as
those anticipated in the TOLIMAN mission, the total number of photons that arrive
in each image becomes an important factor. As shown in [17], there is a fundamental
relationship between the number of photons received and the positional information
carried by those photons. With insufficient photons, signals can not be extracted.

Simulations proceeded with the production of a comprehensive batch of noisy
image data sets, with sinusoidal signals in separation of the binary star injected
with decreasing amplitude to mimic increasingly more challenging planets, up to the
limiting deflection of one-millionth of a pixel. These simulations closely resemble
the expected response of the TOLIMAN optical system to the observation of the
α Cen system and were used to build and train machine learning algorithms.

5 Dimensionality Reduction

As it can be seen in the conceptual diagram in Fig. 1, the first and the most crucial
step in the proposed data analysis scheme is to apply some transformation to the raw
data produced by the instrument to allow us to unveil the periodic changes in the
images through time. This transformation can be seen as a dimensionality reduction,
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a compression of the imaging data into a smaller dimensional space that preserves
periodic signals that may exist in the data.

Dimensionality reduction [e.g. 30], that is, of representing data in a different
space than that in which it can naturally be observed, is a set of techniques that try to
transform data from one representation to a lower-dimensional one with the lowest
information loss. Reducing dimensionality of data with minimal information loss
is important for feature extraction, compact coding and computational efficiency,
to eliminate redundancies and enforce constraints. In particular image compression
techniques try to take advantage of the statistical properties of the images in order
to reduce their computational footprint. One of the most straightforward and widely
used approaches of dimensionality reduction is the Principal Components Analysis
(PCA) [9]. This approach consists in applying a linear projection of the original data
on a set of orthogonal axes (the principal components), built to recover the maximum
amount of information contained in the original data with as few coefficients as possi-
ble. In practice, PCA can be computed by performing a singular value decomposition
of the data, contained in a matrix X . Each datapoint can then be reconstructed by a
linear combination of the basis elements: X ≈ DA, where D is a matrix containing
the principal components, and A a matrix containing the coefficients used in their
linear combination when reconstructing the data. Another broad class of dimension-
ality reduction methods, closer in heuristic to using a neural network to build the
new representation space, is that of dictionary learning (DL). Instead of using PCA
to select the new basis of representation D, one can instead learn it from the data
itself. Much like in deep learning approaches, dictionary learning relies on the choice
of a loss function l to quantify the difference between input data and its reconstruc-
tion. Learning the representation then amounts to solving the following optimization
problem:

min
D,A

l(X, DA). (5)

Depending on the desired properties of the representation to be learned, one can
further add constraints to either the dictionary D or the coefficients A. A great many
flavours of dictionary learning exist depending on the constraints selected. One of
the most widely used is the addition of a sparsity constraint on A [26]. In practice,
the sparsity constraint is often obtained by adding an l1 term to the cost function:

min
D,A

l(X, DA) + λ‖A‖1. (6)

Several other constraints exist, and often lead to the resulting dictionary learning
approach having its own name: non-negative matrix factorization [23] when using
positivity constraints, sparse PCA [8] when the sparsity constraint is instead imposed
on the dictionary, independent components analysis [19] when imposing statistical
independence between the components. Both PCA and DL have been utilized, in
the development of the work described in this chapter, to compress the images and
a period consistent with the one of the signal injected in images could be found in
the produced lower-dimensional representations up to a signal amplitude of 10−4.
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These techniques were not capable to detect astrometric signals with amplitudes
at the order of 10−6 times smaller than the pixel size. However, their application
showed us that, through data driven techniques, the images could be transformed
into a lower-dimensionality space while preserving the temporal signal structure and
thus that the challenging µarcsecond level signals could perhaps still be recovered
with the use of other techniques, such as Deep Learning. The next section makes a
small, but self-contained, introduction to these other techniques.

6 Deep Learning

In this section we will review all the concepts underpinning Deep Learning needed
to understand the inner workings of the deep convolutional autoencoder used in this
work to create a lower-dimensional representation of the TOLIMAN simulated data.
The main advantage of these techniques over classical dimensionality reduction is
that the layered structures of Deep Neural Networks (DNNs) can encode an input
representation with increasing levels of abstraction in successive layers [15, 21].
For such reasons, in the last decade, Deep Learning has been successfully applied
across a wide range of applications including computer vision, speech recognition,
bioinformatics and astroinformatics.

In this work, we make use of two classes of Neural Networks: fully connected
and convolutional. Fully connected Neural Networks, also simply known as Neural
Networks, can be used to approximate any nonlinear functional relationship between
a set of inputs and outputs [7]. Each layer of a neural network transforms a vector of
inputs x ∈ RN as follows:

ŷ = f (Wx + b), (7)

where W ∈ R(N×K ) is a matrix of weights, b ∈ RK is a bias term, and the nonlinear
activation function f : R → R is applied component-wise. The bias term shifts the
baseline activation function input away from zero, providing richer behavior for
modelling the functional relationship between the input and output variables. In
networks with multiple layers, the output of each layer is connected to the input of
the following one

ˆyl+1 = fl+1(Wlhl + bl) = fl+1(Wl fl(...( f1(W0x + b0) + bl) (8)

where hl is the hidden layer or feature vector of layer l. The input is processed
through all the layers until it reaches the output of the network ŷ.

The parameters (weights and biases) of the network are selected to minimize a
loss function, such as a mean square error, summarizing the difference between the
network output and a desired or observed target value y. Stochastic gradient descent
(SGD) is a common optimization process for neural networks: at each stage of train-
ing, the network parameters are updated by a small vector proportional to the gradient
of the loss function with respect to those parameters. This is straightforward for the
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output layer; weights and biases in overlying layers can be efficiently calculated
through successive applications of the chain rule for derivatives, in a process called
backpropagation. The use of derivative information for efficient network training
requires that the loss function be smooth.

Convolutional Neural Networks (CNNs) differ from fully connected neural nets
only in that their architecture exploits the localized structure of images to reduce the
number of network parameters needed. Instead of connecting each neuron in a layer
to every other neuron in the next layer, the connection structure of CNN layers is
sparse, and parameters are shared across a layer to enforce translation invariance of
features extracted on each scale across the image. Three types of layers are typically
used: (1) Convolutional Layers, (2) Pooling Layers and (3) Fully-Connected Layers.
In the following, we will analyze in detail the architecture and inner workings of
each one of them.

6.1 Convolutional Layer

The Convolutional Layer is the most computationally intensive part of a CNN archi-
tecture; its parameters consist of a set of learnable filters. Every filter, also know as
a kernel, is spatially small (usual sizes are 3 × 3, 5 × 5 and so on, where three and
five are sizes in number of pixels), but includes weights for each channel of its input.
For the first layer, these channels are the data channels (for example R, G, B in a
three-channel image). In subsequent layers, each channel corresponds to the output
of a single kernel from the previous layer. During the forward pass, each kernel slides
across the spatial dimensions of the input, computing the dot product between itself
and the part of the input volume that it encompasses (convolution). As the kernel
slides, it produces a bi-dimensional activation map that encodes the responses of the
kernel at every spatial position. The content of the activation map at each location
is a direct response to some visual feature present in the image to which the kernel
is sensitive, such as an edge or a colour. Each convolutional layer employs multiple
different filters, producing a set of activation maps that are stacked along the depth to
produce a multi-channel output. Due to the limited size of the filters, neurons are not
connected to the full extent of the input volume but only to a small region (the recep-
tive field). The connections are thus local in space (width and height of the input),
but are always fully connected in-depth (i.e. across learned/extracted features).

The structure of the output volume of a convolutional layer is controlled by three
hyper-parameters:

• Depth: the number of filters learned in the layer;
• Stride: the number of pixels the filter is shifted along the spatial dimensions of the
input volume. It is usually set to one but it can be set to higher values, depending on
the image geometry, to achieve less redundancy in the output volume. The stride
controls the spatial dimensions of the output volume;
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• Padding or zero-padding: the width in pixels of a spatial region on the borders of
the output that is filled with zeros. It controls the spatial dimensions of the output
volume and can be used to preserve the spatial dimensions through the layer.

Finally, to ensure that each kernel is learning a single feature that has a consistent
interpretation across the spatial extent of the input, all neurons in the same depth
slice share the same weights and biases, irrespective of where across the extent of
the input they are applied. Thus the action of each filter in the forward pass becomes
a discrete convolution of a single set of kernel weights with the input.

A convolutional layer acts to encode its inputs into a latent space spanned by the
features it learns. However, the autoencoder architecture we will consider in later
sections also involves a transformation froma learned latent space back into the image
domain. Thus, while convolutional layers typically decrease the spatial extent of their
inputs, we will also need deconvolutional layers which increase them, recombining
a potentially large number of learned features into a flat image. Mathematically both
convolutional and deconvolutional layers can be summarized as

lh = f

( ∑
i∈L

xi ⊗ wh + bh
)

(9)

where lh is the latent representation of the hth activation map of the current layer, f
is the activation function, and xi is the i th activation map of the L-feature activation
of the previous layer in the network (or the lth channel of an L-channel image in the
case of the first convolutional layer after the input image).wh and bh are, respectively,
the weights and biases of the hth activation map (shared by all neurons of the map)
of the current layer. Given that xi has size m × m and the filters have size k × k, a
convolutional layer produces an output feature map with shape (m − k + 1) × (m −
k + 1), thus reducing the size of the input. A de-convolutional layer outputs a feature
map with shape (m + k − 1) × (m + k − 1), thus increasing the size of the input.

6.2 Pooling Layer

The architectural function of a Pooling Layer is to reduce the spatial size of the
representation, which reduces the number of parameters, lightens the computational
load, and mitigates overfitting. The pooling operation is carried independently on
each input feature, leaving the number of input features unchanged. Different criteria
in the literature exist to perform the pooling operation, including max, average and
L2-normpooling;max-pooling is themost commonly used.There are alsoun-pooling
layers to desegregate and expand activation maps in transformations back towards
the image domain.

A max-pooling layer pools features by computing the maximum within the fea-
ture map and outputs a feature map with reduced size, according to the chosen size of
the pooling kernel. To perform a successive un-pooling, the max-pooling layer also
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Fig. 5 Illustration of max-pooling, unpooling, convolution and deconvolution layers [29]

records a set of switch variables which describe the positional information relative
to the pooled features. The un-pooling layer restores the max-pooled features into
the correct position specified by the relative switch variable values. The combination
of max-pooling and un-pooling layers is thus able to retain both the image magni-
tude (answering the “what” question) and the positional information (the “where”
question). Figure5 [29] shows some stylised representations of convolution—de-
convolution and pooling—un-pooling operations.

6.3 Deep Convolutional Autoencoder

An Auto-Encoder model (AE) is a neural network composed by an encoder and
decoder part; the encoder f : X → H transforms the input image into a lower-
dimensional representation (the latent space), while the decoder g : H → X tries
to reconstruct the original input image from this representation. By constraining the
latent space to be of lower dimension than the original input data, we can force
the autoencoder to capture the most important features of the input data in order to
reproduce it successfully. This type of restriction can be used for feature extraction
and for dimensionality reduction.

During the learning process, network parameters are adjusted to minimize a loss
function



Periodic Astrometric Signal Recovery Through Convolutional … 185

L(x, g( f (x))) (10)

that encodes the difference between the input x and its reconstruction g( f (x)). As
for the NNs discussed in Sect. 6, L must be smooth in order to use gradient-based
minimization algorithms such as SGD. If L is chosen to be linear, the auto-encoder
performs adimensionality reduction similar toPrincipalComponentAnalysis (PCA);
in fact, the latent space h ends up to be the principal subspace of the input data. If,
instead, L is non-linear the auto-encoder can learn much complex representation.

Generally, autoencoders are built by two shallow fully connected NNs joined
through a lower-dimensional latent space. A CAE (Convolutional AutoEncoder),
instead, contains, in the encoder part, a stack of convolutional andmax-pooling layers
before the fully connected layer and, in the decoder part, a stack of up-sampling and
de-convolutional layers after the fully connected layer. It has been shown [45] that
CAE are better suited, with respect to AE, for image processing and reconstruction
tasks, due to the full utilisation of the CNNs capacity to extract a hierarchical set of
features from the images. These have been proven to show a better performance over
shallow neural networks when working with noisy or complex images. Moreover,
the combination of a convolutional and max-pooling layer allows the higher-layers
representations to be invariant to small rotations and translations thus helping with
the TOLIMAN satellite inevitable jitters and translations.

In recent years AEs have been applied to solve a wide range of problems in the
Astrophysical context; to model the Point Spread Function of Wide Filed Small
Aperture Telescope [20], to uncover and separate the faint cosmological signal from
the epoch of reionization [24], to classify galaxies Spectral Energy Distributions
[12], to identify Strong Lenses candidates in the simulated data of the Euclid Space
Telescope [5] and to solve the Star—Galaxy classification problem [18]. Moreover
in the fields of Computer Vision and Image Processing, AEs have been successfully
used to recover structured signals from natural images [28], for image compression
[1, 10, 37, 38, 41], achieving compressing performances similar or better than the
JPEG 2000.

Encouraged by the results obtained in literature in lossless image compression
and signal recovery from images through AEs, we decided to develop our custom
CAE architecture to recover the astrometric signal from the TOLIMAN simulation
images. Sect. 7 contains an in-detail description of the architectural design, given the
peculiar nature of the scientific problem.

7 Model Architecture

In this section we take implement knowledge detailed in Sect. 6 to build the actual
CAE architecture that compresses the TOLIMAN simulated images into a latent
space that showed a periodic trend with time. Some of the architectural choices came
from our knowledge of the physical problem, some from the expected behaviour of
the network, and others were discovered on a trial-and-error basis.
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Fig. 6 Architecture of the Deep Convolutional Auto-Encoder

Fig. 7 Comparison Between
Rectified Linear Unit and
Exponential Linear Unit
activation functions

Figure6 shows the overall architecture of the CAE. Each convolutional and de-
convolutional layer is followed by an Exponential Linear Unit (ELU) activation
function. It has been shown by [6] that this function is able to capture the degree of
presence of particular phenomena (the signal) and not its absence, thus creating in
the network a complex weight space, chains of connections specialised in solving
particular tasks (like encoding the signal). Moreover, since ELU may have negative
values, it pushes the mean of the activations closer to zero. Having mean activations
closer to zero causes faster learning and convergence. Said that, ELU is very similar
to RELU, except for negative input values. In fact ELU becomes smooth slowly until
its output equals −α where RELU sharply smooths (Fig. 7).

For negative activations, RELU’s gradient will be 0 and this may prevent the
network weights to be adjusted during descent. This means that all the affected
neurons going into that state will stop, responding to variations in input (being the
gradient 0 there is no input that can make them change, they have reached a local
minima from which they are unable to escape). This is called dying RELU problem.
Apart from the described computational problem,RELU is less responsive to negative
activations, something that may harm the signal reconstruction in the latent space



Periodic Astrometric Signal Recovery Through Convolutional … 187

for all images where the binaries separation is smaller than their mean separation in
the training set. For all these reasons, we chose ELU as the activation function of all
hidden layers.

The Network latent space was chosen to be uni-dimensional (represented by the
single ATOM in Fig. 6), for the following reasons: (i) when a higher dimensional
latent space was used, the Pearson correlation coefficient between the latent vari-
ables was found to be compatible with a value of 1.0; (ii) given that the separation
of the star’s PSFs is radial, and, given that the only varying feature in the images
is the signal, it seems reasonable to think that the only information the network
needs to recover from the latent space in order to decode, and thus reproduce, the
images is the signal itself. The remaining constant information (pixel luminosity
and image geometry) can be stored in the network weights. In literature, Deep Neu-
ral Networks tend to employ two types of loss functions: the Mean Square Error
(MSE) and entropy-based loss function like cross-entropy or binary-entropy or the
kullback leibler divergence. Although all types of loss functions have explicit prob-
abilistic interpretations, MSE is estimating the mean of any distribution, while the
entropy-based functions try tomaximize the likelihood of amultinomial distribution,
they differ in their application field. The latter type, with a logistic output, tends to
heavily penalize wrong class predictions and thus are specifically suited to work
in classification tasks where the decision boundary is significant. The first (MSE)
is very forgiving on misclassifications but is well suited to handle regression prob-
lems, where the distance between two predicted values is small. Since our scope is
dimensionality reduction, i.e. a regression problem, the MSE was chosen. To test
the quality of the image reconstruction, we computed the mean MSE (MMSE) and
the mean Structural Similarity Index (MSSI), [43], between all the available images
and their reconstructions. the SSI models any image distortion as a combination of
three factors: correlation loss, luminance and contrast distortions. When comparing
two images, the estimator takes into account the mean luminance difference between
the two images, the closeness of their contrast and their correlation coefficient. The
number of layers, filters and other layer parameters were heuristically chosen through
a trial-and-error campaign.

8 Signal Analysis

As the reader can see from the workflow figure (Fig. 1), the second step in the pro-
posed pipeline is to perform the Signal Analysis in order to unveil periodic trends in
time. For these reasons, in this section we present an overview of the chosen method,
for instance the Lomb Scargle Periodogram technique, explaining the pre-processing
steps performed to compare the atom time series (see Sect. 7 and VanderPlas [42]
for details.)
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8.1 The Lomb-Scargle Periodogram

Themost commonly used tool for period searching in irregular cadence astronomical
light curves is the Lomb-Scargle periodogram [LSP, 25, 33, with 4000 citations]
that assumes a sinusoidal periodic behavior. It is a generalization of the Schuster
periodogram in Fourier analysis

Ps( f ) = 1

N

∥∥∥∥∥
N∑

n=1

gne
−2π i f tn

∥∥∥∥∥
2

, (11)

but for irregularly cadences. TheLSP stands out as a robust procedure to build a power
spectrum in order to detect periodic components in unevenly sampled datasets. In
the uniform sampling regime, the Schuster periodogram encodes all of the relevant
frequency information present in the data. This definition can be generalized to
the non-uniform case, which is the scenario we explore here. It follows that the
generalized form of the periodogram addressed by [33] takes the form:
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where τ is specified for each f to ensure time-shift invariance:

τ = 1

4π f
tan−1

( ∑
n sin(4π f tn)∑
n cos(4π f tn)

)
. (13)

This modified periodogram differs from the classical periodogram only to the extent
that the denominators

∑
n sin

2(2π f tn) and
∑

n cos
2(2π f tn) differ from N/2, which

is the expected value of each of these quantities in the limit of complete phase
sampling at each frequency.

8.2 Atom Time Series Analysis

Toestimate the period of the atom time series,weused theLombScargle Periodogram
and to validate the goodness of the period estimation, we employed the following
metrics:

• False Alarm Probability (FAP): encodes the probability of measuring a peak of a
given height (or higher) conditioned on the assumption that the data consists of
Gaussian noise with no periodic component;

• Full Width at Half Maximum (FWHM): this expresses the extent of a function
produced by the difference between the two extreme values of the independent
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variable at which the dependent variable is equal to half of its maximum value.
Treating the FWHMas an error measure, we derived an error on the period through
the following expression:

P = 1

f (peak)
(14)

�P = 1

f (peak)2
×

[
f

(
peak + FWHM

2

)
− f

(
peak

FWHM

2

)]
(15)

where peak stands for the peak of the power spectrum and f (peak) its relative
frequency.

In order to compare the atom time series and the signal, we standardized both
of them, i.e. with subtracted to both time series their mean values and divided by
their standard deviations. This preprocessing step was needed due to the Network
inability to perfectly recover the signal amplitude in the latent space.

9 Experiments and Results

This section describes all the experiments performed with the CAE to compress the
images to a lower-dimensional representation, showing a periodic trend in time, i.e.
a latent space that preserved the signal, analysing the compressed representation in
search of a periodic signal in time.

Before deploying the model on the simulations containing the signal with an
amplitude a factor of 10−6 smaller than the pixel dimension (for details on the sim-
ulations see Sect. 4) and the realistic binaries PSFs flux ratio, the Network encoding
capabilities were tested on images containing signals with amplitudes respectively
10−2, 10−3, 10−4, 10−5 smaller than the pixel dimensions, equal flux PSFs (the bina-
ries PSFs presented the same flux) and an image peak value of 109 photons and
photon noise arising from the Poisson statistics. Due to the absence of any realistic
noise components (jitter, rotations, aberrations etc.), each image was cropped with a
256 × 256 pixels window centred around the image barycenter. This preprocessing
was needed in order to eliminate any spurious shift in the image pixels that could
have compromised any training attempt capable of extracting the signal from the
images. In fact, both the max-pooling and convolutional layers (see Sect. 6) are not
shift-invariant and, as clearly shown in [44], the presence of a shift can completely
change the outcome of these operations unpredictably. Each dataset thus contains
1095 single-channel centred images of which 985 were used for training and 110 for
validation. The network was trained for 10, 000 epochs. The signal is sinusoidal with
a period of 356 days and thus it performs three complete cycles in the 1095 images.

The final MMSE and MSSI on the validation set are found to be respectively
4.4 × 10−8 and 0.999938 and thus the images are reconstructed with a precision
good enough (with respect to the accuracy needed) to recover the signal. Although
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Fig. 8 Example of the signal reconstruction after training the network. The first row contains a
random subset of simulated Toliman images, the second row shows their respective reconstructions
produced by the trained network

the image reconstruction capability of the network directly correlates with these
losses (as one should expect), we do not find any direct correlation with the signal
reconstruction capabilities. Although after 1000 epochs the MSE Loss gradient flat-
tened, for some reasons the latent space began showing an increasing sinusoidal trend
in time with an increasing number of epochs. To have a loss function that correlates
with the signal reconstruction in the latent space, we would need an architecture
that makes use of the time dimension of the images: something not anticipated at
the time of the publication of this work. For this reason, the network is encoding
only the detection of the signal and not its amplitude. In order to make sure that the
periodic trend observed in the latent space was coming from a signal injected in the
images and not from any other periodic trend (in time) in the images or by chance,
the Network was run on a blind set of simulations of which some contained a signal
and some did not. The Network latent space did not show any periodic trend for all
the simulations with no signal injected or, even if a period was recorded, the resulting
FAP (see Sect. 8) would be extremely low (Fig. 8).

Table1 shows the result of applying the method of compressing the signal using
Deep Convolutional Auto-Encoders (CAE) and afterwards using Lomb Scargle Peri-
odogram to analyse this compressed representation. This table shows that the pro-
posed method is able to capture the signal with very low FAP and reasonable relative
error, when compared with the error obtained by direct analysis of a perfect signal.
The Signal and Atom time series, and their relative Lomb Scargle Periodogram, are



Periodic Astrometric Signal Recovery Through Convolutional … 191

Table 1 Period found with the Lomb Scargle Periodogram and relative error and FAP

Time Series Period FAP

Signal 0.33 ± 0.05 0

Atom 0.33 ± 0.06 7.2 × 10−68

Fig. 9 In the left panels, a perfect signal is represented in the top and the relative Lomb Scargle
Periodogram obtained from its analysis is represented in the bottom. In the right, a time series from
the atoms obtained with the deep convolutional auto-encoder applied to TOLIMAN simulation
with a 10−6-level astrometric shifts is shown on the top, while its Lomb Scargle Periodogram is
represented in the bottom. The power peaks and their relative FWHM are shown in red over the
power spectrum

shown in Fig. 9. In yellow we highlighted the power peak and the FWHM of the
power spectrum around that peak.

9.1 Discussion of Results

Section9 describes both the Network reconstruction capabilities and the analysis on
the atom time series to find its periodicity. We have shown that the found periodicity
is compatible with the injected astrometric signal period and thus that the architecture
is able to recover the signal directly from the TOLIMAN simulation images. One of
the main current issues is the lack of correlation between the Network reconstruction
of the TOLIMAN images and the presence of a periodic trend in the atom time series.
Since the Network is only training with spatial information and that the used loss
(MSE) only takes into consideration the ability to reconstruct the input images, in
reality there is no encoded reason why the latent space should present a sinusoidal
trend with time. The only thing that the latent space should be encoding is “how
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to reconstruct the images” and nothing else. That being said, given our knowledge
of the sinusoidal nature of the astrometric signal and being the astrometric shift the
only element changing through the images, we do not see any reason why the latent
space should not present a sinusoidal trend with time, regardless the fact that we did
not apply any constrain (on the architectural level) to force it. As seen in Fig. 9, in
fact, given enough epochs, the time series actually shows a sinusoidal behaviour.

A necessary step forward in this work is to produce simulations with increasing
noise realism and complexity, in order to evaluate if Deep Learning can still be
used to recover the astrometric signal. It must be expected that this simple approach
would fail to recover the signal if spatial transformations invariance is achieved on
an architectural level.

10 Conclusions

In this work, we have shown how Deep Learning, in particular deep convolutional
autoencoders (CAE) can be used to extract, in a completely unsupervised way, peri-
odic astrometric signals with amplitudes of the order of 10−6 with respect to the
size of a pixel. This is the magnitude of the signals that would be produced by an
Earth-like planet at the habitable zone of a star in the Alpha Centauri binary system
(see Sect. 2).

We presented a detailed explanation of the adopted network architecture (see
Sect. 7) and of the simulations used, which were created using FFT techniques (see
Sect. 4).Although the present simulations do not yet contain some realistic systematic
noise components, such as telescope jitter, rotations and aberrations, they pose a
significant challenge to classical unsupervised techniques, due to the small amplitude
of the signal with respect to the pixel size. We have shown that, from the obtained
CAE latent space, we can obtain a time-trend that can be analysed for periodicity,
using any time-domain signal extraction technique. Here we used a standard Lomb
Scargle technique (see Sect. 8), and were able to find a period consistent with that of
the injected signal (see Sect. 9).

Finally, we note that in this work we only explored a fully unsupervised method
for the compression, although semi-supervised and hybrid methods can be a natural
extension, by considering that we may constrain the problem’s dimensionality—
for instance, a first-order approximation of the shape of the PSF. A further step
will be the generation of increasingly realistic systematic noise contributions, to
design network architectures that can handle them and still allow for detection of
the planetary signal. This work opens an exciting path that we believe should be
further studied, towards the extraction of periodic signals of binary systems at the
milliarcsecond level, directly from times series of satellite imaging data.2

2https://cosmostatistics-initiative.org/focus/toliman1/.

https://cosmostatistics-initiative.org/focus/toliman1/
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