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Abstract: In the Big Data era, sampling remains a central theme. This paper investigates the charac-
teristics of inverse sampling on two different datasets (real and simulated) to determine when big
data become too small for inverse sampling to be used and to examine the impact of the sampling
rate of the subsamples. We find that the method, using the appropriate subsample size for both the
mean and proportion parameters, performs well with a smaller dataset than big data through the
simulation study and real-data application. Different settings related to the selection bias severity are
considered during the simulation study and real application.
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1. Introduction

Due to the development and evolution of new IT tools in the new millennium, there is
a vast amount and growing availability of heterogeneous, structured, and unstructured
data, better known as “Big Data”. The term “Big Data”, already used in 1941 to quantify
the so-called information explosion, is commonly used in every scientific research field
and every business world sector. De Mauro et al. (2015) [1] highlighted that Big Data is an
“information resource”, since this entity is identifiable and does not depend on the field
of application. They proposed the following formal definition: �Big Data represents the
information assets characterized by high volume, velocity and variety to require specific
technology and analytical methods for its transformation into value�.

Due to the opportunities offered by using new sources and big data, the field of statis-
tics has moved towards the modernization of methods and tools with a scientific revolution
in which the datum becomes the raw material for change. In this cultural revolution, sam-
pling plays a renewed but highly crucial role. Although sampling was born from the lack
of data about the target population, in the era of “Big Data”, where a large production of
and a quick availability of data are simple, some “classic” statistical techniques on “small”
samples and statistical inference seem useless. However, big data hide many pitfalls includ-
ing relevant and flattened relationships and information, heterogeneity, etc., and a large
amount of data hides or highlights relationships when they exist or do not exist. The main
problem is that big data are often not the result of a priori planned statistical surveys. Big
data can be considered a non-probabilistic sample of a target population, and inference
cannot be made [2]. Non-sample biases usually affect non-probabilistic samples [3]. These
include coverage errors, which are the leading cause of the selection bias in big datasets.
The results are probably valid for the sample units (internal validity) in these cases. Still,
the results cannot be generalized (lack of external validity), and inference cannot be made.

From a practical point of view, there are many application areas where big data are
currently being used with excellent prospects and potential without, however, considering
that big datasets are non-probabilistic samples and are affected by selection bias, for
instance, social media [4], blogs, and web search keywords to trace desires, opinions, and
sentiments; emails and phone contacts to trace social relationships; transaction records of
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our purchases to proxy for lifestyle and shopping patterns; records of our mobile phone
calls and GPS trajectories to trace individuals’ movements; and so on [5]. In education and
training, data on student performance, learning mechanisms, and responses to different
pedagogical strategies can help to better understand student knowledge and accurately
assess student progress, mobility, and chain migrations [6]. Moreover, in finance, business,
marketing, and social marketing, so-called business data are gaining more relevance as more
and more companies collect and produce huge amounts of data and contextual information.
Further, big data are being considered to find solutions to manage and optimize the logistics
and mobility of multimodal transportation networks in smart cities. A datacentric approach
can also help to improve the efficiency and reliability of a transportation system. Moreover,
georeferenced data fusion can help to obtain an efficient urban planning system that mixes
public and private transport, offering people more flexible solutions. In energy resource
optimization and environmental monitoring, the data related to electricity consumption
and the analysis of load profiles are very important. Big datasets are analyzed entirely in
these application domains without recourse to sampling or the considered populations.
Recently, big datasets have been treated with sampling-related approaches, i.e., samples of
the big datasets have been analyzed that could allow inferential analyses to be conducted.
For example, Ahlawat et al. (2019) [7] applied a cluster heads-based data-level sampling
solution, which inherited the edge of k-means and fuzzy C-means clustering approaches.
Abdullahi et al. (2019) [8] used a mechanism to identify bandings in large “zero-one”
N-dimensional datasets, using a sampling technique. Liu and Zhang (2019) [9] focused on
the sampling techniques used for big data profiling. Hasanin et al. (2019) [10] analyzed two
case studies with six sampling approaches to investigate the effect of severe class imbalance
on big data analytics.

From a statistical point of view, the methods to analyze big data that have been
proposed in the scientific literature can be classified into three macrogroups: “divide and
conquer” methods based on the original big dataset’s subdivision into small blocks that are
manageable by the current computer processing unit; “fine to coarse” methods based on
the rounding of parameters; and sampling methods based on a subsample of the original
big dataset [11]. These methods enable solving computational problems and optimizing
the minimum necessary resources. Still, they do not affect the estimation procedure, and it,
therefore, remains influenced by the assumptions and errors, especially the coverage errors,
that caused the selection bias. The methods to correct the selection bias can be applied
at the “unit-level” or “domain-level” [12]. Based on information from auxiliary variables
related to the variable of interest, they consider the selection bias and determine what
comes from reliable sources. Unit-level methods include: “pseudo-design” methods based
on the so-called “reweighting” of individual records (e.g., post-stratification [13] and the
Raking algorithm [14]), methods based on a modeling approach (e.g., econometric selection
models, “small area” estimation approaches, Bayesian or machine learning approaches,
etc.); “data linking” approaches, in which the data are linked on an individual level with
data of a target population frame or a sample of it to reweight or model the estimates.
Domain-level methods include: “pseudo-design” methods based on the reweighting of
the domain estimates (i.e., aggregated values for subpopulations or even for the entire
population) and methods based on a modeling approach that assume the availability of
an additional data source. These methods are applied to the whole big dataset and do not
enjoy the computational advantages initially presented with the divide and conquer, fine
to coarse, and sampling techniques.

One method that could possibly exploit the potential of big data and enable inference,
considering also the non-sampling errors produced by the other V characteristics, is “inverse
sampling”, first proposed by Hinkins et al. (1997) [15] and deepened by Rao et al. [16].
In his original formulation, Hinkins assumed working with a “bad” sample, affected by
a non-probabilistic procedure to select the statistical units and by bias due to the use of
data that were inaccurate and not necessarily structured (either by the sampling scheme
or by the realization of it): he proposed a resampling scheme that led to the formation
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of a better subsample, referable to a simple random sample for the population (and not
to the “poorly realized” sample). In this paper, we consider the so-called “novel inverse
sampling”, based on the classical inverse sampling, proposed by Kim and Wang (2019) [17],
where the first bad-realized sample is, indeed, the big data. So, the computational aspects
and the selection bias problem can be solved to obtain a probabilistic sample and valid
inferential results. Many of the methods and applications for big data described above and
in the literature, often do not consider the characteristics of velocity, variety, and veracity,
focusing their attention only on the high volume to reduce the big data to a simple large
dataset. Variety, veracity, and velocity influence, in fact, the availability of the dataset that
moves too fast, presenting a different structure and architecture than the classical database
and a low accuracy. So, if the volume affects the inference and sampling errors, the other
aspects affect the non-sampling errors that, unfortunately, are neglected.

Although big data represent the information resources characterized by high volume,
velocity, and variety that require specific technologies and analytical methods to transform
into value, we will only consider volume in this paper. Velocity and variety will be
assumed a priori as the big datasets’ characteristics. This paper explores the limits of
inverse sampling for large datasets that are become smaller and smaller, assessing to what
limit inverse sampling can be used. In addition, an analysis is conducted to assess the best
sampling size of subsamples to extract, conducting evaluations in terms of the sampling
rate. This provides empirical threshold values that allow us to determine the extent to
which the results are valid.

The paper’s outline is as follows: after the introduction and background, in Section 2,
the methodology is introduced. In Section 3, the simulation study and real case analysis
are presented. Some final remarks follow.

2. Methodology

Kim and Wang (2019) [17] proposed a method based on “inverse sampling” to solve
computational aspects and the selection bias problem to obtain a probabilistic sample and
valid inferential results. Inverse sampling, first proposed by Hinkins et al. (1997) [15] and
deepened by Rao et al. (2003) [16], is a particular case of two-phase sampling also called
double sampling [18]. Inverse sampling was born as an approach to resample from a
sample deriving from an already existing complex sampling plan (i.e., based on a complex
extraction procedure) to obtain a data structure that was easier to analyze and as similar as
possible to a simple random sample. It is graphically represented in Figure 1.

Figure 1. Scheme of the inverse sampling algorithm. Source: [15].

For a further description of the algorithm, refer to [15]. For more details on the defini-
tions of extraction probabilities, inclusion probabilities, algorithms for the various existing
sampling plans, the building of the estimator of the generic parameter θ, the estimator’s
properties, and the estimator’s variance, refer to Rao et al. (2003) [16]. Kim and Wang
(2019) [17] proposed a method called “novel inverse sampling”, based on the classic inverse
sampling, in which they treated the selection bias in big datasets with the approach of
reweighting. Specifically, the first phase sample was the big dataset over which there was no
control and was subject to selection bias. The second phase sample was a subsample of the
big dataset.

Formally, Kim and Wang (2019) [17] considered a finite population {yi : i ∈ U}, where
yi is the i-th observation of the quantitative variable under study Y, and U = {1, . . . , N} is
the corresponding index with a known size equal to N. There is a big dataset {yi : i ∈ B},
where {B ⊂ U} is considered a non-probabilistic sample from the finite population {yi : i ∈
U}. Let NB denote the size of the big dataset. We also define an indicator variable δ such
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that δi = 1 if {i ⊂ B}, and δi = 0 otherwise. We assume that yi is observed if δi = 1, which
leads us to consider the extraction process of the units yi similar to a Bernoulli process. The
parameter of interest is the population average ȲN = N−1 ∑N

i=1 yi. The mechanism of δ is
crucial to determining the accuracy, measured by the total error influenced by the selection
bias, of ŶB as an estimator of ȲN . Suppose the random mechanism for δ is based on the
Bernoulli sampling, where the indicator variables are independent and follow a Bernoulli
distribution with probability fB, through several steps. In that case, the total error can be
expressed as ([19]):

Eδ

{
(ȲB − ȲN)

2
}
= Eδ

{
ρ2

δ,Y

}
︸ ︷︷ ︸
Data Quality

×
(

f−1
B − 1

)
︸ ︷︷ ︸
Data Quantity

× σ2
Y︸︷︷︸

Problem Di f f iculty

=

= DI × DO × DU

(1)

where ρδ,Y is the Pearson correlation coefficient between δ and Y.
Efron (1979) [19] proved that only three factors determine the total error:

• an increase in the quality of the data by reducing Eδ

{
ρ2

δ,Y

}
= DI , where DI is the

“data defect index”; this is the goal of all probabilistic sampling plans;
• an increase in the quantity of the data by reducing

(
f−1
B − 1

)
= DO, where DO

represents the “dropout odds”: this is the advantage of big data; however, the impact
of DO is much smaller than DI ;

• a reduction in the difficulty of the estimating problem by reducing the degree of un-
certainty σ2

Y = DU , where DU represents the “degree of uncertainty”, with additional
information.

Data quality is the most critical factor in accuracy and the most difficult to evaluate.
For the sample average, it is captured by ρ2

δ,Y because it accurately measures both the
direction with the sign and the intensity of the selection bias caused by the δ mechanism.
The crucial result is that, for a fixed sampling rate 0 < fB < 1 and problem difficulty
DU = σ2

Y, the MSE for the sample average decreases at a rate of N−1
B , if DI is controlled at

N−1. Therefore, Efron (1979) [19] ensured that all known probabilistic sampling plans were
included in the definition, regardless of the fB or the estimator choice.

In the building of the inverse sampling estimator, the first step is to control the selection
bias through a reweighting approach characteristic of the pseudo-design methods that use
reliable sources through auxiliary variables linked to the variable of interest. The second
step is to select the second phase’s samples from the big dataset, with each unit’s selection
probability proportional to the previously calculated weights. The final step is to carry
out the usual estimation procedure on the extracted samples. The central assumption is
that the selection process mechanism is conditionally independent of Y given the auxiliary
variable X [20]. We hypothesize that the selection mechanism is MAR (missing at random)
in a missing data framework [21]: P(δ = 1 | X, Y) = P(δ = 1 | X).

The generic inverse sampling estimator proposed is the simple average of the g
subsample estimators:

θ̂B2 =
1
g

g

∑
j=1

θ̂∗B2 j (2)

where:
θ̂∗B2 j = ∑

i∈B2 j

1
πiB2|B

(wiByi) = n−1 ∑
i∈B2 j

yi. (3)

The crucial point is the choice of the first-order conditional inclusion probabilities:

πiB2|B = P(i ∈ B2 | i ∈ B) = n wiB, (4)
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where the wiB are the “importance weights”, and n ≤ 1/ maxi∈B wiB, with πiB2|B ∈ (0, 1].
To estimate wiB, a calibration approach on the known population totals is used to modify
the weights [22], along with a reweighting method [23]. The parametric probability density
function for the auxiliary variable x is approximated using the so-called “Kullback–Leibler
Information” as the distance metric criterion [24]. The solution is:

wi ∝ exp
(

xTλ
)

. (5)

The solution of λ can be provided through iterative methods.
The variance of the inverse sampling estimator is ([16]):

Var
(
θ̂B2

)
=

1
g

g

∑
j=1

Var
(

θ̂∗B2 j

)
− 1

g

g

∑
j=1

(
θ̂∗B2 j − θ̂B2

)2
(6)

For the first term, we can apply the Horvitz–Thompson formula ([25]):

Var
(

θ̂∗B2 j

)
= ∑

i∈B2

∑
l∈B2

πilB2|B − πiB2|BπlB2|B
πilB2|B

wiByi
πiB2|B

wlByl
πlB2|B

, (7)

where πilB2|B = P(i ∈ B2 ∩ l ∈ B2 | i, l ∈ B) is the second-order conditional inclusion probability.
Once the estimator and variance have been obtained, there is the possibility of testing

the hypotheses parameters, constructing confidence intervals, etc. Starting from a non-
probabilistic sample such as a big dataset, through inverse sampling, which allowed us to
consider the effect of selection bias, we built some selection probabilities for the units. So,
we obtained a probabilistic sample, an estimator, an estimator’s variance, and a theoretical
basis for any inferential analysis. Therefore, our proposal worked by following these
steps: through a simulation study and a real application, we explored the limitations of
inverse sampling in cases where there were increasingly smaller big datasets, to empirically
estimate the threshold values of the sampling size such that the inverse sampling continued
to be a valid method. We evaluated the method in terms of bias, standard errors, and
coverage of the estimators.

3. Numerical Study

This section shows the results of the studies conducted on simulated and real data to
answer two questions, i.e.:

• does the inverse sampling work with big data that are increasingly smaller in volume?
• what is the “optimal” sampling size for subsamples extracted from big data?

To do this, we assumed that veracity and variety were inherent characteristics of
the big data. In the simulated case, we analyzed two different parameters (mean and
proportion), while in the real case, we focused on proportion.

3.1. Simulated Case

A simulation study was carried out to evaluate our research question empirically.
The idea was to assess how the bias changed as the size of the dataset on which we were
working varied to determine whether the inverse sampling formalized for big datasets can
be used in lower-dimensional contexts. The size of the population under study was constant
(equal to 1,000,000); this was generated in the same way as the simulation presented by
Kim and Wang (2019) [17] (to maintain the comparability of results). Then,

yi = 5 + 3xi + ei, i = 1, . . . , N,

where xi ∼ Exp(1), and the Gaussian noise was defined as ei ∼ N(0, x2
i ). From the

population thus defined, several datasets D2 having the same amount of bias but different
sizes N2 were extracted. The extraction of the biased dataset was also defined as in Kim and
Wang (2019) [17]. So, a source of selection bias was introduced into the big data extracted
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from the newly generated population. Then, we defined an inclusion indicator δi, generated
as δi ∼ Ber(pi), where the pi was defined as

logit(pi) = φ(xi − 2).

The role of the φ parameter is to introduce the bias that can be given by the variety,
velocity, or veracity components typical of big data: the higher the value (considering the
absolute value), the higher the bias. Finally, we defined nIS as the size of the extracted
subsample from the datasets D2. In Table 1, we report the various values of N2, φ, and
nIS used.

Table 1. Values of N2, φ, and nIS used in the simulation study.

N2 φ nIS

1000 0.2 250
5000 0.5 500

10,000 0.7
20,000
30,000
40,000
50,000
100,000
200,000

First of all, we were interested in the result concerning the parameter of the mean. In
Figure 2, the trend of the bias for different fixed values of φ and the size nis, for various sizes
of the big data from which we extracted the subsamples, can be seen. In the six different
scenarios, as the size of the big dataset increased, the estimation bias decreased. This result
is entirely plausible, as a larger size of big data allows the inverse sampling to have a higher
extraction capacity for observations that helps to constrain the selection bias of the big
data. As the bias increased, the estimation bias increased, but this tended to even out when
working with larger sizes of big data, i.e., over 50,000.

Figure 2. Bias for the mean parameter, according to the size of the big data, φ, and nis.
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Figure 3 shows the coverage rate of the estimator. The six different scenarios are also
shown for the coverage rate, varying the N2. In the case of the subsamples with a size equal
to 250, we observed almost identical coverage along with all the possible values of N2. On
the other hand, in the case of the subsamples with a size of 500, we observed that working
with small sizes of big data led to a substantial reduction in coverage when working in
contexts with medium or strong components of selection bias.

Figure 3. Coverage rate for the mean parameter, according to the size of the big data, φ, and nis.

To determine the trend for the same quantities (along with the standard errors), we
evaluated the graphs as a function of the sampling rate, defined as nIS

N2
. Figure 4 shows

the reference graphs. Beginning with the bias trend, as the sampling rate increased, the
bias of the estimated parameter increased. This result can be attributed to the fact that, as
we sampled (without repetition) more observations from the biased big data, more of the
non-bias component was present in the subsamples. In fact, in scenarios where the bias
component was smaller, the bias growth was significantly lower than in cases where φ
was larger.

For the standard errors, it can be seen that there were no substantial differences as the
amount of bias or the sampling rate changed. In contrast, significant differences occurred
according to the size of the extracted sample: the larger the size of the extracted subsample,
the larger the standard error of the estimator.

It was possible to analyze the trend of the coverage rate: in the case where the bias
was slight, the confidence intervals had optimal values regardless of the sampling rate;
in the middle scenario, the coverage remained optimal, although, for a high sampling
rate, considerably less coverage was observed. Finally, the coverage obtained with a high
sampling rate dropped dramatically in the high-bias case. The declines in coverage can be
attributed to the increase in bias observed in the same scenarios. This increase also did not
involve the standard error, thus causing the construction of poor confidence intervals.

From these results, without knowing how high the bias component was, sampling up
to 10% of the big data provided good results.

Table 2 reports the values shown on the graph and the standard errors of the estimates.
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Figure 4. Bias, standard error, and coverage rate for the mean parameter, according to the ratio and φ.
Blue points nIS = 250, green points nIS = 500.

Table 2. Bias, standard errors, and coverage rates of the inverse sampling estimates of the mean,
according to the bias, dataset size, and extracted subsample size.

nIS = 250 nIS = 500

φ N2 Bias SE Cov. Rate φ N2 Bias SE Cov. Rate

0.2 2 1000 0.039 0.837 0.964 0.2 1000 0.082 0.612 0.973
5000 0.001 0.813 0.953 5000 0.022 0.584 0.961

10,000 0.005 0.815 0.944 10,000 0.009 0.578 0.949
20,000 0.005 0.814 0.941 20,000 0.002 0.575 0.954
30,000 0.008 0.813 0.940 30,000 0.004 0.577 0.944
40,000 0.008 0.810 0.951 40,000 0.004 0.574 0.951
50,000 0.,000 0.811 0.947 50,000 0.003 0.575 0.948

100,000 0.005 0.815 0.953 100,000 0.003 0.574 0.945
200,000 0.004 0.812 0.945 200,000 0.005 0.575 0.948

0.5 1000 0.093 0.815 0.961 0.5 1000 0.201 0.602 0.803
5000 0.013 0.790 0.950 5000 0.035 0.564 0.956

10,000 0.011 0.787 0.946 10,000 0.009 0.558 0.946
20,000 0.003 0.783 0.937 20,000 0.010 0.558 0.953
30,000 0.004 0.788 0.942 30,000 0.005 0.556 0.957
40,000 0.010 0.781 0.944 40,000 0.005 0.556 0.942
50,000 0.008 0.785 0.942 50,000 0.003 0.557 0.952

100,000 0.003 0.787 0.950 100,000 0.001 0.556 0.957
200,000 0.001 0.785 0.946 200,000 0.002 0.555 0.956

0.7 1000 0.118 0.798 0.950 0.7 1000 0.282 0.593 0.552
5000 0.029 0.772 0.956 5000 0.044 0.549 0.955

10,000 0.013 0.765 0.947 10,000 0.025 0.545 0.958
20,000 0.013 0.764 0.953 20,000 0.006 0.542 0.959
30,000 0.001 0.762 0.946 30,000 0.,000 0.540 0.949
40,000 0.002 0.761 0.946 40,000 0.005 0.539 0.950
50,000 0.004 0.761 0.941 50,000 0.004 0.540 0.943

100,000 0.003 0.762 0.949 100,000 0.004 0.541 0.948
200,000 0.006 0.761 0.949 200,000 0.001 0.541 0.947
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For the simulation study on the proportion estimator, the bias trend for the six settings
as N2 varied is shown in Figure 5. In the first case with subsamples equal to 250, the bias
was almost always close to 0 in the case with lower bias, while the bias of the estimator
increased (especially with very small sizes of big data) in the cases with higher bias. The
scenarios did not change when extracting subsamples with a size equal to 500, where a
higher bias was observed when the N2 was small.

Figure 5. Bias for the proportion parameter according to the size of the big data, φ, and nis.

Finally, Figure 6 shows the behavior of the coverage rate of the estimator as the six
scenarios changed. Here, there was a somewhat atypical trend of the coverage, as it
decreased significantly when the size of the big data increased. This was probably due to
the decrease in the standard errors of the estimate, while the bias did not become lower.

The evaluations made earlier for the bias remained the same. As the sampling rate
increased, the bias increased accordingly for high-bias scenarios. On the other hand,
different considerations needed to be made for the standard errors. Again, in this scenario,
subsamples with larger numbers had a slightly larger standard error, but now the variability
of the estimator increased as the sampling rate increased. This was reflected in the coverage
rate of the confidence intervals, which had the opposite trend from those seen in Figure 4:
the coverage rate increased as the sampling rate increased, since the standard error also
increased, so the intervals had larger widths.

Although the individual components of the estimator had different behaviors than
in the case of the mean, the conclusions were still the same. The results for the bias and
coverage seemed to have the best tradeoff with subsamples of about 10% of the big data.

Table 3 shows the values of the bias and coverage shown in the figure and with the
standard deviation values.

For the sampling rate, the results for the proportions are presented in Figure 7.
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Figure 6. Coverage rate for the proportion parameter, according to the size of the big data, φ, and nis.
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Figure 7. Bias, standard error, and coverage rate for the proportion parameter, according to the ratio
and φ. Blue points nIS = 250, green points nIS = 500.
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Table 3. Bias, standard errors, and coverage rate of the inverse sampling estimates of the proportion,
according to the bias, dataset size, and extracted subsample size.

nIS = 250 nIS = 500

φ N2 Bias SE Coverage
Rate φ N2 Bias SE Coverage

Rate

0.2 1000 0.004 0.212 1.000 0.2 1000 0.009 0.208 1.000
5000 0.002 0.147 0.992 5000 0.002 0.142 1.000

10,000 0.002 0.127 0.967 10,000 0.002 0.121 0.996
20,000 0.003 0.110 0.941 20,000 0.001 0.104 0.990
30,000 0.001 0.102 0.906 30,000 0.002 0.095 0.975
40,000 0.002 0.097 0.915 40,000 0.002 0.090 0.963
50,000 0.001 0.093 0.881 50,000 0.002 0.086 0.964

100,000 0.001 0.084 0.851 100,000 0.002 0.075 0.935
200,000 0.001 0.076 0.804 200,000 0.002 0.066 0.902

0.5 1000 0.019 0.218 1.000 0.5 1000 0.030 0.215 1.000
5000 0.012 0.151 0.983 5000 0.014 0.146 0.999

10,000 0.010 0.130 0.967 10,000 0.011 0.125 0.993
20,000 0.011 0.113 0.930 20,000 0.011 0.107 0.983
30,000 0.010 0.105 0.915 30,000 0.010 0.098 0.969
40,000 0.011 0.099 0.890 40,000 0.010 0.092 0.958
50,000 0.011 0.096 0.848 50,000 0.010 0.088 0.946

100,000 0.009 0.085 0.827 100,000 0.009 0.077 0.912
200,000 0.009 0.077 0.787 200,000 0.011 0.067 0.859

0.7 1000 0.030 0.225 0.999 0.7 1000 0.046 0.222 1.000
5000 0.021 0.155 0.982 5000 0.022 0.151 0.996

10,000 0.019 0.134 0.950 10,000 0.021 0.128 0.987
20,000 0.018 0.116 0.904 20,000 0.018 0.110 0.959
30,000 0.018 0.107 0.884 30,000 0.018 0.101 0.946
40,000 0.018 0.101 0.861 40,000 0.017 0.095 0.925
50,000 0.017 0.098 0.846 50,000 0.018 0.090 0.900

100,000 0.017 0.087 0.774 100,000 0.018 0.078 0.831
200,000 0.017 0.078 0.742 200,000 0.017 0.069 0.801

3.2. Real Case

The dataset used for the real case contained the university careers of all students
enrolled in Italian universities from 2017 to 2020. The statistical unit was a student enrolled
in that period. We did not consider students enrolled in telematic universities because a
parameter of interest was the proportion of enrolled “movers” (students whose residence
region did not coincide with the region in which they chose to study). We also did not
consider all new enrollments who had a year of birth before 1951. So, the dataset contained
1,149,504 observations. We considered this dataset the target population. A selection bias
component was introduced to verify the method’s real ability to correct this source of error
and the trend of the bias and coverage with the varied size of the biased big data. To
introduce the bias component, we selected units as in Kim and Wang (2019) [17]. For this
reason, we were interested in finding a variable linked to the variable under study. Among
the variables in the dataset, we decided to consider the “high school mark score”, because
we saw that as the “high school mark score” increased, the proportion of movers showed a
constant growth.

Since this dataset was population-based and, thus, by definition, free of selection bias,
the bias component needed to be present to introduce some of the effects provided by
velocity, variety, and veracity. To “create” this, the selection probability of the units was
defined as the sigmoid function (inverse of the logit function):

pi =
exp[φ(xi − 67)]

1 + exp[φ(xi − 67)]
(8)

where xi is the auxiliary variable for the i-th unit, and 67 is the first quartile of the “high
school mark score”. We tried the method using the same setting described in Table 1.

Figures 8 and 9 show the trends of the bias and coverage given the big datasets’ sizes
and other scenarios considered. Considering the case with subsamples of size 250, the
bias was remarkably reduced for the big data with a medium and high selection bias with
respect to the simulated case, with the distance from the true value of the parameter close
to 0. The coverage trend was almost equal to that of the simulated case, with a substantial
decrease as the size of the big data increased.
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Figure 8. Bias for the real case, according to the size of the big data, φ, and nis.

Figure 9. Coverage rate for the real case, according to the size of the big data, φ, and nis.

Figure 10 shows the bias trend, standard error, and coverage, according to the sampling
rate and amount of bias. The bias was slight in all the considered scenarios, and it tended
to decrease as the sampling rate increased. The evaluations of the standard error were
almost identical to those made in the simulations for the proportion estimator: it increased
as the sampling rate increased, just as the standard error was greater when the size of the
subsamples was 500. Finally, for the interval coverage rates, the conclusions were also the
same as for the simulation results: the coverage reached satisfactory values for sampling
rates above 5% (see Table 4).
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Figure 10. Bias, standard error, and coverage rate for the real case, according to the ratio and φ. Blue
points nIS = 250, green points nIS = 500.

Table 4. Bias, standard errors, and coverage rates of the inverse sampling estimates of the real case,
according to the bias, dataset size, and extracted subsample size.

nIS = 250 nIS = 500

φ N2 Bias SE Cov. Rate φ N2 Bias SE Cov. Rate

0.2 1000 0.001 0.186 0.999 0.2 1000 0.000 0.183 1.000
5000 0.002 0.128 0.989 5000 0.000 0.125 1.000

10,000 0.001 0.110 0.972 10,000 0.001 0.106 0.994
20,000 0.001 0.095 0.939 20,000 0.001 0.090 0.984
30,000 0.000 0.087 0.916 30,000 0.001 0.083 0.978
40,000 0.002 0.083 0.883 40,000 0.001 0.078 0.971
50,000 0.001 0.079 0.888 50,000 0.001 0.074 0.954

100,000 0.001 0.070 0.847 100,000 0.002 0.064 0.921
200,000 0.001 0.063 0.795 200,000 0.002 0.056 0.872

0.5 1000 0.000 0.186 1.000 0.5 1000 0.001 0.184 1.000
5000 0.002 0.128 0.990 5000 0.001 0.125 1.000

10,000 0.002 0.110 0.976 10,000 0.002 0.106 0.998
20,000 0.002 0.095 0.942 20,000 0.002 0.090 0.982
30,000 0.001 0.087 0.914 30,000 0.002 0.083 0.979
40,000 0.001 0.083 0.885 40,000 0.002 0.078 0.974
50,000 0.002 0.079 0.869 50,000 0.002 0.074 0.953

100,000 0.001 0.070 0.857 100,000 0.002 0.064 0.930
200,000 0.002 0.063 0.785 200,000 0.002 0.056 0.884

0.7 1000 0.000 0.186 1.000 0.7 1000 0.001 0.184 1.000
5000 0.001 0.128 0.988 5000 0.001 0.125 1.000

10,000 0.002 0.110 0.976 10,000 0.002 0.106 0.997
20,000 0.001 0.095 0.944 20,000 0.001 0.091 0.991
30,000 0.001 0.088 0.914 30,000 0.002 0.083 0.979
40,000 0.001 0.083 0.881 40,000 0.001 0.078 0.970
50,000 0.002 0.079 0.892 50,000 0.001 0.074 0.960

100,000 0.003 0.070 0.856 100,000 0.002 0.064 0.908
200,000 0.002 0.063 0.766 200,000 0.002 0.056 0.884
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4. Conclusions

Sampling plays a crucial role in the new era of big data. Inverse sampling exploits
big data’s potential and allows for inference. This paper investigated the limitations of
inverse sampling for big data, analyzing when big data became too small in volume for
inverse sampling and examining how much the method was affected by the sampling size
of the subsamples. We then provided optimal threshold values to use. Two studies were
conducted on simulated and real data, in which a selection bias component introduced the
effects of velocity, variety and veracity.

In the simulation study, we proved (in an empirical way) that the method worked
well even with a small dataset (with a size greater than or equal to 5000), and that the most
important thing was to consider a reasonable sampling rate for the big data. There were
some problems concerning the proportion parameter when the sampling rate was very
small (under 5%). In the real case, we confirmed the results of the simulated case, where
the coverage rate of the estimates increased according to the increase in the sampling rate.

Based on these results, inverse sampling is an excellent method for correcting selection
bias (and all the problems that follow) and not just when working with big data having a
very high volume. Even on smaller datasets affected by selection bias, the method proposed
by Kim and Wang (2019) [17] was successful. Therefore, this resampling technique may be
extended to more scenarios not directly linked to the big data framework.

It may be of interest to carry out sensitivity analyses for future developments. The
main assumption was about the MAR selection process. If this assumption is unlikely, one
solution would be to evaluate different estimation scenarios and determine how consistent
they are in terms of results. Another sensitivity analysis could be conducted by evaluating
changes in terms of estimation by eliminating the most “influential” observations (in
such a context, an influential observation is defined as an observation with an extreme
importance weight associated with it, a value far removed from the other values of the
importance weights).
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