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ABSTRACT
We present an application of self-adaptive supervised learning classifiers derived from the
machine learning paradigm to the identification of candidate globular clusters in deep, wide-
field, single-band Hubble Space Telescope (HST) images. Several methods provided by the
DAta Mining and Exploration (DAME) web application were tested and compared on the
NGC 1399 HST data described by Paolillo and collaborators in a companion paper. The best
results were obtained using a multilayer perceptron with quasi-Newton learning rule which
achieved a classification accuracy of 98.3 per cent, with a completeness of 97.8 per cent
and contamination of 1.6 per cent. An extensive set of experiments revealed that the use of
accurate structural parameters (effective radius, central surface brightness) does improve the
final result, but only by ∼5 per cent. It is also shown that the method is capable to retrieve also
extreme sources (for instance, very extended objects) which are missed by more traditional
approaches.

Key words: methods: data analysis – methods: statistical – globular clusters: general –
galaxies: elliptical and lenticular, cD – galaxies: individual: NGC 1399.

1 IN T RO D U C T I O N

The need to effectively exploit the scientific information contained
in current and future synoptic surveys has led to a renaissance of
interest in the application of data mining (DM) methods to astro-
nomical programmes. DM, in fact, seems to be among the few, if not
the only, ways to cope with the complexity and size of existing and
foreseen massive data sets such as those expected to be provided
by the Large Synoptic Sky Telescope (LSST). The DM methods,
however, are also very useful to capture the complexity of small
data sets and, therefore, can be effectively used to tackle problems
of much smaller scale. In this paper we used a variety of methods
provided by the DAta Mining and Exploration Web Application
REsource (DAMEWARE, http://dame.dsf.unina.it/beta_info.html)
for the identification of globular clusters (GCs) in the galaxy NGC
1399 using single-band photometric data obtained with the Hubble
Space Telescope (HST).

The identification and physical characterization of GC popula-
tions in external galaxies is of interest to many astrophysical fields:
from cosmology to the evolution of star clusters and galaxies, to
the formation and evolution of binary systems. The identification
of GCs in external galaxies usually requires the use of wide-field,
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multiband photometry, since in galaxies located more than a few
Mpc away they appear as unresolved sources in ground-based as-
tronomical images and are thus hardly distinguishable from back-
ground galaxies which introduce significant contamination prob-
lems. For such reason, GCs are traditionally selected using methods
based on their colours and luminosities. However, in order to min-
imize contamination and to measure GC properties such as sizes
and structural parameters (core radius, concentration, etc.), high-
resolution data are required as well which, for star clusters outside
the Local Group, are available only through the use of space facili-
ties (i.e. HST). Obtaining suitable HST data is however challenging
in terms of observing time since the optimal data sets should be
(i) deep, in order to sample the majority of the GC population
and ensure the high signal-to-noise ratio (S/N) required to measure
structural parameters (see e.g. Carlson & Holtzman 2001); (ii) with
wide-field coverage, in order to minimize projection effects as well
as to study the overall properties of the GC populations, which often
differ from those inferred from observations of the central region
of a galaxy only; and (iii) multiband, to effectively select GC based
on colours.

It is apparent that, in order to reduce observing costs, it would be
much more effective to use single-band HST data. Such approach
however requires to carefully select the candidate GCs based on
the available photometric and morphological parameters in order
to avoid introducing biases in the final sample (see below). Here
we intend to show that the use of properly tuned DM algorithms
can yield very complete data sets with low contamination even

C© 2012 The Authors
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/421/2/1155/1131204 by U
niversità degli studi di N

apoli user on 10 N
ovem

ber 2022



1156 M. Brescia et al.

with single-band photometry, thus minimizing the observing time
requirements and allowing us to extend such studies to larger areas
and to the outskirts of nearby galaxies.

The paper is structured as follows. In Section 2 we describe the
data used to test the various methods. In Section 3 we provide a
short methodological and technical introduction to DAMEWARE
and to some classification methods tested for the first time in an
astronomical context. In Sections 4 and 5 we describe the results of
the experiments and draw our conclusions.

2 TH E DATA

The data set used in this experiment consists of wide-field HST
observations of the giant elliptical NGC 1399 located at the heart of
the Fornax cluster. This galaxy represents an ideal test case since,
due to its distance (D = 20.13 ± 0.4 Mpc, see Dunn & Jerjen
2006), it is possible to cover a large fraction of its GC system (out
to >5Re) with a limited number of observations. Furthermore, it
is particularly challenging because, at this distance, GCs are only
marginally resolved even by HST; in fact, at NGC 1399 distance 1
Advanced Camera for Surveys (ACS) pixel corresponds to 2.93 pc
(1 arcsec = 97.7 pc). This data set was used by Paolillo et al. (2011)
to study the connection between GCs and low-mass X-ray binaries
(LMXB) and by Puzia et al. (in preparation) to study the structural
properties of the GC population. We summarize below the main
properties of the data set, and refer to these works for a more
detailed description of the observations and of data analysis.

The optical data were taken with the HST ACS (programme
GO-10129, PI: T. Puzia), in the F606W (broad V band) filter, with
integration time of 2108 s for each field. The observations were ar-
ranged in a 3×3 ACS mosaic, and combined into a single image
using the MULTIDRIZZLE routine (Koekemoer et al. 2002). The final
scale of the images is 0.03 arcsec pixel−1, providing Nyquist sam-
pling of the ACS point spread function (PSF). The field of view
(FOV) of the ACS mosaic covers 100 arcmin2 (Fig. 1) extending
out to a projected galactocentric distance of ∼55 kpc, i.e. 4.9re of

Figure 1. The FOV covered by the 3×3 HST/ACS mosaic in the F606W
band. The central field, with a different orientation, shows the region covered
by previous archival ACS observations in g and z bands.

Figure 2. Luminosity distributions of all detected (dotted line) and point-
like (e.g. with stellarity index >0.9, solid grey line) sourcesß within the
HST FOV. Also shown are the two additional subsamples discussed in
Sections 2 and 4: the KB composed of sources with both colour and structural
parameters (dashed line), and the subset of bona fide colour-selected GCs
based on Table 1 (solid black line).

the GC system (∼5.7rgal
e ). The source catalogue was generated with

SEXTRACTOR by imposing a minimum area of 20 pixels: it contains
12 915 sources and reaches 7σ detection at mV = 27.5, i.e. 4 mag
below the GC luminosity function (LF) turnover, thus allowing us
to sample the entire GC population (see Fig. 2). The catalogue as-
trometric solution was registered to the USNO-B1.0 (United States
Naval Observatory Catalog of Astrometric Standards) reference
frame, obtaining a final accuracy of 0.2 arcsec rms.

For 4239 sources, we were able to measure structural parame-
ters (which require very high S/N; see Carlson & Holtzman 2001;
Puzia et al. 2012), fitting King surface brightness profile models
with the GALFIT software (Peng et al. 2002) and deriving tidal, core,
effective radii and central surface brightness values for each cluster.
The accuracy of these measurements was estimated simulating sev-
eral thousand artificial GCs with the MULTIKING code (available at:
http://people.na.infn.it/paolillo/Software.html) specifically written
to account for ACS field distortion, PSF variation, dithering pattern
(Paolillo et al. 2011; Puzia et al., in preparation).

The NGC 1399 region covered by our mosaic lacks colour infor-
mation for all HST F606W sources. In this paper we shall therefore
make use of two ancillary multiwavelength data sets: archival HST
g − z observations (Kundu et al. 2005), which cover the very cen-
tral region of the galaxy (10 per cent of the sample, see Fig. 1),
and C − T1 ground-based photometry from Bassino et al. (2006),
covering the whole mosaic. The latter is only available for ∼14 per
cent of our sources, and due to background light contamination it
is very incomplete in the proximity of the galaxy centre. In total,
2740 sources of the catalogue have multiband (either g − z or C −
T1) photometry.

Finally, the subsample of sources used to build our knowledge
base (KB, see Section 3) to train the DM algorithms is com-
posed of the 2100 sources with all photometric and morphological
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Detection of globular clusters 1157

Table 1. Photometric selection criteria for GC candidates.

Colour cut Magnitude cut

Ground-based 1.0 ≤ C − T1 < 2.2 T1 < 23
data

HST data 1.3 ≤ g − z < 2.5 z < 22.5

information: isophotal magnitude, Kron radius, aperture magni-
tudes within a 2, 6 and 20 pixels (corresponding to 0.06, 0.18
and 0.6 arcsec) diameter, ellipticity, position angle, full width at
half-maximum (FWHM), SEXTRACTOR stellarity index, King’s tidal
and core radii, effective radii, central surface brightness and either
g − z or C − T1 colour. The magnitude distribution of such sub-
sample is shown in Fig. 2 as a dashed line.

The typical choice to select GCs based on multiband photometry
would be to adopt the magnitude and colour cuts reported in Table 1,
and highlighted in Fig. 3 with a dashed line; the magnitude limit z
< 22.5 does not exploit the full depth of the HST data but is adopted
to be consistent with the T1 < 23 limit used for the ground-based
colours, thus ensuring a uniform limit across the whole FOV. In
the following, we thus assume that bona fide GCs are represented
by such sources, in order to explore how well different selection
methods based on single-band photometry are able to retrieve the
correct population of objects. The F606W magnitude distribution
of colour-selected GCs is shown in Fig. 2 as a black solid line.

3 SO M E C O N S I D E R AT I O N S O N DATA MI N I N G

DAMEWARE (Brescia et al. 2010) is one of the main products
made available through the DAta Mining and Exploration (DAME)
programme collaboration. It provides a web browser based front-
end, able to configure DM experiments on massive data sets and to
execute them on a distributed computing infrastructure (cloud/grid
hybrid platform). DAMEWARE offers the possibility to access dif-
ferent DM functionalities (supervised classification, regression and

clustering) implemented with different methods [traditional mul-
tilayer perceptrons (MLP), support vector machines (SVM), etc.].
Even though specifically designed to deal with massive data sets,
DAMEWARE can also be used on small ones. It needs however
to be taken into account that, due to the poor coverage of the pa-
rameter space by the KB, DM on small data sets requires special
care. In what follows we shall outline the main strategy behind our
procedure.

The problem tackled in this work is a typical supervised classifi-
cation task and therefore, while referring the reader to Duda, Hart
& Storck (2004) and Bishop (1995) for a general introduction to
DM, we shall shortly summarize some aspects which are relevant
to the experiments described in the next paragraph.

First of all, it needs to be kept in mind that in the DM practice,
there is no way to a priori select the algorithm which offers the best
performances for a given task and that therefore a number of trial
and error experiments must be performed in order to identify the
method with the best performances. From a logical point of view,
effective supervised classification is based on the following steps.

(i) To select and create the data parameter space, i.e. to create the
data input patterns (or features) to be submitted to the classifiers. It
is important in this phase to build homogeneous patterns, i.e. with
each pattern having the same type and number of parameters.

(ii) To prepare the data sets which are needed for the different
experiment steps: training, validation and test sets (the data set must
include also target values for each input pattern, i.e. the desired
output values, coming from any available knowledge source), by
splitting the KB into variable subsets to be submitted at each phase.

(iii) To analyse and select classification model, based on theo-
retical principles and on the user experience about the content of
the KB.

(iv) To perform complete sequences of experiments with all
model candidates and compare their results in terms of training
error, learning robustness, output correctness (as defined below);
this phase might also require a pruning of the parameter space.

Figure 3. Colour–magnitude diagrams using C − T1 ground-based (left-hand panel) and g − z HST photometry (right-hand panel). Ground-based photometry
covers the whole FOV of our ACS mosaic, while HST colours are limited to the central ACS field (∼200 × 200 arcsec2, Fig. 1). Open grey dots represent all
sources in colour catalogues while solid ones refer to the subsample with both colour and structural parameters that represents our KB. Blue squares mark
point-like sources, i.e. sources with stellarity index >0.9, while the dashed line highlights the parameter space (Table 1) used to select bona fide GC.
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(v) Finally, to identify the best model which will then be adopted
as the final classifier to be applied to the entire data set.

Optionally (either because some methods do not require it or simply
as a user choice) a validation procedure may be introduced. Vali-
dation is the process of checking whether the classifier meets some
criterion of generality when dealing with unseen data in order to
avoid overfitting or to stop the training on the base of an ‘objective’
criterion. Here ‘objective’ implies a criterion which is not based on
the same data used for the training procedure. Obviously, validation
requires an additional data set which can be prepared by the user
directly or in an automatic fashion.

When the training set is of limited size – such as the one used in
this paper – it is almost unavoidable to adopt a ‘subset validation’
procedure. This implies the partitioning of a sample of data into
subsets, such that the analysis is initially performed on a single
subset, while the other subset(s) are retained for subsequent use
in confirming and validating the initial analysis. In practice, the
data sample is divided into N subsets, some of which are used for
the training phase (training set), while the others are employed,
as validation sets, to compare the model prediction capability. By
varying the value of N (different splitting of the data sets) it is
possible to evaluate the prediction accuracy of the trained model
(Kotsiantis 2007).

The so called k-fold cross-validation divides the whole data set
into K subsets, each of them is alternately excluded from the val-
idation set. In practice, all data are used for the training and test
phases in an independent way. In this case, we obtain K classifiers
(2 ≤ K ≤ n) whose outputs can be used to obtain a mean evaluation.
The downside of this method is that it is very expensive in terms of
computing time in the case of massive data sets.

As it was briefly mentioned, in a supervised machine learning
scheme, the training is done by means of a mechanism in which the
model output is compared with the desired target output for each in-
put pattern, allowing us to define a training error. The choice of the
metric function used for the comparison (which defines the train-
ing error) determines the evaluation criteria and the learning rule
of the model. Different error evaluation metrics exist in literature,
depending on the problem complexity to be solved. In our exper-
iments we used several methods. The most common metric is the
mean square error (MSE) of the difference between model and tar-
get outputs. Supervised neural networks that use MSE cost function
can use formal statistical methods to determine the confidence of
the trained model (Yang & Shanna 1991), while the MSE computed
on a validation set can be used as an estimate of the variance. This
value can then be used to calculate the confidence interval of the
output of the network assuming a normal distribution. A confidence
analysis made in this way is statistically significant as long as the
output probability distribution remains the same and the network is
not modified.

By assigning a softmax activation function (Bishop 1995) on the
output layer of the neural network (or a softmax component in a
component-based neural network) for categorical target variables,
the outputs can be interpreted as posterior probabilities (Sutton
& Barto 1998). This is very useful in classification as it gives a
certainty measure on classifications.

Many supervised models also support the use of the cross-entropy
error function for addressing classification problems in a consistent
statistical fashion (Rubinstein & Kroese 2004).

The cross-entropy method consists of two phases:

(1) generate a random data sample (trajectories, vectors, etc.)
according to a specified mechanism;

(2) update the parameters of the random mechanism based on
the data to produce a ‘better’ sample in the next iteration.

In practice, a data model is created based on the training set, and
its cross-entropy is measured on a test set to assess how accurate
the model is in predicting the test data. In practice, the method
compares two probability distributions, p the true distribution of
data in any corpus and q the distribution of data as predicted by the
model. Since the true distribution is unknown, cross-entropy cannot
be directly calculated; an estimate of cross-entropy is calculated
using the following formula:

H (T , q) = −
N∑

i=1

1

N
log2 q (xi) ,

where T is the chosen training set, corresponding to the above-
mentioned true distribution p, N is the number of objects in the test
set, and q(x) is the probability of the event x estimated from the
training set.

Due to the supervised nature of the classification task, the sys-
tem performance can be measured by means of a test set during
the testing procedure, in which unseen data are given to the system
to be labelled. The overall performance thus integrates information
about the classification accuracy (i.e. in terms of output correct-
ness). Moreover, the results obtained from the unseen data are also
important to evaluate the learning robustness, i.e. the generaliza-
tion capability of the network in presence of data samples never
used during the training phase. However, when a data set is unbal-
anced (i.e. when the number of samples in different classes varies
greatly) the error rate of a classifier is not representative of the true
performance of the classifier itself.

For the specific problem addressed in this paper, we used five
among the different classification methods available in DAME-
WARE. Namely multilayer perceptron trained by back propagation
(MLP-BP), SVM, genetic algorithm model experiment (GAME),
MLP with genetic algorithms (MLPGA) and multilayer perceptron
trained by quasi-Newton (MLPQNA). MLP-BP and SVM have al-
ready been described several times in the astronomical literature and
therefore we refer the reader to Bishop (1995) and Chang & Lin
(2011). For what the other methods are concerned, since they are
used for the first time in an astronomical context, we shall provide
some further details.

3.1 The multilayer perceptron trained by genetic algorithms

Genetic algorithms (GAs) are computational methods inspired by
Darwin’s evolutionary mechanism (Holland 1975). GAs are par-
ticularly powerful in solving problems where the solution space is
not well defined. When they are embedded into an MLP network,
the resulting learning algorithm (named MLPGA model) consists
mainly in the cyclic exploration of the parameter space aimed at
discovering the best solution (Meng & Fan 2009).

In a GA, each element of a population (i.e. each data point) is
called chromosome and is composed by a set of genes (features)
that represents its deoxyribonucleic acid (DNA). From a more tra-
ditional point of view, each DNA can be therefore considered as a
possible solution to the problem. The starting point of the method
consists in the random generation of a population of chromosomes,
for example by using normal or uniform statistical distributions.
Then the method proceeds by cyclic variation and combination of
the initial population, modifying their DNAs (neuron weights) ac-
cording to the standard feed-forward MLP calculations on input

C© 2012 The Authors, MNRAS 421, 1155–1165
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/421/2/1155/1131204 by U
niversità degli studi di N

apoli user on 10 N
ovem

ber 2022



Detection of globular clusters 1159

patterns. The final goal is to find the best population (best problem
solution), where ‘best’ is defined according to some fitness criterion.

In other words, at each evolutionary step (backward phase of the
MLPGA model), the output chromosomes are obtained by applying
several genetic operators to the input population and by evaluating
through a specific fitness function the goodness of the newly gener-
ated population. The fitness function provides a method to discard
the worst chromosomes from the population, thus allowing only the
best candidates to evolve to the next generation (similarly to what
happens in natural selection). The entire cycle is iterated until the
chromosome with the desired fitness is found (i.e. the best solution
to the classification problem). The training error calculation follows
the MSE criterion.

3.2 The genetic algorithm model experiment

As it was briefly mentioned above, this machine learning model
arises from an original customization, made by DAME group, of the
standard generalized GA model. All basic theoretical aspects for a
generic GA have already been presented in the MLPGA section. The
idea behind the GAME model is to create a special fitness function,
based on a polynomial expansion approximation, able to perform
supervised adaptive learning on massive data sets. The analytical
expression used to solve classification problem is the trigonometric
series expansion of each input pattern features, compared with the
corresponding known pattern target value. Then the whole error
(MSE), which is the fitness function, is calculated at each cycle
for all input patterns, and the population of genetic chromosomes
is updated according the classical genetic operators (crossover and
mutation). This loop ends when the minimum error is found (below
a chosen error threshold) or if the maximum number of iteration is
reached.

3.3 The multilayer perceptron trained by quasi-Newton rule

Quasi-Newton algorithms (QNAs) are variable metric methods for
finding local maxima and minima of functions (Davidon 1991).
The model based on this learning rule and on the MLP network
topology is then called MLPQNA. QNAs are based on Newton’s
method to find the stationary (i.e. the zero gradient) point of a func-
tion. Newton’s method assumes that the function can be considered
as quadratic in a narrow region around the optimum and uses the
first and second derivatives (gradient and Hessian) to find the sta-
tionary point. In QNA, the Hessian matrix of second derivatives of
the function to be minimized does not need to be computed and
can be derived by analysing successive gradient vectors. QNA is
a generalization of the secant method to find the root of the first
derivative for multidimensional problems. In multidimensions, the
secant equation is underdetermined, and quasi-Newton methods dif-
fer in how they constrain the solution, typically by adding a simple
low-rank update to the current estimate of the Hessian. Since, as
it will be shown, this model performed the best in the GC classifi-
cation problem discussed in this paper, we shall discuss it in more
detail.

In DAMEWARE, the quasi-Newton method has been imple-
mented by following the known L-BFGS (Limited memory–
Broyden–Fletcher–Goldfarb–Shanno) algorithm (Byrd, Nocedal &
Schnabel 1994). The QNA is an optimization of Newton-based
learning rule, also because, as described below, the implementation
is based on a statistical approximation of the Hessian by a cyclic
gradient calculation, that is at the base of back propagation method.
By using a local square approximation of the error function, we

can obtain an expression for the minimum position. The gradient in
every point w is in fact given by

g = ∇E = H × (w − w∗), (1)

where w∗ corresponds to the minimum of the error function, which
satisfies the condition:

w∗ = w − H−1 × g. (2)

The vector −H−1g is known as Newton direction and it is the
base for a variety of optimization strategies, such as the QNA which
instead of calculating the H matrix and then its inverse uses a series
of intermediate steps of lower computational cost to generate a
sequence of matrices which are more accurate approximations of
H−1. These matrices are computed using only information related
to the first derivative of the error function.

The Newton direction can be used in a line search (optimization
problem) method when the Hessian matrix H is positive definite,
because under such requirement it is a descent direction. When
the Hessian is not positive definite, the Newton direction may not
be defined, because its inverse matrix may not exist. However, in
addition, also when it is definite, it may not satisfy the descent trend.
In particular, the main drawback of the Newton direction is the need
for the exact Hessian matrix formulation, which is described in more
detail in Appendix A.

As a matter of fact, this method was designed to optimize the
functions of a number of arguments (hundreds to thousands), be-
cause in this case it is worth having an increased iteration number
due to the lower approximation precision because the overheads be-
come much lower. This is particularly useful in astrophysical DM
problems, where usually the parameter space is dimensionally huge
and is often afflicted with a low S/N.

4 R ESULTS

As discussed in Section 1, the purpose of this work was to imple-
ment an alternative, DM-based, method to select GCs in single-band
HST images, thus saving the observing time needed to obtain com-
plete sets of multiband data. In this section, we shortly summarize
the results of the series of (numerical) ‘experiments’ which were
performed to determine the best model and the best combination of
features, while in the next section we discuss the overall properties
of the sample obtained with the DM algorithms, in comparison with
traditional selection methods.

Terms like completeness, contamination, accuracy, etc. are dif-
ferently defined by astronomers and ‘data miners’. In what follows
we use the following definitions. Classification accuracy: fraction
of patterns (objects) which are correctly classified (either GCs or
non-GCs) with respect to the total number of objects in the sample;
completeness: fraction of GCs which are correctly classified as such;
contamination: fraction of non-GC objects which are erroneously
classified as GCs.

All experiments were performed on the KB sample presented in
Section 2, assuming that bona fide GCs are represented by sources
selected according to the colour cuts in Table 1. We used as features
the following quantities:

(i) the isophotal magnitude (feature 1);
(ii) three aperture magnitudes (features 2–4) obtained through

circular apertures of radii 2, 6 and 20 arcsec, respectively;
(iii) the Kron radius, the ellipticity and the FWHM of the image

(features 5–7);
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1160 M. Brescia et al.

Table 2. Summary of the performances (in percentage) of the five classifiers. For each entry, the first line refers to
the classification accuracy, while the second and third refer to completeness and contamination, respectively. Values in
bold highlight the experiments yielding the best results.

Type of experiment Missing features Figure of merit MLPQNA GAME SVM MLPBP MLPGA

Complete patterns –
class.accuracy 98.3 82.1 90.5 59.9 66.2
completeness 97.8 73.3 89.1 54.1 61.4

contamination 1.8 18.7 7.7 42.2 35.1

No par. 11 11
class.accuracy 98.0 81.9 90.5 59.0 62.4
completeness 97.6 79.3 88.9 56.1 62.2

contamination 1.6 19.6 7.9 43.1 38.8

Only optical 8, 9, 10, 11
class.accuracy 93.9 86.4 90.9 70.3 76.2
completeness 91.4 78.9 88.7 54.0 65.1

contamination 5.9 13.9 8.0 33.2 24.6

Mixed 5, 8, 9, 10, 11
class.accuracy 94.7 86.7 89.1 68.6 71.5
completeness 92.3 81.5 88.6 52.8 63.8

contamination 5.0 16.6 8.1 37.6 30.1

(iv) the structural parameters (features 8–11) which are, respec-
tively, the central surface brightness, the core radius, the effective
radius and the tidal radius.

By making an exhaustive pruning test on all 11 data set parame-
ters, with the five machine learning models previously introduced,
we collected a total of 425 experiments (85 per model). The details
of the experiment set-up can be found in Appendix B.

Table 2 summarizes the most relevant results: in terms of classifi-
cation accuracy and completeness, the best results (98.3 and 97.8 per
cent, respectively) are obtained by MLPQNA using all parameters;
using all available features but the number 11 (the tidal radius), we
obtain marginally worse results, as can be expected given the high
noise present in this last parameter, which is affected by the large
background due to the host galaxy light. In terms of contamina-
tion, comparable results (�2 per cent) are obtained with the same
model both with or without feature 11. We point out that since
the experiment without feature 11 provides results comparable to
the one using all features, but requires less information and is less
computationally demanding, we consider the latter to be the case
providing the highest overall performance, as usually done in DM
experiments. In other words, the experiment without feature 11 rep-
resents the best compromise between required overall performance
and complexity of the KB.

The best result obtained without using the structural parameters
is 93.9 per cent (classification accuracy), thus indicating that the
availability of detailed structural parameters does indeed help to
improve the results, but only by ∼5 per cent. Moreover, the pruning
in the mixed cases (by excluding some structural and optical fea-
tures) revealed a similar behaviour in all models, in terms of quantity
of correlated information introduced by individual features in the
patterns. Five optical features (namely the isophotal and aperture
magnitudes and the FWHM of the image) were recognized as
the most relevant by all models. Among the structural parameters,
the central surface brightness and the core radius were recognized
as relevant by all models but the SVM and MLPGA models. In all
other cases, other residual optical and structural parameters were
evaluated low carriers of correlated information.

It is worth pointing out that the performances, in terms of com-
pleteness and contamination, quoted above are all derived with

respect to the test sample (and thus ultimately from the KB), and do
not include possible biases affecting the KB itself. Such biases will
be propagated to the final sample by any DM algorithm, as these
rely on the assumption that the KB is a fair and complete represen-
tation the ‘real’ population that we want to identify. Thus, if the KB
is severely incomplete or contaminated, this is a separate issue that
has to be addressed in the training sample selection phase.

5 D I SCUSSI ON

In order to test the effectiveness of our method, we need to compare
its performances with those offered by more traditional approaches.
For homogeneity (same data set) we shall use as template the method
discussed in Paolillo et al. (2011) which used a selection criterion
based on magnitude and morphology. Fig. 2 shows that sources with
SEXTRACTOR stellarity index >0.9 (grey solid line) are distributed
as the GC LF down to mV = 26, while at fainter magnitudes back-
ground unresolved sources dominate the overall sample. Based on
these considerations, Paolillo et al. choose as GC candidates sources
having stellarity index >0.9 and mV < 26 mag. Clearly a more so-
phisticated selection process, based on complex combinations of
photometric and structural parameters (see for instance Puzia et al.,
in preparation), could be adopted, but any such approach requires
anyway extensive testing to verify what biases are introduced in the
final sample and it is not clear how such biases can be evaluated and
corrected for without the availability of additional data (e.g. more
uniform colour coverage or random background fields to compare
with).

From Fig. 3, it can be seen that although the use of the stel-
larity and magnitude criteria effectively selects the bulk of the
colour-selected GC population, there are sources consistent with
GC colours, which are missed by this approach; on the other hand,
this subsample includes many objects outside the allowed colour
range. We can calculate the level of completeness and contamina-
tion resulting from the simple approach of Paolillo et al. (2011),
as done in Section 4 for the DM methods. We derive two different
estimates (i) for the central region covered by the more accurate g
and z HST photometry and (ii) for the entire field covered by the
ground-based C and T1 data. Within the central region, 92 per cent
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Detection of globular clusters 1161

Figure 4. Same as Fig. 3 showing the colour distribution of the MLPQNA-selected sample. The MLPQNA sample (blue squares) reproduces the properties
of the colour-selected GC population (i.e. the KB) with much less contaminants than e.g. the point-like population shown in Fig. 3.

of our GC candidates (within mV < 26 by definition) are consistent
with the 1.3 ≤ g − z < 2.5 colour cut and z < 22.5. Using the C −
T1 photometry instead, which extends over the whole HST mosaic,
we find that 82 per cent of the GC candidates are consistent with
the 1.0 ≤ C − T1 < 2.2 colour and T1 < 23 mag cuts. On the other
hand, ∼4 and ∼9 per cent of the GC candidates have, respectively,
g − z and C − T1 colours outside the allowed range as given in
Table 1.

When these numbers are compared with those presented in
Table 1, we see that the MLPQNA outperforms the simpler ap-
proach used by Paolillo et al. (2011) both in the central region and
across the whole field, in the sense that it results in higher complete-
ness, retrieving a larger fraction of the colour-selected sources using
only single-band photometry. GAME and SVM may still perform
better in the galaxy outskirts, although in the galaxy centre they
are slightly less accurate. In terms of contamination, the MLPQNA
again performs better than the Paolillo et al. (2011) approach, yield-
ing <2 per cent spurious sources in the two best experiments (com-
plete patterns and no par.11). The other MLPQNA experiments and
all SVM cases are still competitive in the galaxy outskirts.

The performance of the MLPQNA method is better under-
stood looking at the colour–magnitude plot shown in Fig. 4. The
MLPQNA sample reproduces the properties of the colour-selected
GC population with much less contaminants, than e.g. the point-like
population shown in Fig. 3, and less outliers. In Fig. 5, we show
the luminosity distribution of the MLPQNA sample: the MLPQNA
approach (dashed red line) is able to retrieve almost the entirety
of the colour-selected GC population (solid black line). We point
out that the luminosity limit at mV ∼ 24 is due to the magnitude
threshold imposed on the colour-selected sample (Table 1) in order
to get a uniform limit across the whole colour range (Fig. 4) and
FOV, and is thus not an intrinsic feature of the GC LF which extends
down to mV � 26 mag.

A detailed investigation of the properties of the spurious sources
is difficult since the strength of DM algorithms is to detect hidden
correlations among the parameters, and use them to classify un-
known sources; this however means that such correlations are hard
to identify through a simple (and low-dimensional) view of the
source distribution in the parameter space. In our specific case we

Figure 5. Same as Fig. 2 but for the MLPQNA-selected samples. The
MLPQNA approach (dashed red line) is able to retrieve almost the entirety
of the colour-selected GC population (solid black line); applying the same
algorithm to all sources with structural parameters (but no colour, blue dot–
dashed line), we can thus retrieve many more objects than available in the
colour-selected subsample, sharing the same luminosity distribution of the
latter population.

found that most contaminants are indeed GCs which fail the colour–
magnitude classification technique by only one criterion (e.g. they
lie just outside the chosen colour or magnitude range, see Fig. 4).
It is thus unsurprising that the MLPQNA identifies such sources as
GCs as all other parameters obey the correlations identified in the
training phase. A few more extreme objects are found to be affected
by photometric or structural problems in the data, such as the over-
lap with a nearby source which may introduce severe contamination
in low-resolution ground-based data, or a position close to the chip
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1162 M. Brescia et al.

Figure 6. Left-hand panel: half-light radius distribution for the entire ACS optical catalogue (solid line), compared to Paolillo et al. (2011) GC candidates,
i.e. point-like sources with mV < 26 (dotted line). Restricting the sample to colour-confirmed GCs (dashed and dot–dashed lines) shows that the Paolillo et al.
(2011) selection criteria miss very extended GCs with Reff > 5 pc. The shaded region highlights the region where our size measurement is poorly constrained
(see Paolillo et al. 2011; Puzia et al., in preparation). Right-hand panel: same as left-hand panel but for the MLPQNA-selected samples. The MLPQNA-selected
sample (dotted red line) reproduces the size distribution of the colour-selected GC population (dashed black line), thus avoiding the size biases resulting from
the simpler Paolillo et al. (2011) selection criteria; the same is true when applying the MLPQNA algorithm to the larger subsample with structural parameters
(blue dot–dashed line).

gap in HST data. A few can also be expected to be foreground stars
which are misclassified due to the small angular size of some GCs
in the training sample, lying at the resolution limit of HST data
(grey region in Fig. 6).

An additional advantage in the use of DM techniques can be seen
comparing the structural parameters of point-like sources with mV

< 26 mag with those of the colour-selected subsample (Fig. 6, left-
hand panel): we find that the Paolillo et al. (2011) selection criteria
miss extended sources with Reff � 5 pc, as it can be expected given
the compactness requirement (stellarity index >0.9). The right-
hand panel of the same figure shows that the MLPQNA methods
are instead able to retrieve also the most extended GCs. While some
of these extended sources may be background galaxies, we point
out that the most extended GCs, such as the Galactic GC ω-Cen,
do fall in this range. In fact, we used the subset of GC confirmed
through radial velocity (RV) measurements (Dirsch et al. 2004) to
verify that a significant fraction (∼10 per cent) of the NGC 1399
GC population has Reff � 5 pc, and that the size distribution of this
subsample is statistically indistinguishable from both the colour-
and MLPQNA-selected populations. Obviously we cannot confirm
that all extended sources are genuine GCs but, as already discussed
in Section 4, we emphasize that the performance of the method
has to be evaluated only by its ability to retrieve the same sources
included in the training sample, i.e. the colour-selected GCs in our
experiment.

Applying the same algorithm to the larger ensemble of sources
with structural parameters (but no colour information), we are now
able to retrieve more objects than available in the colour-selected
subsample, sharing very similar properties to the latter population.
The population of MLPQNA-selected GCs identified within the

whole population is shown in Figs 5 and 6 (right-hand panel) as
a dot–dashed line. In our specific test case (e.g. NGC 1399), this
method allows us to identify ∼30 per cent more GCs than relying
the subsample of sources with colour; this larger sample closely
follows the GC LF down to the magnitude limit imposed by the
colour selection, as well as the structural properties of the bona
fide GC population. Thus, the gain with respect to other selection
techniques is in the ability to retrieve a larger population with well-
defined properties, at lower observational cost. In other programmes
the gain can be much larger: for instance, in cases of large surveys
where DM algorithms can be trained on a KB consisting of a limited
number of multiband observations covering only a small fraction
of the FOV, the trained algorithm will then allow us to extract
statistically equivalent samples from the entire survey.

Finally, we note that each experiment was not really time con-
suming. It was executed on a common desktop multicore PC in a
multithreading environment, resulting in about 3600 s (1 h) of du-
ration for the training phase in the worst case (i.e. on the whole
data set patterns with all 11 features). The test phase is instanta-
neous, since the trained network acts like a one-shot function. Of
course, the complexity and indeed the execution time depends in a
quadratic form on the data set dimension. But in the case of small
data sets, like the present one, this is not an issue. Besides comput-
ing time, the relevant result is that the proposed MLPQNA model
revealed a strong performance also in the case of small data sets
where, as known, machine learning method performances are usu-
ally degrading, due to the limited size of the training samples. This
is demonstrated by the poorer results obtained by other methods,
shown in Table 2, which usually perform significantly better on
larger data sets.

C© 2012 The Authors, MNRAS 421, 1155–1165
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/421/2/1155/1131204 by U
niversità degli studi di N

apoli user on 10 N
ovem

ber 2022



Detection of globular clusters 1163

6 C O N C L U S I O N

We performed an experiment showing that the use of DM techniques
on small data sets allows us to solve complex astronomical problems
such as the selection of GC candidates in external galaxies, from
single-band images, provided that a subsample of sources can be
used to train the DM algorithm. Since such methods do not assume
any a priori model of the population, we are looking for, they allow
us to retrieve samples which share the same properties of the training
sample and are affected by less biases than results using simpler
selection techniques.

In principle, we could use more refined approaches than those
tested here, such as the use of RV measurements to improve the
reliability of the KB, but any such approach would require the
availability of additional data, i.e., in this particular case, spectro-
scopic observations. Such type of data are difficult to obtain and
expensive in terms of observing time, thus justifying the DM meth-
ods proposed in this work. Obviously, in some instances these data
could already be available in the archives, as for the NGC 1399 case
where they have been used to verify some of our results (Section 5).

As a closing remark, we can safely state that, in the emerging
scenario of the data-driven science, a DM-based approach to data
analysis and interpretation seems to provide a large competitive edge
over classical methods in particular for what concerns the ability
to recognize patterns and derive correlations in high dimensionality
data set that are not easily handled by human perception.
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APPENDI X A : QUA SI -NEWTO N LEARNING
RU LE

Quasi-Newton direction search methods provide a very useful al-
ternative in that they do not require a precise calculation of the
Hessian. In place of the Hessian matrix Hk , they use an approxima-
tion matrix Ak , updated after each iteration k, to take into account of
the additional information gain obtained. The cyclic updates make
use of the gradient changes, which at each step k provide informa-
tion about the second derivative of the error function f k along the
optimization search direction. More rigorously, given xk a partial
solution to the optimization problem at the iteration k (we want to
converge to the optimal solution x∗), when xk and xk+1 lie near the
optimal solution x∗, within which H(x) is positive definite, we can
write

Hk (xk+1 − xk) = ∇2fk (xk+1 − xk) ∼ ∇fk+1 − ∇fk.

The quasi-Newton method chooses the Hessian approximation Ak+1

so that it can well represent the true Hessian. In other words, we
require to follow the well-known secant equation condition:

Ak+1 (xk+1 − xk) = ∇fk+1 − ∇fk.

For completeness, we recall also that the previous equation is in-
trinsically defined under additional conditions, such as symmetry
(typically assumed by the exact Hessian) and the low rank of the
difference between successive approximations Ak and Ak+1. In the
MLPQNA model, we apply the Hessian approximation known as
the BFGS formula, named after its discoverers (Broyden 1970;
Fletcher 1970; Goldfarb 1970; Shanno 1970). This is defined by the
following equation. Let solk = x(k+1) − xk and gk = ∇f (k+1) − ∇f k

be the respective matrix terms of equation (2), then we obtain the
following rank-2 matrix:

Ak+1 = Ak − Ak solTk Ak

solTk Aksolk
+ gkg

T
k

gT
k solk

.

The BFGS formula generates positive definite approximation ma-
trices under the condition that the initial approximation matrix A0

is positive definite and the term gT
k solk > 0 L-BFGS. From a com-

putational point of view, the BFGS formula is time consuming and
requires storing at each step a dense N × N approximation ma-
trix. Dealing with massive data optimization problems, in order to
overcome such requirements, we decided to implement a limited-
memory algorithm, known as L-BFGS (Zhu et al. 1997).

The L-BFGS stores at each step only few vectors of length n that
represent the approximations implicitly. Despite this improvement
in the storage requirements, it yields an acceptable (almost linear)
rate of convergence. The main idea of this method is to use error
function curvature information from only the most recent iterations
to construct the Hessian approximation. Of course, the final result
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1164 M. Brescia et al.

will not be the Hessian itself, but just an approximation. Surprisingly
enough, while the convergence slows down, performances are not
affected much and may even improve since it depends on the number
of processor’s time units spent to calculate the result.

APP ENDIX B: SET-UP O F THE EXPERIME NTS

In the following sections, the features are referred to the cardinal
number (feature 1: MAG_ISO, etc). For each model, we choose the
configuration parameters in order to perform the best results.

B1 Multilayer perceptron trained by back propagation
(MLP-BP)

(i) Input nodes (equivalent to the number of features consid-
ered in the data set patterns). Max number: 11 (complete patterns);
min number: 4 (pruning on optical features); nominal number: 7
(complete optical data set).

(ii) Hidden nodes (depending on the number of features consid-
ered in the data set patterns). Max number: 23 (with input nodes in
[8, 11]); min number: 15 (with input nodes in [4, 7]).

(iii) Output nodes (based on crispy classification): 2 (1 0 GC,
0 1 not GC).

(iv) Activation functions (neuron function type, used to provide
its output, by processing inputs). Input layer: (no input processing,
just propagate it); hidden layer: non-linear hyperbolic tangent of
input; output layer: linear with softmax normalization (outputs sums
up to 1.0 and converge to posterior probabilities).

(v) Learning rule parameters. Output error type: cross-entropy;
training mode: batch (weights update after each whole data set pat-
terns calculation); training rule: back propagation with conjugated
descent gradient; error loop threshold: 0.001 (one of the stopping
criteria); number of iterations: 10 000 (one of the stopping criteria).

B2 Support vector machines (SVM)

(i) Model: C-support vector classification (C-SVC); Kernel: ra-
dial basis function.

(ii) Gamma (for each experiment we have a multiplicative step).
Min number: 2−15; max number: 223; step: 4 (multiplicative). C (for
each experiment we have a multiplicative step). Min number: 2−5;
max number: 215; step: 4 (multiplicative).

(iii) Error tolerance: 0.001.
(iv) Cache: 100 MB.
(v) Shrinking: on.
(vi) Probability estimates: off.
(vii) Cross validation: k-fold (k = 5).
(viii) Weights: 1.

B3 Genetic algorithm model experiment (GAME)

(i) Model: GA with fitness based on trigonometric polynomial
expansion.

(ii) Topology: population of chromosomes, each of them com-
posed by genes.

(iii) Input features (depending on the number of features con-
sidered in the data set patterns). Max number: 11 (complete data
set); min number: 4 (pruning on optical features); nominal number:
7 (complete optical data set).

(iv) Genetic population size (depending on the number of fea-
tures and polynomial order). Max number: 67 (with 11 features);
min number: 25 (with four features).

(v) Population size: (polynomialorder ∗ numfeatures) + 1.

(vi) Genetic chromosome size (depending on the polynomial
order). Number: 13 (with polynomial order = 6); chromosome size:
(2 × polynomialorder) + 1.

(vii) Output (based on crispy classification). Number in BoK: 1
(0 if no GC; 1 else).

(viii) Output error type: Thresholded MSE (TMSE) with thresh-
old 0.4.

(ix) Error loop threshold: 0.001 (one of the stopping criteria).
(x) Polynomial order: 6.
(xi) Tournament selection (based on the wheel roulette, max

probability on the entire population fitness). Number of tournament
chromosomes: 2.

(xii) Genetic operators. Crossover probability: 0.9; mutation
probability: 0.2; elitism factor: 2.

(xiii) Initial population distribution: Gaussian standard, with all
values generated into range [−1, +1].

(xiv) Number of iterations: 10 000 (one of the stopping criteria).

B4 Multilayer perceptron trained by quasi-Newton
(MLPQNA)

(i) Input nodes (depending on the number of features consid-
ered in the data set patterns). Max number: 11 (complete data set);
min number: 4 (pruning on optical features); nominal number: 7
(complete optical data set).

(ii) Hidden nodes (depending on the number of features consid-
ered in the data set patterns). Max number: 23 (with input nodes in
[8, 11]); min number: 15 (with input nodes in [4, 7]).

(iii) Output nodes (based on crispy classification): number in
BoK: 1 (0 if no GC; 1 else).

(iv) Activation functions (neuron function type used to provide
its output, by processing inputs). Input layer: no input processing,
just propagate it; hidden layer: not linear hyperbolic tangent of
input; output layer: linear with softmax normalization (outputs sum
up to 1.0 and converge to posterior probabilities).

Learning rule parameters:

(i) output error type: cross-entropy;
(ii) training mode: batch (weights update after each whole data

set patterns calculation);
(iii) training rule: quasi-Newton (inverse Hessian approximation

by error function gradients);
(iv) QNA implementation rule: based on L-BCFG method (L is

for limited memory);
(v) QNA parameters. Decay: 0.001 (weight decay during gradi-

ent approximation); restarts: 20 (random restarts for each approx-
imation step); Wstep: 0.01 (stopping threshold, min error for each
step); MaxIts: 1500 (max number of Iterations for each approximate
step).

B5 Multilayer perceptron trained by genetic algorithms
(MLPGA)

(i) Input nodes (depending on the number of features consid-
ered in the data set patterns). Max number: 11 (complete data set);
min number: 4 (pruning on optical features); nominal number: 7
(complete optical data set).

(ii) Hidden nodes (depending on the number of features consid-
ered in the data set patterns). Max number: 23 (with input nodes in
[8, 11]); min number: 15 (with input nodes in [4, 7]).

(iii) Output nodes (based on crispy classification). Number in
BoK: 1 (0 if no GC; 1 else).
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(iv) Activation functions (neuron function type used to provide
its output, by processing inputs). Input layer: no input processing,
just propagate it; hidden layer: non-linear hyperbolic tangent of
input; output layer: non-linear hyperbolic tangent of input.

(v) Learning rule parameters. Output error type: MSE; training
mode: batch (weights update after each whole data set patterns cal-
culation); training rule: GA with roulette wheel selection function
and fitness based on the MSE between target and output of data set
patterns.

(vi) MLPGA parameters. Genetic population size: 25; genetic
chromosome size: 13; error loop threshold: 0.001; tournament se-

lection: based on the wheel roulette method (max probability on the
entire population fitness); number of tournament chromosomes: 2;
crossover probability: 0.9; mutation probability: 0.2; elitism factor:
2; initial population distribution: Gaussian standard, with all values
generated into range [−1, +1]; number of iterations: 10 000 (one
of the stopping criteria).
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